JP2018207413A - Imaging apparatus - Google Patents
Imaging apparatus Download PDFInfo
- Publication number
- JP2018207413A JP2018207413A JP2017113865A JP2017113865A JP2018207413A JP 2018207413 A JP2018207413 A JP 2018207413A JP 2017113865 A JP2017113865 A JP 2017113865A JP 2017113865 A JP2017113865 A JP 2017113865A JP 2018207413 A JP2018207413 A JP 2018207413A
- Authority
- JP
- Japan
- Prior art keywords
- pixel
- exposure
- image
- blur
- different
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Studio Devices (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
本発明は、撮像装置に関する。 The present invention relates to an imaging apparatus.
デジタルカメラやビデオカメラ等においては、固体撮像素子としてCCDおよびCMOSイメージセンサ等が使用されている。 そして、昨今、1画素以上の画素グループ単位で、露光時間の制御が可能な撮像装置において、画素毎に異なる露出で撮影し、その異なる露出の複数の画素出力を合成し、高ダイナミックレンジな画像を得ることを可能とする撮像装置が開示されている。 In digital cameras and video cameras, CCDs and CMOS image sensors are used as solid-state image sensors. In recent years, in an imaging device capable of controlling the exposure time in units of one or more pixel groups, images are shot with different exposures for each pixel, and a plurality of pixel outputs with the different exposures are combined to produce a high dynamic range image. An imaging apparatus that can obtain the above is disclosed.
特許文献1には、画素ブロックを構成する複数の同一色画素各々に対して異なる露光時間の制御を行い、画素ブロックの複数の同一色画素の出力を合成し、高ダイナミックレンジ画像を生成する方法が開示されている。 Japanese Patent Application Laid-Open No. 2004-133830 discloses a method of generating a high dynamic range image by controlling different exposure times for each of a plurality of same color pixels constituting a pixel block and synthesizing outputs of the plurality of same color pixels of the pixel block. Is disclosed.
しかしながら、特許文献1に開示された従来技術では、像ブレによる画質劣化に関しては議論されていない。移動被写体が構図上にあるシーンにおいて、画素毎で露光時間が異なると露光時間別にそれぞれで被写体ブレ量が異なり、画質が劣化してしまう。 However, the conventional technique disclosed in Patent Document 1 does not discuss image quality degradation due to image blurring. In a scene where the moving subject is on the composition, if the exposure time differs for each pixel, the subject blur amount differs for each exposure time, and the image quality deteriorates.
本発明の目的は、画素毎露出制御が可能で、露出の異なる複数の画素の出力を合成することで高ダイナミックレンジ画像を取得可能で、かつ、移動被写体が構図上にあるシーンにおいても像ブレによる画質劣化を軽減可能な撮像装置を提供することにある。 An object of the present invention is to control the exposure for each pixel, to obtain a high dynamic range image by combining outputs of a plurality of pixels having different exposures, and to perform image blur even in a scene where a moving subject is in the composition. It is an object of the present invention to provide an imaging apparatus capable of reducing image quality degradation due to the above.
上記の目的を達成するために、本発明に係る撮像装置は、
画素毎に露出を変更可能な撮像装置において、得られた測光結果に基づいて、画素毎に露出を制御する制御部を有し、前記制御部は、画素毎に複数の画素各々に対して異なる露光時間の制御を行い、本画像取得後に1回の撮影で異なる露出毎の出力毎に画像を生成し、それらの画像を用いて異なる露出の画像間の比較を行い、ブレ判定を行うブレ量算出部を有し、ブレが生じると判定した場合においては、ブレ検出した領域の画素値を、異なる露出の画素値から補間処理を行い、その値を所定の出力レベルとなるようゲインで補正するブレ補正部を有し、補正した後、画像生成部にて、画素グループ毎に複数の画素の出力を合成した画素値を生成する、ことを特徴とする。
In order to achieve the above object, an imaging apparatus according to the present invention includes:
In the imaging device capable of changing the exposure for each pixel, the image pickup apparatus has a control unit that controls the exposure for each pixel based on the obtained photometric result, and the control unit is different for each of the plurality of pixels for each pixel. The amount of blur that controls the exposure time, generates an image for each output for each different exposure in one shot after the main image is acquired, compares the images with different exposures using these images, and performs blur determination If it has a calculation unit and it is determined that blurring occurs, the pixel value of the blur detected area is interpolated from pixel values of different exposures, and the value is corrected with a gain so that it becomes a predetermined output level. A blur correction unit is included, and after correction, the image generation unit generates a pixel value obtained by combining outputs of a plurality of pixels for each pixel group.
本発明に係る撮像装置によれば、画素毎露出制御が可能で、露出の異なる複数の画素の出力を合成することで高ダイナミックレンジ画像を取得可能で、かつ、移動被写体が構図上にあるシーンにおいても像ブレによる画質劣化を軽減できる。 According to the imaging apparatus of the present invention, it is possible to control exposure for each pixel, obtain a high dynamic range image by combining outputs of a plurality of pixels having different exposures, and a scene in which a moving subject is on the composition The image quality degradation due to image blur can be reduced.
以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
《第1の実施形態》
図1は、本実施形態の撮像素子を用いた撮像装置の機能構成例を示すブロック図である。
<< First Embodiment >>
FIG. 1 is a block diagram illustrating a functional configuration example of an imaging apparatus using the imaging device of the present embodiment.
撮像装置の光学系は、被写体の光学像を撮像素子1101に結像させる撮影レンズ0110などを含み、レンズ駆動回路0109によってズーム制御、フォーカス制御、絞り制御などが行われる。撮像素子1101には、複数の単位画素が行列状に配置されている。 The optical system of the image pickup apparatus includes a photographing lens 0110 that forms an optical image of a subject on the image pickup device 1101, and zoom control, focus control, aperture control, and the like are performed by a lens driving circuit 0109. A plurality of unit pixels are arranged in a matrix on the image sensor 1101.
撮像素子1101に結像された被写体の像は、電気的な画像信号として撮像素子1101から出力される。信号処理部1103は、撮像素子1101から出力される画像信号に各種の補正を行ったり、圧縮したりする。 The subject image formed on the image sensor 1101 is output from the image sensor 1101 as an electrical image signal. The signal processing unit 1103 performs various corrections on the image signal output from the image sensor 1101 and compresses the image signal.
タイミング発生回路1102は、撮像素子1101を駆動するタイミング信号を出力する。全体制御・演算部1104は、各種演算を行うとともに、撮像素子1101の動作を含む撮像装置全体の動作を制御する。焦点検出部1109は、焦点検出動作を行う。 The timing generation circuit 1102 outputs a timing signal for driving the image sensor 1101. The overall control / arithmetic unit 1104 performs various calculations and controls the overall operation of the imaging apparatus including the operation of the imaging element 1101. The focus detection unit 1109 performs a focus detection operation.
信号処理部1103が出力する画像データは、メモリ部1105に一時的に記憶される。表示部1106は、各種情報や撮影した画像を表示する。また、外部記録部1107は、画像データの記録または読み出しを行う。外部記録部1107は、例えば半導体メモリ等の着脱可能な記録媒体を読み書きする回路である。そして、操作部1108は、スイッチ、ボタン、タッチパネルなどを代表とする入力デバイス群を含み、撮像装置に対するユーザ指示を受け付ける。 Image data output from the signal processing unit 1103 is temporarily stored in the memory unit 1105. A display unit 1106 displays various information and captured images. The external recording unit 1107 records or reads image data. The external recording unit 1107 is a circuit that reads and writes a detachable recording medium such as a semiconductor memory. The operation unit 1108 includes an input device group represented by a switch, a button, a touch panel, and the like, and accepts a user instruction to the imaging apparatus.
露出制御部1110は、AEの露出制御、AEの結果に基づいた本撮影時の露出制御を行う。ブレ量算出部1111は、1回の撮影で異なる露出毎に生成した画像を比較し、ブレ量の算出及び検出を行う。ブレ補正部1112は、ブレの検出をした箇所の画素値をブレていない異なる露出画像の画素値から補間し、所望(所定)の露出となるよう値にゲインを掛けて補正する。画像生成部1113は、露出の異なる複数の画素値を合成し、高ダイナミックレンジ画像を生成する。ブレ補正された場合は、ブレ補正した出力を用いて合成処理を行う。 The exposure control unit 1110 performs AE exposure control and exposure control during actual photographing based on the AE result. The blur amount calculation unit 1111 compares the images generated for different exposures in one shooting, and calculates and detects the blur amount. The blur correction unit 1112 interpolates the pixel value of the position where the blur is detected from the pixel value of a different exposure image that is not blurred, and corrects the value by multiplying the gain so as to obtain a desired (predetermined) exposure. The image generation unit 1113 combines a plurality of pixel values with different exposures to generate a high dynamic range image. When the shake correction is performed, the composition process is performed using the output subjected to the shake correction.
図2(A)は画素毎露光の例で、ここでは、露出の異なる4画素で1グループとなるように全体に散りばめられている。例えば、通常の適正露出の0EV画素、適正露出より2段高い+2EVの画素、適正露出より2段低い−2EVの画素の出力を1回の撮影で取得できるようになっており、図2(B)のようにグループ毎に画像合成することで、ダイナミックレンジが広い画像を生成することを可能としている。ここでは、説明を簡易的にするため、すべて同一色の画素構成の例で表現しているが、この限りではない。 FIG. 2A shows an example of pixel-by-pixel exposure. Here, four pixels with different exposures are scattered throughout to form one group. For example, it is possible to acquire the output of a normal EV exposure pixel of 0 EV, a pixel of +2 EV that is two steps higher than the proper exposure, and a pixel of -2 EV that is two steps lower than the proper exposure and can be acquired by one shooting. ), It is possible to generate an image with a wide dynamic range. Here, in order to simplify the description, all the pixel configurations of the same color are expressed, but the present invention is not limited to this.
図3(A)は、画面の一部に像ブレが発生していない画像の例で、図3(B)は、画面の一部に像ブレが発生した画像の例である。 FIG. 3A is an example of an image in which image blur does not occur in part of the screen, and FIG. 3B is an example of an image in which image blur occurs in part of the screen.
図4は、本実施形態のフローチャートである。以下、各ステップについて説明する。 FIG. 4 is a flowchart of this embodiment. Hereinafter, each step will be described.
(S10、S11、S12)
AEにて測光を行い、測光結果に基づいて、本画像取得時の画素毎の露光制御を行う。例えば、図2(A)のように、露出の異なる4画素で1グループとなるように全体に散りばめて、本画像の取得を行う。
(S10, S11, S12)
Photometry is performed by AE, and exposure control for each pixel at the time of actual image acquisition is performed based on the photometry result. For example, as shown in FIG. 2 (A), the main image is acquired by being scattered all over so as to form one group of four pixels having different exposures.
例えば、0EVは、適正出力となる露出とし、AEの結果に基づいて設定を行う。−2EVは、適正露出より−2段の露出、+2EVは適正露出より+2段の露出で、各画素はそれぞれの露出に設定している事を表している。 For example, 0EV is an exposure that provides a proper output, and is set based on the result of AE. -2EV represents -2 steps of exposure from the appropriate exposure, + 2EV represents +2 steps of exposure from the appropriate exposure, and each pixel is set to the respective exposure.
(S13)
次に、露出毎の出力画像を生成する。この状態で撮影した時の各露出の出力結果例が、図5(A)〜(C)である。
(S13)
Next, an output image for each exposure is generated. Examples of output results of each exposure when shooting in this state are shown in FIGS.
(S14、S15,S16)
(S14)ブレ量算出部(1111)では、露出毎の異なる露光時間で取得した画像データを比較し、所定の閾値以内にブレ量が収まっているかどうかを判定する。
(S14, S15, S16)
(S14) The blur amount calculation unit (1111) compares image data acquired at different exposure times for each exposure, and determines whether the blur amount is within a predetermined threshold.
(S15)ブレ量がすべて所定の閾値以内に収まっている場合は、補正せず画像合成および生成を行う。ブレ補正された場合は、ブレ補正した出力を用いて合成処理を行う。 (S15) If all the blur amounts are within a predetermined threshold, image composition and generation are performed without correction. When the shake correction is performed, the composition process is performed using the output subjected to the shake correction.
(S16)
ブレ量が閾値を超えた場合、ブレ補正部(1112)では、ブレた露出画像中のブレ部分をブレの少ない露出画像中の画素の値から補間し、出力値を所望(所定)のレベルに補正する(S16)。そして、画像生成部(1113)で、露出の異なる4画素で1グループとなるように画像合成をし、出力画像を生成する。
(S16)
When the blur amount exceeds the threshold value, the blur correction unit (1112) interpolates the blur portion in the blurred exposure image from the pixel value in the exposure image with less blur and sets the output value to a desired (predetermined) level. Correction is performed (S16). Then, the image generation unit (1113) combines the images so that four pixels with different exposures form one group, and generates an output image.
次に、S14〜S16に関して、具体例をあげて説明する。 Next, S14 to S16 will be described with specific examples.
図5のように、例えば、図5(A)と(C)、図5(B)と(C)をそれぞれ比較し、判定結果は、図5(B)がブレ有となって、図5(A)と(C)の判定結果は、ブレ無となっている。図5(B)はブレている部分があるため、その部分を図5(A)または図5(C)の該当部分の隣接する画素値から補間し、出力値を所望(所定)のレベルに補正する。図5(B’)が図(B)のブレ検出部分を補正した画像のイメージである。 As shown in FIG. 5, for example, FIGS. 5A and 5C and FIGS. 5B and 5C are respectively compared. As a result, FIG. The determination results of (A) and (C) are unblurred. Since there is a blurred portion in FIG. 5B, the portion is interpolated from the adjacent pixel values of the corresponding portion in FIG. 5A or 5C, and the output value is set to a desired (predetermined) level. to correct. FIG. 5B 'is an image of an image obtained by correcting the shake detection portion of FIG.
図6で前述の補間と補正の具体例を説明する。
A画素 :0EV露出画素値
B画素 :+2EV露出画素値
C画素 :−2EV露出画素値
B’画素 :補正後+2EV露出画素値
とすると、図6(A)の補正前のBの画素値のブレ検出部分を図6(B)では、B’へ補正している。
A specific example of the above-described interpolation and correction will be described with reference to FIG.
A pixel: 0 EV exposure pixel value B pixel: +2 EV exposure pixel value C pixel: −2 EV exposure pixel value B ′ pixel: +2 EV exposure pixel value after correction As shown in FIG. In FIG. 6B, the detected portion is corrected to B ′.
図7はその補正時の補正値算出例であり、[補間画素の平均値]×[ゲイン(露出差)]としている。例えば、Aの露出画像から補正する場合は、以下のように行う。
B‘=(A1+A2+A3+A4)/4×4
例えば、Cの露出画像から補正する場合は
B‘=(C1+C2+C3+C4)/4×16
などのように補正を行う。その後、補正した出力を用いて合成処理を行う。
FIG. 7 is an example of correction value calculation at the time of correction, and is [average value of interpolation pixels] × [gain (exposure difference)]. For example, when correcting from the exposure image of A, it carries out as follows.
B ′ = (A1 + A2 + A3 + A4) / 4 × 4
For example, when correcting from an exposure image of C, B ′ = (C1 + C2 + C3 + C4) / 4 × 16
Correct as follows. Thereafter, the composition processing is performed using the corrected output.
以上挙げた実施形態のように、画素毎露出制御可能な撮像装置において、露出の異なる複数の画素の出力を合成することで高ダイナミックレンジ画像を取得可能でかつ、移動被写体が構図上にあるシーンにおいても像ブレによる画質劣化を軽減することが可能となる。 As in the above-described embodiment, in an imaging device capable of controlling exposure for each pixel, a scene in which a high dynamic range image can be acquired by combining outputs of a plurality of pixels with different exposures and a moving subject is on the composition It is possible to reduce image quality degradation due to image blur.
本実施形態では、説明簡略化のため単色センサーを例に説明したが、本発明はこれに限られない。例えば、図8(A)は、RGBベイヤーセンサーの場合において、各色毎(例えばR,Gr,Gb,B)に画素毎露光制御している例で、1つの露出設定の中にR,Gr,Gb,B画素が含まれている。 In the present embodiment, the monochromatic sensor has been described as an example for simplification of description, but the present invention is not limited to this. For example, FIG. 8A shows an example in which pixel-by-pixel exposure control is performed for each color (for example, R, Gr, Gb, B) in the case of an RGB Bayer sensor, and R, Gr, Gb and B pixels are included.
ここでは、色毎に異なる露出の画素が4画素で1グループとなるように全体に散りばめられている。例えば、通常の適正露出の0EV画素、適正露出より2段高い+2EVの画素、適正露出より2段低い−2EVの画素の出力を1回の撮影で色毎に取得できるようになっており、色毎にブレ検出及びブレ補正を行い、図8(B)のように色毎にグループ毎に画像合成しても良く、これに限定するものではない。 Here, the pixels with different exposures for each color are scattered all over so that four pixels form one group. For example, it is possible to acquire the output of 0 EV pixel of normal proper exposure, +2 EV pixel that is 2 steps higher than the proper exposure, and −2 EV pixel that is 2 steps lower than the proper exposure for each color by one shooting. The blur detection and the blur correction may be performed every time, and the image may be synthesized for each group for each color as shown in FIG.
本実施形態では、画素配列2×2毎に1つの画素グループとして説明したが、これに限定するものではなくどのような配列、グループ化を行っても良く、これに限定するものではない。 In the present embodiment, one pixel group is described for each 2 × 2 pixel array, but the present invention is not limited to this, and any array or grouping may be performed, but the present invention is not limited to this.
また、本実施形態では、説明簡略化のため単色センサーを例に説明したが、例えば、RGBカラーセンサーの場合において、各色毎(例えばR,G,B)の蓄積開始と露光時間は、RとGとBとで同じ場合があり、同じ露光時間の場合は、ブレ量を算出および検出をある一つの色のみ行うようにして、演算処理の負荷を軽くするなどしても良く、これに限定するものではない。 Further, in the present embodiment, a single color sensor has been described as an example for the sake of simplification. For example, in the case of an RGB color sensor, accumulation start and exposure time for each color (for example, R, G, B) are R and There are cases where G and B are the same, and in the case of the same exposure time, it is possible to reduce the calculation processing load by calculating and detecting the amount of blurring for only one color. Not what you want.
また、本実施形態では、0EV、+2EV、−2EVの画素はそれぞれ異なる露光時間で、それぞれを比較し、ブレ量の算出を行っている例を示したが、例えば、0EVと−2EV画素とで同時に蓄積開始をし、同じ露光時間であり、画素毎のゲイン設定で露出差を付けている場合は、0EVと−2EV画像間でのブレは発生しない。このため、0EV,−2EV画素毎の画像間でブレ量の算出は行わず、0EVと+2EV画像間のみのブレ量算出を行うようにし、演算処理の負荷を軽くするなどしても良く、これに限定するものではない。 Further, in the present embodiment, an example is shown in which 0EV, + 2EV, and -2EV pixels are compared with each other with different exposure times, and the blur amount is calculated. For example, 0EV and -2EV pixels are calculated. When the accumulation is started at the same time, the exposure time is the same, and the exposure difference is set by the gain setting for each pixel, no blur occurs between the 0EV and -2EV images. For this reason, it is possible to calculate the blur amount only between the 0EV and + 2EV images without calculating the blur amount between the images for each of the 0EV and −2EV pixels. It is not limited to.
本実施形態では、0EV、+2EV、−2EVの画素を簡略的に合成する例を示したが、例えば、所定の各画素出力レベルに応じて領域毎、露出毎に合成比率に重みづけし、合成する等しても良く、これに限定するものではない。 In the present embodiment, an example in which pixels of 0 EV, +2 EV, and −2 EV are simply combined has been shown. However, for example, a combination ratio is weighted for each region and for each exposure according to a predetermined pixel output level. However, the present invention is not limited to this.
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。 As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.
1110 露出制御部、1111 ブレ量算出部、1112 ブレ補正部、
1113 画像生成部
1110 exposure control unit, 1111 shake amount calculation unit, 1112 shake correction unit,
1113 Image generation unit
Claims (6)
得られた測光結果に基づいて、画素毎に露出を制御する制御部を有し、
前記制御部は、
画素毎に複数の画素各々に対して異なる露光時間の制御を行い、
本画像取得後に1回の撮影で異なる露出毎の出力毎に画像を生成し、それらの画像を用いて異なる露出の画像間の比較を行い、ブレ判定を行うブレ量算出部を有し、ブレが生じると判定した場合においては、ブレ検出した領域の画素値を、異なる露出の画素値から補間処理を行い、その値を所定の出力レベルとなるようゲインで補正するブレ補正部を有し、補正した後、画像生成部にて、画素グループ毎に複数の画素の出力を合成した画素値を生成することを特徴とする撮像装置。 In an imaging device that can change the exposure for each pixel,
Based on the obtained photometric result, it has a control unit for controlling the exposure for each pixel,
The controller is
Different exposure times are controlled for each of a plurality of pixels for each pixel,
After acquiring the main image, an image is generated for each output for different exposures in one shooting, and a blur amount calculation unit that performs comparison between images with different exposures using these images and performs blur determination is provided. If it is determined that the pixel value of the region where the blur is detected, an interpolation process is performed from the pixel value of the different exposure, and the blur correction unit corrects the value with a gain so that the value becomes a predetermined output level, After the correction, the image generation unit generates a pixel value obtained by combining the outputs of a plurality of pixels for each pixel group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017113865A JP2018207413A (en) | 2017-06-09 | 2017-06-09 | Imaging apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017113865A JP2018207413A (en) | 2017-06-09 | 2017-06-09 | Imaging apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018207413A true JP2018207413A (en) | 2018-12-27 |
Family
ID=64958448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017113865A Pending JP2018207413A (en) | 2017-06-09 | 2017-06-09 | Imaging apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018207413A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110636223A (en) * | 2019-10-16 | 2019-12-31 | Oppo广东移动通信有限公司 | Anti-shake processing method and apparatus, electronic device, and computer-readable storage medium |
WO2020178920A1 (en) * | 2019-03-01 | 2020-09-10 | 株式会社ブルックマンテクノロジ | Distance image capturing device and distance image capturing method using distance image capturing device |
CN114630010A (en) * | 2020-12-14 | 2022-06-14 | 爱思开海力士有限公司 | Image sensing device and image processing device |
CN115428431A (en) * | 2020-04-02 | 2022-12-02 | 株式会社小糸制作所 | Door control camera, vehicle sensing system, and vehicle lamp |
WO2023080667A1 (en) * | 2021-11-04 | 2023-05-11 | 한화테크윈 주식회사 | Surveillance camera wdr image processing through ai-based object recognition |
-
2017
- 2017-06-09 JP JP2017113865A patent/JP2018207413A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020178920A1 (en) * | 2019-03-01 | 2020-09-10 | 株式会社ブルックマンテクノロジ | Distance image capturing device and distance image capturing method using distance image capturing device |
JP6825164B1 (en) * | 2019-03-01 | 2021-02-03 | 株式会社ブルックマンテクノロジ | Distance image imaging method using a distance image imaging device and a distance image imaging device |
US11336854B2 (en) | 2019-03-01 | 2022-05-17 | Brookman Technology, Inc. | Distance image capturing apparatus and distance image capturing method using distance image capturing apparatus |
CN110636223A (en) * | 2019-10-16 | 2019-12-31 | Oppo广东移动通信有限公司 | Anti-shake processing method and apparatus, electronic device, and computer-readable storage medium |
CN115428431A (en) * | 2020-04-02 | 2022-12-02 | 株式会社小糸制作所 | Door control camera, vehicle sensing system, and vehicle lamp |
CN114630010A (en) * | 2020-12-14 | 2022-06-14 | 爱思开海力士有限公司 | Image sensing device and image processing device |
WO2023080667A1 (en) * | 2021-11-04 | 2023-05-11 | 한화테크윈 주식회사 | Surveillance camera wdr image processing through ai-based object recognition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9843735B2 (en) | Image processing apparatus, imaging apparatus comprising the same, and image processing method | |
US8515206B2 (en) | Apparatus and method to generate image | |
US9451160B2 (en) | Imaging apparatus and method for controlling the imaging apparatus | |
US9712757B2 (en) | Image capturing apparatus capable of compositing images generated using the same development parameter and control method therefor | |
JP4973719B2 (en) | Imaging apparatus, imaging method, and imaging program | |
US20150281542A1 (en) | Image generation apparatus and method for generating plurality of images with different resolution and/or brightness from single image | |
JP2018207413A (en) | Imaging apparatus | |
US9838625B2 (en) | Image processing apparatus and control method for image processing apparatus for controlling correction of a black level in a combined image signal | |
JP4501994B2 (en) | Imaging device | |
JP6312487B2 (en) | Image processing apparatus, control method therefor, and program | |
KR20120102509A (en) | Image processing apparatus and image processing method and program | |
US20120287314A1 (en) | Video camera which adopts a focal-plane electronic shutter system | |
JP2003319240A (en) | Image pickup device | |
JP5780885B2 (en) | Imaging device, control method thereof, and control program | |
EP4002830B1 (en) | Image pick up apparatus, image pick up method, and storage medium | |
JP7442989B2 (en) | Imaging device, control method for the imaging device, and program | |
JP2007189298A (en) | Image processor, image processing method, and imaging apparatus | |
JP6157274B2 (en) | Imaging apparatus, information processing method, and program | |
JP5482428B2 (en) | Imaging apparatus, camera shake correction method, and program | |
JP6990988B2 (en) | Control method of image pickup device and image sensor | |
JP6808365B2 (en) | Imaging device, its control method, and program | |
JP2016208118A (en) | Image processing apparatus, image processing method, and program | |
JP2021082136A5 (en) | ||
JP6575667B2 (en) | Exposure control device and optical apparatus | |
JP6797566B2 (en) | Image pickup device, control method of image pickup device, and image processing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20191125 |