JP2018520480A - Electrolytic solution additive for secondary battery, electrolytic solution containing the same, and secondary battery - Google Patents

Electrolytic solution additive for secondary battery, electrolytic solution containing the same, and secondary battery Download PDF

Info

Publication number
JP2018520480A
JP2018520480A JP2017564835A JP2017564835A JP2018520480A JP 2018520480 A JP2018520480 A JP 2018520480A JP 2017564835 A JP2017564835 A JP 2017564835A JP 2017564835 A JP2017564835 A JP 2017564835A JP 2018520480 A JP2018520480 A JP 2018520480A
Authority
JP
Japan
Prior art keywords
secondary battery
electrolytic solution
electrolyte
additive
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017564835A
Other languages
Japanese (ja)
Other versions
JP6735777B2 (en
JP2018520480A5 (en
Inventor
ジョンジュ シン
ジョンジュ シン
ジェミン ハ
ジェミン ハ
デウン バク
デウン バク
ジョンリャン キム
ジョンリャン キム
ジミン バン
ジミン バン
ジョングァン ゴ
ジョングァン ゴ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Chemicals Co Ltd
SK Discovery Co Ltd
Original Assignee
SK Chemicals Co Ltd
SK Discovery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Chemicals Co Ltd, SK Discovery Co Ltd filed Critical SK Chemicals Co Ltd
Publication of JP2018520480A publication Critical patent/JP2018520480A/en
Publication of JP2018520480A5 publication Critical patent/JP2018520480A5/ja
Application granted granted Critical
Publication of JP6735777B2 publication Critical patent/JP6735777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本発明は、二次電池用電解液添加剤、これを含む電解液及び二次電池に関する。本発明の二次電池用電解液添加剤は、電解液に含まれて、出力特性、寿命特性、保存特性、及び耐電圧特性の面において優れた二次電池を提供することができ、モバイル用、電気自動車用、電動工具用、電動バイク用、ロボット用、又はドローン用の二次電池などに使用するのに適している。【選択図】なしThe present invention relates to an electrolytic solution additive for a secondary battery, an electrolytic solution containing the same, and a secondary battery. The electrolyte additive for secondary battery of the present invention is included in the electrolyte and can provide a secondary battery that is excellent in terms of output characteristics, life characteristics, storage characteristics, and withstand voltage characteristics. It is suitable for use in secondary batteries for electric vehicles, electric tools, electric motorcycles, robots, or drones. [Selection figure] None

Description

本発明は、二次電池用電解液添加剤、これを含む電解液及び二次電池に関する。   The present invention relates to an electrolytic solution additive for a secondary battery, an electrolytic solution containing the same, and a secondary battery.

モバイル機器に対する技術開発と需要とが増加するにつれて、エネルギー源としての二次電池に対する需要も急激に増加している。二次電池の中でも、高いエネルギー密度と動作電位とを示し、優れたサイクル寿命で自己放電率が低いリチウム二次電池が実用化され、広く使用されている。   As technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources also increases rapidly. Among secondary batteries, lithium secondary batteries that exhibit high energy density and operating potential, have excellent cycle life and low self-discharge rate have been put into practical use and are widely used.

また、最近では環境問題への関心が大きくなるにつれ、大気汚染の主な原因の1つであるガソリン車、ディーゼル車などの化石燃料を使用する車両を代替できる電気自動車、ハイブリッド電気自動車などの研究が盛んに進んでいる。このような、電気自動車、ハイブリッド電気自動車などの動力源としては、主に、リチウムイオン系二次電池が使用されており、このようなリチウム二次電池と、当該素材の出力安定性及びエネルギー密度を向上させようとする研究とが活発に進められている。   In recent years, as interest in environmental issues has grown, research on electric vehicles, hybrid electric vehicles, etc. that can replace vehicles that use fossil fuels, such as gasoline vehicles and diesel vehicles, which are one of the main causes of air pollution. Is actively progressing. As a power source for such electric vehicles and hybrid electric vehicles, lithium ion secondary batteries are mainly used. Such lithium secondary batteries and the output stability and energy density of the materials are used. Research is going on actively to improve this.

このようなリチウム二次電池は、リチウムイオンを吸着及び放出する炭素材などからなる負極と、リチウム含有酸化物などからなる正極と、混合有機溶媒にリチウム塩が適量溶解した非水系電解液とで構成されている。   Such a lithium secondary battery includes a negative electrode made of a carbon material that adsorbs and releases lithium ions, a positive electrode made of a lithium-containing oxide, and a non-aqueous electrolyte solution in which an appropriate amount of lithium salt is dissolved in a mixed organic solvent. It is configured.

従来、電池の出力特性又は寿命特性の改善を目的として、特定の添加剤を二次電池用電解液に添加する技術が多数報告されている。例えば、特許文献1は、スルホン酸フェニル化合物を含む電解液を使用することにより、低温サイクル特性が改善されることを開示しており、特許文献2は、エチレンスルファートを電解液に添加することにより、高温及び低温において電池の出力特性が改善されることを開示している。また、特許文献3は、スルフィニル基を含む化合物を電解液に添加することにより、電池のサイクル特性が改善されることを開示しており、特許文献4は、スルトン(Sultone)系化合物を添加剤として使用することにより、電池の高温安定性が改善されることを開示しており、特許文献5は、プロペンスルトンを含む電解液を使用することにより、電池の高温安定性が改善されることを開示している。さらに、特許文献6は、硫酸エステル化合物を含む電解液を使用することにより、電池の高温保存容量が維持されることを開示している。   Conventionally, many techniques for adding a specific additive to an electrolyte for a secondary battery have been reported for the purpose of improving the output characteristics or life characteristics of the battery. For example, Patent Document 1 discloses that low-temperature cycle characteristics are improved by using an electrolytic solution containing a sulfonic acid phenyl compound, and Patent Document 2 adds ethylene sulfate to the electrolytic solution. Discloses that the output characteristics of the battery are improved at high and low temperatures. Patent Document 3 discloses that the cycle characteristics of the battery can be improved by adding a compound containing a sulfinyl group to the electrolytic solution, and Patent Document 4 discloses a sultone-based compound as an additive. Patent Document 5 discloses that the high temperature stability of the battery is improved by using an electrolyte containing propene sultone. Disclosure. Furthermore, patent document 6 is disclosing that the high temperature storage capacity of a battery is maintained by using the electrolyte solution containing a sulfate ester compound.

しかし、前記のごとき従来の技術により、電池の出力特性や保存特性はある程度改善されているが、モバイル用、電気自動車用、電動工具用、電動バイク用、ロボット用、又はドローン用の電池に要求される高い出力特性と寿命特性とは、充分には確保されていない。したがって、二次電池の出力特性をより改善するとともに、寿命特性を満足させることができる二次電池用電解液添加剤と、これを含む電解液及び二次電池との開発が、依然として切実である。   However, although the output characteristics and storage characteristics of the battery have been improved to some extent by the conventional techniques as described above, it is required for batteries for mobile use, electric vehicles, electric tools, electric motorcycles, robots, or drones. The high output characteristics and life characteristics that are achieved are not sufficiently ensured. Therefore, the development of the secondary battery electrolyte additive that can further improve the output characteristics of the secondary battery and satisfy the life characteristics, and the electrolyte and the secondary battery including the same are still urgent. .

大韓民国登録特許第1486618号公報Republic of Korea Registered Patent No. 1486618 大韓民国公開特許第2015−0050493号公報Korean Published Patent No. 2015-0050493 大韓民国公開特許第2015−0050082号公報Korean Published Patent No. 2015-0050082 大韓民国登録特許第0976958号公報Republic of Korea Registered Patent No. 0976958 日本国特許第4190162号公報Japanese Patent No. 4190162 国際公開第2012−053644号公報International Publication No. 2012-053644

本発明者らは、持続的に研究を行った結果、二次電池の出力特性の向上、保存特性の改善、寿命特性の改善、及び電解液の耐電圧特性の改善を可能にする化合物を発見し、これを二次電池用電解液に適用することにより、本発明を完成するに至った。   As a result of continuous research, the present inventors have discovered compounds that can improve the output characteristics of secondary batteries, improve storage characteristics, improve life characteristics, and improve the withstand voltage characteristics of electrolytes. And this has been completed by applying this to the electrolyte solution for secondary batteries.

本発明の目的は、リチウム二次電池用電解液に含まれて、電池の出力特性を改善し、電解液の電気化学的分解を低下させ、寿命と保存特性との改善が可能な電解液添加剤を提供することである。   The object of the present invention is to include an electrolyte solution that is contained in an electrolyte solution for a lithium secondary battery, improves the output characteristics of the battery, reduces the electrochemical decomposition of the electrolyte solution, and improves the life and storage characteristics. Is to provide an agent.

本発明の他の目的は、耐電圧特性が向上した二次電池用電解液及びこれを含む二次電池を提供することである。   Another object of the present invention is to provide a secondary battery electrolyte with improved withstand voltage characteristics and a secondary battery including the same.

前記目的を達成するために、本発明は、以下の化学式1:
で表される化合物を含む二次電池用電解液添加剤を提供する。
To achieve the above object, the present invention provides the following chemical formula 1:
The electrolyte solution additive for secondary batteries containing the compound represented by these is provided.

また、本発明は、非水系溶媒と、リチウム塩と、前記電解液添加剤とを含む二次電池用電解液を提供する。   Moreover, this invention provides the electrolyte solution for secondary batteries containing a non-aqueous solvent, lithium salt, and the said electrolyte solution additive.

また、本発明は、前記二次電池用電解液を含む二次電池を提供する。   The present invention also provides a secondary battery comprising the secondary battery electrolyte.

本発明の二次電池用電解液添加剤は、電解液に含まれて、出力特性、寿命特性、保存特性、及び耐電圧特性の面において優れた二次電池を提供する。したがって、本発明の二次電池用電解液添加剤は、モバイル用、電気自動車用、電動工具用、電動バイク用、ロボット用、又はドローン用の二次電池などに有用である。   The electrolyte additive for secondary batteries of the present invention is contained in an electrolyte and provides a secondary battery excellent in terms of output characteristics, life characteristics, storage characteristics, and withstand voltage characteristics. Therefore, the secondary battery electrolyte additive of the present invention is useful for secondary batteries for mobiles, electric vehicles, electric tools, electric motorcycles, robots, or drones.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の二次電池用電解液添加剤は、以下の化学式1:
で表される化合物を含む。
The secondary battery electrolyte additive of the present invention has the following chemical formula 1:
The compound represented by these is included.

本発明に係る二次電池用電解液添加剤は、電解液の界面抵抗を低下させ、電池の出力性能を改善し、保存特性及び寿命特性を向上させ、電池の長時間使用を可能にし、電解液の耐電圧特性を向上させることができる。   The electrolyte additive for secondary batteries according to the present invention reduces the interfacial resistance of the electrolyte, improves the output performance of the battery, improves the storage characteristics and life characteristics, enables the battery to be used for a long time, The withstand voltage characteristic of the liquid can be improved.

前記化学式1で表される化合物は、公知の化合物(CAS No.496−45−7)であり、ビシクログリオキサールスルフェート(bicyclo−glyoxal sulfate)、グリオキサールスルフェート(glyoxal sulfate)、又は3a,6a−ジヒドロ−[1,3,2]ジオキサチオロ[4,5−d][1,3,2]ジオキサチオール2,2,5,5−テトラオキシド(3a,6a−dihydro−[1,3,2]dioxathiolo[4,5−d][1,3,2]dioxathiole2,2,5,5−tetraoxide)などと称され、市販のものを購入できる。   The compound represented by the chemical formula 1 is a known compound (CAS No. 497-45-7), bicycloglyoxal sulfate, glyoxal sulfate, or 3a, 6a- Dihydro- [1,3,2] dioxathiolo [4,5-d] [1,3,2] dioxathiol 2,2,5,5-tetraoxide (3a, 6a-dihydro- [1,3,2 ] Dioxathiolo [4,5-d] [1,3,2] dioxathiole2,2,5,5-tetraoxide) and the like, and commercially available products can be purchased.

また、前記化学式1で表される化合物は、公知の合成法で調製することができ、例えば、1,1,2,2−テトラクロロエタンを出発物質として発煙硫酸などと反応させる、公知の合成法を採用することができる(米国特許第1999995号明細書及び米国特許第2415397号明細書を参照)。   In addition, the compound represented by the chemical formula 1 can be prepared by a known synthesis method, for example, a known synthesis method in which 1,1,2,2-tetrachloroethane is reacted with fuming sulfuric acid or the like as a starting material. (See U.S. Pat. No. 19999995 and U.S. Pat. No. 2,415,397).

前記化学式1で表される化合物は、単独で、又は一般的に使用可能な公知の電解液添加剤との組み合わせで、電解液に使用することができる。   The compound represented by the chemical formula 1 can be used in an electrolytic solution alone or in combination with known electrolytic solution additives that can be generally used.

また、本発明の二次電池用電解液は、非水系溶媒と、リチウム塩と、前記のような二次電池用電解液添加剤とを含む。   Moreover, the electrolyte solution for secondary batteries of this invention contains a nonaqueous solvent, lithium salt, and the electrolyte solution additive for secondary batteries as mentioned above.

前記二次電池用電解液には、一般的に使用可能な公知の電解液添加剤がさらに含まれ得る。   The electrolyte solution for a secondary battery may further include a known electrolyte solution additive that can be generally used.

前記非水系溶媒は、線形又は環状のカーボネート系溶媒か、ラクトン系溶媒であり、リチウム塩及び二次電池用電解液添加剤に対する溶解度が高いものが好ましい。例えば、該非水系溶媒は、ジエチルカーボネート(diethyl carbonate)、エチルメチルカーボネート(ethyl methyl carbonate)、ジメチルカーボネート(dimethyl carbonate)、ジプロピルカーボネート(dipropyl carbonate)、メチルプロピルカーボネート(methyl propyl carbonate)、エチルプロピルカーボネート(ethyl propyl carbonate)、メチルエチルカーボネート(methyl ethyl carbonate)などの線形カーボネート系溶媒と、エチレンカーボネート(ethylene carbonate)、プロピレンカーボネート(propylene carbonate)、ブチレンカーボネート(butylene carbonate)、フルオロエチレンカーボネート(fluoroethylene carbonate)などの環状カーボネート系溶媒と、γ−ブチロラクトン(gamma−butyrolactone)などのラクトン系溶媒とからなる群より選択される、1種の溶媒又は2種以上の混合溶媒であり得る。   The non-aqueous solvent is a linear or cyclic carbonate solvent or a lactone solvent, and preferably has a high solubility in the lithium salt and the electrolyte additive for secondary batteries. For example, the non-aqueous solvent may be diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, or methyl propyl carbonate. (Ethyl propylene carbonate), linear ethyl carbonate solvents such as methyl ethyl carbonate, ethylene carbonate, propylene carbonate, buty One solvent selected from the group consisting of cyclic carbonate solvents such as butylene carbonate and fluoroethylene carbonate, and lactone solvents such as γ-butyrolactone, or 2 It can be a mixed solvent of more than one species.

好ましくは、前記非水系溶媒としては、脱水されたものを使用することができ、具体的に、非水系溶媒の水分含有量は150重量ppm以下であり得る。非水系溶媒の水分含有量が150重量ppm以下である場合、電池内のリチウム塩の分解と電解液添加剤の加水分解とを抑制し、電解液の性能をより向上させることができる。   Preferably, as the non-aqueous solvent, a dehydrated solvent can be used. Specifically, the water content of the non-aqueous solvent can be 150 ppm by weight or less. When the water content of the non-aqueous solvent is 150 ppm by weight or less, decomposition of the lithium salt in the battery and hydrolysis of the electrolytic solution additive can be suppressed, and the performance of the electrolytic solution can be further improved.

前記リチウム塩は、電解液のイオン伝導度を向上させるためのものであり、例えば、LiPF、LiBF、LiSbF、LiAsF、LiN(SOF)、LiN(SOCF、LiN(SO、LiClO、LiAlO、LiAlCl、LiSOCF、LiI、LiCl、LiB(Cなどを、単独で又は混合して使用することができる。 The lithium salt is for improving the ionic conductivity of the electrolytic solution. For example, LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiSO 3 CF 3 , LiI, LiCl, LiB (C 2 O 4 ) 2 or the like may be used alone or in combination. Can do.

電解液において、前記リチウム塩の濃度(含有量)は、0.9M〜3.0M(mol/L)、具体的には1.0M〜2.0Mであり得る。該範囲の含有量のリチウム塩を含むことにより、電解液のイオン伝導度を適切なレベルに確保するのに有利であり、添加したリチウム塩の量に対する電解液のイオン伝導度の向上効率をより高めることができる。   In the electrolytic solution, the concentration (content) of the lithium salt may be 0.9M to 3.0M (mol / L), specifically 1.0M to 2.0M. By including a lithium salt with a content in this range, it is advantageous to ensure the ionic conductivity of the electrolytic solution at an appropriate level, and the efficiency of improving the ionic conductivity of the electrolytic solution with respect to the amount of added lithium salt is further improved. Can be increased.

本発明の例によれば、本発明に係る電解液添加剤の含有量は、電解液の総重量の0.05〜20重量%、0.05〜15重量%、0.05〜10重量%、0.1〜10重量%、0.1〜8重量%、0.1〜6重量%、0.1〜4重量%、0.1〜3重量%、0.2〜5重量%、0.5〜15重量%、0.5〜10重量%、0.5〜8重量%、0.5〜6重量%、0.5〜4重量%、0.5〜3重量%、1〜10重量%、1〜8重量%、3〜10重量%、3〜8重量%、3〜6重量%、4〜10重量%、4〜8重量%、4〜7重量%、又は5〜7重量%であり得る。前記化学式1で表される化合物を前記含有量の範囲で含む場合、抵抗の増加を抑制して出力特性をより改善することができ、前記電解液を含む二次電池の保存特性の維持と電解液の耐電圧特性の向上との面から、より効果的であり得る。   According to the example of the present invention, the content of the electrolytic solution additive according to the present invention is 0.05 to 20% by weight, 0.05 to 15% by weight, 0.05 to 10% by weight of the total weight of the electrolytic solution. 0.1 to 10 wt%, 0.1 to 8 wt%, 0.1 to 6 wt%, 0.1 to 4 wt%, 0.1 to 3 wt%, 0.2 to 5 wt%, 0 5-15 wt%, 0.5-10 wt%, 0.5-8 wt%, 0.5-6 wt%, 0.5-4 wt%, 0.5-3 wt%, 1-10 Wt%, 1-8 wt%, 3-10 wt%, 3-8 wt%, 3-6 wt%, 4-10 wt%, 4-8 wt%, 4-7 wt%, or 5-7 wt% %. When the compound represented by the chemical formula 1 is included in the content range, the increase in resistance can be suppressed and the output characteristics can be further improved, and the storage characteristics and the electrolysis of the secondary battery including the electrolytic solution can be improved. This can be more effective in terms of improving the withstand voltage characteristics of the liquid.

また、前記二次電池用電解液は、その他の公知の添加剤である、ビニレンカーボネート(vinylene carbonate)、フルオロエチレンカーボネート(fluoroethylene carbonate)、スクシノニトリル(succinonitrile)、アディポニトリル(adiponitrile)、ビニルエチレンカーボネート(vinylethylene carbonate)、リチウムジフルオロジオキサラトホスフェート(lithium difluorodioxalato phosphate)、リチウムテトラフルオロオキサラトホスフェート(lithium tetrafluorooxalato phosphate)、リチウムジフルオロオキサラトボレート(lithium difluorooxalato borate)、リチウムジフルオロホスフェート(lithium difluorophosphate)、プロペンスルトン(propene sultone)、プロパンスルトン(propane sultone)、エチレンスルフェート(ethylene sulfate)、又はエチレンサルファイト(ethylene sulfite)を、単独で又は組み合わせて含むことができる。前記公知の添加剤は、前記化学式1で表される化合物の効能及び電解液の性能に影響を与えない範囲で添加することができ、例えば、それぞれ0.1重量%以上、例えば0.1重量%〜10重量%の含有量となるように添加することができる。   In addition, the secondary battery electrolyte may be other known additives such as vinylene carbonate, fluoroethylene carbonate, succinonitrile, adiponitrile, vinylethylene. Carbonate, lithium difluorodioxalate phosphate, lithium tetrafluorooxalate phosphate, lithium difluorooxalate borate (lithium difluorooxalato phosphate) including fluoroxalato borate, lithium difluorophosphate, propene sultone, propane sultone, ethylene sulphate, or ethylene sulphate be able to. The known additives can be added within a range that does not affect the efficacy of the compound represented by the chemical formula 1 and the performance of the electrolytic solution. % To 10% by weight can be added.

本発明の二次電池用電解液は、非水系溶媒、リチウム塩、及び前記二次電池用電解液添加剤を混合し、攪拌して調製することができる。この際、電解液に通常使用される公知の電解液添加剤がさらに混合されてもよい。   The electrolyte solution for a secondary battery of the present invention can be prepared by mixing and stirring a non-aqueous solvent, a lithium salt, and the electrolyte additive for a secondary battery. At this time, a known electrolytic solution additive usually used for the electrolytic solution may be further mixed.

さらに、本発明の二次電池は、前記のような二次電池用電解液を含む。本発明の二次電池として、前記二次電池用電解液を含むすべての種類の二次電池が可能である。例えば、本発明の二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、これら正極と負極との間に配置される分離膜と、前記二次電池用電解液とを構成要素として含むことができる。   Furthermore, the secondary battery of this invention contains the electrolyte solution for secondary batteries as mentioned above. As the secondary battery of the present invention, all kinds of secondary batteries including the secondary battery electrolyte are possible. For example, the secondary battery of the present invention includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separation membrane disposed between the positive electrode and the negative electrode, and the electrolyte for the secondary battery. It can be included as a component.

前記正極は、リチウムイオンを可逆的に吸着及び脱離することができる正極活物質を含み、このような正極活物質としては、コバルト、マンガン、鉄、アルミニウム、及びニッケルからなる群より選択される1種以上、又はリチウム複合金属酸化物を使用することができる。正極活物質に使用される金属配合は多様に行うことができ、これらの金属のほかに、K、Na、Ca、Sn、V、Ge、Ga、B、As、Zr、Cr、Sr、V、及び希土類元素からなる群より選択される成分をさらに含むことができる。   The positive electrode includes a positive electrode active material capable of reversibly adsorbing and desorbing lithium ions, and the positive electrode active material is selected from the group consisting of cobalt, manganese, iron, aluminum, and nickel. One or more or lithium composite metal oxides can be used. Various metal compounds can be used for the positive electrode active material. In addition to these metals, K, Na, Ca, Sn, V, Ge, Ga, B, As, Zr, Cr, Sr, V, And a component selected from the group consisting of rare earth elements.

前記負極は、リチウムイオンを吸着及び脱離することができる負極活物質を含み、このような負極活物質としては、結晶質又は非晶質の炭素、炭素複合体の炭素系負極活物質(熱的に分解された炭素、コークス、黒鉛)、燃焼された有機ポリマー化合物、炭素繊維、酸化スズ化合物、リチウム金属、あるいはリチウム合金を使用することができる。例えば、前記非晶質炭素としては、ハードカーボン、コークス、1500℃以下で焼成したメソカーボンマイクロビーズ(mesocarbon microbead;MCMB)、メソフェーズピッチ系炭素繊維(mesophase pitch−based carbon fiber;MPCF)などが挙げられる。前記結晶質炭素としては黒鉛系材料があり、具体的に、天然黒鉛、人造黒鉛、黒鉛化コークス、黒鉛化MCMB、黒鉛化MPCFなどが挙げられる。前記リチウム合金のうち、リチウムと合金をなす他の元素として、シリコン、チタン、亜鉛、ビスマス、カドミウム、アンチモン、鉛、錫、ガリウム、又はインジウムを使用することができる。   The negative electrode includes a negative electrode active material capable of adsorbing and desorbing lithium ions. Examples of the negative electrode active material include crystalline or amorphous carbon, carbon-based carbon negative electrode active material (heat Decomposed carbon, coke, graphite), burned organic polymer compounds, carbon fibers, tin oxide compounds, lithium metals, or lithium alloys can be used. For example, examples of the amorphous carbon include hard carbon, coke, mesocarbon microbead (MCMB) fired at 1500 ° C. or less, and mesophase pitch-based carbon fiber (MPCF). It is done. Examples of the crystalline carbon include graphite-based materials, and specific examples include natural graphite, artificial graphite, graphitized coke, graphitized MCMB, and graphitized MPCF. Among the lithium alloys, silicon, titanium, zinc, bismuth, cadmium, antimony, lead, tin, gallium, or indium can be used as another element that forms an alloy with lithium.

前記分離膜は、正極と負極との間の短絡を防止するためのものであり、ポリオレフィン系樹脂のポリプロピレン、ポリエチレンなどからなる高分子膜又はこれらの多重膜、微多孔性フィルム、織布、及び不織布などが使用され得る。   The separation membrane is for preventing a short circuit between the positive electrode and the negative electrode, a polymer membrane made of polyolefin resin polypropylene, polyethylene or the like, or a multi-layer membrane, a microporous film, a woven fabric, and Nonwoven fabrics and the like can be used.

以下、本発明を実施例により詳細に説明する。ただし、以下の実施例は本発明を例示するためのものであり、本発明がこれらによって制限されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are for illustrating the present invention, and the present invention is not limited thereto.

実施例で使用される、以下の化学式1:
で表されるビシクログリオキサールスルフェートは、公知の化合物(CAS No.496−45−7)であり、ATOMAX(中国)、CHEMOS(ドイツ)、ABICHEM(ドイツ)、PEWAX(中国)などが販売している製品を購入することができる。また、該化学式1で表される化合物は、以下の調製例1のような公知の合成法により調製することができる。
The following chemical formula used in the examples:
The bicycloglyoxal sulfate represented by the formula is a known compound (CAS No. 496-45-7) and is sold by ATOMAX (China), CHEMOS (Germany), ABICHEM (Germany), PEWAX (China), etc. You can purchase the products you have. The compound represented by the chemical formula 1 can be prepared by a known synthesis method such as Preparation Example 1 below.

<調製例1:ビシクログリオキサールスルフェートの調製>
60℃のオイルバスに1000mL容の三口フラスコとコンデンサとを装着した。前記三口フラスコに1,1,2,2−テトラクロロエタン70gを入れ、温度を安定化させた後、硫酸(60% fuming grade)320gを投入して反応を開始した。反応液は、初期に透明ないし薄い茶色の粘性を示しており、反応開始から4時間経過後に結晶性固体が生成された。オイルバスを常温まで冷却し、さらに3時間低速攪拌した。以後5℃〜7℃の冷水バスに交換し、さらに2時間低速攪拌した。結晶性固体の追加生成がなくなった時点で反応を終了した。収得したスラリー溶液をフィルターで固液分離した後、20Torr下で12時間真空乾燥した。その結果、前記化学式1で表されるビシクログリオキサールスルフェート72.8gを得た(収率:84.4%)。
<Preparation Example 1: Preparation of bicycloglyoxal sulfate>
A 1000 mL three-necked flask and a condenser were attached to a 60 ° C. oil bath. 70 g of 1,1,2,2-tetrachloroethane was added to the three-necked flask to stabilize the temperature, and then 320 g of sulfuric acid (60% fusing grade) was added to initiate the reaction. The reaction solution initially showed a clear or light brown viscosity, and a crystalline solid was formed after 4 hours from the start of the reaction. The oil bath was cooled to room temperature and further stirred at low speed for 3 hours. Thereafter, the bath was replaced with a cold water bath at 5 ° C to 7 ° C, and further stirred at low speed for 2 hours. The reaction was terminated when no additional crystalline solid was formed. The obtained slurry solution was subjected to solid-liquid separation with a filter and then vacuum-dried for 12 hours under 20 Torr. As a result, 72.8 g of bicycloglyoxal sulfate represented by Chemical Formula 1 was obtained (yield: 84.4%).

<実施例1:電解液の調製>
エチレンカーボネート(EC)429g、エチルメチルカーボネート(EMC)589g、及びジエチルカーボネート(DEC)380gを混合して混合液を調製した。該混合液にLiPFを167.1g投入し、1.1MのLiPF溶液を調製した後、添加剤として前記化学式1で表されるビシクログリオキサールスルフェートを0.5重量%の含有量で添加し、二次電池用電解液を調製した。
<Example 1: Preparation of electrolyte solution>
A mixed solution was prepared by mixing 429 g of ethylene carbonate (EC), 589 g of ethyl methyl carbonate (EMC), and 380 g of diethyl carbonate (DEC). 167.1 g of LiPF 6 was added to the mixed solution to prepare a 1.1M LiPF 6 solution, and then bicycloglyoxal sulfate represented by the above chemical formula 1 was added as an additive at a content of 0.5% by weight. Then, an electrolyte solution for a secondary battery was prepared.

<実施例2:電解液の調製>
前記化学式1で表されるビシクログリオキサールスルフェートを1.5重量%の含有量で添加したことを除いては、実施例1と同様の方法で電解液を調製した。
<Example 2: Preparation of electrolyte solution>
An electrolytic solution was prepared in the same manner as in Example 1 except that the bicycloglyoxal sulfate represented by the chemical formula 1 was added at a content of 1.5% by weight.

<実施例3:電解液の調製>
前記化学式1で表されるビシクログリオキサールスルフェートを3重量%の含有量で添加したことを除いては、実施例1と同様の方法で電解液を調製した。
<Example 3: Preparation of electrolyte solution>
An electrolyte solution was prepared in the same manner as in Example 1 except that the bicycloglyoxal sulfate represented by the chemical formula 1 was added at a content of 3% by weight.

<実施例4:電解液の調製>
前記化学式1で表されるビシクログリオキサールスルフェートを10重量%の含有量で添加したことを除いては、実施例1と同様の方法で電解液を調製した。
<Example 4: Preparation of electrolyte solution>
An electrolytic solution was prepared in the same manner as in Example 1 except that the bicycloglyoxal sulfate represented by the chemical formula 1 was added at a content of 10% by weight.

<実施例5:電解液の調製>
前記化学式1で表されるビシクログリオキサールスルフェートを15重量%の含有量で添加したことを除いては、実施例1と同様の方法で電解液を調製した。
<Example 5: Preparation of electrolyte solution>
An electrolyte solution was prepared in the same manner as in Example 1 except that the bicycloglyoxal sulfate represented by the chemical formula 1 was added at a content of 15% by weight.

<実施例6:電解液の調製>
前記化学式1で表されるビシクログリオキサールスルフェートを0.01重量%の含有量で添加したことを除いては、実施例1と同様の方法で電解液を調製した。
<Example 6: Preparation of electrolyte solution>
An electrolytic solution was prepared in the same manner as in Example 1 except that the bicycloglyoxal sulfate represented by the chemical formula 1 was added at a content of 0.01% by weight.

<比較例1:電解液の調製>
前記化学式1で表されるビシクログリオキサールスルフェートを添加しなかったことを除いては、実施例1と同様の方法で電解液を調製した。
<Comparative Example 1: Preparation of electrolyte solution>
An electrolytic solution was prepared in the same manner as in Example 1 except that the bicycloglyoxal sulfate represented by the chemical formula 1 was not added.

<比較例2:電解液の調製>
前記化学式1で表されるビシクログリオキサールスルフェートの代わりに、1,3−トリメチレンスルトン(1,3−trimethylene sultone)を3重量%の含有量で添加したことを除いては、実施例1と同様の方法で電解液を調製した。
<Comparative Example 2: Preparation of electrolyte solution>
Example 1 except that 1,3-trimethylene sultone was added in a content of 3% by weight instead of the bicycloglyoxal sulfate represented by Chemical Formula 1. An electrolytic solution was prepared in the same manner.

<比較例3:電解液の調製>
前記化学式1で表されるビシクログリオキサールスルフェートの代わりに、ビス(カルボキシメチル)ジスルフィド(bis(carboxymethyl)disulfide)を3重量%の含有量で添加したことを除いては、実施例1と同様の方法で電解液を調製した。
<Comparative Example 3: Preparation of electrolyte solution>
The same as in Example 1 except that bis (carboxymethyl) disulfide (bis (carboxymethyl) disulphide) was added at a content of 3% by weight instead of the bicycloglyoxal sulfate represented by Formula 1. The electrolyte solution was prepared by the method.

<比較例4:電解液の調製>
前記化学式1で表されるビシクログリオキサールスルフェートの代わりに、エチレンサルファイト(ethylene sulfite)を3重量%の含有量で添加したことを除いては、実施例1と同様の方法で電解液を調製した。
<Comparative Example 4: Preparation of electrolyte solution>
An electrolyte solution was prepared in the same manner as in Example 1 except that ethylene sulfite was added at a content of 3% by weight instead of the bicycloglyoxal sulfate represented by Formula 1. did.

<実験例1:二次電池のインピーダンス(mΩ)の測定>
LiNi0.5Co0.2Mn0.3とLiMnOとを1:1(重量比)で混合した正極と、人造黒鉛と天然黒鉛とを1:1(重量比)で混合した負極とを使用して、通常の方法により1.3Ahポーチ電池を組み立て、実施例1〜6及び比較例1〜4で調製した電解液6gを注入して二次電池を完成した。
<Experimental Example 1: Measurement of impedance (mΩ) of secondary battery>
A positive electrode in which LiNi 0.5 Co 0.2 Mn 0.3 and LiMnO 2 are mixed at 1: 1 (weight ratio), and a negative electrode in which artificial graphite and natural graphite are mixed at 1: 1 (weight ratio). Then, a 1.3 Ah pouch battery was assembled by a normal method, and 6 g of the electrolyte solutions prepared in Examples 1 to 6 and Comparative Examples 1 to 4 were injected to complete a secondary battery.

得られた二次電池を、常温における満充電対比60%の充電状態の電圧を維持したまま、3Cで10秒間放電したときに得られるインピーダンスを測定した(使用機器:PNE−0506充放電器)。前記方法で二次電池の常温初期インピーダンスを測定した後、70℃の高温オーブンで保存し、1週間経過後及び2週間経過後、それぞれの放電インピーダンスを測定した。   The impedance obtained when the obtained secondary battery was discharged at 3C for 10 seconds while maintaining a voltage in a charged state of 60% of full charge at room temperature was measured (device used: PNE-0506 charger / discharger). . After measuring the normal temperature initial impedance of the secondary battery by the above method, it was stored in a high-temperature oven at 70 ° C., and after 1 week and 2 weeks, each discharge impedance was measured.

表1は、前記化学式1で表されるビシクログリオキサールスルフェートの含有電解液又は未含有電解液を使用した電池のインピーダンスを比較して示したものである。表2は、前記化学式1で表される添加剤又は同一含有量の他の添加剤を含む電解液を使用した電池のインピーダンスを比較して示したものである。   Table 1 shows a comparison of the impedances of the batteries using the bicycloglyoxal sulfate-containing or non-containing electrolyte represented by the chemical formula 1. Table 2 shows a comparison of the impedances of the batteries using the electrolytic solution containing the additive represented by Chemical Formula 1 or another additive having the same content.

表1に示すように、前記化学式1で表される添加剤を電解液に添加した場合(実施例1〜6)は、該添加剤を添加しなかった場合(比較例1)よりも、電池の放電時のインピーダンスが低くなることが確認できた。また、表2に示すように、前記化学式1で表される添加剤を電解液に添加した場合(実施例3)は、他の種類の添加剤を同じ含有量で添加した場合(比較例2〜4)と比較して、電池の放電時のインピーダンスが低くなることが確認できた。これは、前記化学式1で表される添加剤を電解液に添加することにより、電池の放電過程において電極と電解液との界面の低い抵抗特性によって、電池の出力特性が向上したことを示す。   As shown in Table 1, when the additive represented by Chemical Formula 1 was added to the electrolyte (Examples 1 to 6), the battery was more effective than when the additive was not added (Comparative Example 1). It was confirmed that the impedance at the time of discharging was low. Moreover, as shown in Table 2, when the additive represented by the chemical formula 1 is added to the electrolyte (Example 3), other types of additives are added at the same content (Comparative Example 2). It was confirmed that the impedance at the time of discharging the battery was lower than that of ~ 4). This indicates that by adding the additive represented by the chemical formula 1 to the electrolytic solution, the output characteristics of the battery are improved due to the low resistance characteristic of the interface between the electrode and the electrolytic solution in the discharge process of the battery.

<実験例2:二次電池の寿命特性の測定>
実施例1〜6及び比較例1〜4で調製した電解液を使用して、前記実験例1と同様の方法で1.3Ahポーチ形状の二次電池を製造した。該二次電池に対して、満充電状態で70℃の高温において、4.2Vで1.3Aの充電速度及び2.7Vで1.3Aの放電速度で充電/放電を行った。該方法で行われた200回の充電/放電時の放電容量をPNE−0506充放電器(メーカー:(株)PNEソリューション)で測定し、初期容量に対する比率(%)を計算した。
<Experimental example 2: Measurement of life characteristics of secondary battery>
Using the electrolytic solutions prepared in Examples 1 to 6 and Comparative Examples 1 to 4, 1.3 Ah pouch-shaped secondary batteries were manufactured in the same manner as in Experimental Example 1. The secondary battery was charged / discharged at a high charge of 70 ° C. in a fully charged state at a charge rate of 1.3 A at 4.2 V and a discharge rate of 1.3 A at 2.7 V. The discharge capacity at the time of 200 charge / discharge performed by this method was measured with a PNE-0506 charger / discharger (manufacturer: PNE Solution Co., Ltd.), and the ratio (%) to the initial capacity was calculated.

表3は、前記化学式1で表されるビシクログリオキサールスルフェートの含有電解液又は未含有電解液を使用した電池の寿命特性を比較して示したものである。表4は、前記化学式1で表される添加剤又は同一含有量の他の添加剤を含む電解液を使用した電池の寿命特性を比較して示したものである。   Table 3 shows a comparison of the life characteristics of batteries using the bicycloglyoxal sulfate-containing or non-containing electrolyte represented by Chemical Formula 1. Table 4 shows a comparison of the life characteristics of the batteries using the electrolytic solution containing the additive represented by Chemical Formula 1 or other additives having the same content.

表3に示すように、前記化学式1で表される添加剤を電解液に添加した場合(実施例1〜6)は、該添加剤を添加しなかった場合(比較例1)よりも、電池の70℃での寿命特性が顕著に改善された。また、表4に示すように、前記化学式1で表される添加剤を電解液に添加した場合(実施例3)は、他の種類の添加剤を同じ含有量で添加した場合(比較例2〜4)と比較して、電池の70℃での寿命特性が顕著に改善された。これは、前記化学式1で表される添加剤を電解液に添加することにより、70℃において電池の充電/放電過程で発生する電気化学的電極容量の減少が著しく緩和されたことを示す。   As shown in Table 3, when the additive represented by Chemical Formula 1 was added to the electrolyte (Examples 1 to 6), the battery was more effective than when the additive was not added (Comparative Example 1). The life characteristics at 70 ° C. were significantly improved. Moreover, as shown in Table 4, when the additive represented by the chemical formula 1 was added to the electrolyte (Example 3), other types of additives were added at the same content (Comparative Example 2). Compared with ˜4), the battery life characteristics at 70 ° C. were remarkably improved. This indicates that by adding the additive represented by the chemical formula 1 to the electrolytic solution, the decrease in the electrochemical electrode capacity generated during the charging / discharging process of the battery at 70 ° C. is remarkably alleviated.

<実験例3:二次電池の保存特性(容量回復性)の測定>
実施例1〜6及び比較例1〜4で調製した電解液を使用して、前記実験例1と同様の方法で1.3Ahポーチ形状の二次電池を製造した。該二次電池を満充電状態で70℃のオーブンに保存した後、1週間経過後及び2週間経過後、それぞれの初期充電容量に対比する放電容量を測定した(使用機器:PNE−0506充放電器)。
<Experimental Example 3: Measurement of Storage Characteristics (Capacity Recovery) of Secondary Battery>
Using the electrolytic solutions prepared in Examples 1 to 6 and Comparative Examples 1 to 4, 1.3 Ah pouch-shaped secondary batteries were manufactured in the same manner as in Experimental Example 1. After the secondary battery was stored in a 70 ° C. oven in a fully charged state, the discharge capacity relative to the initial charge capacity was measured after 1 week and 2 weeks (equipment used: PNE-0506 charge / discharge). Electric).

表5は、前記化学式1で表されるビシクログリオキサールスルフェートの含有電解液又は未含有電解液を使用した電池の保存特性を比較して示したものである。表6は、前記化学式1で表される添加剤又は同一含有量の他の添加剤を含む電解液を使用した電池の保存特性を比較して示したものである。   Table 5 compares the storage characteristics of the batteries using the bicycloglyoxal sulfate-containing or non-containing electrolyte represented by Chemical Formula 1. Table 6 shows a comparison of the storage characteristics of the batteries using the electrolyte represented by the chemical formula 1 or an electrolyte containing other additives having the same content.

表5に示すように、前記化学式1で表される添加剤を電解液に添加した場合(実施例1〜6)は、該添加剤を添加しなかった場合(比較例1)よりも、電池の初期充電容量に対する70℃で保存後の放電容量が著しく安定化したことが確認できた。また、表6に示すように、前記化学式1で表される添加剤を電解液に添加した場合(実施例3)は、他の種類の添加剤を同じ含有量で添加した場合(比較例2〜4)と比較して、電池の初期充電容量に対する70℃で保存後の放電容量が著しく安定化したことが確認できた。これは、前記化学式1で表される添加剤を電解液に添加することにより、電池の高温保存中に発生する電気化学的電極容量の減少が著しく緩和されたことを示す。このように、前記化学式1で表される添加剤を使用することにより、高温でも、安定した充放電容量が実現されることが確認できた。   As shown in Table 5, when the additive represented by Chemical Formula 1 was added to the electrolyte (Examples 1 to 6), the battery was more effective than when the additive was not added (Comparative Example 1). It was confirmed that the discharge capacity after storage at 70 ° C. with respect to the initial charge capacity was significantly stabilized. Moreover, as shown in Table 6, when the additive represented by the chemical formula 1 was added to the electrolyte (Example 3), other types of additives were added at the same content (Comparative Example 2). It was confirmed that the discharge capacity after storage at 70 ° C. with respect to the initial charge capacity of the battery was significantly stabilized as compared with ˜4). This indicates that the addition of the additive represented by the chemical formula 1 to the electrolytic solution remarkably mitigates the decrease in electrochemical electrode capacity that occurs during high-temperature storage of the battery. Thus, it was confirmed that by using the additive represented by the chemical formula 1, a stable charge / discharge capacity was realized even at a high temperature.

本発明の二次電池用電解液添加剤は、電解液に含まれて、出力特性、寿命特性、保存特性、及び耐電圧特性の面において優れた二次電池を提供することができ、モバイル用、電気自動車用、電動工具用、電動バイク用、ロボット用、又はドローン用の二次電池などに有用である。

The electrolyte additive for secondary battery of the present invention is included in the electrolyte and can provide a secondary battery that is excellent in terms of output characteristics, life characteristics, storage characteristics, and withstand voltage characteristics. It is useful for secondary batteries for electric vehicles, electric tools, electric motorcycles, robots, or drones.

Claims (4)

以下の化学式1:
で表される化合物を含む、二次電池用電解液添加剤。
The following chemical formula 1:
The electrolyte solution additive for secondary batteries containing the compound represented by these.
非水系溶媒と、
リチウム塩と、
以下の化学式1:
で表される化合物を含む電解液添加剤と
を含む、二次電池用電解液。
A non-aqueous solvent,
Lithium salt,
The following chemical formula 1:
The electrolyte solution for secondary batteries containing the electrolyte solution additive containing the compound represented by these.
前記電解液添加剤の含有量が、電解液の総重量の0.05重量%〜20重量%である、請求項2に記載の二次電池用電解液。   The electrolyte solution for secondary batteries according to claim 2, wherein the content of the electrolyte solution additive is 0.05 wt% to 20 wt% of the total weight of the electrolyte solution. 請求項2又は3に記載の二次電池用電解液を含む、二次電池。

The secondary battery containing the electrolyte solution for secondary batteries of Claim 2 or 3.

JP2017564835A 2015-07-16 2016-07-14 Electrolyte additive for secondary battery, electrolyte containing the same, and secondary battery Active JP6735777B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2015-0100815 2015-07-16
KR20150100815 2015-07-16
PCT/KR2016/007652 WO2017010820A1 (en) 2015-07-16 2016-07-14 Electrolyte additive for secondary battery, electrolyte comprising same, and secondary battery

Publications (3)

Publication Number Publication Date
JP2018520480A true JP2018520480A (en) 2018-07-26
JP2018520480A5 JP2018520480A5 (en) 2019-04-18
JP6735777B2 JP6735777B2 (en) 2020-08-05

Family

ID=57757479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017564835A Active JP6735777B2 (en) 2015-07-16 2016-07-14 Electrolyte additive for secondary battery, electrolyte containing the same, and secondary battery

Country Status (3)

Country Link
JP (1) JP6735777B2 (en)
KR (1) KR102510110B1 (en)
WO (1) WO2017010820A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022077311A1 (en) * 2020-10-15 2022-04-21 宁德新能源科技有限公司 Electrochemical device and electronic device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11251432B2 (en) 2016-02-12 2022-02-15 Samsung Sdi Co., Ltd. Lithium battery
US11637322B2 (en) 2016-02-12 2023-04-25 Samsung Sdi Co., Ltd. Lithium battery
US11264645B2 (en) 2016-02-12 2022-03-01 Samsung Sdi Co., Ltd. Lithium battery
US11264644B2 (en) 2016-02-12 2022-03-01 Samsung Sdi Co., Ltd. Lithium battery
US11335952B2 (en) 2016-02-12 2022-05-17 Samsung Sdi Co., Ltd. Lithium battery
KR20180057944A (en) * 2016-11-23 2018-05-31 에스케이케미칼 주식회사 Electrolyte for secondary battery and secondary battery comprising same
KR102276403B1 (en) * 2017-04-26 2021-07-12 에스케이케미칼 주식회사 Electrolyte for secondary battery and secondary battery comprising same
KR102383073B1 (en) 2017-07-21 2022-04-04 삼성에스디아이 주식회사 Electrolyte of rechargeable lithium battery and rechargeable lithium battery including same
JP7060190B2 (en) * 2018-03-27 2022-04-26 三井化学株式会社 Non-aqueous electrolyte for batteries and lithium secondary batteries
CN110931853B (en) * 2018-09-19 2023-07-11 三星Sdi株式会社 Lithium battery
CN110931857A (en) * 2018-09-19 2020-03-27 三星Sdi株式会社 Lithium battery
CN110931854B (en) * 2018-09-19 2022-10-18 三星Sdi株式会社 Lithium battery
CN110931858B (en) * 2018-09-19 2023-06-30 三星Sdi株式会社 Lithium battery
CN110931855A (en) * 2018-09-19 2020-03-27 三星Sdi株式会社 Lithium battery
KR20200137844A (en) 2019-05-31 2020-12-09 에스케이케미칼 주식회사 Electrolyte for secondary battery and secondary battery comprising same
CN114122491A (en) * 2020-08-31 2022-03-01 深圳新宙邦科技股份有限公司 Lithium ion battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189042A (en) * 1996-12-25 1998-07-21 Mitsubishi Chem Corp Lithium secondary battery electrolyte
JP2004055502A (en) * 2001-09-21 2004-02-19 Tdk Corp Lithium secondary battery
JP2006140115A (en) * 2004-11-15 2006-06-01 Hitachi Maxell Ltd Non-aqueous electrolytic liquid secondary battery
WO2011122449A1 (en) * 2010-03-30 2011-10-06 宇部興産株式会社 Nonaqueous electrolyte solution, electrochemical element using same, and 1,2-dioxypropane compound used in same
WO2012053644A1 (en) * 2010-10-22 2012-04-26 三井化学株式会社 Cyclic sulfate compound, non-aqueous electrolyte solution containing same, and lithium secondary battery
WO2014054197A1 (en) * 2012-10-03 2014-04-10 株式会社Gsユアサ Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
WO2015060697A1 (en) * 2013-10-25 2015-04-30 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4190162B2 (en) 2001-03-01 2008-12-03 三井化学株式会社 Nonaqueous electrolyte, secondary battery using the same, and additive for electrolyte
KR100536252B1 (en) * 2004-03-29 2005-12-12 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same
JP4948025B2 (en) * 2006-04-18 2012-06-06 三洋電機株式会社 Non-aqueous secondary battery
CN101517813B (en) * 2006-09-20 2011-05-25 Lg化学株式会社 Additive for non-aqueous electrolyte and secondary battery using the same
JP4836767B2 (en) * 2006-12-13 2011-12-14 ソニー株式会社 Lithium ion secondary battery
KR101486618B1 (en) 2007-11-01 2015-01-26 우베 고산 가부시키가이샤 Phenyl sulfonate compound, nonaqueous electrolyte solution using the same, and lithium battery
KR100976958B1 (en) 2008-01-08 2010-08-18 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR101651143B1 (en) 2013-10-31 2016-08-25 주식회사 엘지화학 Lithium secondary battery having improved cycle life
KR101620214B1 (en) 2013-10-31 2016-05-12 주식회사 엘지화학 Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte and lithium secondary battery comprising the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189042A (en) * 1996-12-25 1998-07-21 Mitsubishi Chem Corp Lithium secondary battery electrolyte
JP2004055502A (en) * 2001-09-21 2004-02-19 Tdk Corp Lithium secondary battery
JP2006140115A (en) * 2004-11-15 2006-06-01 Hitachi Maxell Ltd Non-aqueous electrolytic liquid secondary battery
WO2011122449A1 (en) * 2010-03-30 2011-10-06 宇部興産株式会社 Nonaqueous electrolyte solution, electrochemical element using same, and 1,2-dioxypropane compound used in same
WO2012053644A1 (en) * 2010-10-22 2012-04-26 三井化学株式会社 Cyclic sulfate compound, non-aqueous electrolyte solution containing same, and lithium secondary battery
WO2014054197A1 (en) * 2012-10-03 2014-04-10 株式会社Gsユアサ Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery
WO2015060697A1 (en) * 2013-10-25 2015-04-30 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022077311A1 (en) * 2020-10-15 2022-04-21 宁德新能源科技有限公司 Electrochemical device and electronic device

Also Published As

Publication number Publication date
JP6735777B2 (en) 2020-08-05
KR102510110B1 (en) 2023-03-15
WO2017010820A1 (en) 2017-01-19
KR20170009772A (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6735777B2 (en) Electrolyte additive for secondary battery, electrolyte containing the same, and secondary battery
KR102030347B1 (en) Electrolyte for lithium secondary battery including additives,and lithium secondary battery
JP5429631B2 (en) Non-aqueous electrolyte battery
JP2021022574A (en) Electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the same
JP5392259B2 (en) Nonaqueous electrolyte and lithium battery using the same
JP2019536239A (en) Electrolyte additive and non-aqueous electrolyte for lithium secondary battery containing the same
KR102582754B1 (en) Electrolyte additives for secondary battery, electrolyte and secondary battery comprising same
JP2016035820A (en) Electrolytic solution for nonaqueous electrolyte battery, and nonaqueous electrolyte battery arranged by use thereof
KR102492766B1 (en) Electrolyte for secondary battery and secondary battery comprising same
JPWO2009122908A1 (en) Nonaqueous electrolyte for lithium battery and lithium battery using the same
JP5058538B2 (en) Lithium ion secondary battery
KR20100041028A (en) Elecrolyte for secondary battery and secondary battery including the same
JP2018518816A (en) Li-ion battery electrolyte with reduced impedance increase
KR20160081395A (en) An Electrolyte for a lithium ion secondary battery and a lithium ion secondary battery comprising the same
CN111048831B (en) Electrolyte for secondary battery and lithium secondary battery comprising same
JP2020087690A (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
KR102276403B1 (en) Electrolyte for secondary battery and secondary battery comprising same
JP7350416B2 (en) Non-aqueous electrolyte for lithium secondary batteries and lithium secondary batteries containing the same
JP6081262B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
KR101683534B1 (en) electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP7350415B2 (en) Non-aqueous electrolyte for lithium secondary batteries and lithium secondary batteries containing the same
WO2023123464A1 (en) Electrolyte solution, electrochemical device containing same, and electronic device
KR20180057944A (en) Electrolyte for secondary battery and secondary battery comprising same
KR20130142375A (en) Electrolyte for lithium secondary battery including additives, and lithium secondary battery
KR20160081405A (en) An Electrolyte for a lithium ion secondary battery and a lithium ion secondary battery comprising the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200714

R150 Certificate of patent or registration of utility model

Ref document number: 6735777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250