JP2018206621A - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
JP2018206621A
JP2018206621A JP2017111295A JP2017111295A JP2018206621A JP 2018206621 A JP2018206621 A JP 2018206621A JP 2017111295 A JP2017111295 A JP 2017111295A JP 2017111295 A JP2017111295 A JP 2017111295A JP 2018206621 A JP2018206621 A JP 2018206621A
Authority
JP
Japan
Prior art keywords
conductor
glass
insulator
point
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017111295A
Other languages
Japanese (ja)
Other versions
JP6855330B2 (en
Inventor
朋紀 山口
Tomonori Yamaguchi
朋紀 山口
洋史 渡邊
Hirofumi Watanabe
洋史 渡邊
沖村 康之
Yasuyuki Okimura
康之 沖村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2017111295A priority Critical patent/JP6855330B2/en
Publication of JP2018206621A publication Critical patent/JP2018206621A/en
Application granted granted Critical
Publication of JP6855330B2 publication Critical patent/JP6855330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a spark plug capable of improving endurance of an electric conductor.SOLUTION: A spark plug includes an electric conductor placed between a center electrode and a terminal fitting and connected electrically with the terminal fitting, a conductive glass in contact with the center electrode, the electric conductor and an insulator, and an insulating glass in contact with the conductive glass, the electric conductor and the insulator. In an arbitrary cross-section including the axis line, boundary surface of the insulating glass and the conductive glass is such that a first point, where the boundary surface comes into contact with the insulator, is located farther rear end side than a second point, where the boundary surface comes into contact with the electric conductor, and the boundary surface is located at the same position as the second point in the axial direction, or on the farther rear end side than the second point in the axial direction.SELECTED DRAWING: Figure 1

Description

本発明はスパークプラグに関し、特に抵抗体や磁性体などの導電体を内蔵したスパークプラグに関するものである。   The present invention relates to a spark plug, and more particularly to a spark plug incorporating a conductor such as a resistor or a magnetic material.

放電時に発生する電波ノイズを抑えるために、抵抗体や磁性体などの導電体を絶縁体に内蔵したスパークプラグがある(特許文献1及び2)。特許文献2に開示された技術では、中心電極に導電性ガラスを介して接続された導電体(抵抗体)が振動によって破損しないように、導電性ガラス、導電体および絶縁体に接触する絶縁性ガラスが内蔵されている。   In order to suppress radio noise generated at the time of discharge, there is a spark plug in which a conductor such as a resistor or a magnetic body is built in an insulator (Patent Documents 1 and 2). In the technique disclosed in Patent Document 2, the insulating property that contacts the conductive glass, the conductive material, and the insulator so that the conductive material (resistor) connected to the central electrode via the conductive glass is not damaged by vibration. Glass is built-in.

特開昭61−208768号公報JP-A-61-208768 特開2007−122879号公報JP 2007-122879 A

しかしながら上記従来の技術では、導電性ガラスと絶縁性ガラスとの界面が導電体に接する部分に、放電時に電界が集中し、導電体が劣化するおそれがある。   However, in the above conventional technique, the electric field concentrates on the portion where the interface between the conductive glass and the insulating glass is in contact with the conductor during discharge, and the conductor may be deteriorated.

本発明は上述した問題点を解決するためになされたものであり、導電体の耐久性を向上できるスパークプラグを提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a spark plug that can improve the durability of a conductor.

この目的を達成するために本発明のスパークプラグは、先端側から後端側へと軸線方向に延びる軸孔を有する絶縁体と、軸孔の先端側に配置された中心電極と、軸孔内の中心電極の後端側に配置される導電体と、中心電極、導電体および絶縁体に接触し中心電極と導電体とを電気的に接続する導電性ガラスと、導電体と絶縁体との間に配置されると共に導電性ガラス、導電体および絶縁体に接触する絶縁性ガラスと、を備えている。軸線を含む任意の断面において、絶縁性ガラスと導電性ガラスとの界面は、絶縁体に界面が接する第1点が導電体に界面が接する第2点よりも後端側に位置し、界面は、第2点と軸線方向の同位置または第2点よりも軸線方向の後端側に位置する。   To achieve this object, a spark plug according to the present invention includes an insulator having an axial hole extending in the axial direction from the front end side to the rear end side, a center electrode disposed on the front end side of the shaft hole, A conductor disposed on the rear end side of the center electrode, a conductive glass that contacts the center electrode, the conductor and the insulator and electrically connects the center electrode and the conductor, and the conductor and the insulator Insulating glass disposed between and in contact with the conductive glass and the conductor and the insulator. In any cross section including the axis, the interface between the insulating glass and the conductive glass is located at the rear end side of the first point where the interface is in contact with the insulator than the second point where the interface is in contact with the conductor. The second point is located at the same position in the axial direction or at the rear end side in the axial direction from the second point.

請求項1記載のスパークプラグによれば、導電体上の第2点に電界が集中するのを緩和できるので、導電体の劣化を抑制できる。よって、導電体の耐久性を向上できる。   According to the spark plug of the first aspect, the concentration of the electric field at the second point on the conductor can be alleviated, so that deterioration of the conductor can be suppressed. Therefore, the durability of the conductor can be improved.

請求項2記載のスパークプラグによれば、導電体と界面とが接する境界線のうち、軸線方向の最後端位置と最先端位置との間の軸線方向における距離Dを、導電体の軸線方向における最大の長さLで除したD/Lは、0≦D/L≦0.1を満たす。その結果、導電体の側面に接触する導電性ガラスの接触面積の周方向のばらつきを抑制できる。これにより、請求項1の効果に加え、導電体の抵抗値のばらつきを抑制できると共に、導電体の耐久性を向上できる。   According to the spark plug according to claim 2, the distance D in the axial direction between the rearmost end position in the axial direction and the most distal position among the boundary lines where the conductor and the interface are in contact is set in the axial direction of the conductor. D / L divided by the maximum length L satisfies 0 ≦ D / L ≦ 0.1. As a result, variation in the circumferential direction of the contact area of the conductive glass contacting the side surface of the conductor can be suppressed. Thus, in addition to the effect of the first aspect, variations in the resistance value of the conductor can be suppressed, and the durability of the conductor can be improved.

本発明の第1実施の形態におけるスパークプラグの片側断面図である。It is a half sectional view of the spark plug in the first embodiment of the present invention. (a)は図1のIIaで示す部分を拡大して示したスパークプラグの断面図であり、(b)は第2実施の形態におけるスパークプラグの一部を拡大して示した断面図である。(A) is sectional drawing of the spark plug which expanded and showed the part shown by IIa of FIG. 1, (b) is sectional drawing which expanded and showed a part of spark plug in 2nd Embodiment. . 導電体を模式的に図示した斜視図である。It is the perspective view which illustrated the conductor typically. (a)は第3実施の形態におけるスパークプラグの一部を拡大して示した断面図であり、(b)は第4実施の形態におけるスパークプラグの一部を拡大して示した断面図である。(A) is sectional drawing which expanded and showed a part of spark plug in 3rd Embodiment, (b) is sectional drawing which expanded and showed a part of spark plug in 4th Embodiment. is there. 比較例におけるスパークプラグの一部を拡大して示した断面図である。It is sectional drawing which expanded and showed a part of spark plug in the comparative example.

以下、本発明の好ましい実施形態について添付図面を参照して説明する。図1は本発明の第1実施の形態におけるスパークプラグ10の軸線Oを境にした片側断面図である。図1では、紙面下側をスパークプラグ10の先端側、紙面上側をスパークプラグ10の後端側という(図2から図5においても同じ)。スパークプラグ10は、絶縁体11、中心電極14及び端子金具15を備えている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a one-side cross-sectional view with an axis O of a spark plug 10 in the first embodiment of the present invention as a boundary. In FIG. 1, the lower side of the paper surface is referred to as the front end side of the spark plug 10, and the upper side of the paper surface is referred to as the rear end side of the spark plug 10 (the same applies to FIGS. 2 to 5). The spark plug 10 includes an insulator 11, a center electrode 14, and a terminal fitting 15.

絶縁体11は、機械的特性や高温下の絶縁性に優れるアルミナ等のセラミック製の部材であり、軸線Oに沿って貫通する軸孔12が形成されている。本実施の形態では、軸孔12は、軸線Oと直交する断面の形状が円形である。軸孔12は、先端に向かって内径が次第に小さくなる段部13が先端側に設けられている。   The insulator 11 is a member made of ceramic such as alumina which is excellent in mechanical properties and insulation at high temperature, and has a shaft hole 12 penetrating along the axis O. In the present embodiment, the shaft hole 12 has a circular cross-sectional shape orthogonal to the axis O. The shaft hole 12 is provided with a stepped portion 13 on the distal end side whose inner diameter gradually decreases toward the distal end.

中心電極14は、軸線Oに沿って延びる棒状の部材であり、銅または銅を主成分とする芯材がニッケル又はニッケル基合金で覆われている。中心電極14は、軸孔12の段部13に係止され、先端が軸孔12から露出する。   The center electrode 14 is a rod-shaped member extending along the axis O, and copper or a core material mainly composed of copper is covered with nickel or a nickel-based alloy. The center electrode 14 is locked to the step portion 13 of the shaft hole 12, and the tip is exposed from the shaft hole 12.

端子金具15は、高圧ケーブル(図示せず)が接続される棒状の部材であり、導電性を有する金属材料(例えば低炭素鋼等)によって形成されている。端子金具15は、先端側が軸孔12に挿入された状態で、絶縁体11の後端に固定されている。   The terminal fitting 15 is a rod-like member to which a high voltage cable (not shown) is connected, and is formed of a conductive metal material (for example, low carbon steel). The terminal fitting 15 is fixed to the rear end of the insulator 11 with the tip end inserted into the shaft hole 12.

絶縁体11は、端子金具15と軸線O方向に間隔をあけて、外周の先端側に主体金具16が加締め固定されている。主体金具16は、導電性を有する金属材料(例えば低炭素鋼等)によって形成された略円筒状の部材である。主体金具16は、径方向の外側へ鍔状に張り出す座部17と、座部17よりも先端側の外周面に形成されたねじ部18とを備えている。主体金具16は、内燃機関(シリンダヘッド)のねじ穴(図示せず)にねじ部18を締結して固定される。   The insulator 11 has a metal shell 16 swaged and fixed to the distal end side of the outer periphery with a gap in the direction of the axis O from the terminal metal 15. The metal shell 16 is a substantially cylindrical member formed of a conductive metal material (for example, low carbon steel). The metal shell 16 includes a seat portion 17 that projects in a bowl shape outward in the radial direction, and a screw portion 18 that is formed on the outer peripheral surface on the tip side of the seat portion 17. The metal shell 16 is fixed by fastening a screw portion 18 to a screw hole (not shown) of the internal combustion engine (cylinder head).

接地電極19は、主体金具16の先端に接合される金属製(例えばニッケル基合金製)の部材である。本実施の形態では、接地電極19は棒状に形成されており、先端側が屈曲し中心電極14と対向する。接地電極19は、中心電極14との間に火花ギャップを形成する。   The ground electrode 19 is a metal (for example, nickel-base alloy) member joined to the tip of the metal shell 16. In the present embodiment, the ground electrode 19 is formed in a rod shape, the tip side is bent and faces the center electrode 14. The ground electrode 19 forms a spark gap with the center electrode 14.

導電体20は、放電時に発生する電波ノイズを抑えるための部材であり、軸孔12内の中心電極14と端子金具15との間に配置されている。導電体20は、中心電極14と導電体20とに接触する導電性ガラス21によって中心電極14と電気的に接続される。本実施の形態では、導電体20は円柱状に形成されている。また、端子金具15と導電体20とに接触する導電性ガラス22によって、導電体20は端子金具15と電気的に接続されている。   The conductor 20 is a member for suppressing radio noise generated at the time of discharge, and is disposed between the center electrode 14 in the shaft hole 12 and the terminal fitting 15. The conductor 20 is electrically connected to the center electrode 14 by a conductive glass 21 that contacts the center electrode 14 and the conductor 20. In the present embodiment, the conductor 20 is formed in a cylindrical shape. Further, the conductor 20 is electrically connected to the terminal fitting 15 by the conductive glass 22 that contacts the terminal fitting 15 and the conductor 20.

導電体20としては、フェライトと導体とが複合された磁性体や抵抗体などが挙げられる。抵抗体は、放電電流のうち電波ノイズの原因となる周波数帯の成分を吸収する。磁性体は、フェライトのインピーダンスや磁気損失等によって、放電電流のうち電波ノイズの原因となる周波数帯の成分を遮断または吸収する。   Examples of the conductor 20 include a magnetic body or a resistor body in which a ferrite and a conductor are combined. The resistor absorbs a component in a frequency band that causes radio noise in the discharge current. The magnetic body blocks or absorbs a component of the frequency band that causes radio noise in the discharge current due to the impedance, magnetic loss, etc. of the ferrite.

抵抗体としては、例えば、炭素系、金属、金属酸化物などの抵抗材料の皮膜を磁器などの基材の表面に接合した素子(抵抗器)、Ni−Cr等の抵抗線を磁器などの基材に巻き付けた素子、骨材と導電性粉末とを混合した成形体などが用いられる。抵抗体の抵抗値は、例えば0.1kΩ〜30kΩであることが好ましく、1kΩ〜20kΩであることがさらに好ましい。   As the resistor, for example, an element (resistor) in which a film of a resistance material such as carbon, metal, metal oxide or the like is bonded to the surface of a base material such as porcelain, a resistance wire such as Ni-Cr is used as a base such as porcelain. An element wound around a material, a molded body in which an aggregate and conductive powder are mixed, or the like is used. The resistance value of the resistor is, for example, preferably 0.1 kΩ to 30 kΩ, and more preferably 1 kΩ to 20 kΩ.

骨材と導電性粉末とを混合し成形した抵抗体において、骨材としては、例えばガラス粉末、無機化合物粉末が挙げられる。骨材のガラス粉末としては、例えばB−SiO系、BaO−B系、SiO−B−CaO−BaO系、SiO−ZnO−B系、SiO−B−LiO系およびSiO−B−LiO−BaO系等の粉末が挙げられる。骨材の無機化合物粉末としては、例えばアルミナ、窒化ケイ素、ムライト及びステアタイト等の粉末が挙げられる。これらの骨材は1種のみを用いても良いし、2種以上を併用しても良い。 In the resistor formed by mixing aggregate and conductive powder, examples of the aggregate include glass powder and inorganic compound powder. Examples of the aggregate glass powder include B 2 O 3 —SiO 2 system, BaO—B 2 O 3 system, SiO 2 —B 2 O 3 —CaO—BaO system, SiO 2 —ZnO—B 2 O 3 system, Examples of the powder include SiO 2 —B 2 O 3 —Li 2 O and SiO 2 —B 2 O 3 —Li 2 O—BaO. Examples of the aggregate inorganic compound powder include powders of alumina, silicon nitride, mullite, steatite and the like. These aggregates may use only 1 type and may use 2 or more types together.

導電性粉末としては、例えば半導性酸化物、金属および非金属導電性材料等からなる粉末が挙げられる。半導性酸化物としては、例えばSnOが挙げられる。金属としては、例えばZn,Sb,Sn,Ag及びNi等が挙げられる。非金属導電性材料としては、例えば無定形カーボン(カーボンブラック)、グラファイト、炭化ケイ素、炭化チタン、窒化チタン、炭化タングステン及び炭化ジルコニウム等が挙げられる。これらの導電性粉末は、1種のみを用いても良いし、2種以上を併用しても良い。 Examples of the conductive powder include powder made of a semiconductive oxide, a metal, a non-metallic conductive material, and the like. An example of the semiconductive oxide is SnO 2 . Examples of the metal include Zn, Sb, Sn, Ag, and Ni. Examples of the nonmetallic conductive material include amorphous carbon (carbon black), graphite, silicon carbide, titanium carbide, titanium nitride, tungsten carbide, and zirconium carbide. These conductive powders may be used alone or in combination of two or more.

磁性体としては、例えば、フェライトの磁器の表面に導体を接合した素子、フェライトの磁器に金属線を巻き付けた素子、フェライトの粒子を導電性物質で被覆した磁性粒子の集合体(成形体)などが挙げられる。磁性体の抵抗値は、例えば0.01Ω〜10Ωであることが好ましい。   Examples of the magnetic body include an element in which a conductor is bonded to the surface of a ferrite porcelain, an element in which a metal wire is wound around a ferrite porcelain, and an aggregate (molded body) of magnetic particles in which ferrite particles are coated with a conductive substance. Is mentioned. The resistance value of the magnetic material is preferably 0.01Ω to 10Ω, for example.

磁性粒子に用いられる導電性物質は、例えばNi,Cu,Sn,Fe,インコネル(INCONELは登録商標)等の金属、LaMnO,SrTiO,SrCrO等の導電性または半導性の複合酸化物、炭素、Cr,TiC等の炭素化合物等が挙げられる。フェライトや導電性物質は、1種ないしは複数種を適宜選択して用いることができる。なお、磁性粒子に加え、ガラス粉末や無機化合物粉末などを混合して磁性体(磁性粒子の集合体)を形成することは当然可能である。磁性粒子の集合体は、導電性物質同士が接することにより、3次元の導電経路が形成される。 Examples of the conductive material used for the magnetic particles include metals such as Ni, Cu, Sn, Fe, and Inconel (INCONEL is a registered trademark), and conductive or semiconductive complex oxides such as LaMnO 3 , SrTiO 3 , and SrCrO 3 . , Carbon, and carbon compounds such as Cr 3 C 2 and TiC. One or more types of ferrite and conductive materials can be appropriately selected and used. In addition to magnetic particles, it is naturally possible to form a magnetic body (aggregate of magnetic particles) by mixing glass powder, inorganic compound powder, or the like. The aggregate of magnetic particles forms a three-dimensional conductive path by bringing conductive materials into contact with each other.

フェライトの粒子の表面を導電性物質で覆う手段としては、公知の手段を適宜採用できる。例えば、導電性物質を粒子と共に混合・撹拌して機械的に粒子の表面に付着させたり、バインダ等を用いて導電性物質を粒子の表面に付着させたり、無電解メッキによって導電性物質を粒子の表面に析出させたりする手段が挙げられる。   As means for covering the surface of the ferrite particles with a conductive substance, known means can be appropriately employed. For example, the conductive material is mixed and stirred together with the particles to mechanically adhere to the surface of the particles, the conductive material is adhered to the surface of the particles using a binder or the like, or the conductive material is made particles by electroless plating. And means for depositing on the surface.

導電性ガラス21,22は、ガラス粉末および導電性粉末の混合物を焼成したものが用いられる。ガラス粉末および導電性粉末は、抵抗体の材料のガラス粉末および導電性粉末と同様のものが用いられる。導電性ガラス21,22は、必要に応じてTiO等の半導性の無機化合物粉末、絶縁性粉末等を含有しても良い。 As the conductive glasses 21 and 22, those obtained by baking a mixture of glass powder and conductive powder are used. As the glass powder and the conductive powder, the same glass powder and conductive powder as the resistor material are used. The conductive glasses 21 and 22 may contain a semiconductive inorganic compound powder such as TiO 2 , an insulating powder, or the like as necessary.

図2(a)は図1のIIaで示す部分を拡大して示したスパークプラグ10の断面図である。図2(a)の矢印Fは軸線方向の先端側、矢印Bは軸線方向の後端側、矢印Pは軸線O(図1参照)に直交する軸直角方向の内側を示している(図2(b)、図3、図4(a)、図4(b)及び図5においても同じ)。   FIG. 2A is a cross-sectional view of the spark plug 10 showing an enlarged portion indicated by IIa in FIG. In FIG. 2A, the arrow F indicates the front end side in the axial direction, the arrow B indicates the rear end side in the axial direction, and the arrow P indicates the inner side in the direction perpendicular to the axis O (see FIG. 1). (The same applies to (b), FIG. 3, FIG. 4 (a), FIG. 4 (b), and FIG. 5).

図2(a)に示すようにスパークプラグ10は、導電体20の側面20bと絶縁体11との間に絶縁性ガラス23が配置されている。絶縁性ガラス23は、導電性ガラス21、導電体20及び絶縁体11に接触する。導電体20と絶縁体11との間に絶縁性ガラス23が介在することにより、振動によって導電体20が破損しないようにできる。   As shown in FIG. 2A, in the spark plug 10, an insulating glass 23 is disposed between the side surface 20 b of the conductor 20 and the insulator 11. The insulating glass 23 is in contact with the conductive glass 21, the conductor 20 and the insulator 11. By interposing the insulating glass 23 between the conductor 20 and the insulator 11, the conductor 20 can be prevented from being damaged by vibration.

絶縁性ガラス23の材料としては、融点が絶縁体11の融点よりも低いもの、例えばB−SiO系、BaO−B系、SiO−B−CaO−BaO系、SiO−ZnO−B系、SiO−B−LiO系およびSiO−B−LiO−BaO系などが挙げられる。これらは1種のみを用いても良いし、2種以上を併用しても良い。絶縁性ガラス23は、アルミナ、窒化ケイ素、ムライト及びステアタイト等の無機化合物を含有しても良い。 As a material of the insulating glass 23, a material having a melting point lower than the melting point of the insulator 11, for example, B 2 O 3 —SiO 2 type, BaO—B 2 O 3 type, SiO 2 —B 2 O 3 —CaO—BaO. System, SiO 2 —ZnO—B 2 O 3 system, SiO 2 —B 2 O 3 —Li 2 O system, and SiO 2 —B 2 O 3 —Li 2 O—BaO system. These may use only 1 type and may use 2 or more types together. The insulating glass 23 may contain an inorganic compound such as alumina, silicon nitride, mullite, and steatite.

導電性ガラス21は、導電体20の底面20a及び側面20bの一部に接触すると共に絶縁体11に接触する。導電性ガラス21が絶縁体11に接触することにより、スパークプラグ10が装着された内燃機関(図示せず)の燃焼室の燃焼ガスが軸孔12から漏洩しないようにできる。   The conductive glass 21 contacts a part of the bottom surface 20 a and the side surface 20 b of the conductor 20 and contacts the insulator 11. When the conductive glass 21 comes into contact with the insulator 11, the combustion gas in the combustion chamber of the internal combustion engine (not shown) to which the spark plug 10 is attached can be prevented from leaking from the shaft hole 12.

絶縁性ガラス23は導電性ガラス21と導電性ガラス22との間に介在する。絶縁性ガラス23の体積抵抗率は、導電体20及び導電性ガラス21の体積抵抗率よりも大きいので、絶縁性ガラス23を介して導電性ガラス21,22が短絡しないようにできる。   The insulating glass 23 is interposed between the conductive glass 21 and the conductive glass 22. Since the volume resistivity of the insulating glass 23 is larger than the volume resistivity of the conductor 20 and the conductive glass 21, the conductive glasses 21 and 22 can be prevented from being short-circuited through the insulating glass 23.

スパークプラグ10は、例えば、以下のような方法によって製造される。まず、絶縁体11の軸孔12に中心電極14を挿入し、中心電極14を段部13で係止する。次に、導電性ガラス21の原料粉末を軸孔12から入れて、中心電極14の周りに充填する。圧縮用棒材(図示せず)を用いて、軸孔12に充填した導電性ガラス21の原料粉末を予備圧縮する。   The spark plug 10 is manufactured by the following method, for example. First, the center electrode 14 is inserted into the shaft hole 12 of the insulator 11, and the center electrode 14 is locked by the step portion 13. Next, the raw material powder of the conductive glass 21 is put through the shaft hole 12 and filled around the center electrode 14. The raw material powder of the conductive glass 21 filled in the shaft hole 12 is pre-compressed using a compression rod (not shown).

次に、絶縁性ガラス23の材料でできたガラス管の中に導電体20(素子や成形体など)を入れたものを軸孔12に挿入し、導電性ガラス21の原料粉末の成形体の上に置く。導電体20及びガラス管の上に、導電性ガラス22の原料粉末をペレット状に成形した成形体を置いた後、絶縁体11を炉内に移送し、例えば導電性ガラス21,22の原料粉末や絶縁性ガラス23の材料に含まれるガラス成分の軟化点より高い温度まで加熱する。加熱後、絶縁体11の軸孔12に端子金具15を圧入し、端子金具15の先端によって導電性ガラス21,22の原料粉末および絶縁性ガラス23の材料を軸方向へ圧縮する。この結果、それらが圧縮・焼結され、絶縁体11の内部に導電体20、導電性ガラス21,22、絶縁性ガラス23が形成される。   Next, a glass tube made of the material of the insulating glass 23 into which a conductor 20 (element, molded body, etc.) is put is inserted into the shaft hole 12, and a molded body of the raw material powder of the conductive glass 21 is inserted. put on top. After placing the molded body obtained by forming the raw material powder of the conductive glass 22 into a pellet shape on the conductor 20 and the glass tube, the insulator 11 is transferred into the furnace, for example, the raw material powder of the conductive glasses 21 and 22. Or heated to a temperature higher than the softening point of the glass component contained in the material of the insulating glass 23. After the heating, the terminal fitting 15 is press-fitted into the shaft hole 12 of the insulator 11, and the raw material powder of the conductive glasses 21 and 22 and the material of the insulating glass 23 are compressed in the axial direction by the tip of the terminal fitting 15. As a result, they are compressed and sintered, and the conductor 20, the conductive glasses 21 and 22, and the insulating glass 23 are formed inside the insulator 11.

次に絶縁体11を炉外へ移送し、絶縁体11の外周に主体金具16を組み付ける。接地電極19を主体金具16に接合した後、接地電極19の先端が中心電極14と対向するように接地電極19を屈曲して、スパークプラグ10を得る。   Next, the insulator 11 is transferred to the outside of the furnace, and the metal shell 16 is assembled to the outer periphery of the insulator 11. After joining the ground electrode 19 to the metal shell 16, the ground electrode 19 is bent so that the tip of the ground electrode 19 faces the center electrode 14 to obtain the spark plug 10.

この製造方法において、導電体20を入れたガラス管を軸孔12に挿入する代わりに、導電体20(成形体)を軸孔12に入れた後、導電体20の周りに絶縁性ガラス23の原料粉末を充填することは当然可能である。また、導電性ガラス21,22及び絶縁性ガラス23と一緒に導電体20(成形体)を焼成するのではなく、導電体20(素子)を軸孔12に入れ、軸孔12内で軟化させた導電性ガラス21,22及び絶縁性ガラス23を導電体20(素子)に接触させることは当然可能である。さらに、導電性ガラス22の原料粉末の成形体を軸孔12に挿入する代わりに、導電性ガラス22の原料粉末を軸孔12に充填することは当然可能である。   In this manufacturing method, instead of inserting the glass tube containing the conductor 20 into the shaft hole 12, the conductor 20 (molded body) is inserted into the shaft hole 12, and then the insulating glass 23 is formed around the conductor 20. It is naturally possible to fill the raw material powder. In addition, instead of firing the conductor 20 (molded body) together with the conductive glasses 21 and 22 and the insulating glass 23, the conductor 20 (element) is placed in the shaft hole 12 and softened in the shaft hole 12. Naturally, the conductive glasses 21 and 22 and the insulating glass 23 can be brought into contact with the conductor 20 (element). Furthermore, instead of inserting the compact of the raw material powder of the conductive glass 22 into the shaft hole 12, it is naturally possible to fill the shaft hole 12 with the raw material powder of the conductive glass 22.

図2(a)に示すように、導電体20は底面20aが導電性ガラス21に接触する。軸線O(図1参照)を含む任意の断面において、導電性ガラス21と絶縁性ガラス23との界面24は、絶縁体11に第1点25が接し、導電体20の側面20bに第2点26が接する。本実施の形態では、界面24は第1点25から第2点26まで直線状に傾斜している。界面24の形状や第1点25及び第2点26の位置は、端子金具15を用いて各材料を軸方向へ圧縮するときの圧力、絶縁性ガラス23の材料(ガラス製の管)の形状や絶縁性ガラス23の原料粉末の量などを調整することにより、適宜設定できる。   As shown in FIG. 2A, the conductor 20 has a bottom surface 20 a that contacts the conductive glass 21. In an arbitrary cross section including the axis O (see FIG. 1), the interface 24 between the conductive glass 21 and the insulating glass 23 has a first point 25 in contact with the insulator 11 and a second point on the side surface 20b of the conductor 20. 26 touches. In the present embodiment, the interface 24 is inclined linearly from the first point 25 to the second point 26. The shape of the interface 24 and the positions of the first point 25 and the second point 26 are the pressure when compressing each material in the axial direction using the terminal fitting 15 and the shape of the material of the insulating glass 23 (glass tube). Or by adjusting the amount of the raw material powder of the insulating glass 23 and the like.

例えば、端子金具15を用いて各材料を軸方向へ圧縮するときの圧力を高くすることにより、導電体20の底面20aを導電性ガラス21に埋め込ませることができる。軟化した導電性ガラス21は、絶縁体11を伝って絶縁性ガラス23と絶縁体11との隙間に進入する。これにより、導電性ガラス21と絶縁性ガラス23との界面24は、導電体20から絶縁体11へ向かって上昇する。   For example, the bottom surface 20 a of the conductor 20 can be embedded in the conductive glass 21 by increasing the pressure when compressing each material in the axial direction using the terminal fitting 15. The softened conductive glass 21 enters the gap between the insulating glass 23 and the insulator 11 through the insulator 11. As a result, the interface 24 between the conductive glass 21 and the insulating glass 23 rises from the conductor 20 toward the insulator 11.

界面24は、第1点25が第2点26よりも軸線方向の後端側(矢印B方向)に位置し、界面24上の任意の2点において、軸直角方向の内側(矢印P方向)の点が軸直角方向の外側(反矢印P方向)の点に対して軸線方向の先端側(矢印F方向)に位置する。界面24と導電体20(側面20b)とのなす角(導電性ガラス21側の角度)は90°以上に設定され、界面24と絶縁体11(軸孔12)とのなす角(導電性ガラス21側の角度)は90°未満に設定される。この関係は、軸線O(図1参照)を含む任意(あらゆる場合)の断面において成立する。これにより、第2点26に電界が集中するのを緩和できる。第2点26の放電時の電流密度を抑えて導電体20の劣化を抑制できるので、導電体20の耐久性を向上できる。   The interface 24 is such that the first point 25 is located closer to the rear end side in the axial direction (arrow B direction) than the second point 26, and at any two points on the interface 24, the inner side in the direction perpendicular to the axis (arrow P direction). This point is located on the tip end side (arrow F direction) in the axial direction with respect to the point outside the axis perpendicular direction (counter arrow P direction). The angle formed between the interface 24 and the conductor 20 (side surface 20b) (angle on the conductive glass 21 side) is set to 90 ° or more, and the angle formed between the interface 24 and the insulator 11 (shaft hole 12) (conductive glass). 21 side angle) is set to less than 90 °. This relationship is established in any (any case) cross section including the axis O (see FIG. 1). Thereby, the concentration of the electric field at the second point 26 can be alleviated. Since the current density at the time of discharging at the second point 26 can be suppressed and deterioration of the conductor 20 can be suppressed, the durability of the conductor 20 can be improved.

図3は導電体20を模式的に図示した斜視図である。界面24(図2(a)参照)は軸線Oを含む任意(あらゆる場合)の断面において導電体20の側面20bに接するので、図3では、導電体20と界面24とが接する境界線27を、連続した曲線として表記する。境界線27は第2点26(図2(a)参照)の集合である。   FIG. 3 is a perspective view schematically showing the conductor 20. Since the interface 24 (see FIG. 2A) is in contact with the side surface 20b of the conductor 20 in any (in any case) cross section including the axis O, in FIG. 3, a boundary line 27 where the conductor 20 and the interface 24 are in contact is shown. , Expressed as a continuous curve. The boundary line 27 is a set of second points 26 (see FIG. 2A).

スパークプラグ10は、導電体20の側面20b上の境界線27のうち最も後端側(矢印B方向)に位置する点28(最後端位置)と最も先端側(矢印F方向)に位置する点29(最先端位置)との間の軸線O方向における距離Dを、導電体20の軸線O方向における最大の長さLで除したD/Lは、0≦D/L≦0.1を満たす。   The spark plug 10 has a point 28 (rear end position) located on the most rear end side (arrow B direction) and a point located on the most front end side (arrow F direction) of the boundary line 27 on the side surface 20b of the conductor 20. D / L obtained by dividing the distance D in the direction of the axis O with respect to 29 (the most advanced position) by the maximum length L in the direction of the axis O of the conductor 20 satisfies 0 ≦ D / L ≦ 0.1. .

なお、導電体20の最大の長さLは、軸線Oに直交する2枚の平面で導電体20を軸線O方向に挟んだときの2枚の平面間の距離をいう。また、界面24の形状、第1点25及び第2点26の位置、距離D及び長さLは、試料の切断面の顕微鏡観察やCTスキャナ(X線透視装置)を用いた非破壊検査によって測定できる。   The maximum length L of the conductor 20 refers to a distance between two planes when the conductor 20 is sandwiched in the direction of the axis O by two planes orthogonal to the axis O. Further, the shape of the interface 24, the positions of the first point 25 and the second point 26, the distance D and the length L are determined by non-destructive inspection using a microscope observation of a cut surface of the sample or a CT scanner (X-ray fluoroscope). It can be measured.

0≦D/L≦0.1を満たすことにより、導電体20の側面20bに接触する導電性ガラス21の接触面積の周方向のばらつきを抑制できる。よって、導電体20の抵抗値のばらつきを抑制できる。   By satisfying 0 ≦ D / L ≦ 0.1, variation in the circumferential direction of the contact area of the conductive glass 21 in contact with the side surface 20b of the conductor 20 can be suppressed. Therefore, variation in the resistance value of the conductor 20 can be suppressed.

また、0≦D/L≦0.1を満たすことにより、導電体20の側面20bの電流密度のばらつきを抑制できるので、導電体20の劣化を抑制できる。よって、導電体20の耐久性をさらに向上できる。   Further, by satisfying 0 ≦ D / L ≦ 0.1, variation in the current density of the side surface 20b of the conductor 20 can be suppressed, so that deterioration of the conductor 20 can be suppressed. Therefore, the durability of the conductor 20 can be further improved.

次に図2(b)を参照して第2実施の形態について説明する。第1実施の形態では、界面24が導電体20の側面20bに接する場合について説明した。これに対し第2実施の形態では、界面34が導電体20の底面20aと側面20bとの角に接する場合について説明する。なお、第1実施の形態と同一の部分については、同一の符号を付して以下の説明を省略する。図2(b)は第2実施の形態におけるスパークプラグ30の一部を拡大して示した断面図である。   Next, a second embodiment will be described with reference to FIG. In the first embodiment, the case where the interface 24 contacts the side surface 20b of the conductor 20 has been described. In contrast, in the second embodiment, a case where the interface 34 is in contact with the corners of the bottom surface 20a and the side surface 20b of the conductor 20 will be described. In addition, about the part same as 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted. FIG. 2B is an enlarged cross-sectional view showing a part of the spark plug 30 in the second embodiment.

図2(b)に示すように、導電体20は底面20aが導電性ガラス31に接触する。軸線O(図1参照)を含む任意の断面において、導電性ガラス31と絶縁性ガラス33との界面34は、絶縁体11に第1点35が接し、導電体20の底面20aと側面20bとの角または側面20bに第2点36が接する。本実施の形態では、上記任意の断面のうち少なくとも1つにおいて、導電性ガラス31と絶縁性ガラス33との界面34は、導電体20の底面20aと側面20bとの角に第2点36が接する。界面34は第1点35から第2点36まで直線状に傾斜している。   As illustrated in FIG. 2B, the bottom surface 20 a of the conductor 20 is in contact with the conductive glass 31. In an arbitrary cross section including the axis O (see FIG. 1), the interface 34 between the conductive glass 31 and the insulating glass 33 is such that the first point 35 is in contact with the insulator 11, and the bottom surface 20a and the side surface 20b of the conductor 20 The second point 36 touches the corner or side surface 20b. In the present embodiment, in at least one of the arbitrary cross sections, the interface 34 between the conductive glass 31 and the insulating glass 33 has a second point 36 at the corner between the bottom surface 20a and the side surface 20b of the conductor 20. Touch. The interface 34 is linearly inclined from the first point 35 to the second point 36.

界面34は、第1点35が第2点36よりも軸線方向の後端側(矢印B方向)に位置し、界面34上の任意の2点において、軸直角方向の内側(矢印P方向)の点が軸直角方向の外側(反矢印P方向)の点に対して軸線方向の先端側(矢印F方向)に位置する。界面34と導電体20(底面20a又は側面20b)とのなす角(導電性ガラス31側の角度)は90°以上に設定され、界面34と絶縁体11(軸孔12)とのなす角(導電性ガラス31側の角度)は90°未満に設定される。この関係は、軸線O(図1参照)を含む任意(あらゆる場合)の断面において成立する。よって、第2点36に電界が集中するのを緩和し、導電体20の劣化を抑制できる。   The interface 34 is such that the first point 35 is located on the rear end side (arrow B direction) in the axial direction with respect to the second point 36, and at any two points on the interface 34, the inner side in the direction perpendicular to the axis (arrow P direction). This point is located on the tip end side (arrow F direction) in the axial direction with respect to the point outside the axis perpendicular direction (counter arrow P direction). The angle formed by the interface 34 and the conductor 20 (the bottom surface 20a or the side surface 20b) (the angle on the conductive glass 31 side) is set to 90 ° or more, and the angle formed by the interface 34 and the insulator 11 (the shaft hole 12) ( The angle on the conductive glass 31 side) is set to less than 90 °. This relationship is established in any (any case) cross section including the axis O (see FIG. 1). Therefore, the concentration of the electric field at the second point 36 can be alleviated, and deterioration of the conductor 20 can be suppressed.

図4(a)を参照して第3実施の形態について説明する。なお、第1実施の形態と同一の部分については、同一の符号を付して以下の説明を省略する。図4(a)は第3実施の形態におけるスパークプラグ40の一部を拡大して示した断面図である。   A third embodiment will be described with reference to FIG. In addition, about the part same as 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted. FIG. 4A is an enlarged cross-sectional view showing a part of the spark plug 40 according to the third embodiment.

図4(a)に示すように、導電体20は底面20aが導電性ガラス41に接触する。軸線O(図1参照)を含む任意の断面において、導電性ガラス41と絶縁性ガラス43との界面44は、絶縁体11に第1点45が接し、導電体20の側面20bに第2点46が接する。本実施の形態では、上記任意の断面のうち少なくとも一つにおいて、界面44は先端側(矢印F方向)に凸の曲線である。   As shown in FIG. 4A, the conductor 20 has a bottom surface 20 a in contact with the conductive glass 41. In an arbitrary cross section including the axis O (see FIG. 1), the interface 44 between the conductive glass 41 and the insulating glass 43 has a first point 45 in contact with the insulator 11 and a second point on the side surface 20b of the conductor 20. 46 touches. In the present embodiment, in at least one of the arbitrary cross-sections, the interface 44 is a curved curve convex toward the tip side (in the direction of arrow F).

界面44は、第1点45が第2点46よりも軸線方向の後端側(矢印B方向)に位置し、界面44上の任意の2点において、軸直角方向の内側(矢印P方向)の点が軸直角方向の外側(反矢印P方向)の点に対して軸線方向の同位置または軸線方向の先端側(矢印F方向)に位置する。界面44と導電体20(側面20b)とのなす角(導電性ガラス41側の角度)は90°以上に設定され、界面44と絶縁体11(軸孔12)とのなす角(導電性ガラス41側の角度)は90°未満に設定される。この関係は、軸線O(図1参照)を含む任意(あらゆる場合)の断面において成立する。よって、第2点46に電界が集中するのを緩和し、導電体20の劣化を抑制できる。   The interface 44 is such that the first point 45 is located on the rear end side (arrow B direction) in the axial direction with respect to the second point 46, and at any two points on the interface 44, the inner side in the direction perpendicular to the axis (arrow P direction). Is located at the same position in the axial direction or on the tip side in the axial direction (in the direction of arrow F) with respect to the point outside the direction perpendicular to the axis (in the direction of the arrow P). The angle formed by the interface 44 and the conductor 20 (side surface 20b) (angle on the conductive glass 41 side) is set to 90 ° or more, and the angle formed by the interface 44 and the insulator 11 (shaft hole 12) (conductive glass). 41 side angle) is set to less than 90 °. This relationship is established in any (any case) cross section including the axis O (see FIG. 1). Therefore, the concentration of the electric field at the second point 46 can be alleviated, and the deterioration of the conductor 20 can be suppressed.

図4(b)を参照して第4実施の形態について説明する。なお、第1実施の形態と同一の部分については、同一の符号を付して以下の説明を省略する。図4(b)は第4実施の形態におけるスパークプラグ50の一部を拡大して示した断面図である。   A fourth embodiment will be described with reference to FIG. In addition, about the part same as 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted. FIG. 4B is an enlarged cross-sectional view showing a part of the spark plug 50 according to the fourth embodiment.

図4(b)に示すように、導電体20は底面20aが導電性ガラス51に接触する。軸線O(図1参照)を含む任意の断面において、導電性ガラス51と絶縁性ガラス53との界面54は、絶縁体11に第1点55が接し、導電体20の側面20bに第2点56が接する。本実施の形態では、上記任意の断面のうち少なくとも一つにおいて、界面54は中央付近で凹凸の状態が変化した曲線である。   As shown in FIG. 4B, the bottom surface 20a of the conductor 20 is in contact with the conductive glass 51. In an arbitrary cross section including the axis O (see FIG. 1), the interface 54 between the conductive glass 51 and the insulating glass 53 has a first point 55 in contact with the insulator 11 and a second point on the side surface 20b of the conductor 20. 56 touches. In the present embodiment, in at least one of the arbitrary cross sections, the interface 54 is a curve in which the uneven state is changed near the center.

界面54は、第1点55が第2点56よりも軸線方向の後端側(矢印B方向)に位置し、界面54上の任意の2点において、軸直角方向の内側(矢印P方向)の点が軸直角方向の外側(反矢印P方向)の点に対して軸線方向の同位置または軸線方向の先端側(矢印F方向)に位置する。界面54と導電体20(側面20b)とのなす角(導電性ガラス51側の角度)は90°以上に設定され、界面54と絶縁体11(軸孔12)とのなす角(導電性ガラス51側の角度)は90°未満に設定される。この関係は、軸線O(図1参照)を含む任意(あらゆる場合)の断面において成立する。よって、第2点56に電界が集中するのを緩和し、導電体20の劣化を抑制できる。   The interface 54 has the first point 55 positioned on the rear end side in the axial direction (arrow B direction) with respect to the second point 56, and at any two points on the interface 54, on the inner side in the direction perpendicular to the axis (arrow P direction). Is located at the same position in the axial direction or on the tip side in the axial direction (in the direction of arrow F) with respect to the point outside the direction perpendicular to the axis (in the direction of the arrow P). The angle formed by the interface 54 and the conductor 20 (side surface 20b) (angle on the conductive glass 51 side) is set to 90 ° or more, and the angle formed by the interface 54 and the insulator 11 (shaft hole 12) (conductive glass). 51 side angle) is set to less than 90 °. This relationship is established in any (any case) cross section including the axis O (see FIG. 1). Therefore, the concentration of the electric field at the second point 56 can be mitigated, and deterioration of the conductor 20 can be suppressed.

本発明を実施例によりさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。   The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

(実施例1)
実施の形態で説明したスパークプラグのサンプルを作成して放電試験を行った。サンプルは、まず、絶縁体11の軸孔12に中心電極14を挿入した後、導電性粉末とガラス粉末とを混合した導電性ガラス21の原料粉末を軸孔12から入れて、中心電極14の周りに充填した。次に、導電性物質の粉末とガラス粉末とを混合して予め成形した導電体20を、絶縁性ガラス23の材料でできたガラス管の中に入れたものを軸孔12に挿入し、導電性ガラス21の原料粉末の上に置いた。次いで、導電体20及びガラス管の上に、導電性ガラス22の原料粉末をペレット状に成形した成形体を置いた後、絶縁体11を加熱してガラス粉末およびガラス管を軟化させた。次に、軸孔12に圧入した端子金具15によってガラス粉末などを加圧し、導電体20、導電性ガラス21,22及び絶縁性ガラス23を焼結した。接地電極19が接合された主体金具16を絶縁体11に組み付けてスパークプラグのサンプルを得た。
Example 1
A spark plug sample described in the embodiment was prepared and a discharge test was performed. In the sample, first, the center electrode 14 is inserted into the shaft hole 12 of the insulator 11, and then the raw material powder of the conductive glass 21 mixed with the conductive powder and the glass powder is put through the shaft hole 12. Filled around. Next, a conductor 20 formed by mixing a powder of a conductive substance and glass powder in advance and placed in a glass tube made of the material of the insulating glass 23 is inserted into the shaft hole 12 to conduct electricity. The glass was placed on the raw material powder of the functional glass 21. Next, a molded body obtained by forming the raw material powder of the conductive glass 22 into a pellet shape was placed on the conductor 20 and the glass tube, and then the insulator 11 was heated to soften the glass powder and the glass tube. Next, glass powder or the like was pressed by the terminal fitting 15 press-fitted into the shaft hole 12, and the conductor 20, the conductive glasses 21, 22 and the insulating glass 23 were sintered. The metal shell 16 to which the ground electrode 19 was joined was assembled to the insulator 11 to obtain a spark plug sample.

X線透視装置を用いて、得られたサンプルの導電性ガラスと絶縁性ガラスとの界面の形態を観察した。また、X線透視装置を用いてD及びLを測定し、D/Lを算出した。   The form of the interface between the conductive glass and the insulating glass of the obtained sample was observed using an X-ray fluoroscope. Moreover, D and L were measured using the X-ray fluoroscope, and D / L was calculated.

サンプル1〜8の界面の形態、導電体20に含まれる導電性物質、距離Dを長さLで除した値(D/L)及び試験時間を表1に示す。第1実施の形態のように、導電性ガラスと絶縁性ガラスとの界面が直線状で、その界面が導電体の側面に接触するものを表1に形態1と表記し、第2実施の形態のように、導電性ガラスと絶縁性ガラスとの界面が導電体の角に接触するものを形態2と表記した。また、第3実施の形態のように、導電性ガラスと絶縁性ガラスとの界面が曲線状で、その界面が導電体の側面に接触するものを形態3と表記した。形態1から3のいずれかに分類されたサンプルの界面は、全周(360°)のうち70%以上の範囲において、分類されたその形態であった。   Table 1 shows the form of the interface of Samples 1 to 8, the conductive substance contained in the conductor 20, the value obtained by dividing the distance D by the length L (D / L), and the test time. As in the first embodiment, the interface between the conductive glass and the insulating glass is linear, and the interface is in contact with the side surface of the conductor. As described above, the case where the interface between the conductive glass and the insulating glass is in contact with the corners of the conductor is referred to as form 2. Further, as in the third embodiment, the interface between the conductive glass and the insulating glass is curved, and the interface is in contact with the side surface of the conductor is referred to as form 3. The interface of the sample classified into any one of the forms 1 to 3 was the form classified in the range of 70% or more of the entire circumference (360 °).

Figure 2018206621
サンプル8は比較例である。比較例におけるスパークプラグ60は、サンプル1〜7と異なり、絶縁性ガラスが省略されている。図5は比較例におけるスパークプラグ60(サンプル8)の一部を拡大して示した軸線O(図1参照)を含む断面図である。なお、第1実施の形態で説明した部分と同一の部分については、同一の符号を付して以下の説明を省略する。
Figure 2018206621
Sample 8 is a comparative example. Unlike the samples 1-7, the spark plug 60 in the comparative example omits the insulating glass. FIG. 5 is a cross-sectional view including an axis O (see FIG. 1) showing an enlarged part of a spark plug 60 (sample 8) in a comparative example. In addition, about the part same as the part demonstrated in 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted.

図5に示すようにスパークプラグ60は、絶縁体11の軸孔12に導電性ガラス61及び導電体62が配置されている。導電性ガラス61と導電体62との界面63は、先端側(矢印F方向)に凸の曲線状であり、交点64で絶縁体11に接する。界面63と絶縁体11(軸孔12)とのなす角(導電性ガラス61側の角度)は90°未満に設定される。この関係は、軸線O(図1参照)を含む任意(あらゆる場合)の断面において成立する。   As shown in FIG. 5, in the spark plug 60, a conductive glass 61 and a conductor 62 are disposed in the shaft hole 12 of the insulator 11. The interface 63 between the conductive glass 61 and the conductor 62 has a curved shape that is convex toward the tip side (in the direction of arrow F), and contacts the insulator 11 at the intersection 64. An angle formed by the interface 63 and the insulator 11 (shaft hole 12) (an angle on the conductive glass 61 side) is set to be less than 90 °. This relationship is established in any (any case) cross section including the axis O (see FIG. 1).

試験は、425℃の槽内にサンプル1〜8を保管した状態で、端子金具15と主体金具16との間に45kVの電圧を1/100秒の周期で印加した。サンプル1〜8に内蔵した導電体は抵抗値(初期値)を1kΩに設定し、試験前後の抵抗値の変化率が±50%を超えたときの試験時間を測定した。   In the test, a voltage of 45 kV was applied between the terminal fitting 15 and the metal shell 16 at a cycle of 1/100 second in a state where the samples 1 to 8 were stored in a bath at 425 ° C. For the conductors built in Samples 1 to 8, the resistance value (initial value) was set to 1 kΩ, and the test time was measured when the rate of change in resistance value before and after the test exceeded ± 50%.

表1に示すようにサンプル1〜7(実施例)は、抵抗値の変化率が±50%を超えるまでの試験時間が200時間以上であったのに対し、サンプル8(比較例)は、試験開始後36時間で抵抗値の変化率が±50%を超えた。サンプル8(比較例)は、界面63と絶縁体11(軸孔12)とのなす角(導電性ガラス61側の角度)が90°未満のため、交点64に電界が集中し、導電体62が早期に劣化したものと推察される。一方、サンプル1〜7は、第2点26,36,46に電界が集中するのを緩和できたので、導電体20の劣化が抑制されたと推察される。   As shown in Table 1, Samples 1 to 7 (Examples) had a test time of 200 hours or more until the rate of change in resistance value exceeded ± 50%, whereas Sample 8 (Comparative Example) The change rate of the resistance value exceeded ± 50% in 36 hours after the start of the test. In sample 8 (comparative example), the angle formed by the interface 63 and the insulator 11 (shaft hole 12) (angle on the side of the conductive glass 61) is less than 90 °, so the electric field concentrates at the intersection 64 and the conductor 62 Is presumed to have deteriorated early. On the other hand, samples 1 to 7 were able to alleviate the concentration of the electric field at the second points 26, 36, and 46, so it is assumed that the deterioration of the conductor 20 was suppressed.

サンプル1〜3によれば、D/Lの値が大きくなるにつれて、抵抗値の変化率が±50%を超えるまでの試験時間が短くなることがわかった。D/Lの値が大きくなると、導電体20の側面20bの電流密度のばらつきが大きくなるので、導電体20が劣化し易くなるものと推察される。   According to Samples 1 to 3, it was found that as the D / L value increased, the test time until the rate of change in resistance value exceeded ± 50% was shortened. When the value of D / L is increased, the variation in current density on the side surface 20b of the conductor 20 is increased, and it is assumed that the conductor 20 is likely to deteriorate.

(実施例2)
D/Lの値が異なるサンプルを作成した。導電体は、導電性物質の粉末とガラス粉末とを混合して成形した後、絶縁性ガラスの材料でできたガラス管の中にその成形体を入れ、ガラス管と一緒に軸孔に挿入した。導電性ガラス及び絶縁性ガラスと共に軸孔内で導電体を焼成した。導電体に含まれる導電性物質をLa(Fe0.5Ni0.5)Oとし、導電体の抵抗値の平均値を1kΩに設定した。
(Example 2)
Samples having different D / L values were prepared. After the conductive material powder and glass powder were mixed and molded, the conductor was placed in a glass tube made of insulating glass material, and inserted into the shaft hole together with the glass tube. . The conductor was baked in the shaft hole together with the conductive glass and the insulating glass. The conductive substance contained in the conductor was La (Fe 0.5 Ni 0.5 ) O 3 and the average resistance value of the conductor was set to 1 kΩ.

実施例1と同様に、第1実施の形態および第3実施の形態(形態1及び3)のサンプルを作成し、X線透視装置を用いてサンプルのD及びLを測定し、D/Lを算出した。さらに、サンプルの抵抗値(導電体の抵抗値)を測定し、標準偏差(σ)を算出した。なお、標準偏差を評価するのに十分な数のサンプルを作成し、測定を行った。ばらつきの評価は、3σ≦0.20kΩを「優れている(◎)」、0.2<3σ≦0.35kΩを「良い(〇)」、3σ>0.35kΩを「劣る(△)」とした。   Similarly to Example 1, samples of the first embodiment and the third embodiment (forms 1 and 3) are prepared, D and L of the sample are measured using an X-ray fluoroscopic apparatus, and D / L is calculated. Calculated. Further, the resistance value (resistance value of the conductor) of the sample was measured, and the standard deviation (σ) was calculated. Note that a sufficient number of samples to evaluate the standard deviation were prepared and measured. The evaluation of the variation is 3σ ≦ 0.20 kΩ is “excellent ())”, 0.2 <3σ ≦ 0.35 kΩ is “good” (◯), and 3σ> 0.35 kΩ is “inferior (Δ)”. did.

Figure 2018206621
表2に示すように0≦D/L≦0.1を満たすことで、抵抗値のばらつきを小さくできることがわかった。特に0≦D/L≦0.05を満たすことで、抵抗値のばらつきを特に小さくできることがわかった。
Figure 2018206621
As shown in Table 2, it was found that the variation in resistance value can be reduced by satisfying 0 ≦ D / L ≦ 0.1. In particular, it was found that by satisfying 0 ≦ D / L ≦ 0.05, the variation in resistance value can be particularly reduced.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed.

上記各実施の形態では、界面24,34,44,54は、界面24,34,44,54上の任意の2点において、軸直角方向の内側(矢印P方向)の点が軸直角方向の外側(反矢印P方向)の点に対して軸線方向の同位置または軸線方向の先端側(矢印F方向)に位置する場合について説明したが、必ずしもこれに限られるものではない。例えば、界面24,34,44,54は、軸直角方向の内側(矢印P方向)の点が、軸直角方向の外側(反矢印P方向)の点に対して軸線方向の後端側(矢印B方向)に位置する部分を有していても良い。   In each of the above-described embodiments, the interfaces 24, 34, 44, and 54 are located at any two points on the interfaces 24, 34, 44, and 54. Although the case where it is located at the same position in the axial direction or the tip side in the axial direction (in the direction of arrow F) with respect to the point on the outer side (counter arrow P direction) has been described, it is not necessarily limited thereto. For example, the interfaces 24, 34, 44, and 54 have a point on the inner side in the direction perpendicular to the axis (in the direction of the arrow P) and a point on the rear end side in the axial direction (in the direction of the arrow P). You may have the part located in a B direction.

即ち、絶縁体11に界面24,34,44,54が接する第1点25,35,45,55が、導電体20に界面24,34,44,54が接する第2点26,36,46,56よりも後端側(矢印B方向)に位置し、界面24,34,44,54が、第2点26,36,46,56と軸線方向の同位置または第2点26,36,46,56よりも後端側(矢印B方向)に位置していれば良い。界面24,34,44,54がこのように位置していれば、界面24,34,44,54と導電体20の側面20bとのなす角は90°以上に設定され、界面24,34,44,54と絶縁体11とのなす角は90°未満に設定される。よって、第2点26,36,46,56に電界が集中するのを緩和し、導電体20の劣化を抑制できる。   That is, the first points 25, 35, 45, and 55 where the interfaces 24, 34, 44, and 54 contact the insulator 11, and the second points 26, 36, and 46 where the interfaces 24, 34, 44, and 54 contact the conductor 20. , 56 is located on the rear end side (arrow B direction), and the interfaces 24, 34, 44, 54 are in the same axial position as the second points 26, 36, 46, 56 or the second points 26, 36, What is necessary is just to be located in the back end side (arrow B direction) rather than 46,56. If the interfaces 24, 34, 44, 54 are positioned in this way, the angle formed between the interfaces 24, 34, 44, 54 and the side surface 20b of the conductor 20 is set to 90 ° or more, and the interfaces 24, 34, The angle between 44 and 54 and the insulator 11 is set to be less than 90 °. Therefore, the concentration of the electric field at the second points 26, 36, 46, and 56 can be alleviated and deterioration of the conductor 20 can be suppressed.

上記各実施の形態では、導電性ガラス22によって導電体20が端子金具15に接続される場合について説明したが、必ずしもこれに限られるものではない。例えば、導電性ガラス22に代えて、導電体20と端子金具15との間に導電性のあるばね等の弾性体を介在させて、導電体20と端子金具15とを電気的に接続することは当然可能である。   In each of the above embodiments, the case where the conductor 20 is connected to the terminal fitting 15 by the conductive glass 22 has been described, but the present invention is not necessarily limited thereto. For example, instead of the conductive glass 22, an elastic body such as a conductive spring is interposed between the conductor 20 and the terminal fitting 15 to electrically connect the conductor 20 and the terminal fitting 15. Is of course possible.

上記各実施の形態では、導電体20が円柱状に形成される場合について説明したが、必ずしもこれに限られるものではない。導電体20は軸孔12に挿入できる大きさ及び形状であれば良いので、例えば直方体状に形成された導電体20を採用することは当然可能である。   In each of the above embodiments, the case where the conductor 20 is formed in a columnar shape has been described, but the present invention is not necessarily limited thereto. Since the conductor 20 may be any size and shape that can be inserted into the shaft hole 12, it is naturally possible to employ, for example, the conductor 20 formed in a rectangular parallelepiped shape.

上記各実施の形態では、中心電極14の先端に接地電極19が対向するスパークプラグ10,30,40,50について説明したが、スパークプラグの構造は必ずしもこれに限られるものではない。スパークプラグの他の構造としては、例えば、中心電極14の側面に接地電極19が対向するスパークプラグ、主体金具16に複数の接地電極19を接合した多極のスパークプラグが挙げられる。   In each of the embodiments described above, the spark plugs 10, 30, 40, 50 in which the ground electrode 19 faces the tip of the center electrode 14 have been described. However, the structure of the spark plug is not necessarily limited to this. Examples of other structures of the spark plug include a spark plug in which the ground electrode 19 faces the side surface of the center electrode 14 and a multipolar spark plug in which a plurality of ground electrodes 19 are joined to the metal shell 16.

10,30,40,50 スパークプラグ
11 絶縁体
12 軸孔
14 中心電極
20 導電体
20b 側面
21,31,41,51 導電性ガラス
23,33,43,53 絶縁性ガラス
24,34,44,54 界面
25,35,45,55 第1点
26,36,46,56 第2点
27 境界線
28 点(最後端位置)
29 点(最先端位置)
D 距離
L 長さ
O 軸線
10, 30, 40, 50 Spark plug 11 Insulator 12 Axial hole 14 Center electrode 20 Conductor 20b Side surface 21, 31, 41, 51 Conductive glass 23, 33, 43, 53 Insulating glass 24, 34, 44, 54 Interface 25, 35, 45, 55 First point 26, 36, 46, 56 Second point 27 Boundary line 28 points (end position)
29 points (the most advanced position)
D Distance L Length O Axis

Claims (2)

先端側から後端側へと軸線方向に延びる軸孔を有する絶縁体と、
前記軸孔の先端側に配置された中心電極と、
前記軸孔内の前記中心電極の後端側に配置される導電体と、
前記中心電極、前記導電体および前記絶縁体に接触し、前記中心電極と前記導電体とを電気的に接続する導電性ガラスと、
前記導電体と前記絶縁体との間に配置されると共に前記導電性ガラス、前記導電体および前記絶縁体に接触する絶縁性ガラスと、を備えるスパークプラグであって、
前記軸線を含む任意の断面において、前記絶縁性ガラスと前記導電性ガラスとの界面は、前記絶縁体に前記界面が接する第1点が前記導電体に前記界面が接する第2点よりも後端側に位置し、
前記界面は、前記第2点と前記軸線方向の同位置または前記第2点よりも前記軸線方向の後端側に位置するスパークプラグ。
An insulator having an axial hole extending in the axial direction from the front end side to the rear end side;
A center electrode disposed on the tip side of the shaft hole;
A conductor disposed on a rear end side of the center electrode in the shaft hole;
A conductive glass in contact with the central electrode, the conductor and the insulator, and electrically connecting the central electrode and the conductor;
A spark plug that is disposed between the conductor and the insulator and includes the conductive glass, the insulating glass contacting the conductor and the insulator;
In any cross section including the axis, the interface between the insulating glass and the conductive glass is such that the first point where the interface is in contact with the insulator is the rear end of the second point where the interface is in contact with the conductor. Located on the side
The interface is the spark plug located at the same position in the axial direction as the second point or on the rear end side in the axial direction from the second point.
前記導電体と前記界面とが接する境界線のうち、前記軸線方向の最後端位置と最先端位置との間の前記軸線方向における距離Dを、前記導電体の前記軸線方向における最大の長さLで除したD/Lは、0≦D/L≦0.1を満たす請求項1記載のスパークプラグ。   Of the boundary line between the conductor and the interface, the distance D in the axial direction between the rearmost position and the most distal position in the axial direction is the maximum length L in the axial direction of the conductor. The spark plug according to claim 1, wherein D / L divided by 1 satisfies 0 ≦ D / L ≦ 0.1.
JP2017111295A 2017-06-06 2017-06-06 Spark plug Active JP6855330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017111295A JP6855330B2 (en) 2017-06-06 2017-06-06 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017111295A JP6855330B2 (en) 2017-06-06 2017-06-06 Spark plug

Publications (2)

Publication Number Publication Date
JP2018206621A true JP2018206621A (en) 2018-12-27
JP6855330B2 JP6855330B2 (en) 2021-04-07

Family

ID=64958182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017111295A Active JP6855330B2 (en) 2017-06-06 2017-06-06 Spark plug

Country Status (1)

Country Link
JP (1) JP6855330B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717587A (en) * 1980-07-04 1982-01-29 Ngk Spark Plug Co Resistor filled ignition plug
JP2007122879A (en) * 2004-10-12 2007-05-17 Ngk Spark Plug Co Ltd Spark plug
JP2017010741A (en) * 2015-06-22 2017-01-12 日本特殊陶業株式会社 Spark plug

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717587A (en) * 1980-07-04 1982-01-29 Ngk Spark Plug Co Resistor filled ignition plug
JP2007122879A (en) * 2004-10-12 2007-05-17 Ngk Spark Plug Co Ltd Spark plug
JP2017010741A (en) * 2015-06-22 2017-01-12 日本特殊陶業株式会社 Spark plug

Also Published As

Publication number Publication date
JP6855330B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
US7388323B2 (en) Spark plug
JP6246063B2 (en) Spark plug
JP5414896B2 (en) Spark plug
JP2016009567A (en) Spark plug
JP2015216029A (en) Spark plug
JP5925839B2 (en) Spark plug
JP6855330B2 (en) Spark plug
JP6612499B2 (en) Spark plug
US20130140975A1 (en) Spark plug
JP6623200B2 (en) Spark plug
JP7028720B2 (en) Spark plug
JP2019091646A (en) Spark plug
JP6997679B2 (en) Spark plug
JP6337529B2 (en) Spark plug
JP6559740B2 (en) Spark plug
JP6785115B2 (en) Spark plug
CN109428266B (en) Spark plug
CN109428265B (en) Spark plug
JP6267779B1 (en) Spark plug
JP6869201B2 (en) Spark plug
JP6294982B2 (en) Spark plug
WO2018105292A1 (en) Spark plug
JP5411822B2 (en) Ignition system and spark plug
JP2019175647A (en) Spark plug
JP2019016568A (en) Spark plug manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200429

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210317

R150 Certificate of patent or registration of utility model

Ref document number: 6855330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250