JP2018500080A5 - - Google Patents

Download PDF

Info

Publication number
JP2018500080A5
JP2018500080A5 JP2017529276A JP2017529276A JP2018500080A5 JP 2018500080 A5 JP2018500080 A5 JP 2018500080A5 JP 2017529276 A JP2017529276 A JP 2017529276A JP 2017529276 A JP2017529276 A JP 2017529276A JP 2018500080 A5 JP2018500080 A5 JP 2018500080A5
Authority
JP
Japan
Prior art keywords
seizure
carbon nanotube
determining
cortical
obtaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017529276A
Other languages
Japanese (ja)
Other versions
JP2018500080A (en
JP6758290B2 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2015/063981 external-priority patent/WO2016090239A1/en
Publication of JP2018500080A publication Critical patent/JP2018500080A/en
Publication of JP2018500080A5 publication Critical patent/JP2018500080A5/ja
Application granted granted Critical
Publication of JP6758290B2 publication Critical patent/JP6758290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (18)

患者の脳におけるてんかん発作を処置するために電極の配置を計画する方法であって、
前記患者の前記脳から発作間撮影プロファイルを取得するステップ、
前記患者の前記脳から発作後撮影プロファイルを取得するステップ、
前記発作間撮影プロファイルと前記発作後撮影プロファイルを比較するステップ、
前記比較に基づき発作伝搬経路を判定するステップ、
前記発作伝搬経路に基づき電極の複数の仮想電極配置位置を判定するステップ、
各前記仮想電極配置位置における皮質活性領域を判定するステップであって、前記仮想電極配置位置における前記皮質活性領域は、前記発作伝搬経路と前記仮想電極配置位置に基づいている、ステップ、
前記複数の仮想電極配置位置から前記電極のインプラント位置を選択するステップであって、前記選択は前記インプラント位置における前記皮質活性領域に基づいている、ステップ、
を有することを特徴とする方法。
A method of planning electrode placement to treat an epileptic seizure in a patient's brain, comprising:
Obtaining an inter-seizure profile from the brain of the patient;
Obtaining a post-stroke imaging profile from the brain of the patient;
Comparing the inter-seizure shooting profile with the post-seizure shooting profile;
Determining a seizure propagation path based on the comparison;
Determining a plurality of virtual electrode placement positions of the electrode based on the seizure propagation path;
Determining a cortical active area at each virtual electrode placement position, wherein the cortical active area at the virtual electrode placement position is based on the seizure propagation path and the virtual electrode placement position;
Selecting an implant position of the electrode from the plurality of virtual electrode placement positions, the selection being based on the cortical active region at the implant position;
A method characterized by comprising:
前記方法はさらに、前記発作伝搬経路に依拠する位置における前記患者の前記脳の細胞組織に対して配送するための複数のエネルギー放射カーボンナノチューブトランスポンダを提供するステップを有し、
前記複数のエネルギー放射カーボンナノチューブトランスポンダは、前記インプラント位置における前記皮質活性領域を前記電極の皮質活性領域よりも増加させるように構成されている
ことを特徴とする請求項1記載の方法。
The method further comprises providing a plurality of energy emitting carbon nanotube transponders for delivery to the brain tissue of the patient at a location that relies on the seizure propagation path;
The method of claim 1, wherein the plurality of energy emitting carbon nanotube transponders are configured to increase the cortical active area at the implant location relative to the cortical active area of the electrode.
発作間撮影プロファイルを取得するステップは、発作間拡散テンソル撮影MRIデータセットを取得するステップを有し、
発作後撮影プロファイルを取得するステップは、発作後拡散テンソル撮影MRIデータセットを取得するステップを有する
ことを特徴とする請求項1記載の方法。
Obtaining an inter-seizure imaging profile comprises obtaining an inter-seizure diffusion tensor imaging MRI data set;
The method of claim 1, wherein obtaining a post-seizure imaging profile comprises obtaining a post-seizure diffusion tensor imaging MRI data set.
前記発作伝搬経路を判定するステップは、前記発作間拡散テンソル撮影MRIデータセットと前記発作後拡散テンソル撮影MRIデータセットにおける異方性比率を判定するステップを有する
ことを特徴とする請求項1記載の方法。
The step of determining the seizure propagation path includes the step of determining an anisotropy ratio in the inter-seizure diffusion tensor imaging MRI data set and the post-seizure diffusion tensor imaging MRI data set. Method.
発作間撮影プロファイルを取得するステップは、発作間単一光子放射断層撮影データセットを取得するステップを有し、
発作後撮影プロファイルを取得するステップは、発作後単一光子放射断層撮影データセットを取得するステップを有する
ことを特徴とする請求項1記載の方法。
Obtaining an inter-seizure imaging profile comprises obtaining an inter-seizure single photon emission tomography dataset;
The method of claim 1, wherein obtaining a post-seizure imaging profile comprises obtaining a post-seizure single photon emission tomography data set.
各仮想電極配置位置における皮質活性化を判定するステップは、活性化機能を判定するステップを有し、
前記活性化機能を判定するステップは、均質媒質内または異方性媒質内の前記電極の刺激によって生じた電位を判定するステップを有する
ことを特徴とする請求項3記載の方法。
Determining cortical activation at each virtual electrode placement position comprises determining an activation function;
4. The method of claim 3, wherein determining the activation function comprises determining a potential generated by stimulation of the electrode in a homogeneous medium or an anisotropic medium.
各仮想電極配置位置における皮質活性領域を判定するステップは、活性化機能を判定するステップを有し、
前記活性化機能を判定するステップは、異方性媒体内の前記電極の刺激によって生じた電位を判定するステップを有する
ことを特徴とする請求項3記載の方法。
Determining the cortical active region at each virtual electrode placement position comprises determining an activation function;
The method of claim 3, wherein determining the activation function comprises determining a potential generated by stimulation of the electrode in an anisotropic medium.
前記方法はさらに、白質路の方向における前記電位の2次方向微分を判定するステップを有する
ことを特徴とする請求項6記載の方法。
The method of claim 6, further comprising the step of determining a second-order derivation of the potential in the direction of the white matter road.
前記白質路の方向は、前記発作後拡散テンソル撮影MRIデータセットから判定される ことを特徴とする請求項8記載の方法。   The method of claim 8, wherein the direction of the white matter tract is determined from the post-seizure diffusion tensor radiography MRI data set. 前記方法はさらに、
前記インプラント位置にインプラントされた電極から電気パルスを印加した後に、刺激活性化単一光子放射断層撮影データセットを取得するステップ、
前記刺激活性化単一光子放射断層撮影データセットを、前記インプラント位置における皮質活性化領域と比較するステップ、
前記比較に基づき前記インプラント位置における前記皮質活性化領域を検証するステップ、
を有することを特徴とする請求項1記載の方法。
The method further comprises:
Obtaining a stimulation activated single photon emission tomography data set after applying an electrical pulse from an electrode implanted at the implant location;
Comparing the stimulus activated single photon emission tomography data set to a cortical activated region at the implant location;
Verifying the cortical activation region at the implant location based on the comparison;
The method of claim 1, comprising:
発作伝搬経路に依拠する位置において患者の脳の細胞組織に対して伝搬するためのエネルギー放射カーボンナノチューブトランスポンダであって、
前記エネルギー放射カーボンナノチューブトランスポンダは、
(a)少なくとも1つのカーボンナノチューブ、
(b)前記少なくとも1つのカーボンナノチューブの第1端部と接続されたナノキャパシタ、
を備え、
前記ナノキャパシタは、所定量の電気エネルギーを蓄積することができるとともに、前記電気エネルギーを約1.2×10-5から2.4×10-5クーロン/cm2の範囲内の平均電荷密度の形態で放射することができ、
前記少なくとも1つのカーボンナノチューブは、前記ナノキャパシタに接続されているとともに、前記ナノチューブトランスポンダの環境変化に応じて前記細胞組織に対して前記所定量の電気エネルギーを放射するナノスイッチとして動作するように構成されており、
前記ナノチューブトランスポンダは、前記細胞組織に対して約4から約20マイクロクーロン/cm2の範囲内の生体非侵襲電荷を放射することができる
ことを特徴とするカーボンナノチューブトランスポンダ。
An energy emitting carbon nanotube transponder for propagating to a patient's brain tissue at a location that relies on a seizure propagation path,
The energy emitting carbon nanotube transponder is
(A) at least one carbon nanotube,
(B) a nanocapacitor connected to a first end of the at least one carbon nanotube;
With
The nanocapacitor can store a predetermined amount of electric energy and has an average charge density in the range of about 1.2 × 10 −5 to 2.4 × 10 −5 coulomb / cm 2 . Can radiate in form,
The at least one carbon nanotube is connected to the nanocapacitor and is configured to operate as a nanoswitch that emits the predetermined amount of electric energy to the cellular tissue in accordance with an environmental change of the nanotube transponder. Has been
The carbon nanotube transponder is capable of emitting a living body non-invasive charge in the range of about 4 to about 20 microcoulombs / cm 2 to the cellular tissue.
前記カーボンナノチューブトランスポンダはさらに、前記ナノキャパシタ内部に配置されたコイルナノワイヤを有する
ことを特徴とする請求項11記載のカーボンナノチューブトランスポンダ。
The carbon nanotube transponder according to claim 11, further comprising a coil nanowire disposed inside the nanocapacitor.
前記カーボンナノチューブトランスポンダはさらに、前記ナノキャパシタ外部に配置されたコイルナノワイヤを有する
ことを特徴とする請求項11記載のカーボンナノチューブトランスポンダ。
The carbon nanotube transponder according to claim 11, further comprising a coil nanowire disposed outside the nanocapacitor.
前記カーボンナノチューブトランスポンダはさらに、前記エネルギー放射カーボンナノチューブトランスポンダの外表面上における生体適合コートを有する
ことを特徴とする請求項11記載のカーボンナノチューブトランスポンダ。
The carbon nanotube transponder according to claim 11, further comprising a biocompatible coat on an outer surface of the energy emitting carbon nanotube transponder.
前記生体適合コートは、ポリ乳酸(PLA);ポリグリコール酸(PGA);乳酸−グリコール酸共重合体(PLGA);キトサン;を含むグループからから選択された材料である
ことを特徴とする請求項14記載のカーボンナノチューブトランスポンダ。
The biocompatible coat is a material selected from the group comprising polylactic acid (PLA); polyglycolic acid (PGA); lactic acid-glycolic acid copolymer (PLGA); chitosan. 14. The carbon nanotube transponder according to 14.
前記カーボンナノチューブトランスポンダはさらに、前記少なくとも1つのカーボンナノチューブの自由端にリンクされた分子ラベルを有し、
前記カーボンナノチューブの前記自由端は、前記ナノキャパシタの反対側端部である
ことを特徴とする請求項11記載のカーボンナノチューブトランスポンダ。
The carbon nanotube transponder further comprises a molecular label linked to a free end of the at least one carbon nanotube;
The carbon nanotube transponder according to claim 11, wherein the free end of the carbon nanotube is an opposite end of the nanocapacitor.
前記カーボンナノチューブトランスポンダは、前記患者の脳におけるてんかん発作を処置するための電極の皮質活性化領域以上に、前記電極のインプラント位置における皮質活性化領域を増加させる
ことを特徴とする請求項11記載のカーボンナノチューブトランスポンダ。
The carbon nanotube transponder increases the cortical activation region at the implant position of the electrode over the cortex activation region of the electrode for treating epileptic seizures in the patient's brain. Carbon nanotube transponder.
患者の脳のなかの腫瘍を処置するために電極の配置を計画する方法であって、
前記患者の前記脳からベースライン拡散テンソル撮影MRIデータセットを取得するステップ、
前記拡散テンソル撮影MRIデータセットに基づき腫瘍位置を判定するステップ、
前記腫瘍位置に基づき複数の仮想電極配置位置を判定するステップ、
各仮想電極配置位置における皮質活性化領域を判定するステップであって、仮想電極配置位置における前記皮質活性化領域は、前記腫瘍位置と前記仮想電極配置位置に基づいている、ステップ、
前記複数の仮想電極配置位置から前記電極のインプラント位置を選択するステップであって、前記選択は前記インプラント位置における前記皮質活性化領域に基づいている、ステップ、
を有することを特徴とする方法。
A method of planning electrode placement to treat a tumor in a patient's brain, comprising:
Obtaining a baseline diffusion tensor radiography MRI data set from the brain of the patient;
Determining a tumor location based on the diffusion tensor imaging MRI data set;
Determining a plurality of virtual electrode placement positions based on the tumor position;
Determining a cortical activation region at each virtual electrode placement position, wherein the cortical activation region at the virtual electrode placement position is based on the tumor position and the virtual electrode placement position;
Selecting an implant position of the electrode from the plurality of virtual electrode placement positions, wherein the selection is based on the cortical activation region at the implant position;
A method characterized by comprising:
JP2017529276A 2014-12-05 2015-12-04 Electrode placement treatment system and method using it Active JP6758290B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462088170P 2014-12-05 2014-12-05
US62/088,170 2014-12-05
PCT/US2015/063981 WO2016090239A1 (en) 2014-12-05 2015-12-04 Electrode placement and treatment system and method of use thereof

Publications (3)

Publication Number Publication Date
JP2018500080A JP2018500080A (en) 2018-01-11
JP2018500080A5 true JP2018500080A5 (en) 2018-12-13
JP6758290B2 JP6758290B2 (en) 2020-09-23

Family

ID=56092524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017529276A Active JP6758290B2 (en) 2014-12-05 2015-12-04 Electrode placement treatment system and method using it

Country Status (5)

Country Link
US (1) US11553840B2 (en)
EP (1) EP3226752B1 (en)
JP (1) JP6758290B2 (en)
CA (1) CA2969228C (en)
WO (1) WO2016090239A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10067565B2 (en) * 2016-09-29 2018-09-04 Intel Corporation Methods and apparatus for identifying potentially seizure-inducing virtual reality content
KR101995900B1 (en) * 2017-09-11 2019-07-04 뉴로핏 주식회사 Method and program for generating a 3-dimensional brain map
WO2020074480A1 (en) 2018-10-09 2020-04-16 Koninklijke Philips N.V. Automatic eeg sensor registration
WO2021142549A1 (en) * 2020-01-17 2021-07-22 London Health Sciences Centre Research Inc. Planning and delivery of dynamically oriented electric field for biomedical applications
US20220401726A1 (en) * 2021-06-22 2022-12-22 Lifebridge Innovations, Pbc Apparatus and method for improving electric field therapy to reduce solid tumors
WO2023230032A1 (en) * 2022-05-27 2023-11-30 Medtronic, Inc. Method and apparatus for planning placement of an implant

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7373199B2 (en) 2002-08-27 2008-05-13 University Of Florida Research Foundation, Inc. Optimization of multi-dimensional time series processing for seizure warning and prediction
US8532741B2 (en) 2006-09-08 2013-09-10 Medtronic, Inc. Method and apparatus to optimize electrode placement for neurological stimulation
WO2009043039A1 (en) * 2007-09-28 2009-04-02 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Methods for applying brain synchronization to epilepsy and other dynamical disorders
US8382667B2 (en) * 2010-10-01 2013-02-26 Flint Hills Scientific, Llc Detecting, quantifying, and/or classifying seizures using multimodal data
US20090306532A1 (en) * 2008-06-06 2009-12-10 Tucker Don M Method for locating tracts of electrical brain activity
WO2010120823A2 (en) * 2009-04-13 2010-10-21 Research Foundation Of The City University Of New York Neurocranial electrostimulation models, systems, devices and methods
WO2011034939A1 (en) * 2009-09-15 2011-03-24 Rush University Medical Center Energy-releasing carbon nanotube transponder and method of using same
AU2011317137B9 (en) * 2010-10-19 2016-01-21 The Cleveland Clinic Foundation Methods for identifying target stimulation regions associated with therapeutic and non-therapeutic clinical outcomes for neural stimulation
WO2013033539A1 (en) * 2011-09-01 2013-03-07 Boston Scientific Neuromodulation Corporation Methods and system for targeted brain stimulation using electrical parameter maps
CA2903953C (en) * 2013-01-31 2021-10-05 The Regents Of The University Of California System and method for modeling brain dynamics in normal and diseased states

Similar Documents

Publication Publication Date Title
JP2018500080A5 (en)
US8814860B2 (en) Irreversible electroporation using nanoparticles
US11826568B2 (en) Tissue-stimulating method using frequency scanning of electric and magnetic fields
Genchi et al. Smart materials meet multifunctional biomedical devices: Current and prospective implications for nanomedicine
CA2969228C (en) Electrode placement and treatment system and method of use thereof
US10576271B2 (en) Systems and methods for utilizing model-based optimization of spinal cord stimulation parameters
Teplitzky et al. Computational modeling of an endovascular approach to deep brain stimulation
US20170224822A1 (en) Methods for killing cancer cells and cellular imaging using magneto-electric nano-particles and external magnetic field
US20230212551A1 (en) Methods of reducing adverse effects of non-thermal ablation
CA3163262A1 (en) Compositions and methods of altering the electric impedance to an alternating electric field
Mittmann et al. Evaluation of the relationship between the NRT-ratio, cochlear anatomy, and insertions depth of perimodiolar cochlear implant electrodes
JP6046280B2 (en) Implantable medical device and method for forming an implantable medical device
Pardo et al. Where do we stand now regarding treatment of psychiatric and neurodegenerative disorders? Considerations in using magnetoelectric nanoparticles as an innovative approach
Grahn et al. MRI-guided stereotactic system for delivery of intraspinal microstimulation
Lee et al. Feasibility of epidural temporal interference stimulation for minimally invasive electrical deep brain stimulation: simulation and phantom experimental studies
Accoto et al. An implantable neural interface with electromagnetic stimulation capabilities
KR102130327B1 (en) Method of providing noninvasive stimulation for a brain in a magnetic field
US20170128738A1 (en) Neuronal stimulator with micron resolution
CN111918692A (en) Tissue stimulation method using spatial scanning of electric and magnetic fields
CN115299919A (en) Method and apparatus for diagnosing and treating cardiac conduction disorders
CN116077233A (en) Shape memory polymer drug-loaded sinus stent and preparation method thereof
Visser et al. Robust Proton Versus Photon Dose Escalated Chemoradiation as Primary Treatment for Esophageal Cancer