JP2018204480A - 風力発電装置 - Google Patents

風力発電装置 Download PDF

Info

Publication number
JP2018204480A
JP2018204480A JP2017108844A JP2017108844A JP2018204480A JP 2018204480 A JP2018204480 A JP 2018204480A JP 2017108844 A JP2017108844 A JP 2017108844A JP 2017108844 A JP2017108844 A JP 2017108844A JP 2018204480 A JP2018204480 A JP 2018204480A
Authority
JP
Japan
Prior art keywords
generator
wind
power generation
cable
buoyancy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017108844A
Other languages
English (en)
Inventor
繁生 中山
Shigeo Nakayama
繁生 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakayama Jimusho Co Ltd
Original Assignee
Nakayama Jimusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakayama Jimusho Co Ltd filed Critical Nakayama Jimusho Co Ltd
Priority to JP2017108844A priority Critical patent/JP2018204480A/ja
Publication of JP2018204480A publication Critical patent/JP2018204480A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】発電の効率化、発電量の増加、無制御で安定した姿勢制御が行えることによる製造コストの低減や長期的信頼性の確保、さらには設置場所の自由度の増加といった様々な特長を有する風力発電装置を提供する。【解決手段】空気よりも低比重である浮力発生体1と、浮力発生体に設けられ、気流により揚力を生じる揚力発生体2bとを備えた浮遊体と、浮遊体に設けられた回転タービン3と、回転タービンが発生する運動エネルギーを電力に変換する発電機4とを備え、揚力発生体は風圧により変形可能な素材からなる。【選択図】図2

Description

本発明は、風力発電装置に関する。
プロペラや風車によって地表近くの風を捉え、電気エネルギーに変換する数々の風力発電システムが既に実用化されている。しかし、年間を通して、安定的に風が強い場所においてしか使用することができないという欠点を有している。また、地表近くでは風向が安定せず、変化する風向に対応してプロペラや風車の向きを変えることが必要であり、それを達成する機構にコストが掛かるという問題点もある。
一方、大空には偏西風等の強く且つ風向の安定した風が常に吹いているため、この大空の風を捉えて発電するシステムの研究も活発に行われている。
例えば、ジェット気流が存在する上空に、気球などの吊り上げ手段によって引き上げられ、空高く舞い上がる風力発電装置と、該風力発電装置を地上に係留する係留ケーブルと、前記風力発電装置によって発電した電力を地上の電力設備に送電する送電ケーブルとから成り、かつ前記風力発電装置が、発電機を内蔵した胴体と、前記発電機を駆動するための風力タービンと、前記胴体に取り付けられた浮上用の翼とから成る風力発電設備を特徴とする発電装置が提案されている。(例えば、特許文献1、特に請求項1および0007段落)。
また、ケーブルの両端に揚力制御可能な一対の揚力体を固定し、ケーブルの中央付近を地上に置いた発電装置のローターに取り付け、一対の揚力体の一方が上昇している間は他方が下降し、一方が下降している間は他方が上昇するように、一対の揚力体を制御することでケーブルに往復運動させて発電するシステムも提案されている(例えば、特許文献2)。
特開平5−296137 特開平4−237877
特許文献1の風力発電装置10は、0007段落に記載されているように、気球などの吊り上げ手段によって、ジェット気流Jが存在する上空に引き上げられる。そして、ジェット気流Jが存在する空域に達すると、気球が風力発電装置10から切り離されるか、ガス抜きしたあと胴体1内に収納される。そして、浮上用の翼3によって風力発電装置10の浮力を維持するようになっている。
すなわち、上空に達するまでは気球などの吊り上げ手段が、ジェット気流Jが存在する上空に達してからは浮上用の翼3が浮力を担う構成になっている。強い気流が存在する上空では、気球は強い風圧を受けて、横に流されたり、急激な降下圧力を受けたりして、姿勢を安定に保つことの妨げになるためである。
また、このような構成においては、気球などの吊り上げ手段として大きな浮力が働く大型の気球等が必要になる。特に、重量物である発電機を内蔵した胴体を上空まで持ち上げるためには、非常に大きな浮力が必要である。
また、ジェット気流Jが存在する上空に達してからは翼3が浮力を担うが、ジェット気流Jが乱れた時には、空中姿勢を維持するのが困難になるし、ジェット気流Jが一時的であれ、弱くなった際には浮力を失い、墜落する危険性がある。特に、重量物である発電機を内蔵した胴体を空中に維持するには大きな浮力が必要であり、したがって、翼3も大型化が必要となる。さらに、大型化した翼3が風の流れを妨げ、風力タービンが受ける風力が減少するといった問題も生じる。
特許文献2のシステムにおいては、大空高くの風を利用可能であり、場所を選ぶことなく高効率な発電ができる。
しかし、一対の揚力体の上下動を確実に制御しなければならず、そのため、揚力体は複雑で高価な浮遊姿勢の制御機構が必要である。
また、突然の突風や急な風向きの変化が生じた際には、姿勢制御が不能に陥る場合があり、揚力体が地上に落下したり、揚力体同士が絡まったりする危険性がある。仮に高所より命綱を揚力体に結び付けていたとしても、落下時には、命綱からの大きな反力が衝撃として揚力体に掛かる。このような大きな衝撃は、揚力体にダメージを与え、複雑な浮遊姿勢の制御機構を壊したり、異常をきたすことがある。
さらに、揚力体は、複雑な浮遊姿勢の制御が必要であるため、十分に風を受けることには制限があり、姿勢の制御を優先せざるおえない。したがって、発電効率を高めることに制限がある。
また、特許文献1の発電装置と特許文献2の発電システムに共通する課題として、空中に浮遊する発電装置が、地上の係留ポイントからかなり斜めの位置で浮遊することである。すなわち、特許文献1の風力発電装置10は、ジェット気流Jが胴体1等に及ぼす風圧に押されるため、地上の係留ポイントよりもかなり風下の位置で浮遊することになる。同様に、特許文献2の揚力体は、揚力体の面が風圧に押されるため、地上の係留ポイントよりもかなり風下の位置で浮遊することになる。
このように、空中に浮遊する発電装置が、地上の係留ポイントからかなり斜めの位置で浮遊すると、それらを結ぶケーブルが斜めに伸びるため、複数の発電装置を浮遊させた場合に、ケーブルが絡み合う危険性が生じる。したがって、多くの発電装置を狭い係留ポイントから空中に舞い上げることが困難になる。
本発明は、大空高くの風を利用可能であるとともに、上記の課題を解決した風力発電システムを提供するものである。
本発明の請求項1に係る風力発電装置は、
空気よりも低比重である浮力発生体と、当該浮力発生体に設けられ、気流により揚力を生じる揚力発生体とを備えた浮遊体と、
当該浮遊体に設けられた回転タービンと、
当該回転タービンが発生する運動エネルギーを電力に変換する発電機と、
を備え、
上記揚力発生体は風圧により変形可能な素材からなる
ことを特徴とする。
本発明の請求項2に係る風力発電装置は、
空気よりも低比重である浮力発生体と、当該浮力発生体に設けられ、気流により揚力を生じる揚力発生体とを備えた浮遊体と、
当該浮遊体に設けられた回転タービンと、
当該回転タービンが発生する運動エネルギーを電力に変換する発電機と、
を備え、
上記発電機は地上部に設けられ、
上記回転タービンは、
当該回転タービンの回転に応じて回転するリールと、
当該リールに巻かれたケーブルと
を有し、
上記ケーブルは上記発電機のロータに接続している
ことを特徴とする。
本発明の請求項3に係る風力発電装置は、
上記ケーブルは、一端が上記リールに固定され、他端が上記発電機のロータに固定されている
ことを特徴とする。
本発明の請求項4に係る風力発電装置は、
上記ケーブルは2本のケーブルからなり、
上記2本のケーブルそれぞれの一端が上記リールに固定され、他端が上記発電機のロータに固定され、
上記2本のケーブルそれぞれは、上記リールに逆方向に巻かれ、
上記2本のケーブルそれぞれは、上記発電機のロータに逆方向に巻かれ、
上記回転タービンの回転方向に対する上記リールの回転方向を逆転する回転切り替え手段をさらに有する
ことを特徴とする。
本発明の請求項5に係る風力発電装置は、
上記浮遊体に遠隔操作可能な無人機を設けた
ことを特徴とする。
揚力体等を用いて、空高くの風向の安定した強い風を利用する発電システムは、発電の高効率化、発電システム設置場所の自由度向上といった大きな特長を持っている。しかし、未だに実用に至っていない。その要因の第一は、空中での姿勢を安定することが困難である点である。あるいは、空中での姿勢を安定することが理論上は可能であったとしても、それを実現するための技術的難易度が高すぎるために、製造歩留まりが得られない、あるいは長期的な信頼性が改善できないといったこともある。あるいは、十分な発電効率が得られない場合もある。
本発明は、こういった現状の課題を勘案してなされたものであり、発電の効率化、発電量の増加、無制御で安定した姿勢制御が行えることによる製造コストの低減や長期的信頼性の確保、さらには設置場所の自由度の増加といった様々な特長を有する風力発電装置を提供できる。
本発明に係る風力発電装置の上面図である。 本発明に係る風力発電装置の側面図である。 本発明に係る風力発電装置の前面図である。 本発明に係る風力発電装置の動作を説明するための図である。 本発明に係る風力発電装置の動作を説明するための図である。 本発明に係る風力発電装置の動作を説明するための図である。 実施の形態2に係る別の発電ケーブルを用いた際の風力発電装置の前面図である。 実施の形態2に係る2本の発電ケーブルを用いた際の風力発電装置の側面図である。 実施の形態2に係るリング状の発電ケーブルを用いた際の風力発電装置の側面図である。
実施の形態1.
本発明に係る風力発電装置の構成および動作等に関して、以下において、図面を用いて説明する。なお、以下の説明は本発明に関する良好な一例を開示するものであり、本発明が当該実施の形態に限定されるものではない。
<構成>
図1から図3を用いて、風力発電装置の構成について説明する。図1は風力発電装置の上面図、図2は風力発電装置の側面図、図3は風力発電装置の前面図である。
本実施の形態の風力発電装置においては、空気よりも低比重である浮力発生体1と、浮力発生体1に設けられ、気流により揚力を生じる揚力発生体2a、2bとが空中に浮遊する浮遊体を構成する。そして、この浮遊体に設けられ風力により回転する回転タービン3と、回転タービン3が発生する運動エネルギーを電力に変換する発電機4とを、風力発電装置の主な構成として備えている。
そして、揚力発生体2a、2bは風圧により変形可能な素材からなることが望ましい。
また、発電機4は地上部に設けられ、回転タービン3は、回転タービン3の回転に応じて回転するリール3cと、リール3cに巻かれたケーブル5とを有し、ケーブル5は発電機4のロータ4aに接続していることが望ましい。
さらに、浮遊体にドローン等の遠隔操作可能な無人機7を設けても良い。
空中における浮遊体の姿勢を安定させるために、安定化機構をさらに設けても良い。例えば、鉛直軸周りの回転や迎え角の変動を抑制するために垂直尾翼や水平尾翼6を設けても良いし、迎え角の変動を抑制するために、さらにバランサー8を設けても良い。
<各構成要素の説明>
浮力発生体1は、例えば、バルーンや気球である。内部に軽い気体を封入する等により、全体として空気よりも低比重にすることで浮力を発生するものである。
揚力発生体2a、2bは飛行機の翼と同様のものであっても良いが、凧やパラグライダーのように風圧により変形可能な素材からなるものが望ましい。図3等に示すように、揚力発生体2a、2bは前面から見た際に左右対称に設けることが望ましい。また、前面から見た際に、面が見えないことが望ましい。このような構成にすることで、左右のバランスが取れた水平姿勢を維持しやすく、また、常に風を前面から受けるように姿勢方向を保つことができる。
「凧やパラグライダーののように風圧により変形可能な素材からなるもの」とは、金属や硬質の樹脂、木材といった変形しにくい骨格と、この骨格に張られた変形可能な素材からなるものである。「変形可能な素材」とは、それ自体が変形しやすいエストラマ―のような素材であっても良いし、紙やビニール等の薄い素材をやや余裕をもって骨格に張ることで、風圧により変形しやすくしても良い。すなわち、面で風を受けた際に、お椀状に変形可能なものである。お椀状に変形することで、より強い風圧を面に略垂直な方向に受けやすくなる。凧は、横風を受けた際においても、斜め方向を向いた面で風を受けるため、面に略垂直な方向、すなわち斜め上方に揚力を生じて大空に舞い上がることができるが、揚力発生体2a、2bも同様の揚力を発生できるものが望ましい。
回転タービン3は、回転タービン支持部3bを介する等により、浮遊体に回転軸3aが固定され、風を受けて回転するプロペラ状のものである。
回転軸にはリール3cが設けられ、そこにケーブル5を掛けることができるようになっている。
上述したように、揚力発生体2a、2bが常に風を前面から受けるように姿勢方向を保つことができるように配置されている場合には、図3に示すように回転タービン3を前面を正面とするように配置することで、常に風を前面から受けて、最大限の回転エネルギーを発生させることができる。
発電機4は、浮遊体に設けても良いが、重量物である発電機4を上空まで持ち上げるためには、非常に大きな浮力や揚力が必要であるため、浮力体を小型化するためには地上部に設けた方が効率的である。
発電機4を地上部に設置した場合、ケーブル5は、回転タービン3のリール3cと、発電機4のロータ4aに掛けられることで、回転タービン3の回転を発電機4のロータ4aに伝達し、結果として、回転タービンが発生する運動エネルギーを電力に変換する。
ケーブル5は、回転運動の伝達ケーブルとしての役割以外に、浮遊体を地上部に係留する係留ケーブルとしての役割も持っている。したがって、浮遊体が強く安定した風を受けることができる高度を考慮して、ケーブル5の長さが決まる。図2や図3においては、風力発電装置の全体が見やすいように、ケーブル5の長さを便宜上短く表現しているが、実際には数10mから100m以上の長さになる場合もある。
なお、「地上部」とは、地表付近の土地や道路、建物等をまとめた概念であり、係留の始点となる場所である。また、風力発電装置は洋上でも使用することができる、洋上で風力発電装置を使用する場合は、船舶等が係留の支点となるため、「地上部」には船舶等も含まれる。
ドローン等の遠隔操作可能な無人機7は、地上部等より無線で遠隔操作できる飛行体である。例えば、図1から図3に示すように、4つのプロペラを持ち、このプロペラを順方向に回転することで浮上し、逆方向に回転することで降下する。あるいは、4つのプロペラのうちの一部だけを回転することで並進も可能となる。充電池を使用しているため、長時間の運転はできないが、浮遊体を上昇したり下降したりする際だけに、付加的な駆動力として使用する。浮遊体が十分な強さの風を受ける高度まで上昇すれば、無人機7の駆動力は不要になり、無人機7は停止状態になる。浮遊体が上空で安定状態になった際に、無人機7のプロペラは、上空の風を受けて発電することも可能であるので、この電力を充電池に蓄えることができるようにすれば、無人機7の駆動時間を長くすることができる。
バランサー8は、浮遊体の前後のバランスを保つための装置であり、傾斜角を検知するセンサー等により浮遊体の前後の傾斜角を検知し、傾斜角を水平に戻すように、バランサー8の前後の重さのバランスが変化するといった機構を有している。
<動作>
次に、図4から図6を用いて、風力発電装置の動作について説明する。図中の白矢印は、矢印の方向が風向を、矢印の太さが風力を表している。
まず、地上部から上昇する際の初期的な動き、すなわち離陸時の動作について説明する。浮遊体や回転タービン3、および無人機7等の風力発電装置に働く主な力は、浮力発生体1に働く浮力、風力発電装置に働く重力、および揚力発生体2a、2bに働く揚力である。浮力発生体1に働く浮力が十分に大きければ、風力発電装置は浮上する。
しかし、本実施の形態においては、浮力発生体1に働く浮力を十分に大きな力にはしていない。浮力発生体1に働く浮力が大きすぎると、上空に浮遊した風力発電装置を地上部に引き戻すことが困難になるからである。また、浮力発生体1に働く浮力を大きくするためには、浮力発生体1の体積を大きくすることが必要であるが、体積が大きくなると、上空における強い風を受けた際に風力発電装置の姿勢が乱れやすく、回転タービン3が常に正面から風を受けるのが難しくなり、発電効率が低下してしまうという問題も生じる。そこで、本実施の形態においては、浮力発生体1に働く浮力だけでは風力発電装置が浮上しない程度の浮力になっている。
地上部付近における風が強い場合には、揚力発生体2a、2bに働く揚力で風力発電装置は浮上できるが、地上部付近における風が弱い場合には、図4に示すように、無人機7を駆動して浮上する。
ある程度の高度まで浮上して風を受けるようになると、無人機7を停止しても揚力発生体2a、2bに働く揚力によって、さらに高度を上げることができる。
特に、揚力発生体2a、2bが風圧により変形可能な素材からなるものである場合、風が弱くても強い揚力が発生する。図5に示すように、揚力発生体2a、2bは面に風を受けてお椀状に(B部が上方にくぼむように)撓み、さらに風を受けやすくなる。このように、撓んだ面が風を受けることで、上方への強い揚力が発生する。
浮力発生体1に働く浮力と揚力発生体2a、2bに働く揚力により、風力発電装置は上空高くに浮上し、ケーブルが伸びきる高度で安定した姿勢になる。上空高くでは、安定して強い風を受けることができる。強い風が吹いている際には、風の抵抗が最も小さくなるように、揚力発生体2a、2bの面が風向きと平行になり、風力発電装置は略水平を保った状態になる。また、浮力発生体1や尾翼6も風の抵抗が最も小さくなる方向になるため、風力発電装置全体として、風向きに対して常に一定の向きを向くことができる。したがって、回転タービンを常に最も風を受けやすい、すなわち発電効率が最大となる風に正対する方向にすることができる。
また、揚力発生体2a、2bの面が風向きと平行になると、図6に示すように、揚力発生体2a、2bの下側では風速が遅くなり、上側では風速が速くなる。さらに、浮力発生体1の上側を弧状に、下側を平らな形状にすることで、浮力発生体1の下側では風速が遅くなり、上側では風速が速くなる。これにより、浮力発生体1、及び揚力発生体2a、2bの上側の空気の密度が相対的に小さくなることで揚力が働く。この揚力と浮力発生体1に働く浮力により、風力発電装置は高度を保つことができる。
さらに、発電時に風向きが下向きになった際にも、姿勢や高度を保つことができる。浮力発生体1等に下向きの風が当たると、浮力発生体1の風下側が下方向を向く。そうすると、同様に傾いた揚力発生体2a、2bの下面に風が当たるため、揚力が生じるとともに、風力発電装置全体の姿勢を水平に戻そうとする力が生じる。
風力発電装置を地上部に降ろす際には、無人機7のプロペラを逆回転させて下降力を生じさせたり、ケーブル5を引っ張ったりすることで、風力発電装置を地上部に引き寄せればよい。
実施の形態2.
本実施の形態においては、実施の形態1で用いた発電ケーブル5の代わりに、別の発電ケーブル5aを用いる。その他の構成は基本的に変わらない。
発電ケーブル5はリング状のケーブルであったが、発電ケーブル5aは発電ケーブル5よりも長く、且つ細めのケーブルである。発電ケーブル5aは、リール3cと発電ローター4aに巻き付けて使用する。すなわち、リール3cと発電ローター4aは糸巻きのように、発電ケーブル5aを幾重にも巻き付ける役割を持つ。そして、発電ケーブル5aの一端はリール3cに、他端は発電ローター4aに固定してある。
発電時には、回転タービン3が回転し、それに伴って回転するリール3cが、発電ローター4aに巻かれた発電ケーブル5aを巻き取ることで発電ローター4aが回転し、発電機4が発電する。
そして、発電ローター4aに巻かれた発電ケーブル5aがリール3cに巻き取られると、発電した電力の一部を利用する等することで発電ローター4aを逆回転させ、リール3cに巻かれた発電ケーブル5aを発電ローター4aに巻き取る。そして、上述のように、再度の発電を行う。この動作を繰り返すことで発電が行われる。
なお、発電ローター4aを逆回転させ、リール3cに巻かれた発電ケーブル5aを発電ローター4aに巻き取る際には、回転タービン3の回転とリール3cの回転とが連動しないようなギア機構を設けることが望ましい。例えば、ギア機構を無線等により遠隔操作可能なものとし、発電ローター4aの逆回転に同期するように、ギアの切り替えを行うようにすれば良い。このようにすることで、小さな力でリール3cに巻かれた発電ケーブル5aを発電ローター4aに巻き取ることができる。
なお、回転タービン3の回転とリール3cの回転とが連動しない状態にした際に、浮遊体が上昇気流により上昇を始める場合もあり、それを防止するために、発電ケーブル5aとは別に、浮遊体と地上部とを結ぶ係留用のケーブルを設けても良い。
実施の形態1で示した発電ケーブル5を用いた場合、連続して発電を行えるというメリットがある。しかし、リール3cや発電ローター4aと発電ケーブル5とは、摩擦力により運動が伝達されるため、摩擦力を大きくすることが必要となり、必然的に発電ケーブル5は太いケーブル、あるいは幅広のケーブルになる。そのため、発電ケーブル5が重くなり、発電装置を上空に上昇させる際に、浮遊体の重さだけではなく、発電ケーブル5の重さも負荷になってしまう。
他方、本実施の形態のように、発電ケーブル5aの一端はリール3cに、他端は発電ローター4aに固定してある場合、太いケーブルは不要であり、軽量の合金糸等を用いることが可能となり、発電装置を上空に上昇させる際に大きな負荷にならないというメリットがある。
<2本の発電ケーブルを用いる場合>
図8に示すように、1本の発電ケーブル5aを用いる代わりに、2本の発電ケーブル5b、5cを用いることによって、発電効率を向上させることもできる。
リール3dには、2本のケーブル発電ケーブル5b、5cの一端が固定されている。そして、発電ケーブル5bは巻き取った状態に、発電ケーブル5cは巻き取られた状態にある。また、発電ケーブル5bと発電ケーブル5cのリール3dの巻き方は逆向きになっている。すなわち、一方が時計回りであれば、他方は反時計回りに巻かれている。
発電ローター4においても、2本のケーブル発電ケーブル5b、5cの一端が固定されている。そして、発電ケーブル5bは巻き取られた状態に、発電ケーブル5cは巻き取った状態にある。また、発電ケーブル5bと発電ケーブル5cのリール3dの巻き方は逆向きになっている。
また、回転タービン3の回転軸3aとリール3dの回転軸3eの間には、回転切り替え手段である反転用ギアボックスが設けられており、回転軸3aに対する回転軸3eの回転方向を同じ方向から逆方向に切り替えることができる。
動作について説明する。
発電時には、回転タービン3が回転し、それに伴って回転するリール3dが、発電ローター4bに巻かれた発電ケーブル5bを巻き取ることで発電ローター4bが回転し、発電機4が発電する。この際、発電ケーブル5cは、発電ローター4b側に巻き取られる。
図8に示すように、リール3dが発電ローター4bに巻かれた発電ケーブル5bをすべて巻き取った時には、逆に発電ケーブル5cは発電ローター4bがすべて巻き取った状態になる。この状態で反転用ギアボックスにより、回転軸3aに対する回転軸3eの回転方向を反転させる。そうすると、回転するリール3dが、発電ローター4bに巻かれた発電ケーブル5cを巻き取ることで発電ローター4bが回転し、発電機4が発電する。
そして、リール3dが発電ローター4bに巻かれた発電ケーブル5cをすべて巻き取ると、反転用ギアボックスにより、回転軸3aに対する回転軸3eの回転方向を反転させる。
以上の動作を繰り返すことにより、発電は、ほぼ休止期間なく連続的に行われるため、単位時間当たりの発電量は大きく向上する。
さらに、2本のケーブルを使用した場合には、発電中、リール3dに巻かれたケーブルの総量、すなわち、発電ケーブル5bと発電ケーブル5cの総量は変化しない。したがって、発電ケーブル5bと発電ケーブル5cの総量の位置エネルギーは不変であり、発電中に位置エネルギー変化による発電損失が生じない。
このように、2つの理由により、単位時間当たりの発電量は大きく向上する。
<1本のリング状発電ケーブルを用いる場合>
実施の形態1で用いた太いリング状発電ケーブル5の代わりに、図9に示すように、1本の細いリング状発電ケーブル5dを用いることによって、発電ケーブルの軽量化が可能である。
すなわち、リール3eとローター4cに発電ケーブル5dを幾重にも巻き付けることで、細い発電ケーブル5dであっても、リール3eと発電ケーブル5dとの接触抵抗、およびローター4cと発電ケーブル5dとの接触抵抗を大きくすることができる。実施の形態1においては、リール3cからローター4aを結ぶすべての発電ケーブル5が太いケーブルであるため、発電ケーブル5全体の重量が重くなるという問題があった。一方、図9においては、ローター4cから上空高くにあるリール3eまでの非常に長い区間を細い発電ケーブル5dで結ぶため、発電ケーブル5d全体の重量を大幅に軽量化することが可能となり、発電装置を上空に上昇させる際に、発電ケーブル5dが大きな負荷にならないという利点がある。
<本発明のまとめ>
揚力体等を用いて、空高くの風向の安定した強い風を利用する発電システムは、発電の高効率化、発電システム設置場所の自由度向上といった大きな特長を持っている。しかし、未だに実用に至っていない。その要因の第一は、空中での姿勢を安定することが困難である点である。あるいは、空中での姿勢を安定することが理論上は可能であったとしても、それを実現するための技術的難易度が高すぎるために、製造歩留まりが得られない、あるいは長期的な信頼性が改善できないといったこともある。あるいは、十分な発電効率が得られない場合もある。
本発明は、現状の課題を勘案してなされたものであり、数多くの優れた特長を有している。これらの優れた特長に関して、以下に順に説明する。
第一に、高い発電効率、あるいは大きな発電量を達成できるポテンシャルを有していることである。
上述した特許文献1や2と同様に、空高くの風向の安定した強い風を利用できるためである。
また、特許文献1と異なり、浮力発生体を切り離したり収納したりすることなく、発電時にも使用できることで、以下のような発電の効率化や発電量の増大化が可能となる。
すなわち、風が強い上空では、揚力発生体が風圧を最小限にする方向に向くため、常に全体が水平を保つことができる。さらに、浮力発生体や尾翼等も風圧を最小限にする方向に向くため、風向きに対して一定の方向を保つことができる。このように、風向きを自動で追尾できるために、回転タービンが常に正面から風を受けるようにすることが可能となり、発電効率を最大化できる。なお、特許文献2においても、風向きにある程度は追尾可能であるが、安定した追尾はできない。
その理由は、特許文献2の風力発電装置では、風向きの変化に対して空中姿勢を保つことが困難なためであり、常に不安定に回転したり、あるいは、大きな風向きの変化に対しては落下の危険性もあるからである。
一方、本発明の風力発電装置では、発電時に風向きが下向きになった際にも、姿勢や高度を保つことができる。浮力発生体等に下向きの風が当たると、浮力発生体の風下側が下方向を向く。そうすると、同様に傾いた揚力発生体の下面に風が当たるため、揚力が生じるとともに、風力発電装置全体の姿勢を水平に戻そうとする力が生じる。このように、左右の風向き変化に自動で追尾できるだけではなく、上下の急な風向き変化に対しても、姿勢や高度を安定に保つことができる。
そして、発電時には揚力発生体が風圧を最小限にする方向に向き、浮力発生体が浮力を発生させていることから、風力発電装置は係留ポイントの真上近くで安定させることが可能である。図2に示した角度Aとして、0°〜30°の小さな角度に制御することが可能である。このため、係留ポイントが狭い面積であっても、ケーブルが絡むことなく、複数の風力発電装置を同時に使用できる。すなわち、発電量を大きくすることができる。
本発明がこのような特長を持つに至った技術的なポイントは、浮力発生体に働く浮力を小さくすることで、浮力発生体の体積を小さくすることが可能となり、上空の強い風の中でも、浮力発生体に対する風圧を小さくすることが可能となったためである。
揚力発生体を風圧により変形可能な素材からなるものとしたことで、上昇時に強い揚力が働き、浮力発生体に働く浮力が小さな浮力でも上昇が可能となった。
また、重量物である発電機を地上部に設けることで、上空に浮遊させる風力発電装置の軽量化を達成できたことも、浮力発生体に働く浮力を小さくすることに大きな貢献となった。
また、無人機を設け、離陸時の駆動力を与えたことも同様の寄与がある。
第二に、安定した姿勢制御を容易に達成できるため、信頼性の高い発電システムを得ることができる。
上述したように、浮力発生体と揚力発生体との組み合わせにより、左右の風向きに対する自動追尾が可能となり、上下の風向き変化に対しても安定な動作が可能となった。したがって、姿勢制御が不要となり、構造が単純化できるため、長期的な信頼性に優れた装置を容易に得ることができる。
第三に、低コストでの製造が可能である。
これは、浮力発生体と揚力発生体はシンプルな構造で良く、またそれらの制御も不要であるため、部品コストも低廉で、歩留まりが高い製造が可能である。
また、ケーブルを係留ケーブルと共用で使用できることで、部品点数が減少することもコスト低下に貢献する。
第四に、設置場所を選ばない。
大空の風を捉えるため、地表近くの風が弱い地域でも設置できる。
また、落下リスク等がほとんどないため、街中のビルの屋上等にも設置できる。
本発明に係る発電システムは、洋上での使用にも適している。例えば、船舶等で使用する場合、姿勢制御機構が不要であるため、高波で船舶等が大きく揺れた場合であっても、安定して使用できる。
また、無人機を並進駆動することで、浮遊体を並進移動させることができる。例えば、発電ケーブルを地上部の発電機から切り離し、浮遊体を地上部から係留されていない状態にすれば、浮遊体が上空を自由に移動することが可能となり、山岳部、海洋上等の道路のない場所でも迅速に発電装置の設置が容易となる。
1.浮力発生体
2a、2b.揚力発生体
3.回転タービン
3a.回転軸
3b.回転タービン支持部
3c、3d、3e.リール
4.発電機
4a、4b、4c.発電機ローター
5、5a、5b、5c、5d.(発電用)ケーブル
6.垂直尾翼
7.無人機
8.バランサー
9.回転切り替え手段

Claims (5)

  1. 空気よりも低比重である浮力発生体と、当該浮力発生体に設けられ、気流により揚力を生じる揚力発生体と、を備えた浮遊体と、
    当該浮遊体に設けられた回転タービンと、
    当該回転タービンが発生する運動エネルギーを電力に変換する発電機と、
    を備え、
    上記揚力発生体は風圧により変形可能な素材からなる
    ことを特徴とする風力発電装置。
  2. 空気よりも低比重である浮力発生体と、当該浮力発生体に設けられ、気流により揚力を生じる揚力発生体と、を備えた浮遊体と、
    当該浮遊体に設けられた回転タービンと、
    当該回転タービンが発生する運動エネルギーを電力に変換する発電機と、
    を備え、
    上記発電機は地上部に設けられ、
    上記回転タービンは、
    当該回転タービンの回転に応じて回転するリールと、
    当該リールに巻かれたケーブルと
    を有し、
    上記ケーブルは上記発電機のロータに接続している
    ことを特徴とする風力発電装置。
  3. 上記ケーブルは、一端が上記リールに固定され、他端が上記発電機のロータに固定されている
    ことを特徴とする請求項2に記載の風力発電装置。
  4. 上記ケーブルは2本のケーブルからなり、
    上記2本のケーブルそれぞれの一端が上記リールに固定され、他端が上記発電機のロータに固定され、
    上記2本のケーブルそれぞれは上記リールに逆方向に巻かれ、
    上記2本のケーブルそれぞれは上記発電機のロータに逆方向に巻かれ、
    上記回転タービンの回転方向に対する上記リールの回転方向を逆転する回転切り替え手段をさらに有する
    ことを特徴とする請求項2に記載の風力発電装置。
  5. 上記浮遊体に遠隔操作可能な無人機を設けた
    ことを特徴とする請求項1から4のいずれかに記載の風力発電装置。
JP2017108844A 2017-05-31 2017-05-31 風力発電装置 Pending JP2018204480A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017108844A JP2018204480A (ja) 2017-05-31 2017-05-31 風力発電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017108844A JP2018204480A (ja) 2017-05-31 2017-05-31 風力発電装置

Publications (1)

Publication Number Publication Date
JP2018204480A true JP2018204480A (ja) 2018-12-27

Family

ID=64956705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017108844A Pending JP2018204480A (ja) 2017-05-31 2017-05-31 風力発電装置

Country Status (1)

Country Link
JP (1) JP2018204480A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019089388A (ja) * 2017-11-13 2019-06-13 株式会社豊田中央研究所 発電用飛行体
CN110588946A (zh) * 2019-09-19 2019-12-20 中国电子科技集团公司第三十八研究所 一种系留气球头部系留装置
JP2021113545A (ja) * 2020-01-21 2021-08-05 株式会社大林組 風力発電システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019089388A (ja) * 2017-11-13 2019-06-13 株式会社豊田中央研究所 発電用飛行体
CN110588946A (zh) * 2019-09-19 2019-12-20 中国电子科技集团公司第三十八研究所 一种系留气球头部系留装置
JP2021113545A (ja) * 2020-01-21 2021-08-05 株式会社大林組 風力発電システム
JP7331710B2 (ja) 2020-01-21 2023-08-23 株式会社大林組 風力発電システム

Similar Documents

Publication Publication Date Title
US10871149B2 (en) Floating marine wind turbine
US9327845B2 (en) Spar buoy platform
JP6582072B2 (ja) 横風飛行とホバー飛行の間で航空車両を移行させる方法およびシステム
US6616402B2 (en) Serpentine wind turbine
EP1899602B1 (en) Ultralight airfoils for wind energy conversion
US7582981B1 (en) Airborne wind turbine electricity generating system
EP1407139B1 (en) Coaxial multi-rotor wind turbine
US20130134261A1 (en) Airborne wind energy conversion system with fast motion transfer
US9156565B2 (en) Methods for perching
US9732731B2 (en) Pivoting perch for flying wind turbine parking
US20180149137A1 (en) Integrated Tether and Mooring with Floating Platform for Energy Kite
AU2002322125A1 (en) Coaxial multi-rotor wind turbine
JP2020518494A (ja) 浮力を使用するエネルギ凧ウインチ巻き上げ
US9745962B2 (en) Radiator configuration for a flying wind turbine that passively controls airflow
JP2018204480A (ja) 風力発電装置
US20200189695A1 (en) Spar Buoy
US9546643B2 (en) Revolving overhead windmill
Ragheb Airborne wind Turbine concepts