JP2018510768A - Multi-walled carbon nanotube catalyst, its production method and its use - Google Patents

Multi-walled carbon nanotube catalyst, its production method and its use Download PDF

Info

Publication number
JP2018510768A
JP2018510768A JP2017546727A JP2017546727A JP2018510768A JP 2018510768 A JP2018510768 A JP 2018510768A JP 2017546727 A JP2017546727 A JP 2017546727A JP 2017546727 A JP2017546727 A JP 2017546727A JP 2018510768 A JP2018510768 A JP 2018510768A
Authority
JP
Japan
Prior art keywords
walled carbon
catalyst
carbon nanotube
hours
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017546727A
Other languages
Japanese (ja)
Other versions
JP6495470B2 (en
Inventor
ワン、リードン
ヤン、ユー
シュ、ペイヤオ
Original Assignee
ノース チャイナ エレクトリック パワー ユニバーシティー パオティン
ノース チャイナ エレクトリック パワー ユニバーシティー パオティン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ノース チャイナ エレクトリック パワー ユニバーシティー パオティン, ノース チャイナ エレクトリック パワー ユニバーシティー パオティン filed Critical ノース チャイナ エレクトリック パワー ユニバーシティー パオティン
Publication of JP2018510768A publication Critical patent/JP2018510768A/en
Application granted granted Critical
Publication of JP6495470B2 publication Critical patent/JP6495470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】【解決手段】本発明は、排煙脱硫の分野に属する。詳細には、本発明は、複層カーボン・ナノチューブ触媒、その製造方法、およびその使用に関する。前記触媒は、複層カーボン・ナノチューブを支持体として用い、硝酸コバルトと硝酸マンガンを触媒的活性成分として用いる。その製造方法は、以下のとおりである:前記複層カーボン・ナノチューブを硝酸中で還流加熱し、次いで、吸引によるろ過を行い、中性まで洗浄し、次いで乾燥し、そして、硝酸マンガンおよび硝酸コバルトの混合溶液への添加が続き、超音波で分散し、乾燥し、粉砕し、N2雰囲気下で焼成することにより変性させて、前記複層カーボン・ナノチューブ触媒を得る。前記触媒は、少量で用いられ、回収が容易であり、優れた触媒効果を有し、2次汚染問題が無く、石炭燃焼排煙脱硫の副生成物酸化システムにおいて広く用いることができ;前記触媒は、通常の酸化方法が実質的に変化していない条件で、50%以上も、亜硝酸塩の酸化率を向上させることができる。【選択図】 図1The present invention belongs to the field of flue gas desulfurization. In particular, the present invention relates to a multi-walled carbon nanotube catalyst, a method for its production, and its use. The catalyst uses multi-walled carbon nanotubes as a support and cobalt nitrate and manganese nitrate as catalytic active components. The production method is as follows: the multi-walled carbon nanotubes are heated to reflux in nitric acid, then filtered by suction, washed to neutrality, then dried, and manganese nitrate and cobalt nitrate Is added to the mixed solution, dispersed by ultrasonic waves, dried, pulverized, and modified by calcination in an N2 atmosphere to obtain the multi-walled carbon nanotube catalyst. The catalyst is used in a small amount, is easy to recover, has an excellent catalytic effect, has no secondary pollution problem, and can be widely used in a by-product oxidation system of coal combustion flue gas desulfurization; Can improve the oxidation rate of nitrite by 50% or more under the condition that the normal oxidation method is not substantially changed. [Selection] Figure 1

Description

本発明は、排煙脱硫の分野に関する。詳細には、本発明は、複層カーボン・ナノチューブ触媒と、その製造方法およびその使用に関する。   The present invention relates to the field of flue gas desulfurization. In particular, the present invention relates to multi-walled carbon nanotube catalysts, methods for their production and uses thereof.

SO2は、公害関係現象の酸性雨および煙霧を生じる重要な前駆体であり、近年、国内空環境への多大な損害を引き起こしてきた。現時点で、排煙湿式脱硫が、最も経済的かつ効果的な脱硫方法であるが、副生成物の亜硫酸塩の酸化反応率が比較的低く、脱硫副生物の回収方法の比較的高い投資とエネルギー消費を生じ;亜硫酸塩の不十分な酸化は、システム拡大縮小、ブロッキング、低い生成物品質、流出物の二次汚染等の問題を引き起こす傾向があった。 SO 2 is an important precursor that generates acid rain and haze of pollution-related phenomena, and has recently caused significant damage to the domestic air environment. At present, flue gas wet desulfurization is the most economical and effective desulfurization method, but the oxidation rate of by-product sulfite is relatively low and desulfurization by-product recovery method is relatively high investment and energy Insufficient oxidation of sulfite tended to cause problems such as system scaling, blocking, low product quality, effluent cross-contamination.

ここで、脱硫システムの不十分な酸化能力という問題を解決するための主な手段は、金属イオン型触媒を添加し、亜硫酸塩の酸化率を増加させることである。しかし、前記触媒を脱硫スラリーへ溶液の形態で添加すると、適用方法の操作コストが高くなる;一方、回収するのが困難な前記触媒は、脱硫副生成物および廃液における重金属の二次汚染を引き起こす。従って、前記触媒の適用および普及は、非常に限定的である。   Here, the main means for solving the problem of insufficient oxidation capacity of the desulfurization system is to add a metal ion type catalyst to increase the oxidation rate of sulfite. However, adding the catalyst in the form of a solution to the desulfurization slurry increases the operating cost of the application method; while the catalyst, which is difficult to recover, causes secondary contamination of desulfurization by-products and heavy metals in the waste liquor. . Therefore, the application and spread of the catalyst is very limited.

[発明の要旨]
液状金属イオン型触媒の欠点を解消するため、本発明は、複層カーボン・ナノチューブ触媒、その製造方法およびその使用を提供する。詳細には、技術的解決策は以下のとおりである。
[Summary of the Invention]
In order to eliminate the disadvantages of the liquid metal ion type catalyst, the present invention provides a multi-walled carbon nanotube catalyst, a production method thereof and a use thereof. In detail, the technical solutions are as follows.

複層カーボン・ナノチューブ触媒が、複層カーボン・ナノチューブを支持体として用い、硝酸コバルトおよび硝酸マンガンを触媒的活性成分として用いることにより、提供される。   Multi-walled carbon nanotube catalysts are provided by using multi-walled carbon nanotubes as a support and cobalt nitrate and manganese nitrate as catalytically active components.

好ましくは、前記複層カーボン・ナノチューブは、以下の4つのサイズを有する:
(1)直径:10〜20nm、内径:5〜10nm、チューブ長さ:10〜30μm;
(2)直径:20〜30nm、内径:5〜10nm、チューブ長さ:10〜30μm;
(3)直径:30〜50nm、内径:5〜12nm、チューブ長さ:10〜20μm;
(4)直径:>50nm、内径:5〜15nm、チューブ長さ:10〜20μm。
Preferably, the multi-walled carbon nanotube has the following four sizes:
(1) Diameter: 10-20 nm, inner diameter: 5-10 nm, tube length: 10-30 μm;
(2) Diameter: 20-30 nm, inner diameter: 5-10 nm, tube length: 10-30 μm;
(3) Diameter: 30-50 nm, inner diameter: 5-12 nm, tube length: 10-20 μm;
(4) Diameter:> 50 nm, inner diameter: 5-15 nm, tube length: 10-20 μm.

前記触媒を製造する方法は、以下のとおりである。前記複層カーボン・ナノチューブは、硝酸中で還流加熱し、次いで、吸引によるろ過を行い、中性まで洗浄し、次いで、乾燥し、そして、硝酸マンガンおよび硝酸コバルトの混合溶液への添加が続き、超音波で分散し、乾燥し、粉砕し、N2雰囲気下で焼成することにより変性させて、前記複層カーボン・ナノチューブ触媒を得る。 The method for producing the catalyst is as follows. The multi-walled carbon nanotubes are heated to reflux in nitric acid, then filtered by suction, washed to neutrality, then dried, followed by addition to a mixed solution of manganese nitrate and cobalt nitrate, The multilayer carbon nanotube catalyst is obtained by being dispersed by ultrasonic waves, dried, pulverized, and modified by firing in an N 2 atmosphere.

詳細には、これらの工程は:
(1)前記複層カーボン・ナノチューブを硝酸溶液中に浸漬させ、攪拌し、加熱し、5〜7時間還流加熱し、吸引によりろ過し、中性まで洗浄し、乾燥して、変性複層カーボン・ナノチューブを得る工程;
(2)前記変性複層カーボン・ナノチューブを、硝酸マンガンおよび硝酸コバルトの混合無水エタノール溶液へ浸漬させ、電磁力で2〜3時間攪拌する工程;
(3)工程(2)で得た前記複層カーボン・ナノチューブを20〜40分間超音波で分散せ、乾燥する工程;
(4)工程(3)で得た前記複層カーボン・ナノチューブを粉砕し、N2保護雰囲気下で焼成して、前記複層カーボン・ナノチューブ触媒を得る工程。
In detail, these steps are:
(1) The multi-walled carbon nanotube is immersed in a nitric acid solution, stirred, heated, heated to reflux for 5 to 7 hours, filtered by suction, washed to neutrality, dried, and modified multi-walled carbon. A step of obtaining nanotubes;
(2) A step of immersing the modified multi-walled carbon nanotube in a mixed anhydrous ethanol solution of manganese nitrate and cobalt nitrate and stirring for 2 to 3 hours by electromagnetic force;
(3) Dispersing the multi-walled carbon nanotubes obtained in step (2) with ultrasonic waves for 20 to 40 minutes and drying;
(4) A step of pulverizing the multi-walled carbon nanotubes obtained in the step (3) and firing in a N 2 protective atmosphere to obtain the multi-walled carbon nanotube nanotube catalyst.

好ましくは、前記混合無水エタノール溶液中、硝酸マンガンの濃度は、0.001mol/L〜0.072mol/Lの範囲であり、硝酸コバルトの濃度は、0.0019mol/L〜0.068mol/Lの範囲であり、硝酸コバルトに対する硝酸マンガンのモル比は、(0.05〜0.95):1である。   Preferably, in the mixed absolute ethanol solution, the concentration of manganese nitrate is in the range of 0.001 mol / L to 0.072 mol / L, and the concentration of cobalt nitrate is 0.0019 mol / L to 0.068 mol / L. The molar ratio of manganese nitrate to cobalt nitrate is (0.05-0.95): 1.

好ましくは、工程(1)および(2)において、前記攪拌は、磁気攪拌機を用いて行われ、その回転率は、100r/分である。   Preferably, in steps (1) and (2), the stirring is performed using a magnetic stirrer, and the rotation rate is 100 r / min.

好ましくは、工程(1)および(3)において、乾燥温度は、80℃〜120℃の範囲であり、乾燥時間は、2時間〜3時間の範囲であり;工程(4)において、焼成温度は、400℃〜500℃の範囲であり、焼成時間は、3時間〜5時間の範囲である。   Preferably, in steps (1) and (3), the drying temperature is in the range of 80 ° C. to 120 ° C., the drying time is in the range of 2 hours to 3 hours; in step (4), the firing temperature is The baking time is in the range of 3 hours to 5 hours.

上記触媒の適用は、前記触媒を湿式脱硫システムの吸収スラリーへ添加し、亜硫酸塩の酸化を触媒することであり;前記吸収スラリーにおいて、亜硫酸塩の濃度は、10g/L〜160g/Lの範囲である。   Application of the catalyst is to add the catalyst to the absorbent slurry of a wet desulfurization system to catalyze the oxidation of sulfite; in the absorbent slurry, the concentration of sulfite ranges from 10 g / L to 160 g / L It is.

好ましくは、前記亜硫酸塩は、亜硫酸マグネシウムである。   Preferably, the sulfite is magnesium sulfite.

本発明の製造方法は、簡単で操作が容易であり、優れた効果を有する;従来技術と比較して、本発明は、以下の利点を有する:
(1)本発明による亜硫酸塩の酸化を促進するための、前記複層カーボン・ナノチューブは、安価であり、容易に入手可能であり、前記触媒の製造方法は簡単であり、前記触媒は、その触媒率(速度)に影響を与えることなく、成形技術により、さまざまな形やサイズに成形することが可能である;
(2)本発明の前記触媒は、優れた触媒効果を有し、湿式脱硫方法の酸化システムの最適化において、有効に用いることができる;前記触媒の適用は、脱硫システムに悪い影響を与えず、同時に、亜硫酸マグネシウムの酸化率を50%以上に増加させる。
(3)前記触媒の活性成分は、少量で用いられるが、高い効力を有し、二次汚染問題は、有効に避けられる。
The production method of the present invention is simple and easy to operate and has excellent effects; compared with the prior art, the present invention has the following advantages:
(1) The multi-walled carbon nanotube for promoting oxidation of sulfite according to the present invention is inexpensive and easily available, and the method for producing the catalyst is simple. Various shapes and sizes can be formed by molding technology without affecting the catalyst rate (speed);
(2) The catalyst of the present invention has an excellent catalytic effect and can be used effectively in optimizing the oxidation system of the wet desulfurization method; the application of the catalyst does not adversely affect the desulfurization system At the same time, the oxidation rate of magnesium sulfite is increased to 50% or more.
(3) Although the active component of the catalyst is used in a small amount, it has high efficacy and the secondary contamination problem is effectively avoided.

図1は、前記複層カーボン・ナノチューブ触媒を用いる亜硫酸塩の酸化促進の触媒反応効果のグラフである。FIG. 1 is a graph showing the catalytic reaction effect of sulfite oxidation promotion using the multi-walled carbon nanotube catalyst.

本発明の適用方法をより明確に説明するため、以下の実施例は例示であり、本発明の保護範囲を限定するためのものではない。   In order to explain the application method of the present invention more clearly, the following examples are illustrative and are not intended to limit the protection scope of the present invention.

亜硫酸マグネシウムの酸化促進のため、以下の実施例で用いられる前記複層カーボン・ナノチューブ触媒は、前処理される必要があり、詳細には、以下の工程で前処理される必要がある:前記複層カーボン・ナノチューブは、60%硝酸中で、100r/分の回転率で磁気的に攪拌され、加熱され、5〜7時間還流加熱され、吸引によりろ過し、中性まで洗浄し、120℃で2時間乾燥して、変性複層カーボン・ナノチューブを得た。   In order to promote the oxidation of magnesium sulfite, the multi-walled carbon nanotube catalyst used in the following examples needs to be pretreated, in particular, it needs to be pretreated in the following steps: Single-wall carbon nanotubes are magnetically stirred and heated in 60% nitric acid at a rotation rate of 100 r / min, heated to reflux for 5-7 hours, filtered by suction, washed to neutrality, at 120 ° C. After drying for 2 hours, modified multi-walled carbon nanotubes were obtained.

触媒条件下での亜硫酸マグネシウムの反応速度を測定する方法は、以下のとおりである:ある量の前記触媒を、亜硫酸マグネシウムの酸化反応システム中に添加し、反応条件は以下のとおりである:反応溶液量:200ml、反応温度:45℃、亜硫酸マグネシウムの当初濃度:20g/L、pH:8.0、強制空気流速:60L/時間。反応器中の硫酸塩イオンの濃度は、間隔をおいて試験し、単位時間における硫酸塩イオンの生成量は、亜硫酸マグネシウムの酸化反応率を示し、触媒条件下での亜硫酸マグネシウムの反応率は、そのようにして得た。   A method for measuring the reaction rate of magnesium sulfite under catalytic conditions is as follows: an amount of the catalyst is added into the magnesium sulfite oxidation reaction system, and the reaction conditions are as follows: reaction Amount of solution: 200 ml, reaction temperature: 45 ° C., initial concentration of magnesium sulfite: 20 g / L, pH: 8.0, forced air flow rate: 60 L / hour. The concentration of sulfate ion in the reactor was tested at intervals, the amount of sulfate ion produced per unit time indicates the oxidation reaction rate of magnesium sulfite, and the reaction rate of magnesium sulfite under catalytic conditions is So obtained.

[実施例1]
亜硫酸マグネシウムの酸化反応システムにおいて、添加剤は添加せず、反応溶液量は、200mlであり、反応温度は45℃であり、亜硫酸マグネシウムの当初濃度は20g/Lであり、pHは、8.0であり、強制空気流速は、60L/時間であり、そのような条件下で、反応速度は、図1においてケース0に示すように、0.01077mmol/(L・s)であった。
[Example 1]
In the magnesium sulfite oxidation reaction system, no additive was added, the reaction solution volume was 200 ml, the reaction temperature was 45 ° C., the initial concentration of magnesium sulfite was 20 g / L, and the pH was 8.0. The forced air flow rate was 60 L / hour, and under such conditions, the reaction rate was 0.01077 mmol / (L · s) as shown in case 0 in FIG.

[実施例2]
前処理の後、直径10〜20nm、内径5〜10nmおよびチューブ長さ10〜30μmの前記複層カーボン・ナノチューブ2.000gを、Mn(NO32・4H2Oの濃度0.0085mol/LおよびCo(NO32・6H2Oの濃度0.0091mol/L(前記2者のモル比は、2/3である)の溶液へ添加し、その後、温度自動調節の磁気攪拌機を用いて、2時間の間、100r/分で動力学的浸漬を行い、30分間超音波分散を行い、80℃で3時間乾燥し、粉砕し、N2保護の下、120℃まで温度を上げ、1時間保持し、さらに、450℃まで温度を上げ、5時間焼成し、亜硫酸マグネシウムの酸化を向上させるための複層カーボン・ナノチューブ触媒を得た。
[Example 2]
After the pretreatment, 2.000 g of the multi-walled carbon nanotube having a diameter of 10 to 20 nm, an inner diameter of 5 to 10 nm and a tube length of 10 to 30 μm was added to a Mn (NO 3 ) 2 .4H 2 O concentration of 0.0085 mol / L. And Co (NO 3 ) 2 · 6H 2 O to a solution having a concentration of 0.0091 mol / L (the molar ratio of the two is 2/3), and then using a temperature-adjusted magnetic stirrer Dynamic soaking at 100 r / min for 2 hours, ultrasonic dispersion for 30 minutes, drying at 80 ° C. for 3 hours, grinding, raising the temperature to 120 ° C. under N 2 protection, This was maintained for a period of time, and the temperature was further raised to 450 ° C., followed by firing for 5 hours to obtain a multi-walled carbon nanotube catalyst for improving the oxidation of magnesium sulfite.

0.2gの得られた触媒を、反応溶液量200mlの亜硫酸マグネシウムの酸化反応システムへ添加した。ここで、触媒反応速度は、図1においてケース1により示されるように0.04884mmol/(L・s)であり、非触媒条件と比較して、3.53倍増加した。   0.2 g of the resulting catalyst was added to a magnesium sulfite oxidation reaction system with a reaction solution volume of 200 ml. Here, the catalytic reaction rate was 0.04884 mmol / (L · s) as shown by case 1 in FIG. 1 and increased by 3.53 times compared to the non-catalytic condition.

[実施例3]
前処理の後、直径20〜30nm、内径5〜10nmおよびチューブ長さ10〜30μmの前記複層カーボン・ナノチューブ2.000gを、Mn(NO32・4H2Oの濃度0.0126mol/LおよびCo(NO32・6H2Oの濃度0.0179mol/L(前記2者のモル比は、1/4である)の溶液へ添加し、温度自動調節の磁気攪拌機を用いて、2時間の間、100r/分で動力学的浸漬を行い、40分間超音波分散を行い、80℃で2時間乾燥し、粉砕し、N2保護の下、120℃まで温度を上げ、1時間保持し、さらに、500℃まで温度を上げ、3時間焼成し、亜硫酸マグネシウムの酸化を向上させるための複層カーボン・ナノチューブ触媒を得た。
[Example 3]
After the pretreatment, 2.000 g of the multi-walled carbon nanotubes having a diameter of 20 to 30 nm, an inner diameter of 5 to 10 nm and a tube length of 10 to 30 μm were added to a Mn (NO 3 ) 2 .4H 2 O concentration of 0.0126 mol / L. And Co (NO 3 ) 2 .6H 2 O having a concentration of 0.0179 mol / L (the molar ratio of the two is 1/4), and using a magnetic stirrer with automatic temperature control, 2 Dynamic soaking at 100r / min for time, ultrasonic dispersion for 40 minutes, drying at 80 ° C for 2 hours, grinding, raising temperature to 120 ° C under N 2 protection and holding for 1 hour Further, the temperature was raised to 500 ° C. and calcined for 3 hours to obtain a multi-walled carbon nanotube catalyst for improving the oxidation of magnesium sulfite.

0.4gの得られた触媒を、反応溶液量200mlの亜硫酸マグネシウムの酸化反応システムへ添加した。ここで、触媒反応速度は、図1においてケース2により示されるように、0.05785mmol/(L・s)であり、非触媒条件と比較して、4.37倍増加した。   0.4 g of the resulting catalyst was added to a magnesium sulfite oxidation reaction system with a reaction solution volume of 200 ml. Here, the catalytic reaction rate was 0.05785 mmol / (L · s), as shown by case 2 in FIG. 1, and increased by 4.37 times compared to the non-catalytic condition.

[実施例4]
前処理の後、直径30〜50nm、内径5〜12nmおよびチューブ長さ10〜20μmの前記複層カーボン・ナノチューブ2.000gを、Mn(NO32・4H2Oの濃度0.0258mol/LおよびCo(NO32・6H2Oの濃度0.0235mol/L(前記2者のモル比は、3/5である)の溶液へ添加し、温度自動調節の磁気攪拌機を用いて、3時間の間、100r/分で動力学的浸漬を行い、20分間超音波分散を行い、120℃で3時間乾燥し、粉砕し、N2保護の下、120℃まで温度を上げ、1時間保持し、さらに、400℃まで温度を上げ、5時間焼成し、亜硫酸マグネシウムの酸化を向上させるための複層カーボン・ナノチューブ触媒を得た。
[Example 4]
After the pretreatment, 2.000 g of the multi-walled carbon nanotube having a diameter of 30 to 50 nm, an inner diameter of 5 to 12 nm and a tube length of 10 to 20 μm was added to a Mn (NO 3 ) 2 .4H 2 O concentration of 0.0258 mol / L. And Co (NO 3 ) 2 .6H 2 O having a concentration of 0.0235 mol / L (the molar ratio of the two is 3/5), and using a magnetic stirrer with automatic temperature control, 3 Dynamic soaking at 100 r / min for 20 hours, ultrasonic dispersion for 20 minutes, drying at 120 ° C. for 3 hours, grinding, raising temperature to 120 ° C. under N 2 protection and holding for 1 hour Further, the temperature was raised to 400 ° C. and calcined for 5 hours to obtain a multi-walled carbon nanotube catalyst for improving the oxidation of magnesium sulfite.

0.25gの得られた触媒を、反応溶液量200mlの亜硫酸マグネシウムの酸化反応システムへ添加した。ここで、触媒反応速度は、図1においてケース3により示されるように、0.05847mmol/(L・s)であり、非触媒条件と比較して、4.43倍増加した。   0.25 g of the resulting catalyst was added to a magnesium sulfite oxidation reaction system with a reaction solution volume of 200 ml. Here, the catalytic reaction rate was 0.05847 mmol / (L · s) as shown by case 3 in FIG. 1, and increased by 4.43 times compared to the non-catalytic condition.

[実施例5]
前処理の後、直径>50nm、内径5〜15nmおよびチューブ長さ10〜20μmの前記複層カーボン・ナノチューブ2.000gを、Mn(NO32・4H2Oの濃度0.0382mol/LおよびCo(NO32・6H2Oの濃度0.0360mol/L(前記2者のモル比は、4/7である)の溶液へ添加し、温度自動調節の磁気攪拌機を用いて、2.5時間の間、100r/分で動力学的浸漬を行い、30分間超音波分散を行い、120℃で2時間乾燥し、粉砕し、N2保護の下、120℃まで温度を上げ、1時間保持し、さらに、450℃まで温度を上げ、4時間焼成し、亜硫酸マグネシウムの酸化を向上させるための、複層カーボン・ナノチューブ触媒を得た。
[Example 5]
After the pretreatment, 2.000 g of the above-mentioned multi-walled carbon nanotubes having a diameter> 50 nm, an inner diameter of 5 to 15 nm and a tube length of 10 to 20 μm were added to a Mn (NO 3 ) 2 .4H 2 O concentration of 0.0382 mol / L and 1. Add to a solution of Co (NO 3 ) 2 .6H 2 O concentration of 0.0360 mol / L (the molar ratio of the two is 4/7) and use a magnetic stirrer with automatic temperature control. Dynamic soaking at 100 r / min for 5 hours, ultrasonic dispersion for 30 minutes, drying at 120 ° C. for 2 hours, grinding, raising temperature to 120 ° C. under N 2 protection, 1 hour Then, the temperature was raised to 450 ° C. and calcined for 4 hours to obtain a multi-wall carbon nanotube catalyst for improving the oxidation of magnesium sulfite.

0.3gの得られた触媒を、反応溶液量200mlの亜硫酸マグネシウムの酸化反応システムへ添加した。ここで、触媒反応速度は、図1においてケース4により示されるように、0.06259mmol/(L・s)であり、非触媒条件と比較して、4.81倍増加した。   0.3 g of the resulting catalyst was added to a magnesium sulfite oxidation reaction system with a reaction solution volume of 200 ml. Here, the catalytic reaction rate was 0.06259 mmol / (L · s), as shown by case 4 in FIG. 1, and increased by 4.81 times compared to the non-catalytic condition.

Claims (9)

複層カーボン・ナノチューブを支持体として用い、かつ、硝酸コバルトおよび硝酸マンガンを触媒的活性成分として用いることを特徴とする複層カーボン・ナノチューブ触媒。   A multi-walled carbon nanotube catalyst comprising multi-walled carbon nanotubes as a support and cobalt nitrate and manganese nitrate as catalytic active components. 前記複層カーボン・ナノチューブは、以下の4つのサイズ:
(1)直径:10〜20nm、内径:5〜10nm、チューブ長さ:10〜30μm;
(2)直径:20〜30nm、内径:5〜10nm、チューブ長さ:10〜30μm;
(3)直径:30〜50nm、内径:5〜12nm、チューブ長さ:10〜20μm;
(4)直径:>50nm、内径:5〜15nm、チューブ長さ:10〜20μm
を有する請求項1に記載の触媒。
The multi-walled carbon nanotube has four sizes:
(1) Diameter: 10-20 nm, inner diameter: 5-10 nm, tube length: 10-30 μm;
(2) Diameter: 20-30 nm, inner diameter: 5-10 nm, tube length: 10-30 μm;
(3) Diameter: 30-50 nm, inner diameter: 5-12 nm, tube length: 10-20 μm;
(4) Diameter:> 50 nm, inner diameter: 5-15 nm, tube length: 10-20 μm
The catalyst of claim 1 having
請求項1または2に記載の触媒を製造する方法であって、
前記複層カーボン・ナノチューブは、硝酸中で還流加熱し、次いで、吸引によるろ過を行い、中性まで洗浄し、次いで、乾燥し、そして硝酸マンガンおよび硝酸コバルトの混合溶液への添加が続き、超音波で分散し、乾燥し、粉砕し、N2雰囲気で焼成することにより変性させて、前記複層カーボン・ナノチューブ触媒を得ることを特徴とする方法。
A method for producing the catalyst according to claim 1, comprising:
The multi-walled carbon nanotubes are heated to reflux in nitric acid, then filtered by suction, washed to neutrality, then dried, followed by addition to a mixed solution of manganese nitrate and cobalt nitrate, A method characterized in that the multi-walled carbon nanotube catalyst is obtained by dispersing with sonic waves, drying, pulverizing, and modifying by firing in an N 2 atmosphere.
以下の特定な行程を特徴とする請求項3に記載の方法:
(1)前記複層カーボン・ナノチューブを硝酸溶液中に浸漬させ、攪拌し、加熱し、5〜7時間還流加熱し、吸引によりろ過し、中性まで洗浄し、乾燥して、変性複層カーボン・ナノチューブを得る行程、
(2)前記変性複層カーボン・ナノチューブを、硝酸マンガンおよび硝酸コバルトの混合無水エタノール溶液へ浸漬させ、電磁力で2〜3時間攪拌する行程、
(3)行程(2)で得た前記複層カーボン・ナノチューブを20〜40分間超音波で分散させ、乾燥する行程、
(4)行程(3)で得た前記複層カーボン・ナノチューブを粉砕し、N2保護雰囲気下で焼成して、前記複層カーボン・ナノチューブ触媒を得る行程。
The method of claim 3 characterized by the following specific steps:
(1) The multi-walled carbon nanotube is immersed in a nitric acid solution, stirred, heated, heated to reflux for 5 to 7 hours, filtered by suction, washed to neutrality, dried, and modified multi-walled carbon.・ The process of obtaining nanotubes,
(2) a step of immersing the modified multi-walled carbon nanotube in a mixed anhydrous ethanol solution of manganese nitrate and cobalt nitrate and stirring with electromagnetic force for 2 to 3 hours;
(3) a step of dispersing the multi-walled carbon nanotubes obtained in step (2) with ultrasonic waves for 20 to 40 minutes and drying;
(4) A step of pulverizing the multi-walled carbon nanotubes obtained in step (3) and firing in a N 2 protective atmosphere to obtain the multi-walled carbon nanotube catalyst.
前記混合無水エタノール溶液において、
硝酸マンガンの濃度は、0.001mol/L〜0.072mol/Lの範囲であり、
硝酸コバルトの濃度は、0.0019mol/L〜0.068mol/Lの範囲であり、
硝酸コバルトに対する硝酸マンガンのモル比は、(0.05〜0.95):1である請求項4に記載の方法。
In the mixed absolute ethanol solution,
The concentration of manganese nitrate is in the range of 0.001 mol / L to 0.072 mol / L,
The concentration of cobalt nitrate is in the range of 0.0019 mol / L to 0.068 mol / L,
The process according to claim 4, wherein the molar ratio of manganese nitrate to cobalt nitrate is (0.05-0.95): 1.
工程(1)および(2)において、前記攪拌は磁気攪拌機を用いて行われ、回転率は、100r/分である請求項4に記載の方法。   5. The method according to claim 4, wherein in steps (1) and (2), the stirring is performed using a magnetic stirrer, and the rotation rate is 100 r / min. 工程(1)および(3)において、乾燥温度は、80℃〜120℃の範囲であり、乾燥時間は、2時間〜3時間の範囲であり;工程(4)において、焼成温度は、400℃〜500℃の範囲であり、焼成時間は、3時間〜5時間の範囲である請求項4に記載の方法。   In steps (1) and (3), the drying temperature is in the range of 80 ° C. to 120 ° C., and the drying time is in the range of 2 hours to 3 hours; in step (4), the firing temperature is 400 ° C. The method according to claim 4, which is in a range of ˜500 ° C. and a firing time is in a range of 3 hours to 5 hours. 請求項1または2に記載の触媒の使用であって、前記触媒は、湿式脱硫システムの吸収スラリーへ添加し、亜硫酸塩の酸化を触媒し;前記吸収スラリーにおいて、亜硫酸塩の濃度は、10g/L〜160g/Lの範囲であることを特徴とする使用。   Use of the catalyst according to claim 1 or 2, wherein the catalyst is added to the absorbent slurry of a wet desulfurization system to catalyze the oxidation of sulfite; in the absorbent slurry, the concentration of sulfite is 10g / Use characterized by being in the range of L to 160 g / L. 前記亜硫酸塩は、亜硫酸マグネシウムであることを特徴とする請求項8に記載の使用。   Use according to claim 8, characterized in that the sulfite is magnesium sulfite.
JP2017546727A 2015-08-12 2015-08-12 Multi-walled carbon nanotube catalyst, its production method and its use Active JP6495470B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/000586 WO2017024421A1 (en) 2015-08-12 2015-08-12 Multi-walled carbon nanotube catalyst, preparation method therefor and use thereof

Publications (2)

Publication Number Publication Date
JP2018510768A true JP2018510768A (en) 2018-04-19
JP6495470B2 JP6495470B2 (en) 2019-04-03

Family

ID=57982846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017546727A Active JP6495470B2 (en) 2015-08-12 2015-08-12 Multi-walled carbon nanotube catalyst, its production method and its use

Country Status (3)

Country Link
JP (1) JP6495470B2 (en)
CN (1) CN107107038B (en)
WO (1) WO2017024421A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023277350A1 (en) * 2021-06-30 2023-01-05 주식회사 제이오 Method for manufacturing carbon nanotube dispersion

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110721692B (en) * 2018-07-16 2023-01-13 中国石油化工股份有限公司 Gasoline adsorption desulfurization catalyst and preparation method and application thereof
CN110813300B (en) * 2019-12-02 2022-08-09 华北电力大学(保定) Cobalt-zinc-loaded bimetallic nano-carbon material, preparation method thereof and application thereof in catalytic oxidation of magnesium sulfite
CN111229207B (en) * 2020-01-17 2023-06-13 广东省石油与精细化工研究院 Catalyst for normal temperature catalytic oxidation of formaldehyde and preparation method thereof
CN114307576B (en) * 2021-12-27 2022-10-04 山东嘉盛博纳环保科技有限公司 Medium-low temperature desulfurizer and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2196260A1 (en) * 2008-12-02 2010-06-16 Research Institute of Petroleum Industry (RIPI) Hydrodesulphurization nanocatalyst, its use and a process for its production
JP2011088814A (en) * 2009-10-23 2011-05-06 Qinghua Univ Method for making carbon nanotube composite
CN102309965A (en) * 2010-06-25 2012-01-11 中国石油化工股份有限公司 Cu-based catalyst for removing trace gas impurity as well as preparation method and application thereof
JP2012164492A (en) * 2011-02-04 2012-08-30 Tokyo Institute Of Technology Air electrode catalyst for fuel cell and method for producing the same
CN103903873A (en) * 2014-04-04 2014-07-02 华中师范大学 Full-pseudocapacitance super capacitor
CN104241643A (en) * 2013-06-19 2014-12-24 中国科学院苏州纳米技术与纳米仿生研究所 Lithium manganese phosphate and carbon nano tube/fiber composite material and preparation method thereof as well as positive electrode of lithium ion secondary battery and battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1475307A (en) * 2002-08-12 2004-02-18 中国科学院大连化学物理研究所 Catalyst for directly selectire oxidation of o-cresol
DE602005026167D1 (en) * 2004-11-16 2011-03-10 Hyperion Catalysis Internat Inc METHOD FOR PRODUCING BEARING CATALYSTS FROM METAL-LOADED CARBON NANOTONES
US8216445B2 (en) * 2006-10-31 2012-07-10 Wisconsin Alumni Research Foundation Nanoporous insulating oxide deionization device having asymmetric electrodes and method of use thereof
JP2014073436A (en) * 2012-10-03 2014-04-24 Murata Mfg Co Ltd Hydrocarbon reforming catalyst, as well as hydrocarbon reforming method and tar reforming method using the same
CN103151495B (en) * 2013-03-20 2015-03-25 河南师范大学 Method for preparing hybrid negative electrode materials of lithium ion battery
US9149833B2 (en) * 2013-06-19 2015-10-06 Indian Institute Of Technology Madras Metal nanoparticle decorated carbon nanotubes and methods of preparation and use
CN103285875B (en) * 2013-06-21 2015-02-25 华北电力大学(保定) Solid-phase compound metal catalyst used for magnesium desulphurization technology
CN103977832B (en) * 2014-04-28 2016-04-13 华北电力大学(保定) A kind of for support type solid metallic Catalysts and its preparation method in magnesium processes sulfur removal technology

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2196260A1 (en) * 2008-12-02 2010-06-16 Research Institute of Petroleum Industry (RIPI) Hydrodesulphurization nanocatalyst, its use and a process for its production
JP2011088814A (en) * 2009-10-23 2011-05-06 Qinghua Univ Method for making carbon nanotube composite
CN102309965A (en) * 2010-06-25 2012-01-11 中国石油化工股份有限公司 Cu-based catalyst for removing trace gas impurity as well as preparation method and application thereof
JP2012164492A (en) * 2011-02-04 2012-08-30 Tokyo Institute Of Technology Air electrode catalyst for fuel cell and method for producing the same
CN104241643A (en) * 2013-06-19 2014-12-24 中国科学院苏州纳米技术与纳米仿生研究所 Lithium manganese phosphate and carbon nano tube/fiber composite material and preparation method thereof as well as positive electrode of lithium ion secondary battery and battery
CN103903873A (en) * 2014-04-04 2014-07-02 华中师范大学 Full-pseudocapacitance super capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023277350A1 (en) * 2021-06-30 2023-01-05 주식회사 제이오 Method for manufacturing carbon nanotube dispersion

Also Published As

Publication number Publication date
CN107107038A (en) 2017-08-29
CN107107038B (en) 2020-01-03
WO2017024421A1 (en) 2017-02-16
JP6495470B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6495470B2 (en) Multi-walled carbon nanotube catalyst, its production method and its use
WO2015149499A1 (en) Low-temperature and highly efficient denitration catalyst and preparation method therefor
US10434501B2 (en) Supported solid phase catalyst, and preparation method and use thereof
WO2019062449A1 (en) Dry desulfurization and denitration agent, and production method therefor and application thereof
WO2016078292A1 (en) Sulfur dioxide-resistant low temperature manganese-iron oxide denitrification catalyst and preparation method thereof
CN108772057B (en) Low-temperature SCR manganese oxide catalyst and preparation method and application thereof
CN108452796A (en) A kind of preparation method of the modified montmorillonite used base SCR denitration of Supported Manganese and cerium
CN103816799A (en) Denitration agent capable of improving SNCR (Selective Non Catalytic Reduction) denitration efficiency and preparation method of denitration agent
CN110465300A (en) A kind of heterogeneous fenton catalyst and its preparation method and application
CN102000572B (en) Method for preparing denitration catalyst by performing selective catalytic reduction on CuMgAl composite oxide
CN103990460A (en) Propane complete oxidation catalyst as well as preparation method and application thereof
CN106345475A (en) Preparation method of titanium dioxide specific crystal face carrying ferric oxide denitration catalyst
CN102513095B (en) Medium temperature denitration catalyst with carbon-based material loaded with cerium tungsten and preparation method of medium temperature denitration catalyst
CN115364868B (en) Catalyst for catalytically decomposing ozone and preparation method thereof
CN105727934B (en) A kind of foramen magnum-mesoporous TiO2Denitrating catalyst of containing transition metal and preparation method thereof
CN106215949A (en) A kind of low-temperature selective catalytic reduction denitration catalyst and preparation method thereof
CN105032402B (en) A kind of water-resistant type low temperature NH3The preparation method of SCR catalyst and its catalyst obtained and purposes
CN110721676B (en) Low-temperature SCR denitration catalyst and preparation method and application thereof
CN107876055A (en) A kind of methyl glycollate glyoxalic acid catalyst, preparation method and application
CN106807360A (en) A kind of preparation method of sulfur resistive denitrating catalyst
CN110694640A (en) Water-resistant sulfur-resistant denitration catalyst and preparation method thereof
CN108097038A (en) A kind of application of transition metal two-dimensional nano piece
CN104338533A (en) Cobaltosic oxide catalyst subjected to hydrogen peroxide surface treatment and preparation and application of cobaltosic oxide catalyst
CN113101958A (en) Fe/Zn composite carbon-based catalyst, preparation method thereof and application of Fe/Zn composite carbon-based catalyst in activating persulfate to degrade organic matters in water
CN107670692B (en) Z-type SrTiO3@TiO2ATP heterojunction composite denitration catalyst and preparation method and application thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190306

R150 Certificate of patent or registration of utility model

Ref document number: 6495470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250