JP2018204775A - Bearing with pivot spherical body - Google Patents

Bearing with pivot spherical body Download PDF

Info

Publication number
JP2018204775A
JP2018204775A JP2017114193A JP2017114193A JP2018204775A JP 2018204775 A JP2018204775 A JP 2018204775A JP 2017114193 A JP2017114193 A JP 2017114193A JP 2017114193 A JP2017114193 A JP 2017114193A JP 2018204775 A JP2018204775 A JP 2018204775A
Authority
JP
Japan
Prior art keywords
spherical
concave spherical
bearing
rolling elements
retainer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017114193A
Other languages
Japanese (ja)
Other versions
JP6997367B2 (en
Inventor
上野 康男
Yasuo Ueno
康男 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017114193A priority Critical patent/JP6997367B2/en
Publication of JP2018204775A publication Critical patent/JP2018204775A/en
Application granted granted Critical
Publication of JP6997367B2 publication Critical patent/JP6997367B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To satisfy a requirement that, in a bearing in a practical use, a main portion is in a rolling contact state, and the bearing has a structure which can alleviate friction resistance as the bearing, and in some case, a retainer has a structure for generating slide friction between a contact point between rolling bodies, and an inner ring, and does not cause a large problem in a normal use state, however, in the case that it is required to improve the performance of an apparatus by alleviating rotation friction in particular, or in the case that the generation of dust should be extremely suppressed, a slide motion should be further avoided.SOLUTION: As means for solving the problem, there is arranged a bearing in which recessed spherical face parts are arranged at both ends of revolving axial centers of a plurality of revolving rolling bodies, recessed spherical face parts are also arranged at opposing positions coinciding with the revolving center axes of the rolling bodies of a retainer, a pivot spherical body having a spherical radius smaller than spherical radii of the recessed spherical faces is arranged, and an outer ring having a circular disc inner face groove contacting with spherical faces of a plurality of the rolling bodies and an inner ring having circular disc outer face groove contacting with the spherical faces of a plurality of the rolling bodies in a corresponding position are arranged.SELECTED DRAWING: Figure 2

Description

本発明は、一般に広く使用される転がり軸受に関するものであり特に構成部材相互の滑り接触を回避した構造の軸受に関するものである。   The present invention relates to a generally used rolling bearing, and more particularly to a bearing having a structure that avoids sliding contact between components.

現在一般に実用化されている軸受は、外輪と転動体と内輪は相互に転がり接触状態にあり、軸受としての摩擦抵抗を軽減できる構造となっている。しかし転動体の位置を保つためのリテーナーは転動体と相互の接触点で滑り摩擦を発生する構造となっている。場合によっては内輪とも滑り摩擦を発生する構造となっているものもある。外部からの荷重を直接負担する部分ではないので通常の使用状態では大きな問題は生じないが、特別に回転摩擦を軽減したい場合や滑り運動によるチリの発生を極度に嫌う使用状態や真空状態などで潤滑油が使用できない場合等においては構成部材相互の滑り接触を更に回避したい場合がある。 A bearing that is currently in practical use has a structure in which the outer ring, the rolling element, and the inner ring are in rolling contact with each other, and the frictional resistance of the bearing can be reduced. However, the retainer for maintaining the position of the rolling element has a structure that generates sliding friction at the contact point with the rolling element. In some cases, the inner ring also has a structure that generates sliding friction. Since it is not a part that directly bears external load, it does not cause a big problem in normal use conditions.However, it is particularly useful in cases where you want to reduce rotational friction or use conditions that extremely dislike the generation of dust caused by sliding movements or vacuum conditions. In some cases, such as when lubricating oil cannot be used, it may be desirable to further avoid sliding contact between components.

対策として本出願人による特許出願2017-004827に示された偏芯ピボット構造の発展的応用が有効である。回転軸と凹球面受け部との間に転動球体を配置し、凹球面受け部が回転軸の回転中心から偏芯した位置に設け回転軸を通常の軸受で支持する構造とされている。ここで凹球面受け部をリテーナー上に設け、回転軸を転動体と置き換えることで本発明が構成される。このことでどのようにしてリテーナーと転動体との接触が転がり接触となり、内輪、外輪との接触が回避されるかは後述する As a countermeasure, the advanced application of the eccentric pivot structure shown in the patent application 2017-004827 by the present applicant is effective. A rolling sphere is disposed between the rotating shaft and the concave spherical surface receiving portion, and the concave spherical surface receiving portion is provided at a position eccentric from the rotational center of the rotating shaft, and the rotating shaft is supported by a normal bearing. Here, the concave spherical surface receiving portion is provided on the retainer, and the present invention is configured by replacing the rotating shaft with a rolling element. How the contact between the retainer and the rolling element becomes the rolling contact and the contact with the inner ring and the outer ring is avoided will be described later.

特許資料 特願2017-004827
本出願人が時計用のテンプの軸受として知られているピボット軸受けを転がり接触状態で形成する軸受けとして構成したものである。現在存在する先端が尖った軸の周辺に複数のボールを配置した構造のものとは根本的に異なる構造となっている。現在のピボット軸受けは複数のボールが相互に接触してその接触点では滑り接触状態となっている点で本発明の構造とは完全に異なったものとなっている。
Patent document Japanese Patent Application No. 2017-004827
The present applicant configures a pivot bearing known as a timepiece balance for a watch as a bearing formed in a rolling contact state. This structure is fundamentally different from that of a structure in which a plurality of balls are arranged around a shaft having a sharp tip. The current pivot bearing is completely different from the structure of the present invention in that a plurality of balls come into contact with each other and are in a sliding contact state at the contact point.

鉄道車輪、航空機のジェットエンジン、発電機のタービンなど現在重要な機器の回転部に広く使用されている軸受はそれらの機器の性能を左右する重要な機械要素である。そしてその完成度は極めて高く改良の余地はほとんど無いと考えられている。しかし、上述のごとく転動体の位置を保つためのリテーナーに関してはいくつかの課題が残されており、その改良によって軸受の性能がさらに向上する可能性があることが予測されている。軸受けの性能向上が実現することによってそれを使用する現在の機器の性能は著しく向上し、その経済効果は予測をはるかに超えるものとなる。 Bearings widely used in the rotating parts of important equipment such as railway wheels, aircraft jet engines, and generator turbines are important machine elements that determine the performance of these equipment. And its completeness is extremely high and it is considered that there is almost no room for improvement. However, as described above, several problems remain regarding the retainer for maintaining the position of the rolling element, and it is predicted that the performance of the bearing may be further improved by the improvement. By realizing improved bearing performance, the performance of current equipment that uses it will be significantly improved and its economic benefits will be far beyond expectations.

多くの機器の回転部に広く使用されている軸受のリテーナーの構造を再検討し、滑り摩擦が発生している個所を転がり接触とすることで残された課題を解決し究極的な性能向上を可能にして、機器の性能を大幅に向上することを目指すものである。 Reexamine the structure of the retainer of bearings widely used in the rotating parts of many devices, and solve the remaining problems by rolling the place where sliding friction is generated to improve the ultimate performance. It aims to enable and greatly improve the performance of the equipment.

本発明による上記課題を解決する第1の手段は、軸受けの回転中心軸と並行な方向に自転する複数の転動体の自転軸中心の両端に凹球面部を設け、リテーナーの該転動体の自転中心軸に合致する対向位置にも凹球面部を設け、両方の凹球面部の間に該凹球面部の球面半径より小さな球面半径を有するピボット球体を配置した状態としている。更に複数の転動体の球面に接触する円環状内面溝を有する外輪とこれに対向する位置で複数の転動体の球面に接触する円環状外面溝を有する内輪を配置することで本実施例の軸受は構成されている。リテーナーは複数の転動体と上記の組み合わせ状態を維持する形状となすことで、内輪及び外輪に接触しない位置に相互保持状態に保たれている。このような構成の軸受のリテーナーを、固定した状態で転動体が回転すると該転動体に接触している外輪及び内輪はそれぞれ逆方向に回転する。転動体の凹球面部とリテーナーの凹球面部の間に配置されたピボット球体は転動体の凹球面部の中心軸近辺とリテーナーの凹球面部の中心付近と接触した状態で両者の接触点の動きの共通する回転軸の周りに回転する。この回転軸が転動体の自転回転軸に合致している場合はピボット球体の回転速度は任意であるが回転軸が転動体の自転回転軸に対して傾いていればその点の移動速度に応じて自転し、その接触点での滑り摩擦は発生しない。この状態の理解が困難な場合はその詳細は前記出願特許―特願2017-004827にも記載している。これが本発明の軸受が滑り摩擦を生じない理由である。通常の使用状態では内輪が固定されるか外輪が固定されるかのいずれかであるが各部相互の接触状態及び相互の運動状態は上記説明と反するものではない。 A first means for solving the above-described problems according to the present invention is to provide concave spherical portions at both ends of the rotation axis centers of a plurality of rolling elements that rotate in a direction parallel to the rotation center axis of the bearing, and to rotate the rolling elements of the retainer. A concave spherical portion is also provided at an opposing position that coincides with the central axis, and a pivot sphere having a spherical radius smaller than the spherical radius of the concave spherical portion is disposed between both concave spherical portions. Furthermore, the outer ring having an annular inner groove contacting the spherical surface of the plurality of rolling elements and the inner ring having an annular outer groove contacting the spherical surface of the plurality of rolling elements at positions facing the outer ring are arranged. Is structured. The retainer has a shape that maintains the above-described combined state with a plurality of rolling elements, so that the retainer is maintained in a mutually held state at a position that does not contact the inner ring and the outer ring. When the rolling element rotates with the retainer of the bearing having such a configuration fixed, the outer ring and the inner ring that are in contact with the rolling element rotate in opposite directions. The pivot sphere arranged between the concave spherical surface of the rolling element and the concave spherical surface of the retainer is in contact with the vicinity of the central axis of the concave spherical surface of the rolling element and the vicinity of the center of the concave spherical surface of the retainer. Rotate around a common axis of motion. If this rotation axis matches the rotation axis of the rolling element, the rotation speed of the pivot sphere is arbitrary, but if the rotation axis is tilted with respect to the rotation axis of the rolling element, it depends on the moving speed at that point. And no sliding friction occurs at the contact point. If it is difficult to understand this state, the details are also described in the aforementioned patent application-Japanese Patent Application No. 2017-004827. This is the reason why the bearing of the present invention does not cause sliding friction. In a normal use state, either the inner ring is fixed or the outer ring is fixed, but the contact state and the mutual movement state of each part are not contrary to the above description.

本発明による上記課題を解決する第2の手段は、軸受けの回転中心軸と交差し半径方向に傾いた方向に自転する複数の球状の転動体の自転軸中心の両端に凹球面部を設け、リテーナーの該転動体の自転中心軸に合致する対向位置にも凹球面部を設け、両方の凹球面部の間に該凹球面部の球面半径より小さな球面半径を有するピボット球体を配置した状態としている。更に複数の転動体の球面に接触する円環状内面溝を有する外輪と、これに対向する位置で複数の転動体の球面に接触する円環状外面溝を有する内輪を配置することで本実施例の軸受は構成されている。リテーナーは複数の転動体と上記の組み合わせ状態を維持する形状となすことで、内輪及び外輪に接触しない位置に相互保持状態に保たれている。 The second means for solving the above-mentioned problems according to the present invention is provided with concave spherical portions at both ends of the rotation axis centers of a plurality of spherical rolling elements that rotate in the direction inclined in the radial direction intersecting the rotation center axis of the bearing, A concave spherical portion is also provided at an opposing position that coincides with the rotation center axis of the rolling element of the retainer, and a pivot sphere having a spherical radius smaller than the spherical radius of the concave spherical portion is disposed between both concave spherical portions. Yes. Further, by arranging an outer ring having an annular inner surface groove that contacts the spherical surfaces of the plurality of rolling elements and an inner ring having an annular outer surface groove that contacts the spherical surfaces of the plurality of rolling elements at positions opposed to the outer ring. The bearing is constructed. The retainer has a shape that maintains the above-described combined state with a plurality of rolling elements, so that the retainer is maintained in a mutually held state at a position that does not contact the inner ring and the outer ring.

本発明による上記課題を解決する第3の手段は、軸受けの回転中心軸と並行な方向に自転する複数の円筒状の転動体の自転軸中心の両端に凹球面部を設け、リテーナーの該転動体の自転中心軸に合致する対向位置にも凹球面部を設け、両方の凹球面部の間に該凹球面部の球面半径より小さな球面半径を有するピボット球体を配置した状態としている。更に複数の転動体の円筒面に接触する円環状内面溝を有する外輪とこれに対向する位置で複数の転動体の円筒面に接触する円環状外面溝を有する内輪を配置することで本実施例の軸受は構成されている。リテーナーは複数の転動体と上記の組み合わせ状態を維持する形状となすことで、内輪及び外輪に接触しない位置に相互保持状態に保たれている。 According to a third means for solving the above-mentioned problems of the present invention, concave spherical portions are provided at both ends of the rotation axis centers of a plurality of cylindrical rolling elements rotating in a direction parallel to the rotation center axis of the bearing, and the retainer is rotated. A concave spherical surface portion is also provided at an opposing position that coincides with the rotation center axis of the moving body, and a pivot sphere having a spherical radius smaller than the spherical radius of the concave spherical surface portion is disposed between both concave spherical surface portions. Further, the present embodiment is configured by arranging an outer ring having an annular inner surface groove that contacts the cylindrical surfaces of a plurality of rolling elements and an inner ring having an annular outer surface groove that contacts the cylindrical surfaces of the plurality of rolling elements at positions opposed thereto. The bearing is configured. The retainer has a shape that maintains the above-described combined state with a plurality of rolling elements, so that the retainer is maintained in a mutually held state at a position that does not contact the inner ring and the outer ring.

本発明による上記課題を解決する第4の手段は、軸受けの回転中心軸と直角な半径方向に自転する複数の球状の転動体の自転軸中心の両端に凹球面部を設け、リテーナーの該転動体の自転軸中心軸に合致する対向位置にも凹球面部を設け、両方の凹球面部の間に該凹球面部の球面半径より小さな球面半径を有するピボット球体を配置した状態としている。更に複数の転動体の球面に接触する円環状溝を有する下側リングとこれに対向する円環状溝を有する上側リングを配置することで本実施例の軸受は構成されている。リテーナーは複数の転動体と上記の組み合わせ状態を維持する形状となすことで、下側リング及び上側リングに接触しない位置に相互保持状態に保たれている。 According to a fourth means for solving the above-mentioned problems of the present invention, concave spherical portions are provided at both ends of the rotation axis centers of a plurality of spherical rolling elements rotating in a radial direction perpendicular to the rotation center axis of the bearing, and the retainer is rotated. A concave spherical surface portion is also provided at an opposing position that coincides with the rotational axis central axis of the moving body, and a pivot sphere having a spherical radius smaller than the spherical radius of the concave spherical portion is disposed between both concave spherical surface portions. Furthermore, the bearing of the present embodiment is configured by arranging a lower ring having an annular groove that contacts the spherical surfaces of a plurality of rolling elements and an upper ring having an annular groove facing the lower ring. The retainer has a shape that maintains the above-described combined state with a plurality of rolling elements, so that the retainer is held in a mutually held state at a position that does not contact the lower ring and the upper ring.

本発明による上記課題を解決する第5の手段は、軸受けの回転中心軸と直角な半径方向に自転する複数のテーパーローラー状の転動体の自転軸中心の両端に凹球面部を設け、リテーナーの該転動体の自転軸中心軸に合致する対向位置にも凹球面部を設け、両方の凹球面部の間に該凹球面部の球面半径より小さな球面半径を有するピボット球体を配置した状態としている。テーパーローラー状の転動体は該転動体のテーパー面に接触するテーパー状の円輪溝を有する下側リングとこれに対向する上側リングの間に配置されている。又、リテーナーは複数の転動体と上記の組み合わせ状態を維持する形状となすことで、下側リング及び上側リングに接触しない位置に相互保持状態に保たれている。 According to a fifth means for solving the above-mentioned problem according to the present invention, concave spherical portions are provided at both ends of the rotation axis centers of a plurality of tapered roller-shaped rolling elements that rotate in a radial direction perpendicular to the rotation center axis of the bearing. A concave spherical surface portion is also provided at an opposing position that coincides with the rotation axis central axis of the rolling element, and a pivot sphere having a spherical radius smaller than the spherical radius of the concave spherical surface portion is disposed between both concave spherical surface portions. . The tapered roller-shaped rolling element is disposed between a lower ring having a tapered annular groove that contacts a tapered surface of the rolling element and an upper ring facing the lower ring. Further, the retainer has a shape that maintains the above-described combined state with a plurality of rolling elements, so that the retainer is held in a mutually held state at a position where it does not contact the lower ring and the upper ring.

本発明による上記課題を解決する第6の手段は、軸受けの回転中心軸と傾斜角を持って交差した方向に自転する複数のテーパーローラー状の転動体の自転軸中心の両端に凹球面部を設け、リテーナーの該転動体の自転軸中心軸に合致する対向位置に凹球面部を設け、両方の凹球面部の間に該凹球面部の球面半径より小さな球面半径を有するピボット球体を配置した状態としている。リテーナーは複数の転動体と上記の組み合わせ状態を維持する形状となすことで、下側リング及び上側リングに接触しない位置に相互保持状態に保たれている。テーパーローラー状の転動体は該転動体のテーパー面に接触する平面を有する下側リングと、これに対向し、該転動体のテーパー面に接触するテーパー状の円輪溝を有する上側リングの間に配置されている。この場合テーパーローラーの大端部側の凹球面部と小端部側の凹球面部の球面半径は異なるものであっても、これに応じてピボット球体の球面半径が該凹球面部の球面半径より小さく設定されていれば機能上問題はない。 A sixth means for solving the above-described problems according to the present invention includes concave spherical portions at both ends of the rotation axis centers of a plurality of tapered roller-shaped rolling elements that rotate in a direction intersecting with the rotation center axis of the bearing at an inclination angle. A concave spherical surface portion is provided at a position opposite to the center axis of rotation of the rolling element of the retainer, and a pivot sphere having a spherical radius smaller than the spherical radius of the concave spherical portion is disposed between both concave spherical portions. State. The retainer has a shape that maintains the above-described combined state with a plurality of rolling elements, so that the retainer is held in a mutually held state at a position that does not contact the lower ring and the upper ring. The tapered roller-shaped rolling element is formed between a lower ring having a flat surface that contacts the tapered surface of the rolling element and an upper ring having a tapered annular groove that faces the tapered surface of the rolling element. Is arranged. In this case, even if the concave spherical portion on the large end side and the concave spherical portion on the small end side of the tapered roller have different spherical radii, the spherical radius of the pivot sphere is accordingly changed to the spherical radius of the concave spherical portion. If it is set smaller, there is no functional problem.

本発明の第1の効果は、上記第1の手段のごとき構成の軸受は、そのリテーナーを固定した状態で複数の転動体が回転すると該転動体に接触している外輪及び内輪はそれぞれ逆方向に回転する。転動体の凹球面部とリテーナーの凹球面部の間に配置されたピボット球体は転動体の凹球面部の中心軸近辺と接触した状態で、静止しているリテーナーの凹球面部の底部と接触し、これらの2点を結ぶ線がピボット球体の中心軸と一致していれば該2点で回転半径0の捩じり運動が生じるが、その状態を維持することは実質的に困難である。ピボット球体の位置が上記2つの凹球面部の間でわずかに移動して該2点を結ぶ線がピボット球体の中心軸との間にずれが生ずれば該2点で回転半径の小さな捩じり運動が生じる。この状態では接触点が常に少しずつ移動するので固定された2点の継続的なねじれ運動による焼き付き状態を避けることが出来る。このように該2点でのねじれ運動によって滑り運動が回避できるので滑り摩擦を最小限に抑えることが出来る。潤滑剤があればこの接触点の移動によって自動的に供給されるというに効果が生まれる。これが本発明の軸受が滑り摩擦をほとんど発生しない理由である。 The first effect of the present invention is that when a plurality of rolling elements rotate in a state where the retainer is fixed, the outer ring and the inner ring that are in contact with the rolling elements are in opposite directions. Rotate to. The pivot sphere disposed between the concave spherical surface portion of the rolling element and the concave spherical surface portion of the retainer is in contact with the bottom of the concave spherical surface portion of the stationary retainer while in contact with the vicinity of the central axis of the concave spherical surface portion of the rolling element. However, if the line connecting these two points coincides with the central axis of the pivot sphere, a torsional motion with a turning radius of 0 occurs at these two points, but it is substantially difficult to maintain this state. . If the position of the pivot sphere slightly moves between the two concave spherical portions and a line connecting the two points is displaced from the central axis of the pivot sphere, a twist having a small turning radius at the two points. Movement occurs. In this state, since the contact point always moves little by little, it is possible to avoid a seizure state due to two fixed continuous torsional motions. Thus, the sliding motion can be avoided by the twisting motion at the two points, so that the sliding friction can be minimized. If there is a lubricant, it is effective that it is automatically supplied by the movement of the contact point. This is the reason why the bearing of the present invention hardly generates sliding friction.

古くから時計用に使用されているピボット軸受けは、接触点をできるだけ小さくして摩擦力の発生点の回転軸中心からの距離を小さくすることで摩擦トルクを軽減しようとするものであるが、結果的には接触点の集中応力荷重が大きくなる。その集中応力荷重に耐えるために軸受にルビーなどの宝石を使用している。本発明のピボットは転動体とリテーナーとの接触点をピボット球体の回転中心軸に極めて近い小さな半径での捩じり運動に変換することで摩擦トルクを軽減できるので無理に接触点を小さくする必要がない。したがって使用する材料も宝石などの特別なものである必要はない。上記の説明ではリテーナーを固定した状態としている。しかし通常の使用状態では内輪が固定されるか外輪が固定されるかのいずれかであるが各部相互の接触状態及び相互の運動状態は上記説明と反するものではない。各部に生じる遠心力などの動的荷重は全体の運動の状態を改善することはあっても悪化させるものとはならない。 Pivot bearings that have been used for watches for a long time try to reduce the friction torque by making the contact point as small as possible and reducing the distance from the center of rotation axis of the friction force generation point. Specifically, the concentrated stress load at the contact point is increased. In order to withstand the concentrated stress load, jewelry such as ruby is used for the bearing. The pivot of the present invention can reduce the friction torque by converting the contact point between the rolling element and the retainer into a torsional motion with a small radius very close to the rotation center axis of the pivot sphere. There is no. Therefore, the material to be used does not need to be special, such as jewelry. In the above description, the retainer is fixed. However, in a normal use state, either the inner ring is fixed or the outer ring is fixed, but the contact state and the mutual movement state of each part are not contrary to the above description. A dynamic load such as centrifugal force generated in each part does not worsen the overall motion state even if it improves it.

第2、第3、の手段においてもその効果は第1の手段における効果とほぼ同様である。第4、の手段においては転動体には該転動体の公転円の外側に向かって遠心力が働くので、従来の軸受ではその部分での転動体とリテーナーの接触圧力による滑り摩擦が大きく、全体としての摩擦係数の増加の原因となっている。特に第5の手段の場合には、その傾向が強く大きな負担となるためテーパーローラーの大端部のコーナーで下側リングまたは上側リングの円輪溝のコーナーを接触させて位置関係を保つ構成のものがあるが、このようにした場合は両者の滑り接触が発生して軸受としての性能の低下を招くことになる。本発明の第5、第6の手段によれば外径側のピボット球体がテーパーローラーの凹球面部とリテーナーの凹球面部との接触によってこの強い遠心力(荷重を受けることによる遠心分力を含む)を支持するので単なる点接触状態での捩じり回転のみとなるので従来の軸受との摩擦係数の差は著しいものがある。ただし、この場合転動体とリテーナーに形成する凹球面部及びピボット球体は応力荷重に強い材質を使用することが必要となる。 The effect of the second and third means is almost the same as that of the first means. In the fourth means, since the centrifugal force acts on the rolling element toward the outside of the revolution circle of the rolling element, the conventional bearing has a large sliding friction due to the contact pressure between the rolling element and the retainer at the portion, As a result, the friction coefficient is increased. In particular, in the case of the fifth means, the tendency is strong and a large burden is imposed, so that the positional relationship is maintained by contacting the corner of the annular groove of the lower ring or upper ring at the corner of the large end of the tapered roller. However, in such a case, sliding contact between the two occurs, leading to a decrease in performance as a bearing. According to the fifth and sixth means of the present invention, the pivot sphere on the outer diameter side contacts this concave spherical surface portion of the taper roller and the concave spherical surface portion of the retainer, and this strong centrifugal force (centrifugal force due to receiving a load is reduced). In other words, there is a significant difference in the coefficient of friction from the conventional bearing because only torsional rotation in a point contact state is supported. However, in this case, it is necessary to use a material resistant to stress load for the concave spherical surface portion and the pivot sphere formed on the rolling elements and the retainer.

図1は本発明の1実施形態を示した正断面図である。FIG. 1 is a front sectional view showing an embodiment of the present invention. 図2は本発明の1実施形態を示した側断面図である。FIG. 2 is a side sectional view showing an embodiment of the present invention. 図3は本発明の1実施形態のP部の詳細を示した部分側断面図である。FIG. 3 is a partial side cross-sectional view showing details of a P portion according to an embodiment of the present invention. 図4は本発明の他の実施形態を示した側断面図である。FIG. 4 is a side sectional view showing another embodiment of the present invention. 図5は本発明の他の実施形態を示した側断面図である。FIG. 5 is a side sectional view showing another embodiment of the present invention. 図6は本発明の他の実施形態を示した正断面図である。FIG. 6 is a front sectional view showing another embodiment of the present invention. 図7は本発明の他の実施形態を示した側断面図である。FIG. 7 is a side sectional view showing another embodiment of the present invention. 図8は本発明の他の実施形態を示した正断面図である。FIG. 8 is a front sectional view showing another embodiment of the present invention. 図9は本発明の他の実施形態を示した側断面図である。FIG. 9 is a side sectional view showing another embodiment of the present invention. 図10は本発明の他の実施形態を示した側断面図である。FIG. 10 is a side sectional view showing another embodiment of the present invention.

図において構造的にはその機能を損なわない限り簡略化して表示しているものとする。本発明の軸受の第1の実施例の構造は図1、図2、図3において軸受けの回転中心軸と並行な方向に自転する複数の球状の転動体1の自転軸中心の両端に凹球面部2を設け、リテーナー3の該転動体1の自転中心軸に合致する対向位置にも凹球面部4を設け、両方の凹球面部2及び4の間に該凹球面部2及び4の球面半径R1、R2より小さな球面半径R3を有するピボット球体5を配置した状態としている。更に複数の転動体1の球面に接触する円環状外面溝を有する内輪6とこれに対向する位置で複数の転動体1の球面に接触する円環状内面溝を有する外輪7を配置することで本実施例の軸受は構成されている。リテーナー3は複数の転動体1と上記の組み合わせ状態を維持する形状となすことで、内輪6及び外輪7に接触しない位置に相互保持状態に保たれている。このような構成の軸受において、該リテーナー3を固定した状態で複数の転動体1が回転すると該転動体1に接触している内輪6及び外輪7はそれぞれ逆方向に回転する。転動体1の凹球面部2とリテーナー3の凹球面部4の間に配置されたピボット球体5は転動体1の凹球面部の中心軸近辺とリテーナー3の凹球面部4の中心付近と接触した状態で両者の接触点の動きの共通する回転軸の周りに回転する。この回転軸が転動体1の自転回転軸に合致している場合はピボット球体5の捩じり回転速度は任意であるが、回転軸が転動体の自転回転軸に対して傾いていればその点の移動速度に応じて回転し、その接触点での滑り摩擦は発生しない。転動体1とリテーナー3との接触点をピボット球体5の回転中心軸に極めて近い小さな半径での捩じり運動に変換することで摩擦トルクを軽減できるので無理に凹球面部2及び凹球面部4とピボット球体5との接触点を小さくする必要がない。これが本発明の軸受が滑り摩擦を小さくできる理由である。通常の使用状態では内輪が固定されるか外輪が固定されるかのいずれかであるが各部相互の接触状態及び相互の運動状態は上記説明と反するものではない。
In the figure, it is assumed that the display is simplified as long as the function is not impaired. The structure of the first embodiment of the bearing according to the present invention is a concave spherical surface at both ends of the rotation shaft center of a plurality of spherical rolling elements 1 rotating in a direction parallel to the rotation center axis of the bearing in FIGS. A concave spherical surface portion 4 is also provided at a position opposite to the rotation center axis of the rolling element 1 of the rolling element 1 of the retainer 3, and the spherical surfaces of the concave spherical surface portions 2 and 4 are between both concave spherical surface portions 2 and 4. A pivot sphere 5 having a spherical radius R3 smaller than the radii R1 and R2 is arranged. Further, the inner ring 6 having an annular outer surface groove that contacts the spherical surface of the plurality of rolling elements 1 and the outer ring 7 having an annular inner surface groove that contacts the spherical surface of the plurality of rolling elements 1 at positions opposed thereto are arranged. The bearing of the embodiment is configured. The retainer 3 has a shape that maintains the above-described combined state with the plurality of rolling elements 1, so that the retainer 3 is maintained in a mutually held state at a position where it does not contact the inner ring 6 and the outer ring 7. In the bearing having such a configuration, when the plurality of rolling elements 1 rotate with the retainer 3 fixed, the inner ring 6 and the outer ring 7 that are in contact with the rolling elements 1 rotate in opposite directions. The pivot sphere 5 disposed between the concave spherical surface portion 2 of the rolling element 1 and the concave spherical surface portion 4 of the retainer 3 is in contact with the vicinity of the central axis of the concave spherical surface portion of the rolling element 1 and the vicinity of the center of the concave spherical surface portion 4 of the retainer 3. In this state, it rotates about the rotation axis where the movement of both contact points is common. When this rotational axis is coincident with the rotational rotational axis of the rolling element 1, the torsional rotational speed of the pivot sphere 5 is arbitrary, but if the rotational axis is inclined with respect to the rotational rotational axis of the rolling element, It rotates according to the moving speed of the point, and no sliding friction occurs at the contact point. Since the friction torque can be reduced by converting the contact point between the rolling element 1 and the retainer 3 into a torsional motion with a small radius very close to the rotation center axis of the pivot sphere 5, the concave spherical portion 2 and the concave spherical portion are forcibly reduced. There is no need to reduce the contact point between 4 and the pivot sphere 5. This is the reason why the bearing of the present invention can reduce sliding friction. In a normal use state, either the inner ring is fixed or the outer ring is fixed, but the contact state and the mutual movement state of each part are not contrary to the above description.

本発明による上記課題を解決する第2の実施例の構造は、図4に示す如く軸受けの回転中心軸に交差し半径方向に傾いた方向に自転する球状の転動体11の自転軸中心の両端に凹球面部12を設け、リテーナー13の該転動体の自転中心軸に合致する対向位置にも凹球面部14を設け、両方の凹球面部12及び14の間に該凹球面部12及び14の球面半径より小さな球面半径を有するピボット球体15を配置した状態としている。更に複数の転動体11の球面に接触する円環状外面溝を有する内輪16とこれに対向する位置で複数の転動体11の球面に接触する円環状内面溝を有する外輪17を配置することで本実施例の軸受は構成されている。リテーナー13は複数の転動体11と上記の組み合わせ状態を維持する形状となすことで、内輪16及び外輪17に接触しない位置に相互保持状態に保たれている。該実施例でもその動作は上記第1の実施例の構造の場合とほぼ同様であるが、この構造の軸受は半径方向の荷重のほかに回転軸方向の荷重が加わった状態の時に安定した回転が得られる特徴がある。
The structure of the second embodiment for solving the above-mentioned problem according to the present invention is as shown in FIG. 4 in which both ends of the rotation axis center of the spherical rolling element 11 that rotates in the direction inclined in the radial direction intersecting the rotation center axis of the bearing. The concave spherical surface portion 12 is provided on the opposite side of the retainer 13 so as to coincide with the rotation center axis of the rolling element, and the concave spherical surface portions 12 and 14 are provided between the concave spherical surface portions 12 and 14. The pivot sphere 15 having a spherical radius smaller than the spherical radius is arranged. Further, the inner ring 16 having an annular outer surface groove that contacts the spherical surface of the plurality of rolling elements 11 and the outer ring 17 having an annular inner surface groove that contacts the spherical surface of the plurality of rolling elements 11 at positions facing the inner ring 16 are arranged. The bearing of the embodiment is configured. The retainer 13 has a shape that maintains the above-described combined state with the plurality of rolling elements 11, so that the retainer 13 is maintained in a mutually held state at a position where it does not contact the inner ring 16 and the outer ring 17. In this embodiment, the operation is almost the same as that of the structure of the first embodiment, but the bearing of this structure rotates stably when a load in the direction of the rotating shaft is applied in addition to a load in the radial direction. There is a feature that can be obtained.

本発明による上記課題を解決する第3の実施例の構造は、図5に示す如く軸受けの回転中心軸と並行な方向に自転する円筒状の転動体21の自転軸中心の両端に凹球面部22を設け、リテーナー23の該転動体の自転中心軸に合致する対向位置にも凹球面部24を設け、両方の凹球面部22及び24の間に該凹球面部22及び24の球面半径より小さな球面半径を有するピボット球体25を配置した状態としている。更に複数の転動体21の円筒面に接触する円環状外面溝を有する内輪26とこれに対向する位置で複数の転動体の円筒面に接触する円環状内面溝を有する外輪27を配置することで本実施例の軸受は構成されている。リテーナー23は複数の転動体21と上記の組み合わせ状態を維持する形状となすことで、内輪26及び外輪27に接触しない位置に相互保持状態に保たれている。該実施例でもその動作は上記第1の実施例の構造の場合とほぼ同様であるが、この構造の軸受は半径方向の荷重のみが加わった状態の時に安定した回転が得られる特徴がある。特に大きな半径方向の荷重が加わった時に安定した回転が得られる特徴がある。
The structure of the third embodiment for solving the above-mentioned problem according to the present invention is as shown in FIG. 5. Concave spherical portions are formed at both ends of the rotation axis center of a cylindrical rolling element 21 that rotates in a direction parallel to the rotation center axis of the bearing. 22, and a concave spherical surface portion 24 is also provided at a position facing the rotation center axis of the rolling element of the retainer 23, and the spherical surface radius of the concave spherical surface portions 22 and 24 is between the concave spherical surface portions 22 and 24. A pivot sphere 25 having a small spherical radius is arranged. Furthermore, by arranging an inner ring 26 having an annular outer surface groove that contacts the cylindrical surface of the plurality of rolling elements 21 and an outer ring 27 having an annular inner surface groove that contacts the cylindrical surface of the plurality of rolling elements at a position facing this. The bearing of the present embodiment is configured. The retainer 23 has a shape that maintains the above-described combined state with the plurality of rolling elements 21, so that the retainer 23 is maintained in a mutually held state at a position where it does not contact the inner ring 26 and the outer ring 27. The operation of this embodiment is almost the same as that of the structure of the first embodiment, but the bearing of this structure is characterized in that stable rotation can be obtained when only a radial load is applied. In particular, a stable rotation can be obtained when a large radial load is applied.

本発明による上記課題を解決する第4の手段は、図6及び図7に示す如く軸受けの回転中心軸と交差し該回転中心軸と直角な半径方向に自転する複数の球状の転動体31の自転軸中心の両端に凹球面部32を設け、リテーナー33の該転動体の自転軸中心軸に合致する対向位置にも凹球面部34を設け、両方の凹球面部32及び34の間に該凹球面部の球面半径より小さな球面半径を有するピボット球体を配置した状態としている。更に複数の転動体31の球面に接触する円環状溝を有する上側リング36とこれに対向する円環状溝を有する下側リング37を配置することで本実施例の軸受は構成されている。リテーナー33は複数の転動体31と上記の組み合わせ状態を維持する形状となすことで、上側リング36及び下側リング37に接触しない位置に相互保持状態に保たれている。該実施例でもその動作は上記第1の実施例の構造の場合とほぼ同様であるが、この構造の軸受は半径方向の荷重が小さく、主に回転軸方向の荷重が加わった状態の時に安定した回転が得られる特徴がある。
A fourth means for solving the above-described problems according to the present invention is that the plurality of spherical rolling elements 31 that rotate in the radial direction perpendicular to the rotation center axis intersect with the rotation center axis of the bearing as shown in FIGS. Concave spherical portions 32 are provided at both ends of the rotation axis center, and concave spherical portions 34 are also provided at positions facing the rotation axis central axis of the rolling element of the retainer 33, and the concave spherical portions 32 and 34 are disposed between both concave spherical portions 32 and 34. A pivot sphere having a spherical radius smaller than the spherical radius of the concave spherical portion is arranged. Further, the bearing of this embodiment is configured by arranging an upper ring 36 having an annular groove that contacts the spherical surfaces of the plurality of rolling elements 31 and a lower ring 37 having an annular groove facing the upper ring 36. The retainer 33 has a shape that maintains the above-described combined state with the plurality of rolling elements 31, so that the retainer 33 is maintained in a mutually held state at a position where it does not contact the upper ring 36 and the lower ring 37. The operation of this embodiment is almost the same as that of the structure of the first embodiment, but the bearing of this structure has a small radial load and is stable when a load mainly in the rotation axis direction is applied. There is a feature that can be rotated.

本発明による上記課題を解決する第5の手段は、図8及び図9に示す如く軸受けの回転中心軸と交差し該回転中心軸と直角な半径方向に自転する複数のテーパーローラー状の転動体41の自転軸中心の両端に凹球面部42を設け、リテーナー43の該転動体41の自転軸中心軸に合致する対向位置に凹球面部44を設け、両方の凹球面部42及び44の間に該凹球面部の球面半径より小さな球面半径を有するピボット球体を配置した状態としている。テーパーローラー状の転動体41はテーパー状の円輪溝を有する上側リング46とこれに対向する下側リング47の間に配置されている。又、リテーナーは複数の転動体と上記の組み合わせ状態を維持する形状となすことで、上側リング46及び下側リング47に接触しない位置に相互保持状態に保たれている。 The fifth means for solving the above-described problems according to the present invention is a plurality of tapered roller-like rolling elements that rotate in the radial direction perpendicular to the rotation center axis intersecting with the rotation center axis of the bearing as shown in FIGS. Concave spherical portions 42 are provided at both ends of the rotational axis center of 41, and concave spherical portions 44 are provided at opposing positions that match the rotational axis central axis of the rolling element 41 of the retainer 43, and between the concave spherical portions 42 and 44. In this state, a pivot sphere having a spherical radius smaller than the spherical radius of the concave spherical portion is arranged. The tapered roller-shaped rolling element 41 is disposed between an upper ring 46 having a tapered annular groove and a lower ring 47 facing the upper ring 46. Further, the retainer has a shape that maintains the above-described combined state with a plurality of rolling elements, so that the retainer is maintained in a mutually held state at a position where it does not contact the upper ring 46 and the lower ring 47.

本発明による上記課題を解決する第6の手段は、図10に示す如く軸受けの回転中心軸と半径方向から回転軸方向に傾斜角を持った方向に自転する複数のテーパーローラー状の転動体51の自転軸中心の両端に凹球面部52Aと52B を設け、リテーナー53の該転動体51の自転軸中心軸に合致する対向位置にも凹球面部54A及び54Bを設け、両方の凹球面部の間に該凹球面部の球面半径より小さな球面半径を有するピボット球体55A及び55Bを配置した状態としている。テーパーローラー状の転動体51は該転動体51のテーパー面に接触するテーパー状の円輪溝を有する上側リング56とこれに対向し、該転動体51のテーパー面に接触する平面を有する下側リング57との間に配置されている。この場合テーパーローラーの大端部側の凹球面部52Aと小端部側の凹球面部52Bの球面半径は異なるものであっても、これに応じてリテーナー53の凹球面部54A及び54Bがこれに等しくピボット球体55A及び55Bの球面半径が対応する凹球面部52A及び52B、54A及び54Bの球面半径より小さく設定されていれば機能上問題はない。リテーナー53は複数の転動体と上記の組み合わせ状態を維持する形状となすことで、上側リング56及び下側リング57に接触しない位置に相互保持状態に保たれている。
[動作]
A sixth means for solving the above-described problem according to the present invention is a plurality of tapered roller-like rolling elements 51 that rotate in a direction having an inclination angle from the radial direction to the rotational axis direction from the rotational center axis of the bearing as shown in FIG. Concave spherical surface portions 52A and 52B are provided at both ends of the rotation axis center of the rotating body 51, and concave spherical surface portions 54A and 54B are also provided at opposing positions of the retainer 53 that coincide with the rotation axis central axis of the rolling element 51. Pivot spheres 55A and 55B having a spherical radius smaller than the spherical radius of the concave spherical portion are arranged between them. The tapered roller-shaped rolling element 51 includes an upper ring 56 having a tapered annular groove that contacts the tapered surface of the rolling element 51, and a lower side having a flat surface that faces the upper ring 56 and contacts the tapered surface of the rolling element 51. It is arranged between the ring 57. In this case, even if the concave spherical portion 52A on the large end side of the taper roller and the concave spherical portion 52B on the small end side have different spherical radii, the concave spherical portions 54A and 54B of the retainer 53 correspond to this. If the spherical radii of the pivot spheres 55A and 55B are set to be smaller than the spherical radii of the corresponding concave spherical portions 52A and 52B, 54A and 54B, there is no functional problem. The retainer 53 has a shape that maintains the above-described combined state with a plurality of rolling elements, so that the retainer 53 is maintained in a mutually held state at a position where it does not contact the upper ring 56 and the lower ring 57.
[Operation]

上記第1〜第6の実施例において共通して言えることは複数の転動体に設けた凹球面部と該凹球面部に対向する位置に設けたリテーナーの凹球面部の間に設けたピボット球体が相互の位置関係を相互の点接触により滑り運動を伴わないねじれ転がり運動で維持していることである。このことによって外輪と内輪が相互に回転した場合の摩擦を滑り運動なしに最小限に軽減することが出来ることである。従来の軸受では転動体同士、またはリテーナーと転動体、または内輪とリテーナーなどが滑り接触状態となっており摩擦力の発生・接触による粉塵の発生、潤滑油関連の課題を残している。本発明によってこれらの課題を解決し、多くの機器の回転部に使用されている軸受の摩擦抵抗を極限まで軽減できることである。 What can be said in common in the first to sixth embodiments is a pivot sphere provided between a concave spherical portion provided on a plurality of rolling elements and a concave spherical portion of a retainer provided at a position facing the concave spherical portion. However, the mutual positional relationship is maintained by the torsional rolling motion without sliding motion due to mutual point contact. As a result, friction when the outer ring and the inner ring rotate with each other can be reduced to a minimum without a sliding motion. In conventional bearings, the rolling elements, or the retainer and the rolling element, or the inner ring and the retainer are in a sliding contact state, and the generation of dust due to the generation of frictional force and contact, and the problems related to lubricating oil remain. The present invention solves these problems and can reduce the frictional resistance of bearings used in rotating parts of many devices to the limit.

以上の説明で明らかな如く本発明のピボットリテーナ―付き軸受は、多くの機器の回転部に使用されている軸受の摩擦抵抗を極限まで軽減できるものであり、交通機関、発電機、物流など極めて広い範囲での生産性の向上に寄与するものであり従来製品との置き換えも容易なのでその産業上の利用効果は極めて著しい。 As is clear from the above description, the bearing with pivot retainer of the present invention can reduce the frictional resistance of the bearing used in the rotating part of many devices to the utmost limit. Since it contributes to the improvement of productivity in a wide range and can be easily replaced with conventional products, its industrial use effect is extremely remarkable.

1、11、21、31、41、51 転動体
2、12、22、32、42、52、52A、52B 凹球面部
3、13、23、33、43、53 リテーナー
4、14、24、34、44、54、54A、54B 凹球面部
5、15、25、35、45、55 ピボット球体
36、46、56 上側リング
37、47、57 下側リング
R1 凹球面部の曲率半径
R2 凹球面部の曲率半径
R3 ピボット球体の曲率半径
1, 11, 21, 31, 41, 51 Rolling element 2, 12, 22, 32, 42, 52, 52A, 52B Concave spherical surface
3, 13, 23, 33, 43, 53 Retainer 4, 14, 24, 34, 44, 54, 54A, 54B Concave spherical surface part 5, 15, 25, 35, 45, 55 Pivot sphere 36, 46, 56 Upper ring 37, 47, 57 Lower ring R1 Radius of curvature of concave spherical portion R2 Radius of curvature of concave spherical portion R3 Radius of curvature of pivot sphere

Claims (6)

軸受けの回転中心軸と並行な方向に自転する複数の球状の転動体の自転軸中心の両端に凹球面部を設け、リテーナーの該転動体の自転中心軸に合致する対向位置にも凹球面部を設け、両方の凹球面部の間に該両凹球面部の球面半径より小さな球面半径を有するピボット球体を配置した状態で、複数の転動体の球面に接触する円環状外面溝を有する内輪と、これに対向する位置で複数の転動体の球面に接触する円環状内面溝を有する外輪を相互に接触しない位置に配置したことを特徴とするピボット球体付き軸受。 Concave spherical portions are provided at both ends of the rotational axis center of a plurality of spherical rolling elements that rotate in a direction parallel to the rotation center axis of the bearing, and the concave spherical portions are also located at opposing positions that match the rotational central axis of the rolling element of the retainer. An inner ring having an annular outer groove that contacts the spherical surfaces of a plurality of rolling elements in a state where a pivot sphere having a spherical radius smaller than the spherical radius of both concave spherical portions is disposed between both concave spherical portions. A bearing with a pivot sphere, characterized in that outer rings having annular inner grooves that contact the spherical surfaces of a plurality of rolling elements at positions opposed to this are arranged at positions that do not contact each other. 軸受けの回転中心軸と半径方向に傾斜した方向に自転する複数の球状の転動体の自転軸中心の両端に凹球面部を設け、リテーナーの該転動体の自転中心軸に合致する対向位置にも凹球面部を設け、両方の凹球面部の間に該両凹球面部の球面半径より小さな球面半径を有するピボット球体を配置した状態で、複数の転動体の球面に接触する円環状外面溝を有する内輪と、これに対向する位置で複数の転動体の球面に接触する円環状内面溝を有する外輪を相互に接触しない位置に配置したことを特徴とするピボット球体付き軸受。 Concave spherical portions are provided at both ends of the rotation shaft center of a plurality of spherical rolling elements that rotate in a direction inclined in a radial direction with respect to the rotation center axis of the bearing, and the retainer also has an opposing position that matches the rotation center axis of the rolling element. An annular outer surface groove that is in contact with the spherical surfaces of a plurality of rolling elements is provided in a state where a concave spherical surface portion is provided and a pivot sphere having a spherical radius smaller than the spherical radius of both concave spherical portions is arranged between both concave spherical portions. A bearing with a pivot ball having an inner ring having an inner ring and an outer ring having an annular inner groove contacting a spherical surface of a plurality of rolling elements at a position opposite to the inner ring. 軸受けの回転中心軸と並行な方向に自転する複数の円筒状の転動体の自転軸中心の両端に凹球面部を設け、リテーナーの該転動体の自転中心軸に合致する対向位置にも凹球面部を設け、両方の凹球面部の間に該両凹球面部の球面半径より小さな球面半径を有するピボット球体を配置した状態で、複数の転動体の円筒面に接触する円環状外面溝を有する内輪とこれに対向する位置で複数の転動体の円筒面に接触する円環状内面溝を有する外輪を相互に接触しない位置に配置したことを特徴とするピボット球体付き軸受。 Concave spheres are provided at both ends of the rotation axis center of the plurality of cylindrical rolling elements that rotate in a direction parallel to the rotation center axis of the bearing, and the concave spherical surface is located at the opposite position of the retainer that matches the rotation center axis of the rolling element. And an annular outer surface groove that contacts the cylindrical surfaces of the plurality of rolling elements in a state in which a pivot sphere having a spherical radius smaller than the spherical radius of both concave spherical portions is arranged between both concave spherical portions. A bearing with a pivot sphere, wherein the inner ring and the outer ring having an annular inner groove that contacts the cylindrical surface of the plurality of rolling elements at a position facing the inner ring are arranged at positions where they do not contact each other. 軸受けの回転中心軸と直角な方向に自転する複数の球状の転動体の自転軸中心の両端に凹球面部を設け、リテーナーの該転動体の自転中心軸に合致する対向位置にも凹球面部を設け、両方の凹球面部の間に該凹球面部及びの球面半径より小さな球面半径を有するピボット球体を配置した状態で、複数の球状の転動体は該転動体の球面に接触する円環状の円輪溝を有する上側リングとこれに対向し、該転動体の球面に接触する円環状の円輪溝を有する下側リングとの間の相互に接触しなに配置したことを特徴とするピボット球体付き軸受。 Concave spherical portions are provided at both ends of the rotational axis center of a plurality of spherical rolling elements that rotate in a direction perpendicular to the rotation center axis of the bearing, and the concave spherical portions are also located at opposing positions that match the rotational central axis of the rolling element of the retainer. And a plurality of spherical rolling elements are in an annular contact with the spherical surface of the rolling element in a state where a pivot sphere having a spherical radius smaller than the spherical radius of the concave spherical part and the concave spherical part is arranged between both concave spherical parts. The upper ring having the annular groove and the lower ring having the annular ring groove facing the spherical surface of the rolling element are arranged so as not to contact each other. Bearing with pivot sphere. 軸受けの回転中心軸と直角な半径方向に自転する複数のテーパーローラー状の転動体の自転軸中心の両端に凹球面部を設け、リテーナーの該転動体の自転軸中心軸に合致する対向位置にも凹球面部を設け、両方の凹球面部の間に該凹球面部の球面半径より小さな球面半径を有するピボット球体を配置した状態で、複数のテーパーローラー状の転動体はテーパー状断面の円輪溝を有する上側リングとこれに対向するテーパー状断面の円輪溝を有する下側リングの間の相互に接触しない位置に配置したことを特徴とするピボット球体付き軸受。 Concave spherical portions are provided at both ends of the rotation shaft center of a plurality of tapered roller-shaped rolling elements that rotate in a radial direction perpendicular to the rotation center axis of the bearing, and the retainer is positioned at an opposing position that matches the rotation axis center axis of the rolling element. In addition, a plurality of tapered roller-shaped rolling elements are circular with a tapered cross section in a state where a concave spherical surface portion is provided and a pivot spherical body having a spherical radius smaller than the spherical radius of the concave spherical surface portion is disposed between both concave spherical surface portions. A bearing with a pivot sphere, wherein the bearing is arranged at a position where it does not contact each other between an upper ring having an annular groove and a lower ring having an annular groove having a tapered cross section facing the upper ring. 軸受けの回転中心軸と半径方向から回転軸方向に傾斜角を持った方向に自転する複数のテーパーローラー状の転動体の自転軸中心の両端に凹球面部を設け、リテーナーの該転動体の自転軸中心軸に合致する対向位置にも凹球面部を設け、両方の凹球面部の間に該凹球面部の球面半径より小さな球面半径を有するピボット球体を配置した状態で、複数のテーパーローラー状の転動体と接触するテーパー状断面の円輪溝を有する上側リングとこれに対向する平面を有する下側リングの間の相互に接触しない位置に配置したことを特徴とするピボット球体付き軸受。 Concave spherical portions are provided at both ends of the rotation shaft center of a plurality of tapered roller-shaped rolling elements that rotate in a direction having an inclination angle from the radial direction to the rotation axis direction from the rotation center axis of the bearing, and the rotation of the rolling element of the retainer A plurality of tapered roller shapes are provided with a concave spherical portion provided at an opposing position that coincides with the central axis of the shaft, and a pivot sphere having a spherical radius smaller than the spherical radius of the concave spherical portion is disposed between both concave spherical portions. A pivot ball bearing comprising: an upper ring having an annular groove having a tapered cross section that contacts the rolling element of the first ring; and a lower ring having a flat surface opposite to the upper ring.
JP2017114193A 2017-06-09 2017-06-09 Bearing with pivot sphere Active JP6997367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017114193A JP6997367B2 (en) 2017-06-09 2017-06-09 Bearing with pivot sphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017114193A JP6997367B2 (en) 2017-06-09 2017-06-09 Bearing with pivot sphere

Publications (2)

Publication Number Publication Date
JP2018204775A true JP2018204775A (en) 2018-12-27
JP6997367B2 JP6997367B2 (en) 2022-01-17

Family

ID=64956773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017114193A Active JP6997367B2 (en) 2017-06-09 2017-06-09 Bearing with pivot sphere

Country Status (1)

Country Link
JP (1) JP6997367B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114001090A (en) * 2021-11-19 2022-02-01 中国航发哈尔滨轴承有限公司 Cylindrical roller bearing
CN114810815A (en) * 2022-05-11 2022-07-29 邓亮国 Improved bearing suitable for heavy-load low-speed working condition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4872537B2 (en) 2006-08-29 2012-02-08 東洋製罐株式会社 Induction heating cooking container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114001090A (en) * 2021-11-19 2022-02-01 中国航发哈尔滨轴承有限公司 Cylindrical roller bearing
CN114810815A (en) * 2022-05-11 2022-07-29 邓亮国 Improved bearing suitable for heavy-load low-speed working condition

Also Published As

Publication number Publication date
JP6997367B2 (en) 2022-01-17

Similar Documents

Publication Publication Date Title
JP6762358B2 (en) Grooved dynamic pressure radial gas bearing
JP5698411B2 (en) Self-aligning oil film bearing
JP2013199948A (en) Wave gear apparatus
JP2016095026A (en) Inclination contact type self axis alignment toroidal rolling bearing
WO2013051696A1 (en) Rolling bearing
JP2017089845A (en) Rolling bearing
JP2018204775A (en) Bearing with pivot spherical body
CN105114452B (en) A kind of bearing pair and bearing are to component
JP2013015200A (en) Conical roller bearing
WO2015057137A1 (en) Bearing for combined loads
JP2012202453A (en) Self-aligning roller bearing
JP2008267400A (en) Ball bearing
CN103352919B (en) Solid cage and reinforced solid tapered roller bearing
JP3210224U (en) Angular contact ball bearing cage, angular contact ball bearing and bearing device
JP2015127563A (en) Cylindrical roller bearing
CN112112894B (en) Rolling joint bearing with angular motion freedom
JP2017508928A (en) System and method for lubricating a plain bearing
JP2017096423A (en) Rolling bearing
JP2017096414A (en) Rolling bearing
JP2016118234A (en) Tripod type constant velocity joint
KR20000053421A (en) Rolling bearing
JP5985684B2 (en) Thrust bearing and its cage
JP2020159498A (en) Cross roller bearing
Ricci Ball bearings subjected to a variable eccentric thrust load
CN219366603U (en) Corrugated roller shaft head bearing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211111

R150 Certificate of patent or registration of utility model

Ref document number: 6997367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150