JP2018206904A - Photoelectrode for dye-sensitized solar cell and dye-sensitized solar cell using the same - Google Patents

Photoelectrode for dye-sensitized solar cell and dye-sensitized solar cell using the same Download PDF

Info

Publication number
JP2018206904A
JP2018206904A JP2017109631A JP2017109631A JP2018206904A JP 2018206904 A JP2018206904 A JP 2018206904A JP 2017109631 A JP2017109631 A JP 2017109631A JP 2017109631 A JP2017109631 A JP 2017109631A JP 2018206904 A JP2018206904 A JP 2018206904A
Authority
JP
Japan
Prior art keywords
dye
metal oxide
solar cell
sensitized solar
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017109631A
Other languages
Japanese (ja)
Inventor
周一 真弓
Shuichi Mayumi
周一 真弓
泰明 石河
Yasuaki Ishikawa
泰明 石河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PGS HOME CO Ltd
Nara Institute of Science and Technology NUC
Original Assignee
PGS HOME CO Ltd
Nara Institute of Science and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PGS HOME CO Ltd, Nara Institute of Science and Technology NUC filed Critical PGS HOME CO Ltd
Priority to JP2017109631A priority Critical patent/JP2018206904A/en
Publication of JP2018206904A publication Critical patent/JP2018206904A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

To provide a photoelectrode for use in dye-sensitized solar cell capable of improving photoelectric conversion efficiency for converting photovoltaic energy into electrical power, without using a large amount of nanoparticles of expensive metal such as gold.SOLUTION: A photoelectrode for dye-sensitized solar cell includes a glass substrate provided with a transparent conductive film 12 on one side, a metal oxide layer 13 provided on the side of the transparent conductive film 12 opposite to the glass substrate and composed of particulate metal oxide, a sensitization color material adsorbed to the surface of the metal oxide, and metal nanoparticles 15 in the metal oxide layer 13. Density of the metal nanoparticles 15 separated by a distance from the transparent conductive film 12 to the depth where the light of maximum adsorption wavelength of the sensitization color material 14 reaches is higher than that of other region in the metal oxide layer 13.SELECTED DRAWING: Figure 1

Description

本発明は、増感色素を金属酸化物に吸着させてなる色素増感太陽電池用光電極及びそれを用いた色素増感太陽電池に関する。   The present invention relates to a dye-sensitized solar cell photoelectrode obtained by adsorbing a sensitizing dye to a metal oxide and a dye-sensitized solar cell using the same.

色素増感太陽電池は、グラッツェルらの研究グループが1991年に太陽エネルギー変換効率7.1%を発表し(非特許文献1)、さらに1993年に同グループが同変換効率10%を発表したことに端を発し(非特許文献2)、世界的に注目される技術となっている。   Regarding the dye-sensitized solar cell, a research group of Gratzel et al. Announced a solar energy conversion efficiency of 7.1% in 1991 (Non-patent Document 1), and in 1993 the group announced a conversion efficiency of 10%. In particular, it has become a technology that attracts worldwide attention (Non-Patent Document 2).

グラッツェルらが発表した色素増感太陽電池の構成は、ガラス板、又は透明プラスチックシートの内側にインジウム/スズ系の透明電導層を設け、さらにその透明電導層に二酸化チタンなどの微粒子金属酸化物を固定し、この金属酸化物にルテニウム化合物などの増感色素を吸着させた光電極と、白金や炭素などの対極との間にヨウ素溶液などの酸化還元体を充填したものである。   The structure of the dye-sensitized solar cell announced by Gratzel et al. Is provided with an indium / tin based transparent conductive layer on the inside of a glass plate or transparent plastic sheet, and fine metal oxide such as titanium dioxide in the transparent conductive layer. And a red electrode such as an iodine solution is filled between a photoelectrode in which a sensitizing dye such as a ruthenium compound is adsorbed on the metal oxide and a counter electrode such as platinum or carbon.

上記の色素増感太陽電池は、単結晶又は多結晶のシリコンなどを用いるシリコン系太陽電池に対して、製造方法が簡単であり、製造に掛かる費用が安価である特長を有するものの、光電変換効率の向上などの高性能化が課題となっている。   The above dye-sensitized solar cell has a feature that the manufacturing method is simple and the cost for manufacturing is low compared to the silicon-based solar cell using single crystal or polycrystalline silicon. Improvement of performance, such as improvement, has become an issue.

非特許文献3に示すように、色素増感太陽電池における光電変換効率の向上などの高性能化について、二酸化チタンなどの微粒子金属酸化物中に金などの金属ナノ粒子を均一分散させてなる光電極を用いた色素増感太陽電池が知られている。金などの金属ナノ粒子の表面プラズモン共鳴を用いて、光の吸収を増進し短絡電流を向上させることなどによる光電変換効率の向上を目指す技術である。   As shown in Non-Patent Document 3, for high performance such as improvement of photoelectric conversion efficiency in dye-sensitized solar cells, light obtained by uniformly dispersing metal nanoparticles such as gold in fine particle metal oxides such as titanium dioxide Dye-sensitized solar cells using electrodes are known. This technology aims to improve photoelectric conversion efficiency by using surface plasmon resonance of metal nanoparticles such as gold to enhance light absorption and improve short circuit current.

B.O‘regan, M.Graetzel, Nature (London, United Kingdom), 353, 737 (1991)B. O'regan, M.M. Graetzel, Nature (London, United Kingdom), 353, 737 (1991) M.K.Nazeeruddin, a.Kay, I.Rodicio, R.Humphry−Baker, E.Mueller, P.Liska,N.Vlachopoulos, M.Graetzel, Journal of the American Chemical Society, 115, 6382 (1993)M.M. K. Nazeeruddin, a. Kay, I.D. Rodicio, R.C. Humphry-Baker, E .; Mueller, P.M. Liska, N .; Vlachopoulos, M.M. Graetzel, Journal of the American Chemical Society, 115, 6382 (1993) Nahm C, Choi H, Kim J, Jung DR, Kim C, Moon J, Lee B, Park B.Appl. Phys. Lett. 99: 253107 1−4.(2011)Nahm C, Choi H, Kim J, Jung DR, Kim C, Moon J, Lee B, Park B. et al. Appl. Phys. Lett. 99: 253107 1-4. (2011)

しかしながら、二酸化チタンなどの微粒子金属酸化物中に金などの金属ナノ粒子を均一分散させてなる非特許文献3における光電極では、金が高価であるために、大量に使用することが困難であり、安価に製造することができる色素増感太陽電池の利点を生かしたより効率的な光電極が求められている。   However, in the photoelectrode in Non-Patent Document 3 in which metal nanoparticles such as gold are uniformly dispersed in a fine particle metal oxide such as titanium dioxide, it is difficult to use in large quantities because gold is expensive. There is a need for more efficient photoelectrodes that take advantage of dye-sensitized solar cells that can be manufactured at low cost.

そこで、本発明では、色素増感太陽電池において使用される光電極であって、金などの高価な金属ナノ粒子を大量に使用せずとも、太陽光のエネルギーを電力に変換する光電変換効率を向上させることができる光電極を提供することを目的とする。   Therefore, in the present invention, it is a photoelectrode used in a dye-sensitized solar cell, and has a photoelectric conversion efficiency for converting solar energy into electric power without using a large amount of expensive metal nanoparticles such as gold. It is an object to provide a photoelectrode that can be improved.

〔1〕すなわち、本発明は、透明導電性膜を一の面に設けられたガラス基板と、前記透明導電性膜における前記ガラス基板とは反対側の一面に設けられ粒子状の金属酸化物からなる金属酸化物層と、前記金属酸化物の表面に吸着された増感色素と、前記金属酸化物層中に金属ナノ粒子を備え、前記透明導電性膜から前記増感色素の最大吸収波長の光が到達する深さ付近の距離だけ離れた前記金属ナノ粒子の密度が前記金属酸化物層中における他の領域よりも高いことを特徴とする色素増感太陽電池用光電極である。   [1] That is, the present invention includes a glass substrate provided with a transparent conductive film on one surface, and a particulate metal oxide provided on one surface of the transparent conductive film opposite to the glass substrate. A metal oxide layer, a sensitizing dye adsorbed on the surface of the metal oxide, metal nanoparticles in the metal oxide layer, and a maximum absorption wavelength of the sensitizing dye from the transparent conductive film. It is a photoelectrode for a dye-sensitized solar cell, characterized in that the density of the metal nanoparticles separated by a distance near the depth to which light reaches is higher than other regions in the metal oxide layer.

〔2〕そして、前記透明導電性膜から2〜6μm離れた前記金属ナノ粒子の密度が前記金属酸化物層中における他の領域よりも高いことを特徴とする前記〔1〕に記載の色素増感太陽電池用光電極である。   [2] The dye enhancement according to [1], wherein the density of the metal nanoparticles 2 to 6 μm away from the transparent conductive film is higher than that of other regions in the metal oxide layer. It is a photoelectrode for a solar cell.

〔3〕そして、前記金属ナノ粒子は、金、銀、銅から選ばれる少なくとも一種であり、粒子径が10〜200nmであることを特徴とする前記〔1〕又は前記〔2〕に記載の色素増感太陽電池用光電極である。   [3] The dye according to [1] or [2], wherein the metal nanoparticles are at least one selected from gold, silver, and copper, and have a particle diameter of 10 to 200 nm. This is a photoelectrode for a sensitized solar cell.

〔4〕そして、前記増感色素は、ルテニウムビピリジン系錯体であることを特徴とする前記〔1〕から前記〔3〕のいずれかに記載の色素増感太陽電池用光電極である。   [4] The dye-sensitized solar cell photoelectrode according to any one of [1] to [3], wherein the sensitizing dye is a ruthenium bipyridine complex.

〔5〕そして、前記〔1〕から前記〔4〕のいずれかに記載の色素増感太陽電池用光電極を具備することを特徴とする色素増感太陽電池である。   [5] A dye-sensitized solar cell comprising the dye-sensitized solar cell photoelectrode according to any one of [1] to [4].

本発明の光電極を具備する色素増感太陽電池において、金などの高価な金属ナノ粒子を大量に使用せずとも、太陽光のエネルギーを電力に変換する光電変換効率を向上させることができる。   In the dye-sensitized solar cell including the photoelectrode of the present invention, the photoelectric conversion efficiency for converting sunlight energy into electric power can be improved without using a large amount of expensive metal nanoparticles such as gold.

本発明の光電極及びそれを利用した色素増感太陽電池を示す概念図である。It is a conceptual diagram which shows the photoelectrode of this invention, and a dye-sensitized solar cell using the same. (a)合成された直径20nmの金ナノ粒子についてのTEM画像(b)合成された直径40nmの金ナノ粒子についてのTEM画像(c)合成された直径60nmの金ナノ粒子についてのTEM画像(d)合成された直径90nmの金ナノ粒子についてのTEM画像である。(A) TEM image for synthesized 20 nm diameter gold nanoparticles (b) TEM image for synthesized 40 nm diameter gold nanoparticles (c) TEM image for synthesized 60 nm diameter gold nanoparticles (d ) TEM image of 90 nm diameter gold nanoparticles synthesized. 各波長の光に対する各種厚みの酸化チタンからなる金属酸化物層(金属ナノ粒子なし、増感色素あり)の吸光度を示すグラフである。It is a graph which shows the light absorbency of the metal oxide layer (without metal nanoparticles, with a sensitizing dye) which consists of titanium oxide of various thickness with respect to the light of each wavelength. 酸化チタンからなる金属酸化物層(金属ナノ粒子なし、増感色素あり)の各種厚みに対する各波長の光の吸光度を示すグラフである。It is a graph which shows the light absorbency of the light of each wavelength with respect to various thickness of the metal oxide layer (without metal nanoparticles, with a sensitizing dye) which consists of titanium oxide.

以下、本発明に関する実施形態について詳しく説明する。なお、範囲を表す表現は、その上限と下限を含むものである。   Hereinafter, embodiments related to the present invention will be described in detail. The expression representing the range includes the upper limit and the lower limit.

図1に示す色素増感太陽電池の負極である光電極1は、以下のように作製される。すなわち、まず、0.1〜10mmの透明なガラス基板11に酸化インジウムスズ(ITO)など透明導電性酸化物を用いて、真空蒸着、スパッタリング、CVDなどの方法により100〜600nmの厚みで透明電導膜12が形成されることにより、透明導電性膜12を備えたガラス基板11が作成される。   The photoelectrode 1 which is the negative electrode of the dye-sensitized solar cell shown in FIG. 1 is produced as follows. That is, first, using a transparent conductive oxide such as indium tin oxide (ITO) on a transparent glass substrate 11 having a thickness of 0.1 to 10 mm, a transparent conductive film having a thickness of 100 to 600 nm is obtained by a method such as vacuum deposition, sputtering, or CVD. By forming the film 12, the glass substrate 11 provided with the transparent conductive film 12 is produced.

そして、その透明電導性膜12の上に粒子径が1〜100nmである金属酸化物が分散された溶液をスクリーン印刷などの塗布方法で塗布し、加熱により溶媒を除去し、さらに高温に加熱して金属酸化物層13を作製し、さらに、上記金属酸化物に金属ナノ粒子15を所定料配合した金属ナノ粒子15及び金属酸化物が分散された溶液を用いて同様に金属ナノ粒子15が含有される金属酸化物層13も作製し、金属酸化物層13が多層化される。こうして、多層化された金属酸化物層13の一部の層に、透明導電性膜12と略平行となる層状に分散される金属ナノ粒子15を備える金属酸化物層13が形成され、透明電導性膜12に全体として10〜100μmの金属酸化物層13が形成され、金属ナノ粒子15が他の領域より密度が高くなるようなる。   Then, a solution in which a metal oxide having a particle diameter of 1 to 100 nm is dispersed on the transparent conductive film 12 is applied by a coating method such as screen printing, the solvent is removed by heating, and further heated to a high temperature. Then, the metal oxide layer 13 is prepared, and the metal nanoparticles 15 are similarly contained using the metal nanoparticles 15 in which the metal nanoparticles 15 are mixed with the metal oxide 15 and a solution in which the metal oxide is dispersed. A metal oxide layer 13 is also produced, and the metal oxide layer 13 is multilayered. In this way, the metal oxide layer 13 including the metal nanoparticles 15 dispersed in a layer shape substantially parallel to the transparent conductive film 12 is formed on a part of the multilayered metal oxide layer 13, and transparent conductive The metal oxide layer 13 having a thickness of 10 to 100 μm is formed on the conductive film 12 as a whole, and the density of the metal nanoparticles 15 is higher than that of other regions.

そして、一部の層に金属ナノ粒子15が含有された金属酸化物層13が形成され透明導電性膜を備えたガラス基板を、増感色素14を含有する溶液に金属酸化物層13が浸るように浸漬し、その後、溶媒を乾燥除去して増感色素14を金属酸化物層13に吸着させることにより、色素増感太陽電池の負極である光電極1が作製される。   And the metal oxide layer 13 in which the metal oxide layer 13 in which the metal nanoparticles 15 are contained in a part of the layer is formed, and the metal oxide layer 13 is immersed in a solution containing the sensitizing dye 14 in the glass substrate having the transparent conductive film. After that, the solvent is dried and removed, and the sensitizing dye 14 is adsorbed to the metal oxide layer 13, whereby the photoelectrode 1 which is the negative electrode of the dye-sensitized solar cell is produced.

この粒子状の金属酸化物は、バンドギャップ間の遷移が生じる金属酸化物が、複数集合して多孔質形状を有するものである。個々の金属酸化物の形状については、球状に限られるものでなく、棒状、針状、円錐状などいかなる形状であっても良い。また、その金属酸化物の素材としては、例えば、チタン酸ストロンチウム(SrTiO3 ),チタン酸バリウム(BaTiO3 ),二酸化チタン(TiO2 ),五酸化ニオブ(Nb2 5 ),酸化マグネシウム(MgO),酸化亜鉛(ZnO),酸化タングステン(IV)(WO3 ),酸化ビスマス(III)(Bi2 3 ),硫化カドミウム(CdS),セレン化カドミウム(CdSe),テルル化カドミウム(CdTe),酸化インジウム(III)(In2 3 ),酸化スズ(IV)(SnO2)などの各種金属酸化物が用いられる。このうち光電変換効率の向上のため、二酸化チタンを用いることが好ましい。また、二酸化チタンを用いる場合、結晶構造としてルチル型よりアナターゼ型の方がより好ましい。 This particulate metal oxide has a porous shape in which a plurality of metal oxides causing transition between band gaps are aggregated. The shape of each metal oxide is not limited to a spherical shape, and may be any shape such as a rod shape, a needle shape, or a cone shape. Examples of the metal oxide material include strontium titanate (SrTiO 3 ), barium titanate (BaTiO 3 ), titanium dioxide (TiO 2 ), niobium pentoxide (Nb 2 O 5 ), and magnesium oxide (MgO). ), Zinc oxide (ZnO), tungsten oxide (IV) (WO 3 ), bismuth (III) oxide (Bi 2 O 3 ), cadmium sulfide (CdS), cadmium selenide (CdSe), cadmium telluride (CdTe), Various metal oxides such as indium (III) oxide (In 2 O 3 ) and tin (IV) oxide (SnO 2 ) are used. Of these, titanium dioxide is preferably used to improve photoelectric conversion efficiency. When titanium dioxide is used, the anatase type is more preferable as the crystal structure than the rutile type.

増感色素14は、太陽光の特定の波長を吸収し励起状態となり、その増感色素14が吸着する粒子状の金属酸化物に電子を注入する増感色素14として機能する。そして、増感色素14に含有される金属として、ルテニウム、オスミウム、鉄、銅、白金、コバルト、レニウム、クロムなどの遷移金属が使用される。   The sensitizing dye 14 absorbs a specific wavelength of sunlight and enters an excited state, and functions as the sensitizing dye 14 that injects electrons into the particulate metal oxide adsorbed by the sensitizing dye 14. And as a metal contained in the sensitizing dye 14, transition metals, such as ruthenium, osmium, iron, copper, platinum, cobalt, rhenium, chromium, are used.

このような増感色素14として、cis−dithiocyano bis(4,4’−dicarboxy−2,2’−bipyridine)ruthenium;Ru(dcbpy)2(NCS)2;N3、bis(tetrabutylammonium)[shis−di(thiocyanato)−bis(2,2’−bipyridyl−4−carboxylate−4’−carboxylic acid)−ruthenium;N719、Ru(tctpy)2(NCS)3;N714、Ru(dmipy)(dcbpyH)I、Ru(dcphenTBA(H))2(NCS)2、cis−Ru(dcbiqH)2(NCS)2(TBA)2などのルテニウムビピリジン系錯体、cis−dithiocyano bis(4,4’−dicarboxy−2,2’−bipyridine)osmium;Os(dcbpy)2(NCS)2などのオスミウムビピリジン系錯体、cis−dithiocyano bis(4,4’−dicarboxy−2,2’−bipyridine)iron;Fe(dcbpy)2(NCS)2などの鉄ビピリジン系錯体、bis(2,9−di(4−carboxy)diphenyl−1,10−phenanthroline)copperなどの銅フェナントロリン系錯体、Pt(dcbpy)2(L)2[L:quinoxaline−2,3−dithiolate]などの白金キノキサリン系錯体、Re(bpy)(CO)3(ina)などのレニウムピリジン系錯体などが挙げられる。 As such a sensitizing dye 14, cis-dithiocyano bis (4,4′-dicarboxy-2,2′-bipyridine) ruthenium; Ru (dcbpy) 2 (NCS) 2 ; N3, bis (tetrabutylammonium) [shis-di (Thiocyanato) -bis (2,2′-bipyridyl-4-carboxylate-4′-carboxylic acid) -ruthenium; N719, Ru (tctpy) 2 (NCS) 3 ; N714, Ru (dmipy) H (dcBip, H) (dcphenTBA (H)) 2 ( NCS) 2, cis-Ru (dcbiqH) 2 (NCS) 2 (TBA) ruthenium bipyridine complex such as 2, cis-dithiocyano bis ( , 4'-dicarboxy-2,2'-bipyridine ) osmium; Os (dcbpy) 2 (NCS) osmium bipyridine-based complex such as 2, cis-dithiocyano bis (4,4' -dicarboxy-2,2'-bipyridine) iron; iron bipyridine complex such as Fe (dcbpy) 2 (NCS) 2 , copper phenanthroline complex such as bis (2,9-di (4-carboxy) diphenyl-1,10-phenanthroline) copper, Pt (dcbpy) 2 (L) 2 Platinum quinoxaline complex such as [L: quinoxaline-2,3-dithiolate], rhenium pyridine complex such as Re (bpy) (CO) 3 (ina), and the like.

金属ナノ粒子15は、大きさがナノメートル(nm)サイズの金属粒子であり、金、銀、銅などの遷移金属から選ばれる少なくとも一種であることが好ましい。例えば、金のナノ粒子は、Turkevich方法によって合成される。具体的には、0.01重量%のテトラクロリド金(III)酸水溶液100mlが沸騰するまで加熱し、その沸騰水に1重量%のクエン酸三ナトリウム二水和物水溶液3.5mlを添加して撹拌し、沸騰させた状態で60分間撹拌を続ける。すると、20nm以下の粒子径の金が得られる。そして、種として20nm以下の粒子径の金の懸濁液6mlを、沸騰した0.01重量%のテトラクロリド金(III)酸水溶液100mlに加え、1重量%のクエン酸三ナトリウム二水和物水溶液0.5mlを添加して撹拌すると、40nm以下の粒子径の金が得られる。同様にして、60nm以下や90nm以下の粒子径の金が得られる。所望の粒子径の金を合成できれば、20分間1000rpmで遠心分離した後に上澄みを取り除き、そこに溜まった金の粒子に90体積%エタノール水を加えて、色素増感太陽電池で使用する金粒子懸濁液を作製する。このようにして合成された金ナノ粒子を図2に示す。また、得られた金の粒子に対して、オルトケイ酸テトラエチル溶液及びアンモニア水を添加して、金の粒子の表面に二酸化ケイ素の層を設けた金の粒子を作製することもできる。   The metal nanoparticles 15 are metal particles having a nanometer (nm) size, and are preferably at least one selected from transition metals such as gold, silver, and copper. For example, gold nanoparticles are synthesized by the Turkevich method. Specifically, 100 ml of 0.01% by weight tetrachloride gold (III) acid aqueous solution was heated until boiling, and 3.5 ml of 1% by weight trisodium citrate dihydrate aqueous solution was added to the boiling water. Stir and continue to stir for 60 minutes while boiling. Then, gold having a particle diameter of 20 nm or less is obtained. Then, 6 ml of a gold suspension having a particle size of 20 nm or less as a seed was added to 100 ml of a boiled 0.01 wt% tetrachloride gold (III) acid aqueous solution, and 1 wt% trisodium citrate dihydrate. When 0.5 ml of an aqueous solution is added and stirred, gold having a particle size of 40 nm or less is obtained. Similarly, gold having a particle size of 60 nm or less or 90 nm or less is obtained. If gold having a desired particle size can be synthesized, the supernatant is removed after centrifugation at 1000 rpm for 20 minutes, 90% by volume ethanol water is added to the gold particles accumulated therein, and the gold particle suspension used in the dye-sensitized solar cell is added. Make a suspension. The gold nanoparticles thus synthesized are shown in FIG. Further, a tetraethyl orthosilicate solution and aqueous ammonia can be added to the obtained gold particles to produce gold particles having a silicon dioxide layer on the surface of the gold particles.

金属ナノ粒子15の粒子径は、10〜200nmであることが好ましく、20〜90nmであることがさらに好ましく、40〜60nmであることが最も好ましい。金属ナノ粒子15の粒子径がこの範囲であると、金属ナノ粒子15を層状に含む金属酸化物層13を具備する光電極1を作製して、色素増感太陽電池を作製すると、短絡電流が向上して変換効率が向上する。金属ナノ粒子15の粒子径は、電解放出形透過電子顕微鏡(TEM)(JEOL社製、JEM−2200FS)によって計測される。   The particle diameter of the metal nanoparticles 15 is preferably 10 to 200 nm, more preferably 20 to 90 nm, and most preferably 40 to 60 nm. When the particle diameter of the metal nanoparticle 15 is within this range, when the photoelectrode 1 including the metal oxide layer 13 including the metal nanoparticle 15 in a layer form is produced and a dye-sensitized solar cell is produced, the short-circuit current is reduced. Improve the conversion efficiency. The particle diameter of the metal nanoparticles 15 is measured by a field emission transmission electron microscope (TEM) (JEOL, JEM-2200FS).

そして、金属酸化物層13において、金属ナノ粒子15は、透明導電性膜12から増感色素14の最大吸収波長の光が到達する深さ付近の距離だけ離れた位置で他の金属酸化物層13中における他の領域よりも高くなるよう位置していることが好ましく、透明導電性膜12から2〜6μmの距離だけ離れた位置で他の金属酸化物層13中における他の領域よりも高くなるよう位置していることがさらに好ましく、透明導電性膜12から3〜5μmの距離だけ離れた位置で他の金属酸化物層13中における他の領域よりも高くなるよう位置していることがもっとも好ましい。金属ナノ粒子15が透明導電性膜12からこの範囲に高い密度で分布していると、増感色素14の増感作用を最大限活用するとともに、金属ナノ粒子の光の散乱効果で金属ナノ粒子による表面プラズモン共鳴が増強することにより増感色素14等へのエネルギー遷移が増加するために、短絡電流が向上して変換効率が向上し、また、必要以上に金属ナノ粒子を添加せずに済むのでコストダウンもすることができる。また、金属ナノ粒子15を上記所定の距離だけ離れていれば、金属ナノ粒子15を複数層設けて多層状にすることもできるし、層状に設けず上記所定の距離の範囲で分布さあせることもできる。   In the metal oxide layer 13, the metal nanoparticles 15 are separated from the transparent conductive film 12 by another distance near the depth at which the light having the maximum absorption wavelength of the sensitizing dye 14 reaches. 13 is preferably located higher than other regions in the region 13 and higher than other regions in the other metal oxide layer 13 at a position 2 to 6 μm away from the transparent conductive film 12. More preferably, it is located so as to be higher than other regions in the other metal oxide layer 13 at a position 3 to 5 μm away from the transparent conductive film 12. Most preferred. When the metal nanoparticles 15 are distributed in this range from the transparent conductive film 12 at a high density, the sensitizing action of the sensitizing dye 14 is maximized and the metal nanoparticles are dispersed by the light scattering effect of the metal nanoparticles. As the surface plasmon resonance due to the energy increases, the energy transition to the sensitizing dye 14 and the like increases, so that the short-circuit current is improved and the conversion efficiency is improved, and it is not necessary to add metal nanoparticles more than necessary. Therefore, the cost can be reduced. Further, if the metal nanoparticles 15 are separated from each other by the predetermined distance, a plurality of layers of the metal nanoparticles 15 can be provided to form a multilayer shape, or the metal nanoparticles 15 can be distributed within the predetermined distance range without being provided in layers. You can also.

金属ナノ粒子15が含有される一の金属酸化物層13において、金属ナノ粒子15が、0.5〜6μg/cm2の密度で含有されていることが好ましい。金属ナノ粒子15がこの密度の範囲で含有されていると、短絡電流が向上して変換効率が向上する。 In one metal oxide layer 13 containing the metal nanoparticles 15, the metal nanoparticles 15 are preferably contained at a density of 0.5 to 6 μg / cm 2 . When the metal nanoparticles 15 are contained in this density range, the short circuit current is improved and the conversion efficiency is improved.

また、粒子状の金属酸化物に結合する官能基(イミダゾリル基、カルボキシル基、ホスホン基等)を有し、結合の結果脱着を起こさず、かつ吸着の結果、電極の表面の露出を抑えることができる分子を添加剤として使用することができる。具体的には、例えば、tert−ブチルピリジン(tert−Butylpyridine)、1−メトキシベンゾイミダゾール(1−Methoxybenzoimidazole)、デカンリン酸(decanephosphoric acid)等の長鎖アルキル基を持つホスホン酸などが挙げられる。   In addition, it has a functional group (imidazolyl group, carboxyl group, phosphone group, etc.) that binds to the particulate metal oxide, does not cause desorption as a result of binding, and suppresses exposure of the electrode surface as a result of adsorption. Possible molecules can be used as additives. Specific examples include phosphonic acids having a long-chain alkyl group such as tert-butylpyridine, 1-methoxybenzimidazole, and decanephosphoric acid.

色素増感太陽電池を作製するときに、対極である正極3は、導電性物質であれば任意のものを用いることができるが、絶縁性の物質でも、半導体電極に面している側に導電層が設置されていれば、使用することができる。ただし、電気化学的に安定である物質を対極に用いることが好ましい。具体的には、白金、白金黒、カーボン、導電性高分子などが挙げられる。正極3は石英ガラス基板などの透明または不透明の基板上に上記の物質の膜を形成したものであっても良いし、白金基板などであっても良い。   When the dye-sensitized solar cell is manufactured, the positive electrode 3 as the counter electrode can be any conductive material as long as it is a conductive material. However, even an insulating material is conductive on the side facing the semiconductor electrode. If a layer is in place, it can be used. However, it is preferable to use an electrochemically stable substance for the counter electrode. Specifically, platinum, platinum black, carbon, conductive polymer, and the like can be given. The positive electrode 3 may be a transparent or opaque substrate such as a quartz glass substrate on which a film of the above substance is formed, or may be a platinum substrate.

光電極1と正極3の間に配される電解質2は、液状、ゲル状又は固体であり、ヨウ素、ヨウ化物などの酸化還元化学種が水溶液として、又はそれらの酸化還元化学種が分散しているゲル化物や固体である。酸化還元化学種であるヨウ素、ヨウ化物、例えばヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウムなどを混合することができる。また、さらに水酸化リチウム、水酸化ナトリウムなどを配合し電解質2として中性に調整することが好ましい。   The electrolyte 2 disposed between the photoelectrode 1 and the positive electrode 3 is liquid, gel, or solid, and redox species such as iodine and iodide are in an aqueous solution or the redox species are dispersed. It is a gel or solid. Redox chemical species iodine and iodide such as lithium iodide, sodium iodide, potassium iodide and the like can be mixed. Further, it is preferable to further adjust the neutrality of the electrolyte 2 by adding lithium hydroxide, sodium hydroxide, or the like.

なお、電解質2がゲル状又は固体である場合には、色素増感太陽電池として作製されたときに電解質2がゲル状又は固体であれば良く、その製造工程において液体を含有するものであっても良い。   In the case where the electrolyte 2 is in the form of a gel or a solid, the electrolyte 2 only needs to be in the form of a gel or a solid when manufactured as a dye-sensitized solar cell, and contains a liquid in the manufacturing process. Also good.

さらに、電解質2にイオン液体を含有させることができる。イオン液体は、150℃以下程度の比較的低い温度で、液体で存在しうる塩である。イオン液体は不揮発性の有機溶媒であり、経時変化により揮発して減量することがなく、電解質2に一定の流動性を付与する。さらに、電解質2にイオン液体が含有されていることにより、電解質2と酸化チタンとの接触面積を増大させて電解質2から酸化チタンへの電荷の移動が改善されるため、変換効率が向上する。イオン液体として、例えば、ヨウ化1,2−ジメチル−3−プロピルイミダゾリウム(DMPII)、ヨウ化1−メチル−3−ブチルイミダゾリウム(BMII)、ヨウ化1−エチル−3−メチルイミダゾリウム(EMII)、ヨウ化1−オクチル−3−メチルイミダゾリウム(OMII)、ヨウ化テトラ−n−ブチルアンモニウム(TBAI)などが好ましい。   Further, the electrolyte 2 can contain an ionic liquid. An ionic liquid is a salt that can exist in a liquid at a relatively low temperature of about 150 ° C. or less. The ionic liquid is a non-volatile organic solvent, volatilizes with time and does not lose its weight, and imparts a certain fluidity to the electrolyte 2. Furthermore, since the electrolyte 2 contains the ionic liquid, the contact area between the electrolyte 2 and titanium oxide is increased and the transfer of charges from the electrolyte 2 to titanium oxide is improved, so that the conversion efficiency is improved. Examples of the ionic liquid include 1,2-dimethyl-3-propylimidazolium iodide (DMPII), 1-methyl-3-butylimidazolium iodide (BMII), 1-ethyl-3-methylimidazolium iodide ( EMII), 1-octyl-3-methylimidazolium iodide (OMII), tetra-n-butylammonium iodide (TBAI) and the like are preferable.

以下、本発明の実施形態について具体的に説明する。なお、本発明は以下の実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be specifically described. In addition, this invention is not limited to the following embodiment.

(参考例1)
〔増感色素の最大吸収波長の確認〕
シート抵抗10Ωsq-1の酸化インジウムスズ膜(ITO膜)が塗布されたガラス(品番:No.0052,Geomatec社製)のITO膜表面に、粒径が約20nmの酸化チタンの微粒子を含有するペースト(品番:PST−18NR,日揮触媒化成株式会社製)をスクリーン印刷法にて塗布した。そして、炉内において窒素雰囲気下500℃で30分焼きなまして、1.65μmの多孔質酸化チタンの金属酸化物層を得た。そして、増感色素として、ルテニウム色素N719〔di−tetrabutylammonium cis−dithiocyano bis(2,2’−bipyridyl−4,4’−dicarboxylate)ruthenium(II)〕を無水エタノールに溶解し、濃度3×10-4mol/Lの色素吸着用の溶液を作製した。この溶液に、前記酸化チタン層を25℃で20時間浸漬し、ルテニウム色素を吸着させた。そして、酸化チタン電極をN719溶液から取り出して、エタノールにて洗浄し、乾燥させた。このようにして、金属ナノ粒子を含有しない光電極を作製した。また、金属酸化物層の厚みを、2.72μm、3.40μm、6.74μm、8.37μm、11.8μm、15.3μmとした以外は同様に作成した光電極を作製した。これらの金属酸化物層の厚みの異なる光電極を用いて、紫外可視分光光度計(品番:CEP−2000,分光計器社製)により吸光度を計測した。図3に示すように、金属酸化物層の厚みにおいても増感色素であるN719の最大吸収が520nm近傍に見られた。なお、350nm付近の吸収は酸化チタンによる。
(Reference Example 1)
[Confirmation of maximum absorption wavelength of sensitizing dye]
Paste containing fine particles of titanium oxide having a particle size of about 20 nm on the ITO film surface of glass (Part No .: 0052, manufactured by Geomatec) coated with an indium tin oxide film (ITO film) having a sheet resistance of 10 Ωsq −1 (Product number: PST-18NR, manufactured by JGC Catalysts & Chemicals Co., Ltd.) was applied by a screen printing method. And it annealed at 500 degreeC in nitrogen atmosphere for 30 minutes in the furnace, and obtained the metal oxide layer of the porous titanium oxide of 1.65 micrometer. Then, as a sensitizing dye, ruthenium dye N719 [di-tetrabutylammonium cis-dithiocyano bis (2,2′-bipyridyl-4,4′-dicboxylate) ruthenium (II)] is dissolved in absolute ethanol and the concentration is 3 × 10 −. A 4 mol / L dye adsorption solution was prepared. The titanium oxide layer was immersed in this solution at 25 ° C. for 20 hours to adsorb the ruthenium dye. Then, the titanium oxide electrode was taken out from the N719 solution, washed with ethanol, and dried. Thus, the photoelectrode which does not contain a metal nanoparticle was produced. Moreover, the photoelectrode produced similarly was produced except having set the thickness of the metal oxide layer to 2.72 μm, 3.40 μm, 6.74 μm, 8.37 μm, 11.8 μm, and 15.3 μm. Using these photoelectrodes having different metal oxide layer thicknesses, the absorbance was measured with an ultraviolet-visible spectrophotometer (product number: CEP-2000, manufactured by Spectrometer Co., Ltd.). As shown in FIG. 3, the maximum absorption of N719, which is a sensitizing dye, was also observed near 520 nm in the thickness of the metal oxide layer. Note that absorption near 350 nm is due to titanium oxide.

(参考例2)
〔増感色素の最大吸収波長の光による金属酸化物層中の到達深度の確認〕
そして、図3のデータを用いて、酸化チタンを含む金属酸化物層の各種厚みに対する、350nm、520nm、650nmの波長の光の吸光度をプロットして図4を作成した。
図4に示すように、520nmの光は、透明導電性膜から4μm付近で吸収がおおよそ頭打ちとなりそれより金属酸化物層深くまでは吸収されにくくなることがわかり、透明導電性膜から増感色素の最大吸収波長の光が到達する深さは2〜6μm付近であった。よって、金属ナノ粒子を、透明導電性膜から増感色素の最大吸収波長の光が到達する深さ付近に金属ナノ粒子の密度が他の領域よりも高くすれば、金属ナノ粒子による表面プラズモン共鳴に加えて、金属ナノ粒子による光散乱によって光路長が長くなり、金のナノ粒子を最大限活用できることが期待できる。
(Reference Example 2)
[Confirmation of depth of arrival in metal oxide layer by light of maximum absorption wavelength of sensitizing dye]
Then, using the data of FIG. 3, the absorbance of light having wavelengths of 350 nm, 520 nm, and 650 nm with respect to various thicknesses of the metal oxide layer containing titanium oxide was plotted to create FIG.
As shown in FIG. 4, it can be seen that the light of 520 nm reaches a peak at around 4 μm from the transparent conductive film, and is less likely to be absorbed deeper than the metal oxide layer. The depth reached by the light having the maximum absorption wavelength was about 2 to 6 μm. Therefore, if the density of the metal nanoparticles is higher than other regions near the depth where the light having the maximum absorption wavelength of the sensitizing dye reaches from the transparent conductive film, surface plasmon resonance by the metal nanoparticles In addition, the optical path length is increased by light scattering by the metal nanoparticles, and it can be expected that gold nanoparticles can be utilized to the maximum.

(実施例1)
シート抵抗10Ωsq-1の酸化インジウムスズ膜(ITO膜)が塗布されたガラス(品番:No.0052,Geomatec社製)のITO膜表面に、粒径が約20nmの酸化チタンの微粒子を含有するペースト(品番:PST−18NR,日揮触媒化成株式会社製)をスクリーン印刷法にて塗布した。そして、炉内において窒素雰囲気下450℃で15分焼きなまし、1.1μmの多孔質酸化チタンの一の金属酸化物層を得て、もう一度同様の操作を行い、2.2μmの多孔質酸化チタンの二つの金属酸化物層を得た。金属酸化物層の面積はおおよそ25mm2(5mm×5mm)である。この2.2μmの金属酸化物層の表面に、直径40nmの金のナノ粒子の水溶液を2.7μg/cm2となるよう滴下し、自然乾燥させて、金のナノ粒子をITO膜と略平行となる層状に分散させた。そして、さらに多孔質酸化チタンの金属酸化物層を同様な方法で積層し、全体の厚みが6μmとなる金属酸化物層を得た。そして、最終的に500℃で30分焼きなました。
Example 1
Paste containing fine particles of titanium oxide having a particle size of about 20 nm on the ITO film surface of glass (Part No .: 0052, manufactured by Geomatec) coated with an indium tin oxide film (ITO film) having a sheet resistance of 10 Ωsq −1 (Product number: PST-18NR, manufactured by JGC Catalysts & Chemicals Co., Ltd.) was applied by a screen printing method. Then, annealing was performed in a furnace at 450 ° C. for 15 minutes in a nitrogen atmosphere to obtain one metal oxide layer of 1.1 μm porous titanium oxide, and the same operation was performed once again. Two metal oxide layers were obtained. The area of the metal oxide layer is approximately 25 mm 2 (5 mm × 5 mm). An aqueous solution of gold nanoparticles having a diameter of 40 nm is dropped onto the surface of the 2.2 μm metal oxide layer so as to be 2.7 μg / cm 2, and is naturally dried, so that the gold nanoparticles are substantially parallel to the ITO film. It was dispersed in a layer form. Further, a metal oxide layer of porous titanium oxide was further laminated by the same method to obtain a metal oxide layer having an overall thickness of 6 μm. Finally, it was annealed at 500 ° C for 30 minutes.

次に、増感色素として、ルテニウム色素N719〔di−tetrabutylammonium cis−dithiocyano bis(2,2’−bipyridyl−4,4’−dicarboxylate)ruthenium(II)〕を無水エタノールに溶解し、濃度3×10-4mol/Lの色素吸着用の溶液を作製した。この溶液に、前記酸化チタン層を25℃で20時間浸漬し、ルテニウム色素を吸着させた。そして、酸化チタン電極をN719溶液から取り出して、エタノールにて洗浄し、乾燥させた。このようにして、光電極を作製した。 Next, as a sensitizing dye, ruthenium dye N719 [di-tetrabutylammonium cis-dithiocyano bis (2,2′-bipyridyl-4,4′-dicboxylate) ruthenium (II)] is dissolved in absolute ethanol, and the concentration is 3 × 10. A solution for -4 mol / L dye adsorption was prepared. The titanium oxide layer was immersed in this solution at 25 ° C. for 20 hours to adsorb the ruthenium dye. Then, the titanium oxide electrode was taken out from the N719 solution, washed with ethanol, and dried. In this way, a photoelectrode was produced.

光電極の対極である正極を用意するために、シート抵抗10Ωsq-1の酸化インジウムスズ膜(ITO膜)が塗布されたガラス(品番:No.0052,Geomatec社製)に直径0.9mmの孔を穿ち、そのITO膜表面に、1mlのエタノールに2mgのヘキサクロロ白金(IV)酸六水和物を溶解させたエタノール溶液を数滴滴下して、400℃で30分加熱した。このようして、白金電極としての正極が得られた。 In order to prepare a positive electrode as a counter electrode of the photoelectrode, a hole having a diameter of 0.9 mm is formed in glass (product number: No.0052, manufactured by Geomatec) coated with an indium tin oxide film (ITO film) having a sheet resistance of 10 Ωsq −1. A few drops of an ethanol solution in which 2 mg of hexachloroplatinic (IV) acid hexahydrate was dissolved in 1 ml of ethanol was dropped on the ITO film surface and heated at 400 ° C. for 30 minutes. In this way, a positive electrode as a platinum electrode was obtained.

光電極と正極とのスペーサーに、膜厚50μmのポリイミドフィルム(品番:Himilan film,ペクセル・テクノロジーズ社製)を用い、ホットプレート上で加熱溶融させて光電極と正極を接合し、オープンセルを作製した。そして、減圧下で、正極に開いた孔より、0.05Mヨウ素、0.05Mヨウ化リチウム、0.6Mヨウ化1,2−ジメチル−3−プロピルイミダゾリウム(東京化成工業株式会社製試薬)のアセトニトリル溶液からなる電解質を注入し、正極の孔をポリイミドフィルム(品番:Himilan film,ペクセル・テクノロジーズ社製)で覆いカバーガラスを被せてそのポリイミドフィルムを加熱溶融させ封じた。このようにして、典型的なサンドイッチ型色素増感太陽電池を作製した。   Using a polyimide film (product number: Himilan film, manufactured by Pexel Technologies) as a spacer between the photoelectrode and the positive electrode, the photoelectrode and the positive electrode are joined by heating and melting on a hot plate to produce an open cell. did. And under reduced pressure, 0.05M iodine, 0.05M lithium iodide, 0.6M 1,2-dimethyl-3-propylimidazolium (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) from the hole opened in the positive electrode. The positive electrode was covered with a polyimide film (product number: Himilan film, manufactured by Pexel Technologies), covered with a cover glass, and the polyimide film was heated and melted and sealed. In this way, a typical sandwich type dye-sensitized solar cell was produced.

(実施例2)
ITO膜から3.3μmの位置に金のナノ粒子をITO膜と略平行となる層状に分散させたこと以外は、実施例1と同様に色素増感太陽電池を作製した。
(Example 2)
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that gold nanoparticles were dispersed in a layer shape substantially parallel to the ITO film at a position of 3.3 μm from the ITO film.

(実施例3)
ITO膜から4.4μmの位置に金のナノ粒子をITO膜と略平行となる層状に分散させたこと以外は、実施例1と同様に色素増感太陽電池を作製した。
(実施例4)
ITO膜から5.5μmの位置に金のナノ粒子をITO膜と略平行となる層状に分散させたこと以外は、実施例1と同様に色素増感太陽電池を作製した。
Example 3
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that gold nanoparticles were dispersed in a layer shape substantially parallel to the ITO film at a position of 4.4 μm from the ITO film.
(Example 4)
A dye-sensitized solar cell was produced in the same manner as in Example 1, except that gold nanoparticles were dispersed in a layer substantially parallel to the ITO film at a position of 5.5 μm from the ITO film.

(比較例1)
金のナノ粒子を用いなかったこと以外は、実施例1と同様に色素増感太陽電池を作製した。
(Comparative Example 1)
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that gold nanoparticles were not used.

(比較例2)
ITO膜から1.1μmの位置に金のナノ粒子をITO膜と略平行となる層状に分散させたこと以外は、実施例1と同様に色素増感太陽電池を作製した。
(Comparative Example 2)
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that gold nanoparticles were dispersed in a layer shape substantially parallel to the ITO film at a position 1.1 μm from the ITO film.

実施例1〜4及び比較例1〜2で得られた色素増感太陽電池にキセノンライトを照射し(AM1.5,100mWcm-2)、 Agilent社製のDesktop EasyEXPERTソフトウエアー(V.4.0)を搭載したHewlett−Packard社製の半導体パラメーターアナライザー(品番:HP41563)を用いて、それぞれ電流―電圧特性を測定した。得られた電流―電圧曲線から、電池の短絡電流(Jsc)、開放電圧(Voc)、FF(フィルファクター)および光電変換効率(η)を、η=Jsc×Voc×FFの計算式から算出した。 The dye-sensitized solar cells obtained in Examples 1 to 4 and Comparative Examples 1 and 2 were irradiated with xenon light (AM1.5, 100 mWcm −2 ), and Desktop EasyEXPERT software (V.4.0) manufactured by Agilent. The current-voltage characteristics were measured using a semiconductor parameter analyzer (product number: HP41563) manufactured by Hewlett-Packard. From the obtained current-voltage curve, the short circuit current (Jsc), the open circuit voltage (Voc), the FF (fill factor) and the photoelectric conversion efficiency (η) of the battery were calculated from the formula η = Jsc × Voc × FF. .

実施例1〜4及び比較例1〜2で得られた色素増感太陽電池の電気特性の一覧を表1に示す。   Table 1 shows a list of electrical characteristics of the dye-sensitized solar cells obtained in Examples 1-4 and Comparative Examples 1-2.

Figure 2018206904
Figure 2018206904

表1の結果より、ITO膜から2.2〜5.5μm離れた位置に金ナノ粒子を配置する実施例1〜4において、これらを添加しなかった比較例1及びITO膜から1.1μm離れた位置に金ナノ粒子を配置する比較例2よりも短絡電流が向上し、その結果として、光電変換効率も向上することが分かった。   From the result of Table 1, in Examples 1-4 which arrange | position gold nanoparticles in the position 2.2-5.5 micrometers away from the ITO film | membrane, it separated 1.1 micrometers from the comparative example 1 and ITO film | membrane which did not add these. It was found that the short-circuit current was improved as compared with Comparative Example 2 in which the gold nanoparticles were arranged at the positions, and as a result, the photoelectric conversion efficiency was also improved.

(実施例5)
ITO膜から3.6μmの位置に、直径40nmの金のナノ粒子の水溶液を0.65μg/cm2となるよう滴下し、金のナノ粒子をITO膜と略平行となる層状に分散させたこと以外は、実施例1と同様に色素増感太陽電池を作製した。
(Example 5)
An aqueous solution of gold nanoparticles with a diameter of 40 nm was dropped at a position of 3.6 μm from the ITO film so as to be 0.65 μg / cm 2, and the gold nanoparticles were dispersed in a layer shape substantially parallel to the ITO film. Except for the above, a dye-sensitized solar cell was produced in the same manner as in Example 1.

(実施例6)
金のナノ粒子の水溶液を1.3μg/cm2となるよう滴下し、金のナノ粒子をITO膜と略平行となる層状に分散させたこと以外は、実施例5と同様に色素増感太陽電池を作製した。
(Example 6)
Dye-sensitized sun as in Example 5 except that an aqueous solution of gold nanoparticles was dropped to 1.3 μg / cm 2 and gold nanoparticles were dispersed in a layer substantially parallel to the ITO film. A battery was produced.

(実施例7)
金のナノ粒子の水溶液を2.7μg/cm2となるよう滴下し、金のナノ粒子をITO膜と略平行となる層状に分散させたこと以外は、実施例5と同様に色素増感太陽電池を作製した。
(Example 7)
Dye-sensitized sun as in Example 5, except that an aqueous solution of gold nanoparticles was dropped to 2.7 μg / cm 2 and the gold nanoparticles were dispersed in a layer substantially parallel to the ITO film. A battery was produced.

(実施例8)
金のナノ粒子の水溶液を5.4μg/cm2となるよう滴下し、金のナノ粒子をITO膜と略平行となる層状に分散させたこと以外は、実施例5と同様に色素増感太陽電池を作製した。
(Example 8)
Dye-sensitized sun as in Example 5 except that an aqueous solution of gold nanoparticles was dropped to 5.4 μg / cm 2 and gold nanoparticles were dispersed in a layer substantially parallel to the ITO film. A battery was produced.

(比較例3)
金のナノ粒子を用いなかったこと以外は、実施例5と同様に色素増感太陽電池を作製した。
(Comparative Example 3)
A dye-sensitized solar cell was produced in the same manner as in Example 5 except that gold nanoparticles were not used.

実施例1〜4及び比較例1〜2と同様にして、実施例5〜8及び比較例3で得られた色素増感太陽電池の電気特性の一覧を表2に示す。   Table 2 shows a list of electrical characteristics of the dye-sensitized solar cells obtained in Examples 5 to 8 and Comparative Example 3 in the same manner as in Examples 1 to 4 and Comparative Examples 1 and 2.

Figure 2018206904
Figure 2018206904

表2の結果より、金ナノ粒子の密度が0.65〜5.4μg/cm2である実施例5〜8において、これらを添加しなかった比較例3よりも短絡電流が向上し、その結果として、光電変換効率も向上することが分かった。 From the results of Table 2, in Examples 5 to 8 where the density of the gold nanoparticles is 0.65 to 5.4 μg / cm 2 , the short-circuit current is improved as compared with Comparative Example 3 in which these were not added. As a result, the photoelectric conversion efficiency was also improved.

1・・・光電極(負極)
11・・・ガラス基板
12・・・透明導電性膜
13・・・金属酸化物層
14・・・増感色素
15・・・金属ナノ粒子
2・・・電解質
3・・・正極
1 ... Photoelectrode (negative electrode)
DESCRIPTION OF SYMBOLS 11 ... Glass substrate 12 ... Transparent conductive film 13 ... Metal oxide layer 14 ... Sensitizing dye 15 ... Metal nanoparticle 2 ... Electrolyte 3 ... Positive electrode

Claims (5)

透明導電性膜を一の面に設けられたガラス基板と、
前記透明導電性膜における前記ガラス基板とは反対側の一面に設けられ粒子状の金属酸化物からなる金属酸化物層と、
前記金属酸化物の表面に吸着された増感色素と、
前記金属酸化物層中に金属ナノ粒子を備え、
前記透明導電性膜から前記増感色素の最大吸収波長の光が到達する深さ付近の距離だけ離れた前記金属ナノ粒子の密度が前記金属酸化物層中における他の領域よりも高いことを特徴とする色素増感太陽電池用光電極。
A glass substrate provided with a transparent conductive film on one surface;
A metal oxide layer made of particulate metal oxide provided on one surface of the transparent conductive film opposite to the glass substrate;
A sensitizing dye adsorbed on the surface of the metal oxide;
Comprising metal nanoparticles in the metal oxide layer;
The density of the metal nanoparticles separated from the transparent conductive film by a distance in the vicinity of the depth at which light having the maximum absorption wavelength of the sensitizing dye reaches is higher than other regions in the metal oxide layer. A photoelectrode for a dye-sensitized solar cell.
前記透明導電性膜から2〜6μm離れた前記金属ナノ粒子の密度が前記金属酸化物層中における他の領域よりも高いことを特徴とする請求項1に記載の色素増感太陽電池用光電極。 2. The dye-sensitized solar cell photoelectrode according to claim 1, wherein the density of the metal nanoparticles 2 to 6 μm away from the transparent conductive film is higher than that of other regions in the metal oxide layer. . 前記金属ナノ粒子は、金、銀、銅から選ばれる少なくとも一種であり、粒子径が10〜200nmであることを特徴とする請求項1又は請求項2に記載の色素増感太陽電池用光電極。 3. The dye-sensitized solar cell photoelectrode according to claim 1, wherein the metal nanoparticles are at least one selected from gold, silver, and copper and have a particle diameter of 10 to 200 nm. . 前記増感色素は、ルテニウムビピリジン系錯体であることを特徴とする請求項1から請求項3のいずれかに記載の色素増感太陽電池用光電極。 4. The dye-sensitized solar cell photoelectrode according to claim 1, wherein the sensitizing dye is a ruthenium bipyridine complex. 請求項1から請求項4のいずれかに記載の色素増感太陽電池用光電極を具備することを特徴とする色素増感太陽電池。 A dye-sensitized solar cell comprising the photoelectrode for a dye-sensitized solar cell according to any one of claims 1 to 4.
JP2017109631A 2017-06-02 2017-06-02 Photoelectrode for dye-sensitized solar cell and dye-sensitized solar cell using the same Pending JP2018206904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017109631A JP2018206904A (en) 2017-06-02 2017-06-02 Photoelectrode for dye-sensitized solar cell and dye-sensitized solar cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017109631A JP2018206904A (en) 2017-06-02 2017-06-02 Photoelectrode for dye-sensitized solar cell and dye-sensitized solar cell using the same

Publications (1)

Publication Number Publication Date
JP2018206904A true JP2018206904A (en) 2018-12-27

Family

ID=64957411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017109631A Pending JP2018206904A (en) 2017-06-02 2017-06-02 Photoelectrode for dye-sensitized solar cell and dye-sensitized solar cell using the same

Country Status (1)

Country Link
JP (1) JP2018206904A (en)

Similar Documents

Publication Publication Date Title
JP5023866B2 (en) Dye-sensitized photoelectric conversion element, method for producing the same, and electronic device
JP5002595B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP5285062B2 (en) Photosensitizer and solar cell using the same
JP5084730B2 (en) Dye-sensitized solar cell
JP5118805B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
EP2432069B1 (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP4863662B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
EP2897144A1 (en) Photosensitized solar cell module and production method thereof
JPWO2010119775A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2005235725A (en) Dye-sensitized solar cell module
JP4963165B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2010009786A (en) Dye sensitized solar cell, and dye sensitized solar cell module
Jaculine et al. Zinc stannate nanoflower (Zn2SnO4) photoanodes for efficient dye sensitized solar cells
JP2004319439A (en) Dye-sensitized solar cell and its manufacturing method
JP4627427B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5657780B2 (en) Photoelectric conversion element and photoelectric conversion module
JP4716636B2 (en) Compound semiconductor
Ramavenkateswari et al. Proficiency of acceptor-donor-acceptor organic dye with spiro-MeOTAD HTM on the photovoltaic performance of dye sensitized solar cell
JP2007073198A (en) Dye-sensitized solar battery
JP4537693B2 (en) Dye-sensitized solar cell
JP4455868B2 (en) Dye-sensitized solar cell
JP2018206904A (en) Photoelectrode for dye-sensitized solar cell and dye-sensitized solar cell using the same
WO2012033049A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP4537694B2 (en) Dye-sensitized solar cell
Hu et al. Dye-sensitised solar cells