JP2018502529A - 認証相互運用性のための方法およびシステム - Google Patents

認証相互運用性のための方法およびシステム Download PDF

Info

Publication number
JP2018502529A
JP2018502529A JP2017543302A JP2017543302A JP2018502529A JP 2018502529 A JP2018502529 A JP 2018502529A JP 2017543302 A JP2017543302 A JP 2017543302A JP 2017543302 A JP2017543302 A JP 2017543302A JP 2018502529 A JP2018502529 A JP 2018502529A
Authority
JP
Japan
Prior art keywords
key
authentication
pair
aspects
access point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017543302A
Other languages
English (en)
Inventor
リ、ス・ボム
マリネン、ジョウニ
チェリアン、ジョージ
パティル、アビシェク・プラモド
アブラハム、サントシュ・ポール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2018502529A publication Critical patent/JP2018502529A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/06Network architectures or network communication protocols for network security for supporting key management in a packet data network
    • H04L63/068Network architectures or network communication protocols for network security for supporting key management in a packet data network using time-dependent keys, e.g. periodically changing keys
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0838Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these
    • H04L9/0841Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these involving Diffie-Hellman or related key agreement protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0869Generation of secret information including derivation or calculation of cryptographic keys or passwords involving random numbers or seeds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/041Key generation or derivation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/043Key management, e.g. using generic bootstrapping architecture [GBA] using a trusted network node as an anchor
    • H04W12/0431Key distribution or pre-distribution; Key agreement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • H04W36/0038Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information of security context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/80Wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/005Moving wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Abstract

デバイスを認証するためのシステム、方法、およびコンピュータ可読媒体が開示される。いくつかの態様では、方法は、第2のデバイスを使用して、第1のデバイスと共有される鍵を決定することと、第2のデバイスによって、第1のデバイスと共有される鍵に基づいて第1のペアワイズマスター鍵(PMK)を生成することとを含む。本方法はまた、第2のデバイスによって、第1のペアワイズマスター鍵と、第1のアクセスポイントの1つまたは複数のプロパティとに基づいて第1のアクセスポイントのための第2のペアワイズマスター鍵(PMK)を生成することを含み得る。本方法は、次いで、第1のアクセスポイントに第2のペアワイズマスター鍵を送信する。第1のアクセスポイントは、第1のデバイスとのセキュアな通信を容易にするために第2のペアワイズマスター鍵を使用し得る。たとえば、第1のアクセスポイントは、第2のペアワイズマスター鍵に基づいて第1のデバイスと交換されたメッセージを符号化/暗号化および/または復号/解読し得る。

Description

[0001]本出願は、概して、ワイヤレス通信システムに関し、より詳細には、ワイヤレス通信システム内での認証のためのシステム、方法、およびデバイスに関する。
[0002]多くの電気通信システムでは、通信ネットワークは、いくつかの対話している空間的に分離されたデバイスの間でメッセージを交換するために使用される。ネットワークは、たとえば、メトロポリタンエリア、ローカルエリア、またはパーソナルエリアであり得る地理的範囲に従って分類され得る。そのようなネットワークはそれぞれ、ワイドエリアネットワーク(WAN)、メトロポリタンエリアネットワーク(MAN)、ローカルエリアネットワーク(LAN)、またはパーソナルエリアネットワーク(PAN)として指定されることになる。ネットワークはまた、様々なネットワークノードとデバイスとを相互接続するために使用される交換/ルーティング技法(たとえば、回線交換対パケット交換)、送信のために採用される物理媒体のタイプ(たとえば、ワイヤード対ワイヤレス)、および使用される通信プロトコルのセット(たとえば、インターネットプロトコルスイート、SONET(同期光ネットワーキング:Synchronous Optical Networking)、イーサネット(登録商標)など)によって異なる。
[0003]ワイヤレスネットワークは、しばしば、ネットワーク要素がモバイルであり、そのため動的接続性の必要があるとき、またはネットワークアーキテクチャが、固定ではなくアドホックなトポロジーで形成されるときに好適である。無線局(STA)などのモバイルネットワーク要素がアクセスポイント(AP)によってサービスされるエリアに移動すると、無線局とアクセスポイントとは、認証へのメッセージを交換し、無線局をアクセスポイントにアソシエートし得る。認証およびアソシエーションプロセスが完了されるまで、無線局は、アクセスポイントを使用してデータを送信または受信することができないことがある。したがって、移動局と新しいアクセスポイントとの間の通信を確立するための方法およびシステムを改善する必要がある。
[0004]本発明のシステム、方法、およびデバイスは各々、いくつかの態様を有し、それらのうちのいずれの単一の態様も単独では本発明の望ましい属性を担わない。ここで、後記の特許請求の範囲によって表される本発明の範囲を限定することなく、いくつかの特徴について簡単に説明する。この説明を考慮した後、特に「発明を実施するための形態」と題されるセクションを読んだ後で、本発明の特徴が、ワイヤレスネットワーク中のアクセスポイントと局との間の改善された通信を含む利点をどのように提供するかが理解されよう。
[0005]本開示のいくつかの態様は、2つの異なる認証方法の少なくとも部分間の相互運用性を提供する。たとえば、いくつかの態様では、第1の認証方法は、第2の認証方法に勝るいくつかの利益を与え得る。しかしながら、第2の認証方法は、広く展開され得るが、第1の認証方法はまだ展開されていない。さらに、第1の認証方法の展開は、コストおよび他のファクタにより遅延され得る。
[0006]したがって、第2の認証方法をサポートするためにワイヤレスネットワーク内にすでに展開されたネットワークインフラストラクチャの大部分を利用するとともに、ワイヤレスネットワークインフラストラクチャに第1の認証方法の選択部分を移植することは有利であり得る。そのような手法は、第1の認証方法のすべての構成要素がワイヤレスネットワークに展開された場合に達成され得るよりも迅速に第1の認証方法の選択部分の展開を提供し得る。第1の認証方法の選択された部分のみの展開は、1つまたは複数の態様ではネットワークパフォーマンスを依然として改善し得る。このパフォーマンス改善は、第1の認証方法の全面展開に関連するタイムラインと比較して、開示する方法、システム、およびコンピュータ可読媒体を利用することによってより迅速に実現され得る。
[0007]たとえば、IEEE802.11ai(高速初期リンクセットアップまたはFILS)プロトコルは、もちろん、高速リンクセットアップをサポートするように設計されている。802.11aiは、新しい拡張サービスセット(ESS)への高速アソシエーションを与え、ESS内で高速アソシエーションを与える。802.11ai内には、1)EAP−RPを使用したFILS共有鍵認証、2)完全転送秘密(PFS)とEAP−RPを使用したFILS共有鍵認証、および3)FILS公開鍵認証の3つの認証タイプがある。
[0008]IEEE802.11r(高速遷移)は、高速基本サービスセット遷移をサポートするように設計されている。802.11rは、ES/モビリティドメイン内での高速ハンドオーバを与え得る。
[0009]いくつかの態様では、IEEE802.11rと802.11aiとの間の相互運用性は、802.11ai認証の結果として(たとえば、IEEE802.11仕様セクション11.6.1.7.1からの)IEEE802.11r高速遷移(FT)鍵階層を確立することによって達成され得る。これらの態様では、FT鍵階層は、新しい定義される鍵を使用して確立される。新しい定義される鍵は、どの認証方法が使用されるかによって別様に導出される。ペアワイズマスター鍵は、認証タイプにかかわらず、IEEE802.11ai認証を介して導出される。新しい定義される鍵は、高速遷移鍵階層の確立のためのペアワイズマスター鍵導出ルールを使用して導出される。言い換えれば、いくつかの態様では、新しい定義される鍵は、IEEE802.11aiにおけるペアワイズマスター鍵に等しい。たとえば、新しい定義される鍵は、公式鍵=HMAC−Hash(SNonce||ANonce,IKM)を使用して導出され得る。必要な場合、HMAC−Hash結果は、たとえば、いくつかの態様では、256ビットの長さに切り捨てられ得る。
[0010]鍵導出に続く高速遷移鍵導出は、一般に、新しい鍵が、RO−Key−Data=KDF−384(New Key,“FT−RO”,SSIDlength||SSID||MDID||ROKHlength||ROKH−ID||SOKH−ID)として代替されることを除いて、IEEE高速遷移アーキテクチャによって定義される高速遷移鍵導出に従う。したがって、アクセスポイントと局との間の認証およびアソシエーションは、上記で説明した変更された鍵導出に基づいて達成され得る。
[0011]開示する一態様は、第1のデバイスを認証する方法である。本方法は、第2のデバイスによって、第1のワイヤレスデバイスと共有される鍵を決定することと、第2のデバイスによって、第1のワイヤレスデバイスと共有される鍵に基づいて第1のペアワイズマスター鍵を生成することと、第2のデバイスによって、第1のペアワイズマスター鍵に基づいて第1のアクセスポイントのための第2のペアワイズマスター鍵を生成することと、第2のデバイスによって、第1のアクセスポイントに第2のペアワイズマスター鍵を送信することとを含む。いくつかの態様では、第2のペアワイズマスター鍵は、第1のアクセスポイントと第1のワイヤレスデバイスとの間のセキュアなアソシエーションまたはセキュアな通信のために使用される。いくつかの態様では、第2のデバイスと第1のアクセスポイントとは同じデバイスである。いくつかの態様では、本方法はまた、第1のワイヤレスデバイスとの拡張認証プロトコルを実行することによってマスターセッション鍵を決定すること、ここにおいて、第1のワイヤレスデバイスと共有される鍵はマスターセッション鍵である、を含む。いくつかの態様では、本方法はまた、第1のワイヤレスデバイスとの拡張認証プロトコル再認証プロトコルを実行することによって再認証マスターセッション鍵を決定することを含む。これらの態様では、第1のワイヤレスデバイスと共有される鍵は、再認証マスターセッション鍵である。いくつかの態様では、本方法はまた、第1のワイヤレスデバイスとディフィーへルマン鍵交換を実行することによって共有秘密を決定することと、共有秘密にさらに基づいて第1のペアワイズマスター鍵を生成することとを含む。いくつかの態様では、本方法はまた、第1のワイヤレスデバイスとディフィーへルマン鍵交換を実行することによって共有秘密を決定することを含む。これらの態様では、第1のワイヤレスデバイスと共有される鍵は、共有秘密である。
[0012]本方法のいくつかの態様はまた、第1のワイヤレスデバイスによって生成されたナンスと、第2のデバイスによって生成された第2のナンスと、第1のワイヤレスデバイスと共有される鍵とに基づいて中間鍵を生成することと、中間鍵に基づいて第1のペアワイズマスター鍵を生成することとを含む。本方法のいくつかの態様はまた、第2のデバイスによって、第1のペアワイズマスター鍵に基づいて第2のアクセスポイントのための第3のペアワイズマスター鍵を生成することと、第3のペアワイズマスター鍵は、第2のアクセスポイントと第1のワイヤレスデバイスとの間の通信において使用するためのものである、第2のアクセスポイントに第3のペアワイズマスター鍵を送信することとを含む。
[0013]いくつかの態様では、本方法は、第1のアクセスポイントから第1のワイヤレスデバイスのための完全転送秘密とともに共有鍵認証要求を受信することと、共有鍵認証要求を受信したことに応答して、再認証マスターセッション鍵にさらに基づいて第1のペアワイズマスター鍵を生成することとを含む。いくつかの態様では、本方法は、再認証マスターセッション鍵と共有秘密とを連結すること、ここにおいて、第1のペアワイズマスター鍵を生成することが連結に基づく、を含む。いくつかの態様では、本方法は、第2のデバイスによって、共有鍵認証要求を受信したことに応答して認証サーバに認証要求を送信することと、第2のデバイスによって、認証サーバから再認証マスターセッション鍵を受信することとを含む。
[0014]開示する別の態様は、第1のデバイスを認証するための装置である。本装置は、第1のワイヤレスデバイスと共有される鍵を決定することと、第1のワイヤレスデバイスと共有される鍵に基づいて第1のペアワイズマスター鍵を生成することと、第1のペアワイズマスター鍵に基づいて第1のアクセスポイントのための第2のペアワイズマスター鍵を生成することとを行うように構成されたプロセッサと、第1のアクセスポイントに第2のペアワイズマスター鍵を送信することを行うように構成された送信機とを含む。いくつかの態様では、第2のペアワイズマスター鍵は、第1のアクセスポイントと第1のワイヤレスデバイスとの間のセキュアなアソシエーションまたはセキュアな通信のために使用される。いくつかの態様では、第1のアクセスポイントと装置とは、同じデバイスである。
[0015]本装置のいくつかの態様では、プロセッサは、第1のワイヤレスデバイスとの拡張認証プロトコルを実行することによってマスターセッション鍵を決定すること、ここにおいて、第1のワイヤレスデバイスと共有される鍵はマスターセッション鍵である、を行うようにさらに構成される。本装置のいくつかの態様では、プロセッサは、第1のワイヤレスデバイスとの拡張認証プロトコル再認証プロトコルを実行することによって再認証マスターセッション鍵を決定することを行うようにさらに構成される。これらの態様では、第1のワイヤレスデバイスと共有される鍵は、再認証マスターセッション鍵である。
[0016]本装置のいくつかの態様では、プロセッサは、第1のワイヤレスデバイスとディフィーへルマン鍵交換を実行することによって共有秘密を決定することと、共有秘密にさらに基づいて第1のペアワイズマスター鍵を生成することとを行うようにさらに構成される。いくつかの態様では、プロセッサは、第1のワイヤレスデバイスとディフィーへルマン鍵交換を実行することによって共有秘密を決定すること、ここにおいて、第1のワイヤレスデバイスと共有される鍵は共有秘密である、を行うようにさらに構成される。本装置のいくつかの態様では、プロセッサは、第1のワイヤレスデバイスによって生成されたナンスと、本装置によって生成されたナンスと、第1のワイヤレスデバイスと共有される鍵とに基づいて中間鍵を生成することと、中間鍵に基づいて第1のペアワイズマスター鍵を生成することとを行うようにさらに構成される。本装置のいくつかの態様では、プロセッサは、第1のペアワイズマスター鍵に基づいて第2のアクセスポイントのための第3のペアワイズマスター鍵を生成すること、第3のペアワイズマスター鍵が、第2のアクセスポイントと第1のワイヤレスデバイスとの間の通信において使用するためのものである、ここにおいて、送信機は、第2のアクセスポイントに第3のペアワイズマスター鍵を送信することを行うようにさらに構成される、を行うようにさらに構成される。本装置のいくつかの態様はまた、第1のアクセスポイントから第1のワイヤレスデバイスのための完全転送秘密とともに共有鍵認証要求を受信するように構成された受信機を含む。これらの態様では、プロセッサは、共有鍵認証要求を受信したことに応答して、再認証マスターセッション鍵にさらに基づいて第1のペアワイズマスター鍵を生成するようにさらに構成される。
[0017]本装置のいくつかの態様では、プロセッサは、再認証マスターセッション鍵と共有秘密とを連結すること、ここにおいて、プロセッサは、連結に基づいて第1のペアワイズマスター鍵を生成するようにさらに構成される、を行うようにさらに構成される。いくつかの態様では、送信機は、共有鍵認証要求を受信したことに応答して認証サーバに認証要求を送信するようにさらに構成される。これらの態様では、受信機は、認証サーバから再認証マスターセッション鍵を受信するようにさらに構成される。
[0018]開示する別の態様は、第1のデバイスを認証するための装置である。本装置は、第1のワイヤレスデバイスと共有される鍵を決定するための手段と、第1のワイヤレスデバイスと共有される鍵に基づいて第1のペアワイズマスター鍵を生成するための手段と、第1のペアワイズマスター鍵に基づいて第1のアクセスポイントのための第2のペアワイズマスター鍵を生成するための手段と、第1のアクセスポイントに第2のペアワイズマスター鍵を送信するための手段とを含む。
[0019]いくつかの態様では、本装置は、第1のデバイスとの拡張認証プロトコルを実行することによってマスターセッション鍵を決定するための手段、ここにおいて、第1のデバイスと共有される鍵は、マスターセッション鍵である、を含む。いくつかの態様では、本装置は、第1のデバイスとの拡張認証プロトコル再認証プロトコルを実行することによって再認証マスターセッション鍵を決定すること、ここにおいて、第1のワイヤレスデバイスと共有される鍵は再認証マスターセッション鍵である、を含む。
[0020]いくつかの態様では、本装置は、第1のデバイスとディフィーへルマン鍵交換を実行することによって共有秘密を決定するための手段と、共有秘密にさらに基づいて第1のペアワイズマスター鍵を生成するための手段とを含む。いくつかの態様では、本装置はまた、第1のデバイスとディフィーへルマン鍵交換を実行することによって共有秘密を決定するための手段、ここにおいて、第1のデバイスと共有される鍵は共有秘密である、を含む。いくつかの態様では、本装置はまた、第1のデバイスによって生成されたナンスと、本装置によって生成されたナンスと、第1のデバイスと共有される鍵とに基づいて中間鍵を生成するための手段と、中間鍵に基づいて第1のペアワイズマスター鍵を生成するための手段とを含む。
[0021]本装置のいくつかの態様はまた、第1のペアワイズマスター鍵に基づいて第2のアクセスポイントのための第3のペアワイズマスター鍵を生成するための手段と、第3のペアワイズマスター鍵は、第2のアクセスポイントと第1のデバイスとの間の通信において使用するためのものである、第2のアクセスポイントに第3のペアワイズマスター鍵を送信するための手段とを含む。
[0022]本装置のいくつかの態様はまた、第1のアクセスポイントから第1のデバイスのための完全転送秘密とともに共有鍵認証要求を受信するための手段と、共有鍵認証要求を受信したことに応答して、再認証マスターセッション鍵にさらに基づいて第1のペアワイズマスター鍵を生成するための手段とを含む。
[0023]本装置のいくつかの態様はまた、再認証マスターセッション鍵と共有秘密とを連結するための手段、ここにおいて、第1のペアワイズマスター鍵を生成することが連結に基づく、を含む。これらの態様のいくつかでは、本装置は、共有鍵認証要求を受信したことに応答して認証サーバに認証要求を送信するための手段と、認証サーバから再認証マスターセッション鍵再認証マスターセッション鍵を受信するための手段とを含む。
[0024]開示する別の態様は、実行されたとき、プロセッサに、第1のワイヤレスデバイスを認証する方法を実行することを行わせる命令を備えるコンピュータ可読記憶媒体である。本方法は、第2のデバイスによって、第1のワイヤレスデバイスと共有される鍵を決定することと、第2のデバイスによって、第1のワイヤレスデバイスと共有される鍵に基づいて第1のペアワイズマスター鍵を生成することと、第2のデバイスによって、第1のペアワイズマスター鍵に基づいて第1のアクセスポイントのための第2のペアワイズマスター鍵を生成することと、第2のデバイスによって、第1のアクセスポイントに第2のペアワイズマスター鍵を送信することとを含む。いくつかの態様では、第2のペアワイズマスター鍵は、第1のアクセスポイントと第1のワイヤレスデバイスとの間のセキュアなアソシエーションまたはセキュアな通信のために使用される。いくつかの態様では、第2のデバイスと第1のアクセスポイントとは同じデバイスである。いくつかの態様では、本方法はまた、第1のワイヤレスデバイスとの拡張認証プロトコルを実行することによってマスターセッション鍵を決定すること、ここにおいて、第1のワイヤレスデバイスと共有される鍵はマスターセッション鍵である、を含む。いくつかの態様、本方法はまた、第1のワイヤレスデバイスとの拡張認証プロトコル再認証プロトコルを実行することによって再認証マスターセッション鍵を決定することを含む。これらの態様では、第1のワイヤレスデバイスと共有される鍵は、再認証マスターセッション鍵である。いくつかの態様では、本方法はまた、第1のワイヤレスデバイスとディフィーへルマン鍵交換を実行することによって共有秘密を決定することと、共有秘密にさらに基づいて第1のペアワイズマスター鍵を生成することとを含む。いくつかの態様では、本方法はまた、第1のワイヤレスデバイスとディフィーへルマン鍵交換を実行することによって共有秘密を決定することを含む。これらの態様では、第1のワイヤレスデバイスと共有される鍵は、共有秘密である。
[0025]コンピュータ可読記憶媒体のいくつかの態様は、プロセッサに、第1のワイヤレスデバイスによって生成されたナンスと、第2のデバイスによって生成された第2のナンスと、第1のワイヤレスデバイスと共有される鍵とに基づいて中間鍵を生成することと、中間鍵に基づいて第1のペアワイズマスター鍵を生成することとを同じく含む方法をさらに実行することを行わせる命令を備える。本方法のいくつかの態様はまた、第2のデバイスによって、第1のペアワイズマスター鍵に基づいて第2のアクセスポイントのための第3のペアワイズマスター鍵を生成することと、第3のペアワイズマスター鍵は、第2のアクセスポイントと第1のワイヤレスデバイスとの間の通信において使用するためのものである、第2のアクセスポイントに第3のペアワイズマスター鍵を送信することとを含む。
[0026]いくつかの態様では、CRM方法は、第1のアクセスポイントから第1のワイヤレスデバイスのための完全転送秘密とともに共有鍵認証要求を受信することと、共有鍵認証要求を受信したことに応答して、再認証マスターセッション鍵にさらに基づいて第1のペアワイズマスター鍵を生成することとを含む。いくつかの態様では、本方法は、再認証マスターセッション鍵と共有秘密とを連結すること、ここにおいて、第1のペアワイズマスター鍵を生成することが連結に基づく、を含む。いくつかの態様では、本方法は、第2のデバイスによって、共有鍵認証要求を受信したことに応答して認証サーバに認証要求を送信することと、第2のデバイスによって、認証サーバから再認証マスターセッション鍵を受信することとを含む。
[0027]開示する別の態様は、第1のデバイスを認証する方法である。本方法は、第1のデバイスによって、第2のデバイスと共有される鍵を決定することと、第1のデバイスによって、第2のデバイスと共有される鍵に基づいて第1のペアワイズマスター鍵を生成することと、第1のデバイスによって、第2のデバイスとの通信のために第2のペアワイズマスター鍵を生成することと、第2のペアワイズマスター鍵に基づいて第2のデバイスと通信することとを含む。
[0028]いくつかの態様では、本方法はまた、第2のデバイスとの拡張認証プロトコルを実行することによってマスターセッション鍵を決定すること、ここにおいて、第2のデバイスと共有される鍵はマスターセッション鍵である、を含む。いくつかの態様では、本方法は、第2のデバイスとの拡張認証プロトコル再認証プロトコルを実行することによって再認証マスターセッション鍵を決定すること、ここにおいて、第2のデバイスと共有される鍵は再認証マスターセッション鍵である、を含む。いくつかの態様では、本方法は、再認証マスターセッション鍵と共有秘密とを連結すること、ここにおいて、第1のペアワイズマスター鍵を生成することが連結に基づく、を含む。いくつかの態様では、本方法はまた、第2のデバイスとディフィーへルマン鍵交換を実行することによって共有秘密を決定することと、共有秘密にさらに基づいて第1のペアワイズマスター鍵を生成することとを含む。いくつかの態様では、本方法はまた、第2のデバイスとディフィーへルマン鍵交換を実行することによって共有秘密を決定すること、ここにおいて、第1のデバイスと共有される鍵は共有秘密である、を含む。いくつかの態様では、本方法はまた、第1のデバイスによって生成されたナンスと、第2のデバイスによって生成された第2のナンスと、第2のデバイスと共有される鍵とに基づいて中間鍵を生成することと、中間鍵に基づいて第1のペアワイズマスター鍵を生成することとを含む。いくつかの態様では、本方法はまた、第1のデバイスによって、第1のペアワイズマスター鍵に基づいて第3のデバイスのための第3のペアワイズマスター鍵を生成することと、第3のペアワイズマスター鍵に基づいて第3のデバイスと通信することとを含む。
[0029]開示する別の態様は、第1のデバイスを認証するための装置である。本装置は、第2のデバイスと共有される鍵を決定することと、第2のデバイスと共有される鍵に基づいて第1のペアワイズマスター鍵を生成することと、第2のデバイスとの通信のために第2のペアワイズマスター鍵を生成することと、第2のペアワイズマスター鍵に基づいて第2のデバイスと通信することとを行うように構成されたプロセッサを含む。本装置のいくつかの態様では、プロセッサは、第2のデバイスとの拡張認証プロトコルを実行することによってマスターセッション鍵を決定すること、ここにおいて、第2のデバイスと共有される鍵は、マスターセッション鍵である、を行うようにさらに構成される。本装置のいくつかの態様では、プロセッサは、第2のデバイスとの拡張認証プロトコル再認証プロトコルを実行することによって再認証マスターセッション鍵を決定すること、ここにおいて、第2のデバイスと共有される鍵は再認証マスターセッション鍵である、を行うようにさらに構成される。
[0030]本装置のいくつかの態様では、プロセッサは、再認証マスターセッション鍵と共有秘密とを連結すること、ここにおいて、第1のペアワイズマスター鍵を生成することは連結に基づく、を行うようにさらに構成される。本装置のいくつかの態様では、プロセッサは、第2のデバイスとディフィーへルマン鍵交換を実行することによって共有秘密を決定することと、共有秘密にさらに基づいて第1のペアワイズマスター鍵を生成することとを行うようにさらに構成される。いくつかの態様では、プロセッサは、第2のデバイスとディフィーへルマン鍵交換を実行することによって共有秘密を決定すること、ここにおいて、第1のデバイスと共有される鍵は共有秘密である、を行うようにさらに構成される。いくつかの態様では、プロセッサは、第1のデバイスによって生成されたナンスと、第2のデバイスによって生成された第2のナンスと、第2のデバイスと共有される鍵とに基づいて中間鍵を生成することと、中間鍵に基づいて第1のペアワイズマスター鍵を生成することとを行うようにさらに構成される。いくつかの態様では、プロセッサは、第1のペアワイズマスター鍵と第3のデバイスの1つまたは複数のプロパティとに基づいて第3のデバイスのための第3のペアワイズマスター鍵を生成することと、第3のペアワイズマスター鍵に基づいて第3のデバイスと通信することとを行うようにさらに構成される。
[0031]本開示の態様が採用され得る例示的なワイヤレス通信システムを示す図。 [0032]図1のモバイルデバイスのうちの1つまたは複数としてのワイヤレスデバイスの例示的な実施形態を示す図。 [0033]拡張認証プロトコル(EAP)認証および拡張認証プロトコル再認証プロトコル(EAP−RP)認証中のメッセージフローを示す図。 [0034]高速基本サービスセット(BSS)遷移(FT)認証中のメッセージフローを示す図。 [0035]認証プロセスの一実施形態中のワイヤレスネットワーク構成要素間のメッセージフローを示す図。 [0036]認証プロセスの別の実施形態におけるワイヤレスネットワーク構成要素間のメッセージフローを示す図。 [0037]認証プロセスの別の実施形態におけるワイヤレスネットワーク構成要素間のメッセージフローを示す図。 [0038]認証プロセスの別の実施形態におけるワイヤレスネットワーク構成要素間のメッセージフローを示す図。 [0039]ローカルERサーバが存在しないときの認証プロセスの別の実施形態におけるワイヤレスネットワーク構成要素間のメッセージフローを示す図。 [0040]第1の認証プロトコルと第2の認証プロトコルとからの認証メッセージの使用を示すメッセージシーケンス図。 [0041]認証方法における鍵階層を示す図 [0042]デバイスを認証する方法のフローチャート。 [0043]認証プロセスの別の実施形態におけるワイヤレスネットワーク構成要素間のメッセージフローを示す図。 [0044]認証プロセスの別の実施形態におけるワイヤレスネットワーク構成要素間のメッセージフローを示す図。 [0045]デバイスを認証する方法のフローチャート。 [0046]デバイスを認証する方法のフローチャート。 [0047]デバイスを認証する方法のフローチャート。
[0048]添付の図面を参照しながら、新規のシステム、装置、および方法の様々な態様について、以下でより十分に説明する。ただし、本開示は、多くの異なる形態で実施され得、本開示全体にわたって提示するいかなる特定の構造または機能にも限定されるものと解釈されるべきではない。むしろ、これらの態様は、本開示が周到で完全になり、本開示の範囲を当業者に十分に伝えるために与えられる。本明細書の教示に基づいて、本開示の範囲は、本発明の他の態様とは無関係に実装されるにせよ、本発明の他の態様と組み合わされるにせよ、本明細書で開示する新規のシステム、装置、および方法のいかなる態様をもカバーするものであることを、当業者は諒解されたい。たとえば、本明細書に記載する態様をいくつ使用しても、装置は実装され得、または方法は実施され得る。さらに、本発明の範囲は、本明細書に記載される本発明の様々な態様に加えてまたはそれらの態様以外に、他の構造、機能、または構造および機能を使用して実施されるそのような装置または方法をカバーするものとする。本明細書で開示するいかなる態様も請求項の1つまたは複数の要素によって実施され得ることを理解されたい。
[0049]本明細書において特定の態様が記載されるが、これらの態様の多くの変形および置換は本開示の範囲内に入る。好適な態様のいくつかの利益および利点について説明するが、本開示の範囲は、特定の利益、使用、または目的に限定されるようには意図されていない。むしろ、本開示の態様は、様々なワイヤレス技術、システム構成、ネットワーク、および伝送プロトコルに広く適用可能であるものとし、それらのうちのいくつかを例として、図において、および好適な態様についての以下の説明において示す。発明を実施するための形態および図面は、限定的ではなく本開示の例示にすぎず、本開示の範囲は、添付の特許請求の範囲およびその均等物によって定義される。
[0050]図1に、本開示の態様が採用され得る例示的なワイヤレス通信システム100を示す。ワイヤレス通信システム100はアクセスポイント(AP)104aを含み、AP104aは、基本サービスエリア(BSA)107a中の複数の局(STA)106a〜106dと通信する。ワイヤレス通信システム100は、BSA107b内で通信することができる第2のAP104bをさらに含み得る。1つまたは複数のSTA106は、たとえば、列車120により、BSA107a〜107bに入る、および/または出ることができる。本明細書で説明される様々な実施形態では、特にBSA107aおよび/または107bに移動するときに、STA106および106a〜106dは、AP104aおよび/または104bとワイヤレスリンクを迅速に確立するように構成され得る。局とアクセスポイントとの間のワイヤレス通信を確立することは、認証およびアソシエーションのうちの1つまたは複数を含み得る。
[0051]様々な実施形態では、ワイヤレス通信システム100は、ワイヤレスローカルエリアネットワーク(WLAN)を含み得る。WLANは、1つまたは複数のネットワーキングプロトコルを利用して、近くのデバイスを相互接続するのに使用され得る。本明細書で説明する様々な態様は、IEEE802.11ワイヤレスプロトコルなど、任意の通信規格に適用され得る。たとえば、本明細書で説明される様々な態様は、IEEE802.11aプロトコル、IEEE802.11bプロトコル、IEEE802.11gプロトコル、IEEE802.11nプロトコル、IEEE802.11ahプロトコル、および/またはIEEE802.11aiプロトコルの一部として使用され得る。802.11プロトコルの実施態様は、センサ、ホームオートメーション、パーソナルヘルスケアネットワーク、監視ネットワーク、計測、スマートグリッドネットワーク、車間通信、車内通信、緊急調整ネットワーク、セルラー(たとえば、3G/4G)ネットワークオフロード、短距離および/または長距離のインターネットアクセス(たとえば、ホットスポットと使用するための)、マシンツーマシン(M2M)通信などに使用され得る。
[0052]AP104a〜104bは、ワイヤレス通信システム100用のハブまたは基地局として働くことができる。たとえば、AP104aは、BSA107a内でワイヤレス通信カバレージを提供することができ、AP104bは、BSA107b内でワイヤレス通信カバレージを提供することができる。AP104aおよび/または104bは、ノードB、無線ネットワークコントローラ(RNC)、eノードB、基地局コントローラ(BSC)、送受信基地局(BTS)、基地局(BS)、トランシーバ機能(TF)、無線ルータ、無線トランシーバ、または何らかの他の用語を含むか、それらのいずれかとして実装されるか、あるいはそれらのいずれかとして知られていることがある。
[0053]STA106および106a〜106d(本明細書ではまとめてSTA106と呼ばれる)は、たとえば、ラップトップコンピュータ、携帯情報端末(PDA)、モバイル電話などのような様々なデバイスを含み得る。STA106は、インターネットまたは他のワイドエリアネットワークへの一般的接続性を取得するためにWiFi(登録商標)(たとえば、802.11aiなどのIEEE802.11プロトコル)準拠ワイヤレスリンクを介して、AP104a〜104bに接続またはアソシエートすることができる。STA106は、「クライアント」と呼ばれることもある。
[0054]様々な実施形態では、STA106は、アクセス端末(AT)、加入者局、加入者ユニット、移動局、遠隔局、遠隔端末、ユーザ端末(UT)、端末、ユーザエージェント、ユーザデバイス、ユーザ機器(UE)、または何らかの他の用語を含むか、それらのいずれかとして実装されるか、あるいはそれらのいずれかとして知られていることがある。いくつかの実装形態では、STA106は、セルラー電話、コードレス電話、セッション開始プロトコル(SIP)電話、ワイヤレスローカルループ(WLL)局、携帯情報端末(PDA)、ワイヤレス接続能力を有するハンドヘルドデバイス、またはワイヤレスモデムに接続された何らかの他の好適な処理デバイスを含むことができる。したがって、本明細書で教示する1つまたは複数の態様は、電話(たとえば、セルラー電話またはスマートフォン)、コンピュータ(たとえば、ラップトップ)、ポータブル通信デバイス、ヘッドセット、ポータブルコンピューティングデバイス(たとえば、個人情報端末)、エンターテインメントデバイス(たとえば、音楽またはビデオデバイス、あるいは衛星ラジオ)、ゲームデバイスまたはシステム、全地球測位システムデバイス、あるいはワイヤレス媒体を介して通信するように構成された他の好適なデバイスに組み込まれ得る。
[0055]AP104aは、AP104aに関連し、また通信のためにAP104aを使用するように構成されたSTA106a〜106dとともに、基本サービスセット(BSS)と呼ばれることがある。いくつかの実施形態では、ワイヤレス通信システム100は中央AP104aを有しないことがある。たとえば、いくつかの実施形態では、ワイヤレス通信システム100は、STA106の間のピアツーピアネットワークとして機能し得る。したがって、本明細書で説明するAP104aの機能は、STA106のうちの1つまたは複数によって代替的に実施され得る。さらに、AP104aは、いくつかの実施形態では、STA106を参照して記載する1つまたは複数の態様を実装することができる。
[0056]AP104aからSTA106のうちの1つまたは複数への送信を可能にする通信リンクはダウンリンク(DL)130と呼ばれることがあり、STA106のうちの1つまたは複数からAP104aへの送信を可能にする通信リンクはアップリンク(UL)140と呼ばれることがある。代替的に、ダウンリンク130を順方向リンクまたは順方向チャネルと呼び、アップリンク140を逆方向リンクまたは逆方向チャネルと呼ぶことができる。
[0057]様々なプロセスおよび方法は、AP104aとSTA106との間の、ワイヤレス通信システム100における送信のために使用され得る。いくつかの態様では、ワイヤレス信号は、直交周波数分割多重(OFDM)、直接シーケンススペクトル拡散(DSSS:direct-sequence spread spectrum)通信、OFDMとDSSS通信との組合せ、または他の方式を使用して送信され得る。たとえば、信号は、OFDM/OFDMAプロセスに従って、AP104aとSTA106との間で送信および受信され得る。したがって、ワイヤレス通信システム100はOFDM/OFDMAシステムと呼ぶことができる。別の例として、信号は、CDMAプロセスに従って、AP104aとSTA106との間で送信および受信され得る。したがって、ワイヤレス通信システム100はCDMAシステムと呼ぶことができる。
[0058]そのようなプロトコルを実装するいくつかのデバイス(AP104aおよびSTA106など)の態様は、他のワイヤレスプロトコルを実装するデバイスよりも少ない電力を消費し得る。これらのデバイスは、比較的長距離、たとえば約1キロメートルまたはそれ以上にわたってワイヤレス信号を送信するのに使うことができる。本明細書でより詳細に説明するように、いくつかの実施形態では、デバイスは、他のワイヤレスプロトコルを実装するデバイスよりも速くワイヤレスリンクを確立するように構成され得る。
アソシエーションおよび認証
[0059]一般に、IEEE802.1Xプロトコルでは、認証は、STAと認証サーバ(たとえば、識別検証、認可、プライバシ、および否認防止などの認証サービスを提供するサーバ)との間で行われる。たとえば、APは、オーセンティケータとして機能し、認証プロセス中にAPと認証サーバとの間でメッセージを中継する。いくつかの例で、STAとAPとの間の認証メッセージは、extensible authentication protocol over local area network(EAPOL)フレームを使用してトランスポートされる。EAPOLフレームは、IEEE802.11iプロトコルにおいて定義され得る。APと認証サーバとの間の認証メッセージは、remote authentication dial in user service(RADIUS)プロトコルまたはDiameter認証、認可、および課金プロトコルを使用してトランスポートされ得る。
[0060]認証プロセス中に、認証サーバは、APから受信されたメッセージに応答するのに長い時間がかかり得る。たとえば、認証サーバは、APからリモートにあるロケーションに物理的に位置し得るので、遅延は、バックホールリンク速度に起因し得る。別の例として、認証サーバは、STAおよび/またはAPによって開始された多数の認証要求を処理していることがある(たとえば、電車120上など高密度エリア中に多数のSTAがあり得、その各々が接続を確立しようと試みている)。したがって、遅延は、認証サーバ上でのローディング(たとえば、トラフィック)に起因し得る。
[0061]認証サーバに起因する遅延のために、STA106は、長い時間期間の間アイドルであり得る。
[0062]図2は、図1のワイヤレス通信システム100内で採用され得るワイヤレスデバイス202の例示的な機能ブロック図を示す。ワイヤレスデバイス202は、本明細書で説明する様々な方法を実装するように構成され得るデバイスの一例である。たとえば、ワイヤレスデバイス202は、図1中のデバイス104または106のうちの1つを備え得る。
[0063]ワイヤレスデバイス202は、ワイヤレスデバイス202の動作を制御するプロセッサ204を含み得る。プロセッサ204は中央処理ユニット(CPU)と呼ばれることもある。メモリ206は、読取り専用メモリ(ROM)とランダムアクセスメモリ(RAM)の両方を含み得、命令とデータとをプロセッサ204に与え得る。メモリ206の一部分は不揮発性ランダムアクセスメモリ(NVRAM)をも含み得る。プロセッサ204は、一般に、メモリ206内に記憶されたプログラム命令に基づいて論理演算と算術演算とを実行する。メモリ206中の命令は、本明細書で説明する方法を実装するために実行可能であり得る。
[0064]プロセッサ204は、1つまたは複数のプロセッサとともに実装された処理システムを備えるか、またはそれの構成要素であり得る。1つまたは複数のプロセッサは、汎用マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ(DSP)、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブル論理デバイス(PLD)、コントローラ、状態機械、ゲート論理、個別ハードウェア構成要素、専用ハードウェア有限状態機械、あるいは情報の計算または他の操作を実施することができる任意の他の好適なエンティティの任意の組合せを用いて実装され得る。
[0065]処理システムは、ソフトウェアを記憶するための機械可読媒体をも含み得る。ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語などの名称にかかわらず、任意のタイプの命令を意味すると広く解釈されたい。命令は、(たとえば、ソースコード形式、バイナリコード形式、実行可能コード形式、または任意の他の好適なコード形式の)コードを含み得る。命令は、1つまたは複数のプロセッサによって実行されたとき、処理システムに本明細書で説明する様々な機能を実行することを行わせる。
[0066]ワイヤレスデバイス202はまた、ワイヤレスデバイス202と遠隔ロケーションとの間のデータの送信および受信を可能にするために送信機210および/または受信機212を含み得る、ハウジング208を含み得る。送信機210と受信機212とは組み合わされてトランシーバ214になり得る。アンテナ216は、ハウジング208に取り付けられ、トランシーバ214に電気的に結合され得る。ワイヤレスデバイス202はまた、複数の送信機、複数の受信機、複数のトランシーバ、および/または複数のアンテナを含み得る(図示せず)。
[0067]ワイヤレスデバイス202は、トランシーバ214によって受信された信号のレベルを検出し、定量化するために使用され得る信号検出器218をも含み得る。信号検出器218は、そのような信号を、総エネルギー、シンボルごとのサブキャリア当たりのエネルギー、電力スペクトル密度、および他の信号として検出し得る。ワイヤレスデバイス202は、信号の処理に使用するためのデジタル信号プロセッサ(DSP)220をも含み得る。DSP220は、送信のためにパケットを生成するように構成され得る。いくつかの態様では、パケットは物理レイヤデータユニット(PPDU:physical layer data unit)を備え得る。
[0068]ワイヤレスデバイス202は、いくつかの態様ではユーザインターフェース222をさらに備え得る。ユーザインターフェース222は、キーパッド、マイクロフォン、スピーカー、および/またはディスプレイを備え得る。ユーザインターフェース222は、ワイヤレスデバイス202のユーザに情報を伝えるおよび/またはユーザからの入力を受信する、任意の要素または構成要素を含み得る。
[0069]ワイヤレスデバイス202の様々な構成要素はバスシステム226によって互いに結合され得る。バスシステム226は、たとえば、データバス、ならびに、データバスに加えて、電力バス、制御信号バス、およびステータス信号バスを含み得る。ワイヤレスデバイス202の構成要素は、何らかの他の機構を使用して、互いに結合されるか、または互いに入力を受け付け、もしくは与え得ることを当業者は諒解されよう。
[0070]図2には、いくつかの別個の構成要素が示されているが、構成要素のうちの1つまたは複数が組み合わされ得るかまたは共通に実装され得ることを当業者は認識されよう。たとえば、プロセッサ204は、プロセッサ204に関して上記で説明した機能を実装するためだけでなく、信号検出器218および/またはDSP220に関して上記で説明した機能を実装するためにも使用され得る。さらに、図2に示されている構成要素の各々は、複数の別個の要素を使用して実装され得る。
[0071]ワイヤレスデバイス202は、図1に示すワイヤレスデバイスのいずれかを備え得、通信を送信および/または受信するために使用され得る。すなわち、ワイヤレスデバイス104または106のいずれも、送信機デバイスまたは受信機デバイスとして働き得る。いくつかの態様は、信号検出器218が、送信機または受信機の存在を検出するために、メモリ206およびプロセッサ204上で実行されるソフトウェアによって使用されることを企図する。
[0072]上記で説明したように、ワイヤレスデバイス202など、ワイヤレスデバイスは、ワイヤレス通信システム100など、ワイヤレス通信システム内でサービスを提供するように構成され得る。
[0073]図3に、たとえば、その内容全体が参照により本明細書に組み込まれるIETF RFC2284において定義されている拡張認証プロトコル(EAP)完全認証プロセス(EAP)302と、たとえば、その内容全体が参照により本明細書に組み込まれるIETF RFC6696において定義されている再認証プロセス(EAP−RP)304のメッセージフローを示す。いくつかの態様では、完全EAP認証302は、EAPオーセンティケータからEAP要求/識別メッセージ306aを受信するSTA106aを含む。いくつかの態様では、EAPオーセンティケータ308は、アクセスポイントまたはワイヤレスLANコントローラであり得る。オーセンティケータからのこのトリガに応答して、STA106aは、EAP開始/再認証メッセージを送信することによって、ERP交換を開始し得、これは、メッセージフロー314中に含まれ得る。
[0074]EAP完全認証中に、認証サーバ312は、マスターセッション鍵(MSK)、拡張マスターセッション鍵(EMSK)、再認証ルート鍵(rRK)および再認証完全性鍵(rIK)のうちの1つまたは複数を生成し得る。
[0075]完全EAP認証が完了すると、認証サーバ312は、メッセージ316を介してSTA106aにEAP成功ステータスを送り得る。マスターセッション鍵(MSK)も、メッセージ316中でSTA106aに与えられ得る。
[0076]STA106aは、次いで、第2のオーセンティケータ310とEAP再認証プロセス(EAP−RP)304を実行し得る。いくつかの態様では、第2のオーセンティケータ310は、第2のアクセスポイントであり得る。いくつかの態様では、第2の認証310は、ワイヤレスLANコントローラであり得る。STA106aは、EAPオーセンティケータ310を介して認証サーバ312にEAP再認証メッセージ318を送り得る。認証サーバ312は、いくつかの態様では、再認証マスターセッション鍵(rMSK)を生成し、EAPオーセンティケータ310を介してSTA106にEAP再認証完了メッセージ320を送信し得る。
[0077]図4に、IEEE802.11r高速基本サービスセット(BSS)遷移(FT)認証および再認証プロセス400を示す。STA106aは、最初に、メッセージフロー406を介して第1のアクセスポイント104aとの成功したセッション確立およびデータ送信を実行し得る。この第1の認証およびデータ送信は、IEEE802.11認証を使用して実行され得る。メッセージフロー406は、いくつかの態様では、ワイヤレスLANコントローラ402および/または認証サーバ404(図示せず)を含み得るが、第2のアクセスポイント104bを含まないことがある。
[0078]第1のアクセスポイント104aとのSTA106aの認証中に、認証サーバ404は、ワイヤレスLANコントローラ402にマスターセッション鍵(MSK)を与え得る。マスターセッション鍵から、ワイヤレスLANコントローラは、1つまたは複数のペアワイズマスター鍵(図示のPMK1)を導出し、第1のアクセスポイント104aに少なくともPMK1を与え得る。第1のアクセスポイント104aは、STA106aとセキュアなアソシエーションを行うためにWLC402によって与えられたPMK1を利用し得る。たとえば、第1のアクセスポイント104aとSTA106aとの間の通信は、WLC402によって与えられたPMK1から導出された鍵(すなわち、PTK)を使用して暗号化され得る。
[0079]STA106aは、次いで、第2のアクセスポイント104bの範囲内に移動し得る。STA106aは、次いで、第2のアクセスポイント104bに802.11認証要求408を送信し得る。それに応答して、AP104bは、ワイヤレスLANコントローラ402に鍵要求メッセージ409aを送信し得る。ワイヤレスLANコントローラ402は、応答鍵応答メッセージ409bを介して第2のアクセスポイント(PMK2)に第2のペアワイズマスター鍵を与える。第2のアクセスポイント104bは、PTK2を導出し、PTK2を使用してSTA106aと第2のアクセスポイント104bとの間の通信を暗号化するために、第2のペアワイズマスター鍵(PMK2)を利用し得る。AP104bは、次いで、STA106aに認証応答メッセージ410を送信する。STA106aはまた、再アソシエーション要求/応答メッセージ412/414を介して第2のアクセスポイント104bとの再アソシエーションを実行し得る。
[0080]図5は、認証方法の一実施形態における、ネットワークデバイス構成要素間のメッセージフローの図である。図5に、2つのモビリティドメイン505aおよび505bとともに、認証サーバ501を含むホームドメイン502を示す。各モビリティドメイン505a−b内には、それぞれ2つのアクセスポイント、AP104a−bおよびAP104c−dがある。各モビリティドメイン505a−bはまた、ワイヤレスLANコントローラ(WLC)506a−bを含む。WLCの506a−bは、「RO鍵ホルダ」としても知られていることがある。図5の下部に示すSTA106aは、図の左側から右側に移動し得る。STA106aは、移動するにつれて、AP104a、次いで、AP104b、次いで、AP104c、次いで、AP104dで認証し得る。
[0081]認証メッセージ交換515aは、図3に示すように、完全EAP認証を実行し得る。完全EAP認証では、STA106aによって開始される認証は、認証サーバ501とメッセージを交換することを行わせることになる。たとえば、認証サーバ501は、マスターセッション鍵(MSK1)を作成し、WLC506aにMSK1を与え得る。WLC506aは、次いで、MSK1に基づいてペアワイズマスター鍵(PMK)を導出し、AP104にPMKを与え得る(この鍵は、図5にPMK−R1−1として示す)。AP104aに与えられたPMKはまた、いくつかの態様では、AP104aの媒体アクセス制御(MAC)アドレスなど、AP104aの特徴に基づいて導出され得る。
[0082]STA106aは、次いで、認証メッセージ交換515bを介してAP104bで認証し得る。AP104bが、AP104aと同じモビリティドメイン内にあるので、STA106aは、AP104bとの完全EAP認証を実行する必要がなく、代わりに、WLC206aに記憶されたマスターセッション鍵(MSK1)に基づいて認証を実行することができることを(AP104bからのビーコンメッセージを介して)決定し得る。いくつかの態様では、STA106aは、高速基本サービスセット遷移認証を認証メッセージ交換515bの一部として実行する。STA106aがAP104bで認証するときに、この認証は、WLC506aが認証サーバ501とメッセージを交換することを必要としないことがある。代わりに、WLC506aは、STA106aがAP104aで認証したときに認証サーバ501によって与えられた第1のマスターセッション鍵(MSK1)に基づいて図5にPMK−R1−2として示す第2のPMKを導出する。第2のPMKはまた、いくつかの態様では、AP104bの媒体アクセス制御(MAC)アドレスなど、AP104bの1つまたは複数の特性に基づいて導出され得る。STA106aがAP104bで(認証するときに認証サーバ501とメッセージを交換する必要がないことがあるので、認証メッセージ交換515bは、認証メッセージ交換515aよりも迅速に行われ得る。さらに、STA106aが、新しいアクセスポイントで認証したときはいつでも認証サーバ501との認証を必要とするソリューションと比較して、認証サーバ501に対する負荷が低減され得る。
[0083]STA106aは、次いで、AP104bが範囲外にあるようなロケーションに移動し得、STA106aは、メッセージ交換515cを介してAP104cで認証し得る。IEEE802.11rでは、AP104cは、(モビリティドメイン505a中にある)AP104aとは異なるモビリティドメイン(505b)中にあるので、STA106aは、次いで、メッセージ交換515cの一部として別の完全EAP認証を実行する。完全EAP認証中に、認証サーバ501は、新しいマスターセッション鍵(MSK2)を生成し、ワイヤレスLANコントローラ(WLC)506bにMSK2を送信する。WLC506bは、次いで、MSK2に基づき、また、いくつかの態様では、AP104cの1つまたは複数の特性に基づいてPMKを生成する。STA106aが、再び移動し、AP104dと接続すると、AP104dがAP104cと同じモビリティドメイン中にあるので、STA106aは、メッセージ交換515dを介して認証を実行し得る。いくつかの態様では、メッセージ交換515dは、高速基本サービスセット遷移認証を実行する。この認証中に、WLC506bは、認証サーバ501から受信された以前に導出されたMSK2に基づいて新しいPMK(PMK−R1−4)を生成し得る。MSK2がWLC506bに記憶され得るので、この認証は、認証サーバ501と必ずしも通信することなしに起こることができる。
[0084]図6に、認証プロセスの別の実施形態中のワイヤレスネットワーク構成要素間のメッセージフローを示す。図6に、ホームドメイン602と2つのモビリティドメイン605a−bとを示す。ホームドメイン602は、認証サーバ601を含む。モビリティドメイン605a−bの各々は、EAP再認証サーバまたはローカルERサーバ606a−bを含む。モビリティドメイン605a−bの各々はそれぞれ、2つのアクセスポイント、それぞれ、AP104e−fおよびAP104g−hを含む。
[0085]図5と同様に、図6では、STA106aは、最初に、メッセージ交換615aを介してAP104eで認証する。この第1の認証は、メッセージ交換615aの一部として認証サーバ601との拡張認証プロトコル再認証プロトコル(EAP−RP)認証を実行する。AP104eは、STA106と認証サーバ601との間の交換中にリレーサービスを実行し得る。(最初の完全EAP認証の直後に実行される)認証サーバ601との最初の再認証中に、認証サーバ601は、再認証ルート鍵(rRK1)またはドメイン固有ルート鍵(DSRK1)を作成し、ローカルERサーバ606aにrRK1またはDSRK1を与える。ローカルERサーバ606aは、次いで、DSRK1またはrRK1から再認証マスターセッション鍵(rMSK1)を導出し、AP104eにrMSK1を与え得る この情報は、いくつかの態様では、RFC6696に記載されているように、EAP完了再認証メッセージを介してAP104eに与えられ得る。AP104eは、次いで、この情報を与え得る。
[0086]AP104eは、次いで、rMSK1を使用してSTA106aとの通信を実行する。STA106bは、次いで、AP104eの範囲外に移動し、認証プロトコルメッセージ交換615bを介してAP104fで認証し得る。ローカルERサーバ606aが、AP104eとのSTA106aの第1の認証からのrRK1を記憶したので、メッセージ交換615bを介して行われた第2の認証は、認証サーバ601との通信を必要しないことがある。代わりに、ローカルERサーバ606aは、ドメイン固有ルート鍵(DSRK1)または再認証ルート鍵rRK1から第2の再認証マスターセッション鍵(rMSK2)を導出し、AP104fにrMSK2を与え得る。いくつかの態様では、この情報は、EAP完了再認証メッセージ中でAP104fに与えられ得る。AP104fは、次いで、rMSK2に基づいてSTA106aと通信し得る。
[0087]STA106aは、次いで、それがAP104fの範囲中にもはやないように移動し得る。STA106aは、次いで、EAP−RPを用いてAP104gで認証し得る。ローカルERサーバ606bが、STA106aに関連する鍵を有しないので、ローカルERサーバ606bは、局106aのための再認証ルート鍵rRK2またはドメイン固有ルート鍵DSRK2を取得するために認証サーバ601と通信する。ローカルERサーバ606bは、次いで、STA106aのための再認証マスターセッション鍵(rMSK3)を導出し、AP104gに鍵を与え、これは、STA106aとの通信にrMSK3鍵を使用する。
[0088]STA106aは、次いで、AP104hで認証する。ローカルERサーバ606bが、STA106aに関連する鍵(すなわちrRK2)を有するので、ローカルERサーバ606bは、STA106aとAP104hとの間での使用のために認証サーバ601から受信された鍵(DSRK2またはrRK2のいずれか)に基づいて新しい再認証マスターセッション鍵(rMSK4)を導出する。AP104hは、次いで、STA106aと通信するためにrMSK4を使用する。
[0089]図7に、認証プロセスの別の実施形態におけるワイヤレスネットワーク構成要素間のメッセージフローを示す。通信システム700は、ホームドメイン702と2つのモビリティドメイン705a−bとを含む。ホームドメイン内には認証サーバ701がある。モビリティドメイン705a−bの各々の内には、それぞれ、ローカルERサーバ706a−bがある。いくつかの態様では、ローカルERサーバ706a−bのいずれかは、図2のワイヤレスデバイス202であり得る。各モビリティドメイン705a−bはまた、それぞれ、2つのアクセスポイントAP104i−jおよびAP104k−lを含む。
[0090]図6に関して説明した認証方法と同様に、認証サーバ701は、それぞれ、ローカルERサーバの706aおよび706bに再認証ルート鍵rRK1およびrRK2またはドメイン固有ルート鍵DSRK1およびDSRK2のいずれかを与える。鍵は、STA106aがローカルERサーバの706a(AP104i−j)および706b(AP104k−l)の各々に接続されたアクセスポイントを介して認証したことに応答して与えられ得る。
[0091]図7に、STA106aとAP104iとの間の認証メッセージ交換715aを示す。いくつかの態様では、この認証メッセージ交換は、EAP再認証(EAP−RP)認証プロトコルなどの第1の認証プロトコルを利用し得る。いくつかの態様では、ローカルERサーバ706a−bは、図7に示すrRK1/RK2またはDSRK1/DSRK2など、認証サーバ701によって与えられる鍵に基づいて再認証マスターセッション鍵(rMSK)を生成し得る。再認証マスターセッション鍵は、次いで、アクセスポイントAP104i−lに与えられるPMKのものを生成するために使用され得る。たとえば、ローカルERサーバ706aは、STA106aが認証メッセージ交換715aを介してAP104iを介して認証するときに認証サーバ701から受信された再認証ルート鍵rRK1から第1の再認証マスターセッション鍵(rMSK1)を導出し得る。いくつかの態様では、ローカルERサーバ706aは、再認証マスターセッション鍵rMSK1に基づいて第1のPMKを生成し得る。いくつかの態様では、この第1のPMKは、PMK−R0である。ローカルERサーバ706aは、次いで、rMSK1に基づいて図7に示すPMK−R1−1などの第2のPMKを生成し得る。PMK−R1−1はまた、いくつかの態様では、PMK−R0に基づき得る。いくつかの態様では、PMK−R1の生成は、さらに、それのメディアアクセス制御アドレスなど、AP104iの1つまたは複数の特性および/またはそれの媒体制御アクセス(MAC)アドレスなど、STA106aの特性に基づき得る。ローカルERサーバ706aはまた、AP104jを介したSTA106aからの認証メッセージ交換715bに応答して、rMSK1に同じく基づいて図7にPMK−R1−2として示す第2のPMKを生成し得る。認証メッセージ交換715bは、STA106aからAP104jへの第2の認証プロトコル再認証要求を含み得る。いくつかの態様では、メッセージ交換715aは、EAP−RP交換であり、認証メッセージ交換715bは、高速BSS遷移認証である。AP104jは、STA106aから第2の認証プロトコル再認証要求を受信すると、ローカルERサーバ706aに鍵を要求し得る。鍵要求を受信したことに応答して、ローカルERサーバ706aは、第2のPMK RMK−R1−2を生成し得る。代替的に、ローカルERサーバ706aは、EAP−RP再認証中に、またはそれに応答してAP104jのためのPMKをプロアクティブに生成し得る。いくつかの実施形態では、AP104jのためのPMK−R1は、AP104jにプロアクティブに送信され得、したがって、メッセージ交換715bがSTA106aと行われるとき、AP104jは、STA106aとの使用のために利用可能なPMK−R1をすでに有する。
[0092]メッセージ交換715cは、STA106aとAP104kとの間のEAP−RP再認証であり得る。EAP−RP再認証は、STA106aとローカルERサーバ706bとがEAP−RPプロトコルメッセージを交換するようにAP104kを通過し得る。認証メッセージ交換715dは、第2の認証プロトコル、たとえば、高速BSS遷移(FT)認証を利用し得る。いくつかの態様では、AP104lは、第2の認証プロトコルの一部として認証要求メッセージを受信すると、STA106aとの通信のために使用するための鍵を要求するローカルERサーバ706bにメッセージを送信し得る。
[0093]図8に示すように、いくつかの他の態様では、上記で説明したローカルERサーバ706a−bのいくつかの機能は、ローカルERサーバ806a−bおよび鍵ホルダデバイス807a−bなどの複数のデバイスによって実行され得る。これらの態様のうちのいくつかでは、鍵ホルダデバイス807a−bは、図2中で上記に示したワイヤレスデバイス202であり得る。
[0094]図8に示すモビリティドメインなどのいくつかのモビリティドメインでは、ローカルERサーバ806a−bおよび別個の鍵ホルダデバイス807a−bは、モバイルデバイスSTA106aなどのモバイルデバイスの認証を実行するために使用され得る。デバイス807a−bは、モビリティドメインコントローラと呼ばれることもある。たとえば、いくつかの態様では、ローカルERサーバは、上記で説明した再認証マスターセッション鍵(rMSK1および/またはrMSK2などを導出し、「R0鍵ホルダ」デバイス807a−bにこれらの鍵を与え得る。R0鍵ホルダデバイス807a−bは、次いで、再認証マスターセッション鍵に基づいてアクセスポイントのためのPMKを生成し得る。たとえば、図8に、AP104iにPMK−R1−1を与える鍵ホルダデバイス807aを示す。鍵ホルダデバイス807aは、ローカルERサーバ806aによって与えられたrMSK1に基づいてPMK−R1−1を導出していることがある。いくつかの態様では、PMK−R0などの中間PMKが、最初に、再認証マスターセッション鍵(rMSK1またはrMSK2)から導出され得、次いで、PMK−R1が、PMK−R0から導出される。
[0095]図7の説明に戻ると、STA106aによるメッセージ交換715a(図4)を介した第1の認証は、AP104iと行われる。この認証は、それぞれ、認証サーバ701を使用して実行され得、いくつかの態様では、拡張認証プロトコル再認証プロトコル(EAP−RP)を利用し得る。メッセージ交換715bを介して実行される第2の認証は、認証サーバ701に必ずしも接触する必要なしに実行され得る。たとえば、ローカルERサーバ706a(または図8の鍵ホルダデバイス)は、再認証マスターセッション鍵rMSK1を記憶していることがあるので、PMK−R1−2は、認証サーバ701と通信することなしにAP104jのために生成され得る。
[0096]STA106aが、メッセージ交換715c介してAP104kで認証するとき、EAP再認証(EAP−RP)は、認証サーバ701と実行され得る。STA106aは、AP104kがAP104jとは異なるモビリティドメイン中にあると決定することに少なくとも部分的に基づいてEAP−RPを実行することを決定し得る。この情報は、AP104jおよびAP104kによって送信されるビーコン信号を介して与えられ得る。STA106aはまた、AP104kによって送信されるビーコン信号を介してそれの認証サーバ701がAP104kを介してアクセス可能であると決定し得る。メッセージ交換715cを介して行われるEAP再認証は、認証サーバ701に、ローカルERサーバ706bに再認証ルート鍵rRK2を与えさせ得る。ローカルERサーバ706bは、再認証ルート鍵rRK2から再認証マスターセッション鍵rMSK2を導出する。PMK−R1−3は、次いで、(いくつかの態様では、PMK−R0などの中間ペアワイズマスター鍵を介して)rMSK2に基づいて導出される。PMK−R1−3は、次いで、AP104kとSTA106aとの間の通信のために使用される。
[0097]STA106aが、認証メッセージ交換715dを介してAP104lで認証するとき、ローカルERサーバ706b(または図8中の鍵ホルダデバイス807b)は、STA106aとAP104lとの間の通信において使用するための鍵を要求する鍵要求メッセージをAP104lから受信し得る。ローカルERサーバ706bは、rMSK2を記憶しているので、AP104lとSTA106aとの間の通信において使用するためのPMK−R1−4を導出し、PMK−R1−4を含む鍵応答メッセージをAP104lに送信し得る。
[0098]図8では、メッセージ交換815aは、図3に関して上記で説明したように、拡張認証プロトコル再認証プロトコル(EAP−RP)認証を実行し得る。メッセージ交換815bは、いくつかの態様では、図4に関して上記で説明したように、高速基本サービスセット遷移(FT)認証を実行し得る。同様に、メッセージ交換815cは、EAP−RP認証を実行し得、一方、メッセージ交換815dは、FT認証を実行する。
[0099]図7に関して説明したメッセージングと同様に、AP104jおよび/またはAP104lがSTA106aと高速基本サービスセット遷移認証を実行したことに応答して、APの104jおよび/またはAP104lは、それぞれR0鍵ホルダデバイス807aおよび/または807bに鍵要求メッセージを送信し得る。AP104jおよび/またはAP104lは、鍵要求メッセージに応答してPMK−R1−2および/またはPMK−R1−4を生成し、鍵応答メッセージを介してAPにPMKを送信し得る。代替的に、R0鍵ホルダデバイス807a−bは、再認証マスターセッション鍵がそれぞれローカルERサーバ806a−bから受信されたとき、APのものにPMK−R1のものをプロアクティブに送信し得る。
[00100]図8に示す認証方法800では、ERサーバ806a−bなどの単一のローカルERサーバは、複数のモビリティドメイン(すなわち、鍵ホルダデバイス807a−bなどの複数の鍵ホルダデバイス)をサポートし得る。
[00101]図9に、認証プロセスの別の実施形態におけるワイヤレスネットワーク構成要素間のメッセージフローを示す。認証方法900では、ローカルERサーバは、モビリティドメイン905a−b内に存在しない。したがって、たとえば、認証サーバ701および801が、それぞれローカルERサーバ806a−bに再認証ルート鍵rRK1およびrRK2を与えたときに図7または図8に示したように、認証サーバ901がローカルERサーバに再認証ルート鍵を与えるのではなく、認証サーバ901が、それぞれ、鍵ホルダデバイス907a−bに再認証マスターセッション鍵rMSK1およびrMSK2を与える。いくつかの態様では、鍵ホルダデバイス907a−bは、図2に示したワイヤレスデバイス202であり得る。鍵ホルダデバイス907a−bは、次いで、上記で図8に関して説明した鍵ホルダデバイス807a−bと同様に動作し得る。たとえば、メッセージ交換915aおよび915cの各々は、EAP−RP認証を実行し得、一方、メッセージ交換915bおよび915dは、高速基本サービスセット遷移(FT)認証を実行する。
[00102]図9では、メッセージ交換915aは、図3に関して上記で説明したように、拡張認証プロトコル再認証プロトコル(EAP−RP)認証を実行し得る。メッセージ交換915bは、いくつかの態様では、図4に関して上記で説明したように、高速基本サービスセット遷移(FT)認証を実行し得る。同様に、メッセージ交換915cは、EAP−RP認証を実行し得、一方、メッセージ交換915dは、FT認証を実行する。
[00103]図10は、STA106aと、2つのアクセスポイントAP104o−pと、鍵ホルダデバイス、この場合、ワイヤレスLANコントローラ1007と、図7中のローカルERサーバ706aまたは706bなどのローカルERサーバあるいは認証サーバ801または901のいずれかなどの認証サーバとの間のメッセージシーケンス図である。いくつかの態様では、鍵ホルダデバイス1007は、図2のワイヤレスデバイス202および/または図8からの鍵ホルダデバイス807a−bであり得る。
[00104]メッセージシーケンス1000が行われる前に、STA106aは、それのホーム認証サーバと第1のモビリティドメイン内で完全EAP認証を実行していることがある。AP104oは、第1のモビリティドメインとは異なる第2のモビリティドメイン中にあり得る。いくつかの態様では、STA106aは、AP104oによって送信されたビーコン信号を介してAP104oが第2のモビリティドメイン中にあることを決定し得る。STA106aはまた、それのホーム認証サーバがAP104oを介してアクセス可能であると決定し得る。STA106aは、次いで、それのホーム認証サーバを示すEAP再認証要求1002aをAP104oに送信する。EAP再認証要求1002は、メッセージ1002bとしてワイヤレスLANコントローラ(WLC)1007にAP104oによって転送され得る。WLC1007は、メッセージ1002cとしてEAP再認証要求によって示されるEAP再認証要求メッセージをローカルERサーバまたはホームドメイン認証サーバに送信し得る。
[00105]それに応答して、ローカルERサーバまたはホームドメイン認証サーバは、(「rMSK」として示されている)STA106aのための再認証マスターセッション鍵(rMSK)を生成し、WLC1007に再認証応答1004aを送信する。WLC1007は、再認証マスターセッション鍵(rRK)を記憶し得る。WLC1007は、次いで、再認証マスターセッション鍵(rMSK)に基づいてペアワイズマスター鍵を生成する。WLC1007はまた、第1のペアワイズマスター鍵に基づいて第2のペアワイズマスター鍵を生成し得る。いくつかの態様では、第1のペアワイズマスター鍵は、PMK−R0であり、一方、第2のペアワイズマスター鍵は、PMK−R1である。WLC607aは、次いで、AP104oにEAP再認証応答メッセージ1004bを送信する。メッセージ1004bは、ローカルERサーバまたはホームドメイン認証サーバから受信された再認証マスターセッション鍵に基づくPMK−R1などのPMKを含み得る。AP1040は、次いで、メッセージ1004cとしてSTA106aに再認証を転送する。
[00106]次に、STA106aは、AP104pに高速基本サービスセット遷移(FT)認証メッセージを送信する。それに応答して、AP104pは、鍵要求メッセージ1008を介してWLC1007に鍵を要求する。WLC1007は、次いで、STA106aとの通信のためにAP104pが使用するための第2のPMKを生成する。このPMKは、STA106aおよび/またはAP104pの1つまたは複数のプロパティに基づいて生成され得る。このPMK「PMK−R1−2」は、鍵応答メッセージ1010中でAP104pに送信される。
[00107]AP104pは、WLC1007からPMK−R1−2を受信した後にメッセージ1012を介してSTA106aとのFT認証を完了し得る。
[00108]いくつかの他の態様では、PMK−R1−2”は、鍵要求メッセージ1008の受信の前にWLC1007によってプロアクティブに生成され得る。たとえば、PMK−R1−2は、STA106aとのEAP−RP交換1002/1004中に生成され得る。いくつかの態様では、PMK−R1−2は、FT認証メッセージ1006がSTA106aによって送信される前にさえWLC1007によってアクセスポイントに送信され得る。
[00109]図11に、図8〜図10に示した認証方法などの認証方法における鍵階層を示す。図11に、ルート鍵1102を示す。マスターセッション鍵(MSK)1104は、ルート鍵1102から導出され得る。1つまたは複数の導出されたマスターセッション鍵(MSK)1106は、マスターセッション鍵1104から導出され得る。ペアワイズマスター鍵(PMK)1108は、導出されたマスターセッション鍵1106から導出され得る。
[00110]拡張マスターセッション鍵(EMSK)1110は、ルート鍵1102から導出され得る。いくつかの態様では、EMSKは、少なくとも64のビットであり、RFC3748に従ってSTAと認証サーバとの間の相互認証の結果として導出され得る。いくつかの態様では、EMSKは、RFC5247に従って拡張認証プロトコルセッション識別子とバイナリまたはテキスト指示とを使用して名前がつけられ得る。セッション識別子は、(RFC5217付録に従って)拡張認証プロトコル(EAP)方法に基づいて定義され得る。EAP−TLS(RFC5216)の場合:
Key_Material=TLS−PRF−128(RK,「クライアントEAP暗号化」,client.random||server.random)(TLS−PRF−128は、1024ビットの出力を生成する)
MSK=Key_Material(0,63)(すなわち、Key_Materialの上位512ビット)
EMSK=Key_Material(64,127)(すなわち、Key_Materialの下位512ビット)
Session−ID=0x0D||client.random||server.random。
ここで、client.randomとserver.randomとは、認証中にサーバ(AS)とクライアント(STA)との間で交換されるランダムな数(それぞれ32B)であり、TLS−PRF−Xは、Xオクテット(すなわち、8Xビット)値を出力し、RFC4346において定義されている。
[00111]1つまたは複数のドメイン固有ルート鍵(DSRK)1112は、EMSK1110から導出され得る。再認証ルート鍵1114は、ドメイン固有ルート鍵1112のうちの1つから導出され得る。いくつかの態様では、再認証ルート鍵1114の導出は、RFC6696のセクション4.1において指定されている。たとえば、再認証ルート鍵1114は、以下によって定義され得る。
rRK=KDF(K,S)、ここで、
K=EMSKまたはK=DSRKおよび
S=rRKラベル|”\0”|長さ
rRKラベルは、RFC5295に明示されているポリシーに従って「USRK鍵ラベル」名前空間から割り当てられるIANA割当て8ビットASCIIストリング:EAP Re−authentication Root Key@ietf.orgである。
鍵導出関数(KDF)とKDFのためのアルゴリズムアジリティとは、RFC5295において定義されている。
[00112]再認証完全性鍵1115(rIK)は、再認証ルート鍵1114から導出され得る。いくつかの態様では、再認証完全性鍵1115は、RFC6696において指定されているように導出され得る。たとえば、rIKは次のように導出され得る。
rIK=KDF(K,S)、ここで、
K=rRKおよび
S=rIKラベル|”\0”|暗号スイート|長さ
[00113]rIKラベルは、8ビットASCIIストリング:Re−authentication Integrity Key@ietf.orgである。長さフィールドは、オクテットでのrIKの長さを指し、RFC5295において指定されているように符号化される。
[00114]1つまたは複数の再認証マスターセッション鍵(rMSK)1116は、再認証ルート鍵1114から導出され得る。いくつかの態様では、rMSK1116は、RFC6696に従って導出され得る。たとえば、rMSKは、次のように導出され得る。
rMSK=KDF(K,S)、ここで、
K=rRKおよび
S=rMSKラベル|”\0”|SEQ|長さ
rMSKラベルは、8ビットASCIIストリング:Re−authentication Master Session Key@ietf.orgである。
長さフィールドは、オクテットでのrMSKの長さを指し、RFC5295において指定されているように符号化される。
[00115]図8〜図10に関して上記で説明したように、1つまたは複数のペアワイズマスター鍵(PMK)1118は、再認証マスターセッション鍵1116から導出され得る。図11に示すように、再認証マスターセッション鍵1116から導出されるペアワイズマスター鍵は、PMK−R0ペアワイズマスター鍵である。1つまたは複数の第2レベルペアワイズマスター鍵1120は、単一のPMK1118から導出され得る。図11に示すように、ペアワイズマスター鍵1120は、PMK−R1ペアワイズマスター鍵である。上記で説明した鍵導出のいずれにおいても、HMAC−SHA−256が、デフォルトの鍵導出関数(KDF)として使用され得る。
[00116]図12は、ワイヤレスデバイスを認証する方法のフローチャートである。いくつかの態様では、プロセス1200は、図7〜図10に関して上記で説明したワイヤレスLANコントローラ、および/または図2のワイヤレスデバイス202によって実行され得る。いくつかの態様では、プロセス1200は、802.11高速遷移鍵ホルダアーキテクチャにおいて定義されているようにR0鍵ホルダデバイスによって実行される。
[00117]いくつかの態様では、図12は、2つの異なる認証プロトコル間の相互運用性を提供し得る。たとえば、第1の認証プロトコルは、第2の認証プロトコルに勝るいくつかの利益を与え得る。第2の認証プロトコルは、ワイヤレスネットワーク内で広く展開され得る。ネットワーク全体にわたって広く第1の認証プロトコルを展開することは法外なコストがかかることがあり、第1の認証プロトコルがそれのエンタイアリで利用され得るように展開が完了し得る前にかなりの時間期間を必要とし得る。第2の認証プロトコルは、第1の認証プロトコルに勝るいくつかの利点を与え得るが、ワイヤレスネットワーク全体にわたって広く第2の認証プロトコルを展開することは、費用のかかることがあり、将来かなりの時間期間の間達成されないことがある。以下で説明するプロセス1200により、いくつかの実装形態は、第1のaの利益を活用することが可能になり得る。
[00118]ブロック1205では、モバイルデバイスのための第1の認証プロトコル再認証応答が受信される。いくつかの態様では、再認証応答は、ローカルERサーバまたは認証サーバから受信される。いくつかの態様では、第1の認証プロトコルは、拡張認証プロトコル再認証プロトコル(EAP−RP)である。再認証応答は、再認証マスターセッション鍵を含む。再認証マスターセッション鍵は、再認証応答から復号され得る。再認証マスターセッション鍵は、再認証ルート鍵から導出され得る。たとえば、図11に示したように、rMSK1116は、rRK1114から導出され得る。
[00119]いくつかの態様では、ERサーバまたは認証サーバからブロック1105において受信された再認証応答は、ローカルERまたは認証サーバにデバイスによって送信された第1の認証プロトコル再認証要求に応答したものである。デバイスは、第1のアクセスポイントからモバイルデバイスのための再認証要求を受信し得る。デバイスは、次いで、要求によって示されたローカルERサーバまたはホーム認証サーバに第1のアクセスポイントから受信された再認証要求をリレーし得る。
[00120]いくつかの態様では、デバイスは、再認証応答中に含まれる再認証マスターセッション鍵に基づいて第1のPMKを生成する。いくつかの態様では、第1のPMKは、PMK−R0である。第2のPMKは、次いで、第1のPMKに基づいて生成され得る。いくつかの態様では、この第2のPMKは、高速遷移鍵ホルダアーキテクチャのPMK−R1である。いくつかの態様では、第2のPMKは、モバイルデバイスおよび/または第1のアクセスポイントの1つまたは複数の特性に基づいて生成される。いくつかの態様では、ブロック1205は、ワイヤレスデバイス202の受信機212によって実行され得る。
[00121]ブロック1210では、第1の認証プロトコル再認証応答は、第1のアクセスポイントに送信される。第1の認証プロトコル再認証応答は、再認証マスターセッション鍵に基づく。いくつかの態様では、第1の認証プロトコル再認証応答は、再認証マスターセッション鍵から導出されたPMK−R0などの別のPMKから導出された、上記で説明したPMK−R1などのPMKを含むので、再認証マスターセッション鍵に基づく。いくつかの態様では、ブロック1210は、ワイヤレスデバイス202の送信機210によって実行され得る。
[00122]いくつかの態様では、第2のアクセスポイントとモバイルデバイスとの間の通信のための鍵要求メッセージは、第2のアクセスポイントから受信される。これらの態様のうちのいくつかでは、鍵要求メッセージは、第2のアクセスポイントがモバイルデバイスのための第2の認証プロトコル認証要求を受信したことに応答して受信される。いくつかの態様では、第2の認証プロトコル要求は、高速基本サービスセット(BSS)遷移(FT)認証要求である。いくつかの態様では、第2の認証プロトコルは、オープンシステム認証アルゴリズムを使用する802.11認証である。いくつかの他の態様では、第2の認証プロトコル認証は、同等性同時認証(SAE:simultaneous authentication of equals)を使用する802.11認証である。
[00123]ブロック1220では、PMKが生成される。ブロック1220において生成されるPMKは、ブロック1205においてER(または認証)サーバから受信された第1の認証プロトコル認証応答から復号された再認証マスターセッション鍵に基づき得る。いくつかの態様では、PMKは、モバイルデバイスおよび/または第2のアクセスポイントの1つまたは複数のプロパティに基づいて生成される。たとえば、上記で説明したように、PMK−R0は、再認証マスターセッション鍵に基づいて生成され得る。ブロック1220において生成されるPMKは、(再認証マスターセッション鍵に基づく)上記で説明したPMK−R0に基づき得る。ブロック1220において生成されるPMKは、いくつかの態様では、PMK−R1であり得る。図12は、ブロック1205〜1210に関して上記で説明したPMKのものに関して、ブロック1220において生成されるPMKを第1のPMKとして言及するが、それは第3のPMKであり得る。いくつかの態様では、上記で説明したPMKは、IEEE802.11rプロトコル規格に従って生成され得る。いくつかの態様では、ブロック1220は、ワイヤレスデバイス202のプロセッサ204によって実行され得る。
[00124]ブロック1225において、鍵メッセージは、ブロック1220において生成されたPMKを含むように生成される。いくつかの態様では、ブロック1225は、ワイヤレスデバイス202のプロセッサ204によって実行され得る。
[00125]ブロック1230において、鍵メッセージは、第2のアクセスポイントに送信される。ブロック1225において生成されたPMKは、モバイルデバイスと第2のアクセスポイントとの間の通信のために使用される。たとえば、PMKは、第2のアクセスポイントとモバイルデバイスとの間で送信されるデータを暗号化するために使用され得る。
[00126]第2のアクセスポイントのためのPMKを含む鍵メッセージを受信したことに応答して、第2のアクセスポイントは、第2の認証プロトコルを完了し得る。いくつかの態様では、第2の認証プロトコルを完了することは、高速基本サービスセット(BSS)遷移(FT)認証応答を送信することを含む。いくつかの態様では、第2の認証プロトコルは、オープンシステム認証アルゴリズムまたはSAEのいずれかを使用する802.11認証応答である。いくつかの態様では、ブロック1230は、ワイヤレスデバイス202の送信機210によって実行され得る。
[00127]図13は、共有鍵認証のメッセージフロー図である。メッセージフロー1300に、ワイヤレスLANコントローラ1305(WLC)にSTA106によって送信される共有鍵認証要求1302a−bを示す。共有鍵認証要求1302a−bは、上記で説明したIEEE802.11aiによって定義される認証要求であり得る。いくつかの態様では、認証要求1302は、1302aとしてAP104に送信され、次いで、1302bとしてWLC1305に中継され得る。完全転送秘密(PFS)を使用して共有鍵認証を実行するメッセージフロー1300の実施形態では、STA106とワイヤレスLANコントローラ(WLC)1305とは、ディフィーへルマン鍵交換を実行し得る。この交換は、認証要求1302a−b中へのSTA106のためのエフェメラル公開鍵の包含によって部分的に容易にされ得る。認証要求1302a−bを受信したことの結果として、WLC1305は、認証サーバ1350に認証要求1306を送信する。
[00128]共有鍵認証応答1308は、WLC1305に再認証マスターセッション鍵(rMSK)を与える。第1のペアワイズマスター鍵はまた、再認証マスターセッション鍵に基づいて生成され得る。いくつかの態様では、第1のペアワイズマスター鍵はまた、共有秘密に基づいて生成され得る。いくつかの態様では、第1のペアワイズマスター鍵は、上記で説明したことを除いて、IEEE802.11PMK−R0に従って生成される。
[00129]認証応答1310bは、次いで、STA106に(おそらく、最初に、1310aとしてAP104に、これは、次いで、STA106に1310bとしてメッセージをリプレーする)WLC1305によって送信される。プライベート転送秘密(PFS:private forward secrecy)を利用する態様では、認証応答1310a−bは、WLC1305のエフェメラル公開鍵を含み得る。WLC1305とSTA106の両方が、これで、各他のものエフェメラル公開鍵を有するので、それらはそれぞれ、それらの間の通信のための共有鍵として使用するために共有秘密を導出することができる。
[00130]STA106は、次いで、アソシエーション要求メッセージ1312を生成する。アソシエーション要求メッセージ1312は、いくつかの態様では、IEEE802.11アソシエーション要求であり得る。アソシエーション要求メッセージ1312により、アソシエーション要求を受信するアクセスポイントは、アソシエーションを要求する局の無線のためのリソースを割り振り、それと同期することが可能になり得る。
[00131]アソシエーション要求メッセージ1312を受信したことに応答して、アクセスポイントは、それが要求元の局STA106にアソシエートすることができるのかどうかを決定し、できる場合には、STA106のためのアソシエーション識別子を決定し得る。
[00132]いくつかの態様では、STA106とAP104との間の使用のためのPMKは、AP104がアソシエーション要求メッセージ1312を受信したことに応答してWLC1305に「要求」されるかまたはそれから「プル」される。これらの態様では、APが、アソシエーション要求メッセージ1312を受信すると、AP104は、STA106との通信のために使用するための鍵を要求する鍵要求メッセージを生成し、それをWLC1305に送信する。鍵要求メッセージ1314を受信すると、WLC1305は、メッセージ1316中でAPに第2のPMKを送信し得る。第2のPMKは、第1のペアワイズマスター鍵から導出され得、また、それのMACアドレスまたは能力など、AP104の1つまたは複数の特性に基づいて導出され得る。第2のPMKは、STA106とAP104との間のセキュリティアソシエーションおよび/または通信において使用するために生成され得る。いくつかの態様では、第2のPMKは、IEEE802.11 PMK−R1手順に従って導出され、第1のPMKは、上記で説明したことを除いて、IEEE802.11 PMK−R0手順に従って導出される。
[00133]AP104は、次いで、第2のPMKを受信すると、アソシエーション応答メッセージ1318でSTA106に応答し得る。アソシエーション応答メッセージ1318は、メッセージ1316中で受信された第2のPMKから導出されたデータを含み得る。APは、次いで、STA106とのセキュアな通信のために第2のPMK(たとえば、PMK−R1)を利用し得る。
[00134]いくつかの他の態様(図示せず)では、第1のPMKが生成されると、第2のPMKは、WLC1305によってAP104に非同期的に「プッシュ」され得る。たとえば、いくつかの態様では、WLC1305は、特定の局のための第1のPMKを生成すると、それが通信中である各アクセスポイントに局のための第2のPMKをプッシュし得る。各アクセスポイントは、特定の局のためのそれ自体の個別の第2のPMKを有することになる。これらの態様では、アソシエーション要求メッセージ1312がAP104によって受信されたとき、鍵要求メッセージ1314がWLC1305に送信されないことがある。代わりに、アソシエーション要求メッセージ1312を受信すると、AP104は、それがSTA106のために記憶された(PMK−R1などの)第2のPMKを有するのかどうかを決定するために、WLC1305から受信された第2のPMKの内部記憶を調べ得る。それが、適切な第2のPMKを識別する場合、AP104は、記憶された第2のPMKに基づいてSTA106aとのアソシエーションプロセスを完了し得る。
[00135]いくつかの態様では、第2のPMKは、認証応答メッセージ1310aの一部としてAP104に与えられ得る。これらの態様では、メッセージ1314および1316の必要がないことがある。
[00136]図14は、公開鍵認証のメッセージフロー図である。STA106は、ワイヤレスLANコントローラ(WLC)1405に公開鍵認証要求メッセージ1402を送信する。公開鍵認証要求メッセージ1402は、いくつかの態様では、AP104を介してWLC1405に中継され得る。公開鍵認証要求メッセージ1402は、STA106のエフェメラル公開鍵を含む。公開鍵認証要求メッセージ1402を受信すると、WLC1405は、それ自体のエフェメラル公開鍵を生成する。いくつかの態様では、エフェメラル公開鍵は、WLC1405が公開鍵認証要求メッセージ1402を受信する前に事前に生成され得る。WLC1405は、次いで、いくつかの態様ではAP104によって中継されて、STA106に公開鍵認証応答メッセージ1404を送信する。公開鍵認証応答メッセージ1404は、WLC1405のエフェメラル公開鍵を含む。メッセージ交換1402および1404の後に、STA106とWLC1405の両方は、互いのエフェメラル公開鍵を有する。STA106とWLC1405との各々は、次いで、2つの公開鍵に基づいて共通の共有秘密を導出し得る。共有秘密が導出されると、WLC1405は、STA106とワイヤレスLANコントローラ(WLC)1405とを伴う通信において使用するために共有秘密(たとえば、いくつかの態様では、PMK−R0)に基づいて第1のペアワイズマスター鍵を導出し得る。WLC1405はまた、第1のペアワイズマスター鍵に基づいてSTA106とのセキュアなアソシエーションおよび/または通信においてAP104が使用するために第2のペアワイズマスター鍵(いくつかの態様では、PMK−R1)を生成し得る。第2のペアワイズマスター鍵はまた、それの媒体アクセス制御(MAC)アドレスあるいはAP104の1つまたは複数の能力など、AP104の1つまたは複数の特性に基づいてWLC1405によって生成され得る。
[00137]図13のメッセージフロー1300とは対照的に、メッセージフロー1400に、WLC1405からAP104への第2のPMK配信の「プッシュ」モデルを示す。図13に、STA106とのセキュアなアソシエーションおよび/またはセキュアな通信において使用するためのPMKを要求するAP104からWLCに送信される鍵要求メッセージ1314を示したが、図14では、第1のPMKから導出される第2のPMKが、WLC1405による第1のPMKの生成時にAP104に非同期的に送信され得る。これは、第2のPMKを含むメッセージ1408によって示され、これは、WLC1405による第1のPMK上の導出ベースである。WLC1405はまた、それの媒体アクセス制御(MAC)アドレスまたは能力など、AP104の1つまたは複数の特性に基づいて第2のPMKを導出し得る。メッセージ1408を介して第2のPMKを受信すると、AP104は、STA106に第2のPMKを関連付ける情報とともに、安定したストレージ中に第2のPMKを記憶し得る。いくつかの態様では、第2のPMKは、メッセージ1404中に含まれ得る。この場合、メッセージ1408が不用であり得る。
[00138]図14に、第2のPMKがAP104に非同期的に送信されることを示すので、STA106は、メッセージ1408を介してWLC1405から第2のPMKが受信された後、AP104にアソシエーション要求メッセージ1410を送信し得る。アソシエーション要求メッセージ1410が受信されると、AP104は、STA106とのセキュアなアソシエーションおよび/または通信において使用するために適切なPMKが利用可能であるのかどうかを識別するために上記で説明したそれの安定したストレージを調べ得る。それの安定したストレージ中でメッセージ1408中で最初に受信された第2のPMKを発見すると、AP104は、第2のPMKに基づいてSTA106にアソシエーション応答メッセージ1412を送信し得る。AP104は、次いで、第2のPMKを介してSTA106にセキュアにアソシエートおよび/または通信し得る。
[00139]他の態様では、AP104への第2のPMK配信の「プル」モデルが公開鍵認証とともに使用され得る。たとえば、いくつかの態様では、メッセージフロー1400は、メッセージ1312、1314、1316、および1318の交換に関して図13に示したように、PMK配信のプルモードを利用し得る。
[00140]図15は、第1のデバイスを認証する方法のフローチャートである。いくつかの態様では、プロセス1500は、図13および図14に関して上記で説明したワイヤレスLANコントローラ(WLC)デバイス、および/または図2のワイヤレスデバイス202のいずれかによって実行され得る。たとえば、いくつかの態様では、メモリ206は、図15に関して以下で説明する機能のうちの1つまたは複数を実行するようにプロセッサ204を構成する命令を記憶し得る。いくつかの態様では、プロセス1500は、IEEE802.11高速遷移鍵ホルダアーキテクチャにおいて定義されているようにR0鍵ホルダデバイスによって実行される。いくつかの態様では、第1、第2、および第3のデバイスのうちの1つまたは複数は、ワイヤレスデバイスであることもワイヤレスデバイスでないこともある。
[00141]いくつかの態様では、プロセス1500は、プロセス1200と統合され得る。たとえば、プロセス1500は、ブロック1220の一部として含まれ得る。たとえば、プロセス1500に関して以下で説明する第2のペアワイズマスター鍵は、プロセス1200に関して上記で説明した第1のペアワイズマスター鍵の均等物であり得る。
[00142]いくつかの態様では、図15は、2つさらには3つの異なる認証プロトコル間の相互運用性を提供し得る。たとえば、第1の認証プロトコルは、第2の認証プロトコルに勝るいくつかの利益を与え得る。第2の認証プロトコルは、ワイヤレスネットワーク内で広く展開され得る。ネットワーク全体にわたって広く第1の認証プロトコルを展開することは法外なコストがかかることがあり、第1の認証プロトコルがそれのエンタイアリで利用され得るように展開が完了し得る前にかなりの時間期間を必要とし得る。
[00143]第1の認証プロトコルは、第2の認証プロトコルに勝るいくつかの利点を与え得るが、ワイヤレスネットワーク全体にわたって広く第1の認証プロトコルを展開することは、費用のかかることがあり、将来かなりの時間期間の間達成されないことがある。以下で説明するプロセス1500により、いくつかの実装形態が、第1の認証プロトコルの完全実装のために必要な構成要素のすべてを展開することなしに、代わりに、第2の認証プロトコルのすでに展開された構成要素に依拠して、第1の認証プロトコルの利益を活用することが可能になり得る。
[00144]ブロック1505において、共有鍵が決定される。鍵は、第1のデバイスと共有される。いくつかの態様では、共有鍵は、マスターセッション鍵であり、第1のデバイスと第2のデバイスとの間の拡張認証プロトコル(EAP)交換を介して決定され得る。いくつかの態様では、プロセス1500は、第2のデバイスによって実行される。いくつかの態様では、マスターセッション鍵を決定する拡張認証プロトコル交換は、完全転送秘密(PFS)を利用しない共有鍵認証である。いくつかの態様では、マスターセッション鍵は、図3に示すように、EAP認証プロトコルの一部として認証サーバから受信され得る。
[00145]いくつかの態様では、共有鍵は、再認証マスターセッション鍵であり、これは、拡張認証プロトコル再認証プロトコルを実行することによって決定される。いくつかの態様では、再認証マスターセッション鍵を決定する拡張認証プロトコル再認証プロトコル交換は、完全転送秘密(PFS)を利用しない共有鍵認証である。いくつかの態様では、再認証マスターセッション鍵は、図3に示すように、EAP−RPプロトコルを実行することの一部として認証サーバから受信され得る。
[00146]いくつかの態様では、再認証マスターセッション鍵は、rMSK=KDF(K,S)のように導出され得、ここで、K=rRKおよびS=rMSKラベル|”\0”|SEQ\長さである。rMSKラベルは、8ビットASCIIストリング:「Re−authentication Master Session Key@ietf.org」である。長さフィールドは、オクテットでのrMSKの長さを指す。rRKは、(たとえば、図11に示すように)EMSKまたはDSRKから導出され得る。
[00147]いくつかの態様では、共有鍵は、共有秘密である。共有秘密は、いくつかの態様では、第1のデバイスとのディフィーへルマン鍵交換を介して決定され得る。いくつかの態様では、ブロック1505に関して上記で説明した機能のうちの1つまたは複数は、プロセッサ204によって実行され得る。たとえば、共有鍵を決定するための手段は、プロセッサ204を含み得る。別の例として、拡張認証プロトコル再認証プロトコルを実行するための手段は、プロセッサ204、メモリ206、および送信機210のうちの1つまたは複数を含み得る。たとえば、メモリ206中に記憶された命令は、拡張認証プロトコル再認証プロトコルを実行するようにプロセッサ204を構成し得る。
[00148]ブロック1510において、第1のペアワイズマスター鍵は、第1のデバイスと共有される鍵に基づいて生成される。いくつかの態様では、第1のペアワイズマスター鍵は、中間鍵に基づいて生成される。いくつかの態様では、中間鍵は、第1のデバイスから導出されたナンスに基づいて生成され得る。いくつかの態様では、中間鍵は、第2のデバイスから導出されたナンスに基づいて生成され得る。いくつかの態様では、中間鍵は、共有鍵に基づいて生成され得る。いくつかの態様では、中間鍵は、第1のデバイスによって生成されたナンスと、第2のデバイスによって生成されたナンスと、共有鍵との2つ以上の組合せに基づいて生成され得る。いくつかの態様では、中間鍵は、鍵導出関数(KDF)に基づいて生成される。いくつかの態様では、KDFは、ハッシュベースメッセージ認証コード(HMAC:hash based message authentication code)であり得る。たとえば、いくつかの態様では、中間鍵は、以下の式1に基づいて生成され得る。
中間鍵=HMAC−Hash(SNonce||ANonce,IKM) (1)
上式で、
SNonceは、第1のデバイスによって生成されたナンスであり、
ANonceは、第2のデバイスによって生成されたナンスであり、
IKMは、
EAP完全認証が実行される場合、MSKであり、
共有鍵認証が、完全転送秘密(PFS)なしに実行される場合、rMSKであり、
完全転送秘密とともに共有鍵認証を使用する場合、その順序でのrMSK|ss(すなわち、rMSKとssとの連結)であり、
公開鍵認証が使用される場合、ssである。
ここで、
MSKは、完全EAP認証を実行する認証サーバから導出されるマスターセッション鍵であり、
rMSKは、認証サーバによって導出され、(RFC6696において定義されている)EAP−RPを実行することの結果として第2のデバイスに送られる再認証マスターセッション鍵であり、
ssは、第1のデバイスと第2のデバイスとの間のディフィーへルマン鍵交換の結果として確立される共有秘密である。
[00149]いくつかの態様では、HMAC−Hash関数の結果は、たとえば、いくつかの態様では、256ビットに切り捨てられ得る。いくつかの態様では、上記で導出された中間鍵は、IEEE802.11高速基本サービスセット遷移(FT)認証に記載されている「XXKey」の代わりに使用され得る。
[00150]代替実装形態は、次のように中間鍵を導出し得る。
中間鍵=KDF(PMK,「FILS PTK導出」,SPA||AA||SNonce||ANonce)、上式で、
上式で、
KDFは、384、640、または1024ビットを使用する鍵導出関数であり、
PMKは、PMKSAからのものであり、最初のFILS接続から作成されるか、またはPMKSAキャッシングが使用されるときはキャッシュされたPMKSAから作成される。いくつかの態様では、PMKは、rMSKから導出され、
SPAは、STAのMACアドレスであり、AAは、APのBSSIDであり、
SNonceは、STAのナンスであり、ANonceは、APのナンスである
[00151]いくつかの態様では、中間鍵が上記で説明したように導出された後、追加の鍵導出が、次のように行われる。
R0−Key−Data=KDF−384(中間鍵,「FT−R0」,SSIDlength||SSID||MDID||R0KHlengh||R0KH−ID||S0KH−ID)
PMK−R0=L(R0−Key−Data,0,256)
PMK−R0Name−Salt=L(R0−Key−Data,256−128)
PMKR0Name=Truncate−128(SHA−256(“FT−R0N”||PMK−R0Name−Salt)) 上式で、「FT−R0N」は、0x46 0x54 0x2D 0x52 0x30 0x4Eであり、
ここで、
KDF−384は、SHA−384.を使用した鍵導出関数であり、
MDIDは、モビリティドメイン識別子であり、
R0KH−IDは、PMK−R0鍵ホルダ識別子であり、
S0KH−IDは、サプリカント鍵ホルダ識別子である
[00152]いくつかの態様では、第1のペアワイズマスター鍵は、上記で説明したようにPMK−R0である。いくつかの態様では、第1のペアワイズマスター鍵は、第1のデバイスと共有される第2の鍵に基づいて生成され得る。たとえば、第2のデバイスが第1のデバイスと再認証マスターセッション鍵を共有する態様では、共有秘密も第1のデバイスと共有され得る。共有秘密は、第1のデバイスとのディフィーへルマン鍵交換を介して生成され得る。これらの態様では、第1のペアワイズマスター鍵は、共有鍵(すなわち、再認証マスターセッション鍵と共有秘密)の両方に基づいて生成され得る。いくつかの態様では、2つの共有鍵が連結され、第1のペアワイズマスター鍵は、連結に基づいて生成される。たとえば、いくつかの態様では、共有秘密は、連結中で再認証マスターセッション鍵に続く(すなわち、rMSK|SS)。いくつかの態様では、ブロック1510に関して上記で説明した1つまたは複数の機能は、プロセッサ204によって実行され得る。いくつかの態様では、プロセッサ204は、上記で説明したように連結するための手段を備え得る。
[00153]ブロック1515において、第2のペアワイズマスター鍵が、第1のデバイスとのセキュアなアソシエーションおよび/またはセキュアな通信に使用するために第1のアクセスポイントのために生成される。第2のペアワイズマスター鍵は、第1のペアワイズマスター鍵に基づいて生成される。第2のペアワイズマスター鍵は、さらに、第1のアクセスポイントの1つまたは複数の特性に基づいて生成され得る。たとえば、第2のペアワイズマスター鍵は、第1のアクセスポイントの媒体アクセス制御(MAC)アドレス、第1のアクセスポイントの基本サービスセット識別子、および/または第1のアクセスポイントの1つもしくは複数の能力のうちの1つまたは複数に基づいて生成され得る。
[00154]いくつかの態様では、ブロック1515に関して上記で説明した機能のうちの1つまたは複数は、プロセッサ204によって実行され得る。たとえば、第2のペアワイズマスター鍵を生成するための手段は、プロセッサ204を含み得る。
[00155]ブロック1520において、第2のペアワイズマスター鍵は、第1のアクセスポイントに送信される。第2のペアワイズマスター鍵は、第1のデバイスと第1のアクセスポイントとの間のセキュアなアソシエーションおよび/またはセキュアな通信のために第1のアクセスポイントによって使用され得る。たとえば、第1のアクセスポイントは、第2のペアワイズマスター鍵に基づいて第1のデバイスとの通信を暗号化または符号化し得る。
[00156]いくつかの態様では、追加の鍵は、第2のペアワイズマスター鍵に基づいて生成され得る。この追加の鍵は、第1のアクセスポイントによって生成され得る。たとえば、いくつかの態様では、ペアワイズ一時鍵は、第2のペアワイズマスター鍵に基づいて生成され得、次いで、ペアワイズ一時鍵は、第1のアクセスポイントによる第1のデバイスとの通信のために使用され得る。たとえば、第1のアクセスポイントは、ペアワイズ一時鍵を使用して第1のデバイスと交換されたメッセージを符号化および/または暗号化ならびに/あるいは復号および/または解読し得る。
[00157]いくつかの態様では、ブロック1520に関して上記で説明した機能のうちの1つまたは複数は、プロセッサ204および/または送信機210によって実行され得る。たとえば、プロセッサ204および/または送信機210のうちの1つまたは複数は、第1のアクセスポイントに第2のペアワイズマスター鍵を送信するための手段を備え得る。いくつかの態様では、第1のアクセスポイントと第2のデバイス(たとえば、WLC)とは、同じ物理デバイス内にコロケートされ得る。それらは、いくつかの態様では、同じデバイスであり得る。これらの態様では、ブロック1520において送信することは、ワイヤレスネットワーク上での物理送信を生じず、代わりに、1つの物理的に含まれているコンピューティングデバイス内のソフトウェアおよび/またはハードウェア構成要素間のデータの送信を生じ得る。
[00158]いくつかの態様では、第1のデバイス(たとえば、STA)についての第2の認証要求は、第2のアクセスポイントから受信され得る。第2のデバイス(たとえば、WLC)は、第1のデバイスとの通信において第2のアクセスポイントが使用するための第3のペアワイズマスター鍵(たとえば、PMK−R1)を生成し得る。第3のペアワイズマスター鍵は、第1のペアワイズマスター鍵(たとえば、PMK−R0)に基づいて生成され得る。いくつかの態様では、第3のペアワイズマスター鍵は、BSS識別子、および/または第2のアクセスポイントのそれのMACアドレスあるいは1つまたは複数の能力など、第2のアクセスポイントの1つまたは複数の特性に基づいて生成され得る。第3のペアワイズマスター鍵は、次いで、第2のアクセスポイントに送信され得る。第3のペアワイズマスター鍵(たとえば、PMK−R1)は、次いで、第3のアクセスポイントによって第1のデバイスとの通信のために使用され得る。代替的に、第2のペアワイズ一時鍵(PTK)は、第3のペアワイズマスター鍵に基づいて生成され得る。この生成は、第2のアクセスポイントが第2のデバイス(たとえば、WLC)から第3のペアワイズマスター鍵(PMK−R1)を受信した後、第2のアクセスポイントによって実行され得る。第2のペアワイズ一時鍵は、次いで、第1のデバイスと第2のアクセスポイントとの間の通信を符号化/暗号化および/または復号/解読するために使用され得る。
[00159]いくつかの態様では、第1のペアワイズマスター鍵は、第1のデバイスとの通信に固有のものであり、これは、いくつかの態様では、STA106aなどのワイヤレスデバイスであり得ることに留意されたい。第2のデバイスが第2の無線局または第3のデバイスなどの追加のデバイスとの通信をサポートする場合、第2のデバイスは、第3のデバイスとの通信を容易にするために追加のペアワイズマスター鍵を生成し得る。
[00160]さらに、第3のデバイス(たとえば、追加の無線局)と通信する必要を示すアクセスポイントごとに、さらなるペアワイズマスター鍵(いくつかの態様では、PMK−R1)が、追加のペアワイズマスター鍵(たとえば、いくつかの態様ではPMK−R0)に基づいてこれらのアクセスポイントの各々のために生成され得る(これは、第3のデバイスに対応し得る)。したがって、いくつかの態様では、第2のデバイス(たとえば、WLC)は、それが通信をサポートする個別のデバイス(たとえば、局)ごとに別個の「R0」ペアワイズマスター鍵を生成する。特定の個別のデバイス(たとえば、STA)と通信する各アクセスポイントは、特定の個別のデバイスのための「R0」ペアワイズマスター鍵に基づく「R1」ペアワイズマスター鍵を受信することになる。これらの鍵の一部または全部は、特定の個別のデバイスと共有される鍵(たとえば、rMSK、MSK、または共有秘密)に基づき得る。いくつかの態様では、第1のアクセスポイントに第2のペアワイズマスター鍵を送信するための手段は、プロセッサ204と送信機210とのうちの1つまたは複数であり得る。たとえば、いくつかの態様では、メモリ206中の命令は、たとえば、送信機210を介して第1のアクセスポイントに第2のペアワイズマスター鍵を送信するようにプロセッサ204を構成し得る。
[00161]図16は、デバイスによるオーバアネットワークとの認証の方法のフローチャートである。いくつかの態様では、プロセス1600は、上記で説明した局106aによって実行され得る。いくつかの態様では、プロセス1600は、デバイス202によって実行され得る。たとえば、いくつかの態様では、メモリ206中の命令は、プロセス1600に関して以下で説明する機能のうちの1つまたは複数を実行するようにプロセッサ204を構成し得る。いくつかの態様では、プロセス1600は、2つの異なる認証プロトコル間の相互運用性を提供し得る。たとえば、第1の認証プロトコルは、第2の認証プロトコルに勝るいくつかの利益を与え得る。第2の認証プロトコルは、ワイヤレスネットワーク内で広く展開され得る。ネットワーク全体にわたって広く第1の認証プロトコルを展開することは法外なコストがかかることがあり、第1の認証プロトコルがそれのエンタイアリで利用され得るように展開が完了し得る前にかなりの時間期間を必要とし得る。第2の認証プロトコルは、第1の認証プロトコルに勝るいくつかの利点を与え得るが、ワイヤレスネットワーク全体にわたって広く第2の認証プロトコルを展開することは、費用のかかることがあり、将来かなりの時間期間の間達成されないことがある。以下で説明するプロセス1600により、いくつかの実装形態は、第1の認証プロトコルがすでに広く展開されていることがあるという点で、第1の認証プロトコルの利益を活用することが可能になり得る。
[00162]上記で説明したように、いくつかの態様では、たとえば、第1のアクセスポイントと第2のアクセスポイントとが同じモビリティドメインの一部である場合、第1のアクセスポイントから第2のアクセスポイントに移動する局は、同じモビリティドメイン内にとどまり得る。これが行われるとき、局は、完全EAP認証を実行することなしに第2のアクセスポイントで認証することが可能であり得る。代わりに、2つのアクセスポイントが同じモビリティドメイン内にある場合、局は、802.11高速BSS遷移認証を使用して認証することができる。
[00163]プロセス1600は、2つの別個のアクセスポイントとのワイヤレスデバイスの認証を達成するために、第1の認証プロトコルと第2の認証プロトコルの両方を利用する。2つの認証プロトコルを介したハイブリッド認証手法を利用することによって、第2の認証プロトコルのより少ない展開は、2つのアクセスポイントと第1のワイヤレスデバイスを認証するために第1の認証プロトコルを排他的に利用する展開と比較して効率の改善を容易にするのに必要になり得る。
[00164]ブロック1605において、メッセージは、認証デバイスによってネットワークを介して第1のアクセスポイントから受信される。メッセージは、アクセスポイントによってサポートされる1つまたは複数の認証プロトコルを示し得る。たとえば、いくつかの態様では、メッセージ中に含まれる能力リストは、第1のアクセスポイントが第1のおよび/または第2の認証プロトコルをサポートするのかを示し得る。たとえば、メッセージは、第1のアクセスポイントがIEEE802.11高速BSS遷移(FT)認証をサポートするのか、および/または第1のアクセスポイントが(EAP−RPを含む)EAP認証をサポートするのかを示し得る。いくつかの態様では、ブロック1605は、受信機212および/またはプロセッサ204によって実行され得る。
[00165]ブロック1610において、認証デバイスによって、ブロック1610において受信されたメッセージに基づいて第1の認証プロトコルまたは第2の認証プロトコルを介して第1のアクセスポイントで認証すべきかの決定が行われる。いくつかの態様では、認証デバイスは、アクセスポイントによってサポートされることがわかった認証方法を優先させ得る。いくつかの態様では、第1の認証プロトコルがサポートされる場合、デバイスは、第1の認証プロトコルを選択し得る。いくつかの他の実装形態では、優先順位付けは異なることがあり、同じ状況であるが、第2の認証プロトコルがサポートされる。
[00166]いくつかの態様では、ネットワークメッセージは、第1のアクセスポイントがどのモビリティドメインに関連付けられるのかを示すモビリティドメイン識別子を示し得る。ブロック1610のいくつかの態様はまた、第2のアクセスポイントと認証することと、第2のアクセスポイントのモビリティドメイン識別子を示すメッセージを第2のアクセスポイントから受信することとを含む。いくつかの態様では、認証デバイスはまた、第2のアクセスポイントで認証する。認証デバイスは、次いで、物理的ロケーションを移動し、第1のアクセスポイントで認証し得る。いくつかの態様では、(認証デバイスが第2のアクセスポイントと以前に認証した後に通信する)第1のアクセスポイントのモビリティドメインが第2のアクセスポイントとは異なるモビリティドメイン中にある場合、デバイスは、第1のアクセスポイントとのEAP−RP認証を実行することを決定し得る。
[00167]対照的に、2つのアクセスポイントのモビリティドメインが同じである場合、認証デバイスは、第1のアクセスポイントで認証するためにIEEE802.11高速BSS遷移(FT)認証を利用し得る。
[00168]いくつかの態様では、決定は、ネットワークメッセージのほかに追加のファクタに基づき得る。たとえば、いくつかの態様では、プロセス1600を実行するデバイスによって完全EAP認証が実行されたときからの時間期間が、時間しきい値を超える場合、ネットワークメッセージを介して他の認証プロトコルが第1のアクセスポイントによってサポートされることが示されるのかどうかにかかわらず、第1のアクセスポイントとの完全EAP認証が実行され得る。さらに、認証デバイスが、アクセスポイントで認証されたことがこれまでなかった場合、ネットワークメッセージ中の指示にかかわらず、完全EAP認証が実行され得る。いくつかの態様では、ブロック1610に関して上記で説明した機能のうちの1つまたは複数は、プロセッサ204によって実行され得る。
[00169]ブロック1620において、認証デバイスは、決定された認証プロトコルを使用して第1のアクセスポイントで認証する。したがって、いくつかの態様では、ブロック1620は、たとえば、図4に関して上記で説明したように、第1のアクセスポイントとのIEEE802.11高速BSS遷移(FT)認証メッセージ交換を実行する。いくつかの態様では、認証デバイスは、たとえば、図3において上記で説明したようにEAP(および/またはEAP−RP)認証を使用して第1のアクセスポイントで認証する。
[00170]EAP−RP認証を使用すると、認証デバイスは、再認証マスターセッション鍵(rMSK)を導出し得る。たとえば、rMSKは、rMSK−KDF(K,S)ここで、K=rRKおよびS=rMSKラベル|”\0”|SEQ\長さのように導出され得る。rMSKラベルは、8ビットASCIIストリング:「Re−authentication Master Session Key@ietf.org」である。長さフィールドは、オクテットでのrMSKの長さを指す。rRKは、EMSKまたはDSRKから導出され得る。さらなる詳細についてはRFC5296を参照されたい。
[00171]認証デバイスは、次いで、再認証マスターセッション鍵に基づいて第1のペアワイズマスター鍵を生成し得る。いくつかの態様では、第1のペアワイズマスター鍵は、IEEE802.11高速BSS遷移プロトコル規格に記載されているように、PMK−R0ペアワイズマスター鍵の生成に従って生成され得る。第2のペアワイズマスター鍵は、次いで、第1のペアワイズマスター鍵に基づいて生成され得る。いくつかの態様では、この第2のペアワイズマスター鍵は、第1のアクセスポイントの局アドレスおよび/またはBSS識別子など、第1のアクセスポイントの1つまたは複数のプロパティに基づいて生成され得る。認証デバイスは、次いで、第2のペアワイズマスター鍵を使用して第1のアクセスポイントと通信し得る。たとえば、第1のアクセスポイントとの間で送信または受信される1つまたは複数のメッセージは、それぞれ、第2のペアワイズマスター鍵を使用して、または以下で説明するPTKなどの第2のペアワイズマスター鍵から導出される鍵を使用して暗号化および/または復号され得る。
[00172]いくつかの態様では、認証デバイスは、第1のペアワイズマスター鍵に基づいて第3のペアワイズマスター鍵を生成し得る。この第3のペアワイズマスター鍵は、IEEE802.11高速BSS遷移プロトコル仕様に記載されているようにPMK−R1に従って生成され得る。第3のペアワイズマスター鍵はまた、いくつかの態様では、第2のアクセスポイントのMAC局アドレスおよび/または第2のアクセスポイントのBSS識別子など、第2のアクセスポイントの1つまたは複数のプロパティに基づいて生成され得る。第2のアクセスポイントとの通信は、第3のペアワイズマスター鍵に基づき得る。たとえば、第2のアクセスポイントと送信および/または受信されるメッセージは、第3のペアワイズマスター鍵に、またはPTKなど、第3のペアワイズマスター鍵から導出された鍵に基づき得る。
[00173]いくつかの態様では、認証デバイスは、第1のアクセスポイントとの通信のために完全転送秘密(PFS:perfect forward secrecy)が必要であるのかどうかを決定し得る。いくつかの態様では、この決定は、ブロック1605において受信されたネットワークメッセージに基づく。PFSが必要であると決定された場合、認証デバイスは、決定したことに応答して第1のアクセスポイントとのディフィーへルマン鍵交換を実行し得る。いくつかの態様では、ディフィーへルマン鍵交換は、ペアワイズ一時鍵(PTK:pairwise transient key)を生成するために使用される。いくつかの態様では、ペアワイズ一時鍵は、PTK=KDF(PMK,ANonce|SNonce|gAB)のように導出され得、ここで、Aは、STAの秘密であり、Bは、APの秘密であり(またその逆も同様)、gABは、DHキー交換の結果である。したがって、いくつかの態様では、STAとAPとは、PTKを導出する前に、DH鍵交換を介してgAとgBとを交換し得る。
[00174]いくつかの態様では、PTKは、次いで、第1のアクセスポイントとの通信のために使用され得る。たとえば、第1のアクセスポイントとの間で送信およびまたは受信されるメッセージは、PTKを使用して暗号化および/または復号され得る。いくつかの態様では、第2のPTKは、第2のアクセスポイントとの通信(メッセージの暗号化/解読)において使用するために上記で説明したのと同様の方法で生成され得る。
[00175]いくつかの態様では、ブロック1620に関して上記で説明した機能のうちの1つまたは複数は、プロセッサ204によって、および、いくつかの態様では、受信機212および/または送信機210のうちの1つまたは複数と連携して実行され得る。
[00176]図17は、第1のデバイスを認証する方法のフローチャートである。いくつかの態様では、方法1700は、上記で説明したオブザ局106aおよび/または図2のワイヤレスデバイス202よって実行され得る。たとえば、いくつかの態様では、メモリ206中の命令は、プロセス1700に関して以下で説明する機能のうちの1つまたは複数を実行するようにプロセッサ204を構成し得る。いくつかの態様では、方法1700は、IEEE802.11高速遷移鍵ホルダアーキテクチャにおいて定義されているようにR0鍵ホルダデバイスによって実行される。いくつかの態様では、方法1700に関して以下で説明する第1、第2、および第3のデバイスのうちの1つまたは複数は、ワイヤレスデバイスであることもワイヤレスデバイスでないこともある。いくつかの態様では、方法1700は、図16に関して上記で説明したプロセス1600のブロック1620中に含まれ得る。たとえば、いくつかの態様では、プロセス1600に関して上記で説明した第1および第2のペアワイズマスター鍵は、方法1700に関して以下で説明する第1および第2のペアワイズマスター鍵と同じ鍵であり得る。これらの態様では、プロセス1700に関して以下で説明する第2のデバイスは、図16およびプロセス1600に関して上記で説明した第1のアクセスポイントの均等物であり得る。
[00177]いくつかの態様では、方法1700は、2つさらには3つの異なる認証プロトコル間の相互運用性を提供し得る。たとえば、第1の認証プロトコルは、第2の認証プロトコルに勝るいくつかの利益を与え得る。第2の認証プロトコルは、ワイヤレスネットワーク内で広く展開され得る。ネットワーク全体にわたって広く第1の認証プロトコルを展開することは法外なコストがかかることがあり、第1の認証プロトコルがそれのエンタイアリで利用され得るように展開が完了し得る前にかなりの時間期間を必要とし得る。
[00178]第1の認証プロトコルは、第2の認証プロトコルに勝るいくつかの利点を与え得るが、ワイヤレスネットワーク全体にわたって広く第1の認証プロトコルを展開することは、費用のかかることがあり、将来かなりの時間期間の間達成されないことがある。以下で説明する方法1700により、いくつかの実装形態が、第1の認証プロトコルの完全実装のために必要な構成要素のすべてを展開することなしに、代わりに、第2の認証プロトコルのすでに展開された構成要素に依拠して、第1の認証プロトコルの利益を活用することが可能になり得る。
[00179]ブロック1705において、共有鍵が決定される。鍵は、第2のデバイスと共有される。いくつかの態様では、共有鍵は、マスターセッション鍵であり、第1のデバイスと第2のデバイスとの間の拡張認証プロトコル(EAP)交換を介して決定され得る。いくつかの態様では、方法1700は、第1のデバイスによって実行される。いくつかの態様では、マスターセッション鍵を決定する拡張認証プロトコル交換は、完全転送秘密(PFS)を利用しない共有鍵認証である。いくつかの態様では、マスターセッション鍵は、図3に示すように、EAP認証プロトコルの一部として認証サーバから受信され得る。
[00180]いくつかの態様では、共有鍵は、再認証マスターセッション鍵であり、これは、拡張認証プロトコル再認証プロトコル(EAP−RP)を実行することによって少なくとも部分的に決定される。いくつかの態様では、拡張認証プロトコル再認証プロトコル交換は、完全転送秘密(PFS)を利用しない共有鍵認証である。いくつかの態様では、再認証マスターセッション鍵は、rMSK=KDF(K,S)のように導出され、ここで、K=rRKおよびS=rMSKラベル|”\0”|SEQ\長さであり得る。rMSKラベルは、8ビットASCIIストリング:「Re−authentication Master Session Key@ietf.org」である。長さフィールドは、オクテットでのrMSKの長さを指す。rRKは、(たとえば、図11に示すように)EMSKまたはDSRKから導出され得る。
[00181]いくつかの態様では、共有鍵は、共有秘密である。共有秘密は、いくつかの態様では、第2のデバイスとのディフィーへルマン鍵交換を介して決定され得る。いくつかの態様では、ブロック1705に関して上記で説明した機能のうちの1つまたは複数は、プロセッサ204によって実行され得る。たとえば、共有鍵を決定するための手段は、プロセッサ204を含み得る。
[00182]ブロック1710において、第1のペアワイズマスター鍵は、第1のデバイスと共有される鍵に基づいて生成される。いくつかの態様では、第1のペアワイズマスター鍵は、中間鍵に基づいて生成される。いくつかの態様では、中間鍵は、第1のデバイスから導出されたナンスに基づいて生成され得る。いくつかの態様では、中間鍵は、第2のデバイスから導出されたナンスに基づいて生成され得る。いくつかの態様では、中間鍵は、共有鍵に基づいて生成され得る。いくつかの態様では、中間鍵は、第1のデバイスによって生成されたナンスと、第2のデバイスによって生成されたナンスと、共有鍵との2つ以上の組合せに基づいて生成され得る。いくつかの態様では、中間鍵は、ハッシュベースメッセージ認証コード(HMAC)に基づいて生成される。たとえば、いくつかの態様では、中間鍵は、以下の式1に基づいて生成され得る。
中間鍵=HMAC−Hash(SNonce||ANonce,IKM) (1)
上式で、
SNonceは、第1のデバイスによって生成されたナンスであり、
ANonceは、第2のデバイスによって生成されたナンスであり、
IKMは、
EAP完全認証が実行される場合、MSKであり、
共有鍵認証が、完全転送秘密(PFS)なしに実行される場合、rMSKであり、
完全転送秘密とともに共有鍵認証を使用する場合、その順序でのrMSK|ss(すなわち、rMSKとssとの連結)であり、
公開鍵認証が使用される場合、ssである。
ここで、
MSKは、完全EAP認証を実行する認証サーバから導出されるマスターセッション鍵であり、
rMSKは、認証サーバによって導出され、(RFC6696において定義されている)EAP−RPを実行することの結果として第2のデバイスに送られる再認証マスターセッション鍵であり、
ssは、第1のデバイスと第2のデバイスとの間のディフィーへルマン鍵交換の結果として確立される共有秘密である。
[00183]いくつかの態様では、HMAC−Hash関数の結果は、たとえば、いくつかの態様では、256ビットに切り捨てられ得る。いくつかの態様では、上記で導出された中間鍵は、IEEE802.11高速基本サービスセット遷移(FT)認証に記載されている「XXKey」の代わりに使用され得る。
[00184]代替実装形態は、次のように中間鍵を導出し得る。
中間鍵=KDF(PMK,「FILS PTK導出」,SPA||AA||SNonce||ANonce)、上式で、
上式で、
KDFは、384、640、または1024ビットを使用する鍵導出関数であり、
PMKは、PMKSAからのものであり、最初のFILS接続から作成されるか、またはPMKSAキャッシングが使用されるときはキャッシュされたPMKSAから作成される。いくつかの態様では、PMKは、rMSKから導出され、
SPAは、STAのMACアドレスであり、AAは、APのBSSIDであり、
SNonceは、STAのナンスであり、ANonceは、APのナンスである
[00185]いくつかの態様では、中間鍵が上記で説明したように導出された後、追加の鍵導出が、次のように行われる。
R0−Key−Data=KDF−384(中間鍵,「FT−R0」,SSIDlength||SSID||MDID||R0KHlengh||R0KH−ID||S0KH−ID)
PMK−R0=L(R0−Key−Data,0,256)
PMK−R0Name−Salt=L(R0−Key−Data,256−128)
PMKR0Name=Truncate−128(SHA−256(“FT−R0N”||PMK−R0Name−Salt)) 上式で、「FT−R0N」は、0x46 0x54 0x2D 0x52 0x30 0x4Eであり、
ここで、
KDF−384は、SHA−384.を使用した鍵導出関数であり、
MDIDは、モビリティドメイン識別子であり、
R0KH−IDは、PMK−R0鍵ホルダ識別子であり、
S0KH−IDは、サプリカント鍵ホルダ識別子である
[00186]いくつかの態様では、中間鍵が上記で説明したように導出された後、追加の鍵導出が、次のように行われる。
R0−Key−Data=KDF−384(中間鍵,「FT−R0」,SSIDlength||SSID||MDID||R0KHlengh||R0KH−ID||S0KH−ID
PMK−R0=L(R0−Key−Data,0,256)
PMK−R0Name−Salt=L(R0−Key−Data,256−128)
PMKR0Name=Truncate−128(SHA−256(“FT−R0N”||PMK−R0Name−Salt)) 上式で、「FT−R0N」は、0x46 0x54 0x2D 0x52 0x30 0x4Eであり、
ここで、
KDF−384は、SHA−384.を使用した鍵導出関数であり、
MDIDは、モビリティドメイン識別子であり、
R0KH−IDは、PMK−R0鍵ホルダ識別子であり、
S0KH−IDは、サプリカント鍵ホルダ識別子である
[00187]いくつかの態様では、第1のペアワイズマスター鍵は、上記で説明したように導出されたPMK−R0である。いくつかの態様では、第1のペアワイズマスター鍵は、第1のデバイスと共有される第2の鍵に基づいて生成され得る。たとえば、第1のデバイスが第2のデバイスとともに使用するための再認証マスターセッション鍵を導出する態様では、共有秘密も第2のデバイスと共有され得る。共有秘密は、第2のデバイスとのディフィーへルマン鍵交換を介して生成され得る。これらの態様では、第1のペアワイズマスター鍵は、これらの鍵(すなわち、再認証マスターセッション鍵と共有秘密)の両方に基づいて生成され得る。いくつかの態様では、2つの鍵が連結され、第1のペアワイズマスター鍵は、連結に基づいて生成される。たとえば、いくつかの態様では、共有秘密は、連結中で再認証マスターセッション鍵に続く(すなわち、rMSK|SS)。いくつかの態様では、ブロック1710に関して上記で説明した1つまたは複数の機能は、プロセッサ204によって実行され得る。いくつかの態様では、プロセッサ204は、上記で説明したように連結するための手段を備え得る。
[00188]ブロック1715において、第2のペアワイズマスター鍵が、第2のデバイスとのセキュアなアソシエーションおよび/またはセキュアな通信のために生成される。第2のペアワイズマスター鍵は、第1のペアワイズマスター鍵に基づいて生成される。第2のペアワイズマスター鍵は、さらに、第2のデバイスの1つまたは複数の特性に基づいて生成され得る。たとえば、第2のペアワイズマスター鍵は、第2のデバイスの媒体アクセス制御(MAC)アドレスおよび/あるいは第2のデバイスの1つまたは複数の能力に基づいて生成され得る。第2のデバイスがアクセスポイントである場合、第2のペアワイズマスター鍵は、たとえば、アクセスポイントの基本サービスセット識別子および/または局アドレスに基づいて生成され得る。
[00189]ブロック1720において、第2のペアワイズマスター鍵は、第1のデバイスと第2のデバイスとの間のセキュアなアソシエーションおよび/またはセキュアな通信のために第1のデバイスによって使用される。たとえば、第1のデバイスは、第2のペアワイズマスター鍵に基づいて第2のデバイスとの通信を暗号化または符号化および/あるいは復号または解読し得る。いくつかの態様では、ブロック1715に関して上記で説明した機能のうちの1つまたは複数は、プロセッサ204によって実行され得る。たとえば、第2のペアワイズマスター鍵を生成するための手段は、プロセッサ204を含み得る。
[00190]ブロック1720において、第1のデバイスは、第2のペアワイズマスター鍵に基づいて第2のデバイスと通信する。たとえば、第1のデバイスは、第2のペアワイズマスター鍵を使用して第2のデバイスとの通信を符号化し得る。代替的に、第1のデバイスは、第2のペアワイズマスター鍵から追加の鍵を導出し得る。この追加の鍵は、第1のデバイスとの通信を符号化および/または復号するために使用され得る。たとえば、第1のデバイスは、いくつかの態様では、第2のペアワイズマスター鍵に基づいてペアワイズ一時鍵を導出し得る。ペアワイズマスター鍵は、次いで、第2のデバイスとの通信を暗号化および/または復号するために使用され得る。
[00191]プロセス1700のいくつかの態様はまた、第1のデバイスによる、第1のペアワイズマスター鍵に基づいた、第3のデバイスとの通信において使用するための第3のペアワイズマスター鍵の生成を含む。いくつかの態様では、この第3のペアワイズマスター鍵は、第3のデバイスの1つまたは複数のプロパティに基づいて生成される。たとえば、第3のペアワイズマスター鍵は、第3のデバイスの局アドレス、第3のデバイスの1つまたは複数のプロパティまたは能力、および/あるいは(第3のデバイスがアクセスポイントである場合)第3のデバイスの基本サービスセット識別子のうちの1つまたは複数に基づいて生成され得る。プロセス1700のこれらの態様はまた、第3のペアワイズマスター鍵に基づいて第3のデバイスと通信することを含み得る。いくつかの態様では、第1のデバイスは、第3のペアワイズマスター鍵に基づいてペアワイズ一時鍵を導出し、第3のデバイスとの通信を暗号化および/または復号するためにペアワイズ一時鍵を利用し得る。
[00192]いくつかの態様では、ブロック1720に関して上記で説明した機能のうちの1つまたは複数は、プロセッサ204および/または送信機210によって実行され得る。たとえば、プロセッサ204および/または送信機210のうちの1つまたは複数は、第2のペアワイズマスター鍵に基づいて第2のデバイスと通信するための手段を備え得る。
[00193]本明細書で使用される「決定すること」という用語は、多種多様な行為を包含する。たとえば、「決定すること」は、計算すること、算出すること、処理すること、導出すること、調査すること、探索すること(たとえば、テーブル、データベースまたは別のデータ構造において探索すること)、確認することなどを含み得る。また、「決定すること」は、受信すること(たとえば、情報を受信すること)、アクセスすること(たとえば、メモリ中のデータにアクセスすること)などを含み得る。また、「決定すること」は、解決すること、選択すること、選定すること、確立することなどを含み得る。さらに、本明細書で使用される「チャネル幅」は、特定の態様では帯域幅を包含し得、または帯域幅とも呼ばれることもある。
[00194]本明細書で使用する、項目のリスト「のうちの少なくとも1つ」を指す句は、単一のメンバーを含む、それらの項目の任意の組合せを指す。一例として、「a、b、またはcのうちの少なくとも1つ」は、a、b、c、a−b、a−c、b−c、およびa−b−cを包含するものとする。
[00195]上記で説明した方法の様々な動作は、様々なハードウェアおよび/またはソフトウェア構成要素、回路、および/またはモジュールなど、それらの動作を実施することが可能な任意の好適な手段によって実行され得る。一般に、図に示すどの動作も、その動作を実行することが可能な対応する機能的手段によって実行され得る。
[00196]本開示に関連して説明した様々な例示的な論理ブロック、モジュール、および回路は、汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ信号(FPGA)または他のプログラマブル論理デバイス(PLD)、個別ゲートまたはトランジスタ論理、個別ハードウェア構成要素、あるいは本明細書で説明した機能を実行するように設計されたそれらの任意の組合せを用いて実装または実行され得る。汎用プロセッサはマイクロプロセッサであり得るが、代替として、プロセッサは、任意の市販のプロセッサ、コントローラ、マイクロコントローラまたは状態機械であり得る。プロセッサはまた、コンピューティングデバイスの組合せ、たとえば、DSPとマイクロプロセッサとの組合せ、複数のマイクロプロセッサ、DSPコアと連携する1つまたは複数のマイクロプロセッサ、あるいは任意の他のそのような構成として実装され得る。
[00197]1つまたは複数の態様では、説明した機能は、ハードウェア、ソフトウェア、ファームウェア、またはそれらの任意の組合せで実装され得る。ソフトウェアで実装される場合、機能は、1つまたは複数の命令またはコードとして、コンピュータ可読媒体上に記憶され得るか、またはコンピュータ可読媒体を介して送信され得る。コンピュータ可読媒体は、ある場所から別の場所へのコンピュータプログラムの転送を容易にする任意の媒体を含む、コンピュータ記憶媒体と通信媒体の両方を含む。記憶媒体は、コンピュータによってアクセスされ得る任意の利用可能な媒体であり得る。限定ではなく例として、そのようなコンピュータ可読媒体は、RAM、ROM、EEPROM(登録商標)、CD−ROMもしくは他の光ディスクストレージ、磁気ディスクストレージもしくは他の磁気ストレージデバイス、または、命令もしくはデータ構造の形態の所望のプログラムコードを搬送もしくは記憶するために使用することができ、コンピュータによってアクセスすることができる任意の他の媒体を備えることができる。さらに、いかなる接続もコンピュータ可読媒体と適切に呼ばれる。たとえば、同軸ケーブル、光ファイバーケーブル、ツイストペア、デジタル加入者線(DSL)、または赤外線、無線、およびマイクロ波などのワイヤレス技術を使用して、ソフトウェアがウェブサイト、サーバまたは他のリモートソースから送信される場合、同軸ケーブル、光ファイバーケーブル、ツイストペア、DSL、または赤外線、無線、およびマイクロ波などワイヤレス技術は、媒体の定義に含まれる。本明細書で使用するディスク(disk)およびディスク(disc)は、コンパクトディスク(disc)(CD)、レーザーディスク(登録商標)(disc)、光ディスク(disc)、デジタル多用途ディスク(disc)(DVD)、フロッピー(登録商標)ディスク(disk)およびblu−ray(登録商標)ディスク(disc)を含み、ディスク(disk)は通常、データを磁気的に再生し、ディスク(disc)は、データをレーザーで光学的に再生する。したがって、いくつかの態様では、コンピュータ可読媒体は非一時的コンピュータ可読媒体(たとえば、有形媒体)を備え得る。さらに、いくつかの態様では、コンピュータ可読媒体は一時的コンピュータ可読媒体(たとえば、信号)を備え得る。上記の組合せもコンピュータ可読媒体の範囲に含まれるべきである。
[00198]本明細書で開示した方法は、説明した方法を達成するための1つまたは複数のステップまたはアクションを備える。本方法のステップおよび/またはアクションは、特許請求の範囲から逸脱することなく、互いに交換され得る。言い換えれば、ステップまたは行為の特定の順序が指定されていない限り、特定のステップおよび/または行為の順序および/または使用は、特許請求の範囲から逸脱することなく変更され得る。
[00199]説明した機能は、ハードウェア、ソフトウェア、ファームウェア、またはそれらの任意の組合せで実施され得る。ソフトウェアで実装される場合、機能は1つまたは複数の命令としてコンピュータ可読媒体上に記憶され得る。記憶媒体は、コンピュータによってアクセスされ得る任意の利用可能な媒体であり得る。限定ではなく例として、そのようなコンピュータ可読媒体は、RAM、ROM、EEPROM、CD−ROMもしくは他の光ディスクストレージ、磁気ディスクストレージもしくは他の磁気ストレージデバイス、または、命令もしくはデータ構造の形態の所望のプログラムコードを搬送もしくは記憶するために使用することができ、コンピュータによってアクセスすることができる任意の他の媒体を備えることができる。本明細書で使用するディスク(disk)およびディスク(disc)は、コンパクトディスク(disc)(CD)、レーザーディスク(disc)、光ディスク(disc)、デジタル多用途ディスク(disc)(DVD)、フロッピーディスク(disk)およびBlu−ray(登録商標)ディスク(disc)を含み、ディスク(disk)は通常、データを磁気的に再生し、ディスク(disc)は、データをレーザーで光学的に再生する。
[00200]したがって、いくつかの態様は、本明細書で提示した動作を実施するためのコンピュータプログラム製品を備え得る。たとえば、そのようなコンピュータプログラム製品は、本明細書で説明した動作を実施するために1つまたは複数のプロセッサによって実行可能である命令をその上に記憶した(および/または符号化した)コンピュータ可読記憶媒体を備え得る。いくつかの態様では、コンピュータプログラム製品はパッケージング材料を含み得る。
[00201]ソフトウェアまたは命令は、送信媒体上でも送信され得る。たとえば、同軸ケーブル、光ファイバーケーブル、ツイストペア、デジタル加入者線(DSL)、または赤外線、無線、およびマイクロ波などのワイヤレス技術を使用して、ソフトウェアがウェブサイト、サーバまたは他のリモートソースから送信される場合、同軸ケーブル、光ファイバーケーブル、ツイストペア、DSL、または赤外線、無線、およびマイクロ波などワイヤレス技術は、送信媒体の定義に含まれる。
[00202]さらに、本明細書で説明した方法および技法を実行するためのモジュールおよび/または他の適切な手段は、適用可能な場合にユーザ端末および/または基地局によってダウンロードされ、および/または他の方法で取得され得ることを諒解されたい。たとえば、そのようなデバイスは、本明細書で説明した方法を実行するための手段の転送を容易にするためにサーバに結合され得る。代替的に、本明細書で説明した様々な方法は、ユーザ端末および/または基地局が記憶手段をデバイスに結合するかまたは与えると様々な方法を得ることができるように、記憶手段(たとえば、RAM、ROM、コンパクトディスク(CD)またはフロッピーディスクなどの物理記憶媒体など)によって提供され得る。その上、本明細書で説明した方法および技法をデバイスに提供するための任意の他の好適な技法が利用され得る。
[00203]特許請求の範囲は、上記で示した厳密な構成および構成要素に限定されないことを理解されたい。上記の方法および装置の構成、動作および詳細において、特許請求の範囲から逸脱することなく、様々な改変、変更および変形が行われ得る。
[00204]上記は本開示の態様を対象とするが、本開示の他の態様およびさらなる態様は、それの基本的範囲から逸脱することなく考案され得、それの範囲は以下の特許請求の範囲によって決定される。

Claims (23)

  1. 局を認証する方法であって、前記方法は下記を備える、
    ワイヤレスローカルエリアネットワーク(LAN)コントローラによって、再認証マスターセッション鍵を導出するために前記局との拡張認証プロトコル再認証プロトコルを実行することと、
    前記ワイヤレスLANコントローラによって、前記再認証マスターセッション鍵に基づいて第1のペアワイズマスター鍵を生成することと、
    前記ワイヤレスLANコントローラによって、前記第1のペアワイズマスター鍵に基づいて第1のアクセスポイントのための第2のペアワイズマスター鍵を生成することと、
    前記ワイヤレスLANコントローラによって、前記第1のアクセスポイントに前記第2のペアワイズマスター鍵を送信すること。
  2. 前記第2のペアワイズマスター鍵に基づいて前記局にセキュアにアソシエートするかまたは前記局とセキュアに通信することをさらに備える、請求項1に記載の方法。
  3. 前記第1のアクセスポイントが、前記ワイヤレスLANコントローラを含む、請求項1に記載の方法。
  4. 共有秘密を導出するために前記局とディフィーへルマン鍵交換を実行することと、
    前記共有秘密にさらに基づいて前記第1のペアワイズマスター鍵を生成することと、
    をさらに備える、請求項1に記載の方法。
  5. 前記第1のペアワイズマスター鍵を前記生成することが、前記再認証マスターセッション鍵と前記共有秘密との連結に基づく、請求項4に記載の方法。
  6. 前記局によって生成されたナンスと、
    前記ワイヤレスLANコントローラによって生成された第2のナンスと、
    前記再認証マスターセッション鍵と、
    に基づいて中間鍵を生成することと、
    前記中間鍵に基づいて前記第1のペアワイズマスター鍵を生成することと、
    をさらに備える、請求項1に記載の方法。
  7. 前記ワイヤレスLANコントローラによって、前記第1のペアワイズマスター鍵に基づいて第2のアクセスポイントのための第3のペアワイズマスター鍵を生成すること、ここで、前記第3のペアワイズマスター鍵が、前記第2のアクセスポイントと前記局との間の通信における使用のためのものである、と、
    前記第2のアクセスポイントに前記第3のペアワイズマスター鍵を送信することと、
    をさらに備える、請求項1に記載の方法。
  8. 局を認証するための装置であって、前記装置は下記を備える、
    再認証マスターセッション鍵を決定するために前記局との拡張認証プロトコル再認証プロトコルを実行することと、
    前記再認証マスターセッション鍵に基づいて第1のペアワイズマスター鍵を生成することと、
    前記第1のペアワイズマスター鍵に基づいて第1のアクセスポイントのための第2のペアワイズマスター鍵を生成することと、
    を行うように構成されたプロセッサと、
    前記第1のアクセスポイントに前記第2のペアワイズマスター鍵を送信することを行うように構成された送信機と、
    を備える、装置。
  9. 前記プロセッサが、前記第2のペアワイズマスター鍵に基づいて前記局にセキュアにアソシエートするかまたは前記局とセキュアに通信することを行うようにさらに構成される、請求項8に記載の装置。
  10. 前記第1のアクセスポイントをさらに備える、請求項8に記載の装置。
  11. 前記プロセッサが、共有秘密を決定するために前記局とディフィーへルマン鍵交換を実行することと、前記共有秘密にさらに基づいて前記第1のペアワイズマスター鍵を生成することとを行うようにさらに構成される、請求項8に記載の装置。
  12. 前記プロセッサが、前記再認証マスターセッション鍵と前記共有秘密との連結に基づいて前記第1のペアワイズマスター鍵を生成することを行うようにさらに構成される、請求項11の装置。
  13. 前記プロセッサが、
    前記局によって生成されたナンスと、
    前記装置によって生成されたナンスと、
    前記再認証マスターセッション鍵と、
    に基づいて中間鍵を生成することと、
    前記中間鍵に基づいて前記第1のペアワイズマスター鍵を生成することと、
    を行うようにさらに構成される、請求項8に記載の装置。
  14. 前記プロセッサが、
    前記第1のペアワイズマスター鍵に基づいて第2のアクセスポイントのための第3のペアワイズマスター鍵を生成することを行うようにさらに構成され、前記第3のペアワイズマスター鍵が、前記第2のアクセスポイントと前記局との間の通信における使用のためのものであり、ここにおいて、前記送信機が、前記第2のアクセスポイントに前記第3のペアワイズマスター鍵を送信することを行うようにさらに構成される、請求項8に記載の装置。
  15. 実行されたとき、プロセッサに、局を認証する方法を実行させる命令を備えるコンピュータ可読記憶媒体であって、前記方法は下記を備える、
    ワイヤレスローカルエリアネットワーク(LAN)コントローラによって、再認証マスターセッション鍵を決定するために前記局との拡張認証プロトコル再認証プロトコルを実行することと、
    前記ワイヤレスLANコントローラによって、前記再認証マスターセッション鍵に基づいて第1のペアワイズマスター鍵を生成することと、
    前記ワイヤレスLANコントローラによって、前記第1のペアワイズマスター鍵に基づいて第1のアクセスポイントのための第2のペアワイズマスター鍵を生成することと、
    前記ワイヤレスLANコントローラによって、前記第1のアクセスポイントに前記第2のペアワイズマスター鍵を送信することと。
  16. 局を認証する方法であって、前記方法は下記を備える、
    前記局によって、再認証マスターセッション鍵を決定するためにアクセスポイントとの拡張認証プロトコル再認証プロトコルを実行することと、
    前記局によって、前記再認証マスターセッション鍵に基づいて第1のペアワイズマスター鍵を生成することと、
    前記局によって、前記第1のペアワイズマスター鍵に基づいて第2のペアワイズマスター鍵を生成することと、
    前記局によって、前記第2のペアワイズマスター鍵に基づいて前記アクセスポイントと通信することと、。
  17. 共有秘密を決定するために前記アクセスポイントとディフィーへルマン鍵交換を実行することと、前記共有秘密にさらに基づいて前記第1のペアワイズマスター鍵を生成することとをさらに備える、請求項16に記載の方法。
  18. 前記第1のペアワイズマスター鍵を前記生成することが、前記再認証マスターセッション鍵と前記共有秘密との連結に基づく、請求項17に記載の方法。
  19. 前記局によって生成されたナンスと、
    前記アクセスポイントによって与えられた第2のナンスと、
    前記再認証マスターセッション鍵と、
    に基づいて中間鍵を生成することと、
    前記中間鍵に基づいて前記第1のペアワイズマスター鍵を生成することと、
    をさらに備える、請求項16に記載の方法。
  20. 局を認証するための装置であって、
    再認証マスターセッション鍵を決定するためにアクセスポイントとの拡張認証プロトコル再認証プロトコルを実行することと、
    前記再認証マスターセッション鍵に基づいて第1のペアワイズマスター鍵を生成することと、
    前記第1のペアワイズマスター鍵に基づいて第2のペアワイズマスター鍵を生成することと、
    前記第2のペアワイズマスター鍵に基づいて前記アクセスポイントと通信することと、
    を行うように構成されたプロセッサ
    を備える、装置。
  21. 前記プロセッサが、共有秘密を決定するために前記アクセスポイントとディフィーへルマン鍵交換を実行すること、ここにおいて、前記第1のペアワイズマスター鍵を前記生成することが、前記共有秘密にさらに基づく、を行うようにさらに構成される、請求項20に記載の装置。
  22. 前記第1のペアワイズマスター鍵を前記生成することが、前記再認証マスターセッション鍵と前記共有秘密との連結に基づく、請求項21に記載の装置。
  23. 前記プロセッサが、
    前記局によって生成されたナンスと、
    前記アクセスポイントによって与えられた第2のナンスと、
    前記再認証マスターセッション鍵と
    に基づいて中間鍵を生成することと、
    前記中間鍵に基づいて前記第1のペアワイズマスター鍵を生成することと、
    を行うようにさらに構成される、請求項20に記載の装置。
JP2017543302A 2014-11-05 2015-11-04 認証相互運用性のための方法およびシステム Pending JP2018502529A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462075861P 2014-11-05 2014-11-05
US62/075,861 2014-11-05
US14/931,574 US20160127903A1 (en) 2014-11-05 2015-11-03 Methods and systems for authentication interoperability
US14/931,574 2015-11-03
PCT/US2015/059038 WO2016073607A1 (en) 2014-11-05 2015-11-04 Methods and systems for authentication interoperability

Publications (1)

Publication Number Publication Date
JP2018502529A true JP2018502529A (ja) 2018-01-25

Family

ID=55854257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017543302A Pending JP2018502529A (ja) 2014-11-05 2015-11-04 認証相互運用性のための方法およびシステム

Country Status (8)

Country Link
US (1) US20160127903A1 (ja)
EP (1) EP3216271A1 (ja)
JP (1) JP2018502529A (ja)
KR (1) KR20170080595A (ja)
CN (1) CN107079027A (ja)
BR (1) BR112017009376A2 (ja)
CA (1) CA2963157A1 (ja)
WO (1) WO2016073607A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220121159A (ko) * 2021-02-24 2022-08-31 주식회사 에프원시큐리티 사물인터넷 환경에서 디바이스 인증방법 및 이를 위한 디바이스 인증시스템

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10057766B2 (en) * 2014-10-21 2018-08-21 Qualcomm Incorporated Methods and systems for authentication interoperability
EP3257296B1 (en) * 2015-02-12 2018-08-15 Telefonaktiebolaget LM Ericsson (publ) Wireless communications involving a fast initial link setup, fils, discovery frame for network signaling
US10205598B2 (en) * 2015-05-03 2019-02-12 Ronald Francis Sulpizio, JR. Temporal key generation and PKI gateway
US10791093B2 (en) * 2016-04-29 2020-09-29 Avago Technologies International Sales Pte. Limited Home network traffic isolation
US10165608B2 (en) * 2016-06-02 2018-12-25 Cisco Technology, Inc. System and method to provide fast mobility in a residential Wi-Fi network environment
US10638388B2 (en) * 2016-08-05 2020-04-28 Qualcomm Incorporated Techniques for fast transition of a connection between a wireless device and a local area network, from a source access node to a target access node
US10367792B2 (en) * 2016-08-25 2019-07-30 Orion Labs End-to end encryption for personal communication nodes
US10433163B2 (en) * 2016-09-19 2019-10-01 Qualcomm Incorporated Techniques for deriving security keys for a cellular network based on performance of an extensible authentication protocol (EAP) procedure
CA2943756C (en) * 2016-09-30 2024-02-06 The Toronto-Dominion Bank Information masking using certificate authority
MY181840A (en) * 2016-11-04 2021-01-08 Thomson Licensing Devices and methods for client device authentication
JP6288219B1 (ja) 2016-11-18 2018-03-07 Kddi株式会社 通信システム
US10630682B1 (en) 2016-11-23 2020-04-21 Amazon Technologies, Inc. Lightweight authentication protocol using device tokens
US10129223B1 (en) * 2016-11-23 2018-11-13 Amazon Technologies, Inc. Lightweight encrypted communication protocol
US11784797B2 (en) * 2017-11-30 2023-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Serving-network based perfect forward security for authentication
FR3077175A1 (fr) * 2018-01-19 2019-07-26 Orange Technique de determination d'une cle destinee a securiser une communication entre un equipement utilisateur et un serveur applicatif
US11411942B1 (en) 2019-07-22 2022-08-09 Cisco Technology, Inc. Systems and methods for roaming management between access points
US11095440B2 (en) * 2019-11-29 2021-08-17 Verizon Patent And Licensing Inc. Systems and methods for utilizing quantum entropy in single packet authorization for secure network connections
US11750399B2 (en) * 2019-12-06 2023-09-05 Motional Ad Llc Cyber-security protocol
US11777935B2 (en) 2020-01-15 2023-10-03 Cisco Technology, Inc. Extending secondary authentication for fast roaming between service provider and enterprise network
US11706619B2 (en) 2020-03-31 2023-07-18 Cisco Technology, Inc. Techniques to facilitate fast roaming between a mobile network operator public wireless wide area access network and an enterprise private wireless wide area access network
US11765581B2 (en) * 2020-03-31 2023-09-19 Cisco Technology, Inc. Bootstrapping fast transition (FT) keys on wireless local area access network nodes based on private wireless wide area access network information
US11778463B2 (en) 2020-03-31 2023-10-03 Cisco Technology, Inc. Techniques to generate wireless local area access network fast transition key material based on authentication to a private wireless wide area access network
US11805561B2 (en) * 2020-04-28 2023-10-31 Intel Corporation Multi-link device re-setup and transition
US11711213B2 (en) 2020-07-23 2023-07-25 PolySign, Inc. Master key escrow process
KR102570359B1 (ko) * 2022-05-31 2023-08-29 한전케이디엔주식회사 전력 계통망 시스템에서 장치들의 재인증 방법 및 장치

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953420A (en) * 1996-10-25 1999-09-14 International Business Machines Corporation Method and apparatus for establishing an authenticated shared secret value between a pair of users
US7395427B2 (en) * 2003-01-10 2008-07-01 Walker Jesse R Authenticated key exchange based on pairwise master key
US7263357B2 (en) * 2003-01-14 2007-08-28 Samsung Electronics Co., Ltd. Method for fast roaming in a wireless network
KR20050064119A (ko) * 2003-12-23 2005-06-29 한국전자통신연구원 인터넷접속을 위한 확장인증프로토콜 인증시 단말에서의서버인증서 유효성 검증 방법
CN1964253B (zh) * 2005-11-09 2010-07-21 华为技术有限公司 一种在密钥污染后重新生成密钥的方法
US20080072047A1 (en) * 2006-09-20 2008-03-20 Futurewei Technologies, Inc. Method and system for capwap intra-domain authentication using 802.11r
CN101599878A (zh) * 2008-06-06 2009-12-09 华为技术有限公司 重认证方法、系统及鉴权装置
DE102010013602B4 (de) * 2010-03-31 2015-09-17 Continental Automotive Gmbh Verfahren zur Erkennung eines Fehlverhaltens eines elektronisch geregelten Kraftstoffeinspritzsystems eines Verbrennungsmotors
US8644515B2 (en) * 2010-08-11 2014-02-04 Texas Instruments Incorporated Display authenticated security association
US9220358B2 (en) * 2011-07-25 2015-12-29 Wade Wheeler Rotational mount for hand-held electronics
US9439067B2 (en) * 2011-09-12 2016-09-06 George Cherian Systems and methods of performing link setup and authentication
US8837741B2 (en) * 2011-09-12 2014-09-16 Qualcomm Incorporated Systems and methods for encoding exchanges with a set of shared ephemeral key data
US9143937B2 (en) * 2011-09-12 2015-09-22 Qualcomm Incorporated Wireless communication using concurrent re-authentication and connection setup

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220121159A (ko) * 2021-02-24 2022-08-31 주식회사 에프원시큐리티 사물인터넷 환경에서 디바이스 인증방법 및 이를 위한 디바이스 인증시스템
KR102476781B1 (ko) 2021-02-24 2022-12-13 주식회사 에프원시큐리티 사물인터넷 환경에서 디바이스 인증방법 및 이를 위한 디바이스 인증시스템

Also Published As

Publication number Publication date
KR20170080595A (ko) 2017-07-10
WO2016073607A1 (en) 2016-05-12
EP3216271A1 (en) 2017-09-13
CN107079027A (zh) 2017-08-18
US20160127903A1 (en) 2016-05-05
CA2963157A1 (en) 2016-05-12
BR112017009376A2 (pt) 2018-01-30

Similar Documents

Publication Publication Date Title
JP2018502529A (ja) 認証相互運用性のための方法およびシステム
KR102341270B1 (ko) 인증 상호운용성을 위한 방법들 및 시스템들
JP6262308B2 (ja) リンク設定および認証を実行するシステムおよび方法
US9743280B2 (en) Enhancements to enable fast security setup
US20170257818A1 (en) Wireless extender secure discovery and provisioning
US20130298209A1 (en) One round trip authentication using sngle sign-on systems
US10694376B2 (en) Network authentication method, network device, terminal device, and storage medium
US20160065362A1 (en) Securing peer-to-peer and group communications
JP2019512942A (ja) 5g技術のための認証機構
US20150127949A1 (en) System and method for integrated mesh authentication and association
WO2016153689A1 (en) Apparatus, system and method of securing communication between wireless devices
KR20070120176A (ko) 키 머티리얼의 교환
US20130196708A1 (en) Propagation of Leveled Key to Neighborhood Network Devices
US9491621B2 (en) Systems and methods for fast initial link setup security optimizations for PSK and SAE security modes
US9084111B2 (en) System and method for determining leveled security key holder
US20170070343A1 (en) Unicast key management across multiple neighborhood aware network data link groups
US20230049341A1 (en) Bluetooth device and bluetooth gateway
WO2024026735A1 (zh) 认证方法、装置、设备及存储介质
Kumar et al. Seamless and Secure Communication for 5G Subscribers in 5G-WLAN Heterogeneous Networks