JP2018203340A - Sterilization method of container - Google Patents

Sterilization method of container Download PDF

Info

Publication number
JP2018203340A
JP2018203340A JP2017110786A JP2017110786A JP2018203340A JP 2018203340 A JP2018203340 A JP 2018203340A JP 2017110786 A JP2017110786 A JP 2017110786A JP 2017110786 A JP2017110786 A JP 2017110786A JP 2018203340 A JP2018203340 A JP 2018203340A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
container
bottle
pet
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017110786A
Other languages
Japanese (ja)
Other versions
JP7228950B2 (en
Inventor
泰昌 伊藤
Yasumasa Ito
泰昌 伊藤
和生 阿部
Kazuo Abe
和生 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Kakoki Co Ltd
Original Assignee
Shikoku Kakoki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Kakoki Co Ltd filed Critical Shikoku Kakoki Co Ltd
Priority to JP2017110786A priority Critical patent/JP7228950B2/en
Publication of JP2018203340A publication Critical patent/JP2018203340A/en
Application granted granted Critical
Publication of JP7228950B2 publication Critical patent/JP7228950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

To provide a method for sterilizing PET bottles easy to absorb hydrogen peroxide with low cost and high efficiency, and within the processing time commensurate with the line speed of a filling packaging machine.SOLUTION: Hydrogen peroxide gas is sprayed on an inner surface of a container beforehand. After the hydrogen peroxide is adhered evenly on the inner surface, ultraviolet rays are irradiated via PET material or the like using a light source capable of irradiating ultraviolet rays of a wavelength region of 320 to 400 nm that are transmitted through PET material or the like from the opening side, side surface side or bottom surface side of the container (bottle). The hydrogen peroxide adhered on the inner surface of the container is activated by the ultraviolet rays transmitted through PET material or the like, and then the hydrogen peroxide adhered inside the bottle is dried and removed.SELECTED DRAWING: Figure 1

Description

本発明は、ペットボトルやガラス瓶などの透明で開口部が狭い容器を殺菌する方法、より詳しくは、特に過酸化水素を吸着しやすいペットボトルを殺菌する方法に関する。   The present invention relates to a method for sterilizing a transparent container having a narrow opening, such as a plastic bottle or a glass bottle, and more particularly to a method for sterilizing a PET bottle that easily adsorbs hydrogen peroxide.

従来、ペットボトルの殺菌方法としては、1)紫外線照射、2)電子線照射、3)過酸化水素ガス噴霧、4)加温した過酢酸噴射等による方法が知られている。   Conventionally, methods for sterilizing PET bottles include 1) ultraviolet irradiation, 2) electron beam irradiation, 3) hydrogen peroxide gas spray, 4) heated peracetic acid injection, and the like.

DNAの光吸収スペクトルは260nm付近に吸収帯があることから、殺菌に一番有効な波長は260nm付近と考えられており、そのためこの波長の紫外光をピークで放出する低圧水銀ランプが殺菌用途として知られている。しかし、殺菌効果を有する254nmの波長を主成分とするUV−C帯域の紫外線はPET材質を透過できないことから、紫外線照射によるペットボトルの殺菌方法として、光源をペットボトルの内部に配置して、容器内面に紫外線照射をする必要があり、紫外線レーザ光を光ファイバを介してペットボトル内に導き、照射手段によって乱反射させてペットボトルの内面に散乱・照射して殺菌する方法(特許文献1)、容器内面において紫外線の光量が一定になるように、光源を容器内面に接近・離間しながら紫外線を照射する方法(特許文献2)等が知られているが、殺菌工程の高速化、すなわち充填包装機のラインスピードに見合った処理時間内に殺菌を行うことができない等の実用上問題があった。   Since the light absorption spectrum of DNA has an absorption band near 260 nm, the most effective wavelength for sterilization is considered to be around 260 nm. Therefore, a low-pressure mercury lamp that emits ultraviolet light of this wavelength at its peak is used for sterilization. Are known. However, since UV rays in the UV-C band mainly having a wavelength of 254 nm having a sterilizing effect cannot pass through the PET material, as a method for sterilizing PET bottles by ultraviolet irradiation, a light source is arranged inside the PET bottle, It is necessary to irradiate the inner surface of the container with ultraviolet rays. A method in which ultraviolet laser light is guided into a plastic bottle through an optical fiber, diffusely reflected by an irradiating means, scattered and irradiated on the inner surface of the plastic bottle (Patent Document 1). A method of irradiating ultraviolet rays while a light source approaches and separates from the inner surface of the container so that the amount of ultraviolet light is constant on the inner surface of the container (Patent Document 2) is known. There were practical problems such as inability to sterilize within the processing time corresponding to the line speed of the packaging machine.

電子線照射によるペットボトルの殺菌方法としては、容器収容チャンバに備えられたキャビティにペットボトルを収容し、電子線照射銃で電子線を出射する方法(特許文献3)、殺菌領域においてペットボトルに電子線を照射する工程と、該殺菌領域の上流に配置されたペットボトル供給領域を過酸化水素ガス雰囲気とする方法(特許文献4)等が知られているが、電子線照射によるペットボトルの変色、照射臭の問題、電子線漏洩策、ペットボトル搬送時の保持方法、膨大なイニシャルコスト等の解決すべき課題が多く、ペットボトルの殺菌システムとしてまだまだ広まっていない。   As a method for sterilizing a PET bottle by electron beam irradiation, a method of storing a PET bottle in a cavity provided in a container housing chamber and emitting an electron beam with an electron beam irradiation gun (Patent Document 3), There are known a method of irradiating an electron beam and a method of making a PET bottle supply region disposed upstream of the sterilization region into a hydrogen peroxide gas atmosphere (Patent Document 4). There are many problems to be solved such as discoloration, irradiation odor problem, electron beam leakage countermeasure, holding method when transporting PET bottles, enormous initial cost, etc., and it has not yet spread as a PET bottle sterilization system.

過酸化水素ガス噴霧によるペットボトルの殺菌方法としては、必須成分として過酸化水素、リン酸塩及びアルミニウム塩を含む過酸化水素水溶液のミストやガスを対象物に接触させる方法(特許文献5)等が知られているが、過酸化水素ガスによるペットボトルの殺菌は、ペットボトルの素材が過酸化水素を吸着するため、熱風での過酸化水素の乾燥除去が難しく、残留値が高いという問題がある。また残留値を抑えるために長時間の乾燥時間が必要となり機械が大きくなる。また無菌水でリンスする手法も検討されたようだが吸着した過酸化水素はリンスでは除去しきれず、使用水量も多くなりランニングコストに大きく影響するという問題がある。   As a method for sterilizing PET bottles by spraying hydrogen peroxide gas, a method of bringing a mist or gas of an aqueous hydrogen peroxide solution containing hydrogen peroxide, phosphate and aluminum salt as essential components into contact with an object (Patent Document 5), etc. However, the sterilization of PET bottles with hydrogen peroxide gas has the problem that it is difficult to dry and remove hydrogen peroxide with hot air and the residual value is high because the material of the PET bottles absorbs hydrogen peroxide. is there. Also, a long drying time is required to suppress the residual value, and the machine becomes large. Although a method of rinsing with aseptic water seems to have been studied, there is a problem that the absorbed hydrogen peroxide cannot be removed by rinsing and the amount of water used increases, which greatly affects the running cost.

過酢酸噴射によるペットボトルの殺菌方法としては、60℃以上に加温した過酸化水素水と酢酸とを混合した過酢酸系溶剤をペットボトルに噴射する方法(特許文献6)等が知られているが、この過酢酸噴射による殺菌方法は使用水量が多く、昨今では過酢酸に対する抵抗性微生物が出現し、これらを殺滅するには過酢酸濃度を高くする、添加剤を加える等の対策が必要とされている。   As a method for sterilizing a PET bottle by peracetic acid injection, a method of injecting a peracetic acid solvent mixed with hydrogen peroxide solution and acetic acid heated to 60 ° C. or more into a PET bottle is known (Patent Document 6). However, this method of sterilization by peracetic acid injection uses a large amount of water, and recently, microorganisms resistant to peracetic acid have appeared. To kill these, measures such as increasing the concentration of peracetic acid and adding additives are required. is necessary.

また、過酸化水素と紫外線照射の併用による殺菌方法は公知であり、この過酸化水素と紫外線照射を併用する殺菌方法は、材質表面をUV−C帯域の紫外線に暴露する必要があることから、UV−C帯域の紫外線を照射しやすい形状、特にシート状の包装材料、カップ(底面よりも開口部面積が大きい)、紙カートン等に適用されてきた。例えば、上部に開口を有する食品用包装容器の内部に過酸化水素含有溶液を付着させる殺菌剤付着工程と、過酸化水素が付着した該容器内部にUV−C帯域の紫外線を照射して殺菌するUV殺菌工程と、過酸化水素が付着した該容器内部に除去用気体のエアーや不活性ガスを吹き付けて該容器内部から過酸化水素を除去する殺菌剤除去工程とを備えた殺菌方法が知られている(特許文献7及び8)が、これらの方法は殺菌に有効な波長254nmの紫外線を容器内面に照射する必要がある。   Further, a sterilization method using hydrogen peroxide and ultraviolet irradiation in combination is known, and the sterilization method using hydrogen peroxide and ultraviolet irradiation in combination requires that the surface of the material be exposed to UV-C band ultraviolet rays. It has been applied to shapes that are easy to irradiate ultraviolet rays in the UV-C band, particularly sheet-shaped packaging materials, cups (having a larger opening area than the bottom surface), paper cartons, and the like. For example, a disinfectant attaching step of attaching a hydrogen peroxide-containing solution to the inside of a food packaging container having an opening in the upper portion, and sterilizing the inside of the container to which hydrogen peroxide is attached by irradiating UV-C band ultraviolet rays. Known is a sterilization method comprising a UV sterilization step and a sterilizing agent removal step of removing hydrogen peroxide from the inside of the container by blowing air or an inert gas for removal into the container to which hydrogen peroxide is adhered. However, in these methods, it is necessary to irradiate the inner surface of the container with ultraviolet light having a wavelength of 254 nm which is effective for sterilization.

その他、ガラス瓶についてはペットボトルに比べて耐熱性があるため、過酸化水素ガスの温度を高く設定したり、過酢酸の温度を高く設定できるので殺菌条件の設定が可能である。また、ガラス瓶については過酸化水素を吸着することはないので、過酸化水素ガス噴霧により殺菌することが可能である。過酢酸噴射によるガラス瓶の殺菌については、上記ペットボトルと同様の問題が残る。なお、電子線照射によるガラス瓶の殺菌は、ガラス瓶の肉厚のため不可である。   In addition, since glass bottles have higher heat resistance than PET bottles, the temperature of hydrogen peroxide gas can be set high, or the temperature of peracetic acid can be set high, so that sterilization conditions can be set. Further, since the glass bottle does not adsorb hydrogen peroxide, it can be sterilized by spraying hydrogen peroxide gas. About the sterilization of the glass bottle by peracetic acid injection, the problem similar to the said PET bottle remains. Note that sterilization of the glass bottle by electron beam irradiation is not possible due to the thickness of the glass bottle.

特開平09−099921号公報JP 09-099921 A 特開2017−023613JP2017-023613 特開2012−55556JP2012-55556A 特開2009−107633JP 2009-107633 A WO2015/008784WO2015 / 008784 特開2003−112713JP 2003-127713 A 特開昭56−113530号公報JP-A-56-113530 特開2004−59014JP-A-2004-59014

本発明の課題は、過酸化水素を吸着しやすいペットボトルを、低コストで効率よく、かつ充填包装機のラインスピードに見合った処理時間内に殺菌する方法を提供することにある。   An object of the present invention is to provide a method for sterilizing a PET bottle that easily adsorbs hydrogen peroxide within a processing time that is low-cost and efficient and that matches the line speed of a filling and packaging machine.

過酸化水素ガス噴霧による殺菌システムでは、ペットボトルやガラス瓶などの細口開口部を要する容器内面や、ペットボトルプリフォーム、試験管チューブ、透明パウチ等の開口面積が狭く、深さのある容器内面にも、過酸化水素ガスを付着させることは容易である。他方、紫外線照射により殺菌する場合、254nm近辺の波長を含まないと殺菌効果が得られないが、254nm近辺の波長の紫外線はPET材質を透過することができないことから、開口部の上方側からの光照射(特にUV−C)では、開口部が狭く深さのある容器では内部に入射できる光に限界が生じ、また光の減衰により深部の殺菌が難しくなる。そこで、本発明者らは、PET材質を透過することができるが殺菌能力がない波長域320〜400nmの紫外線が過酸化水素の活性化に及ぼす影響を調べてみることとした。   In the sterilization system using hydrogen peroxide gas spray, the inner surface of containers such as PET bottles and glass bottles that require a narrow mouth opening, and the inner surface of PET bottle preforms, test tube tubes, transparent pouches, etc. are narrow and deep. However, it is easy to deposit hydrogen peroxide gas. On the other hand, when sterilizing by ultraviolet irradiation, a sterilizing effect cannot be obtained unless the wavelength near 254 nm is included, but ultraviolet light having a wavelength near 254 nm cannot pass through the PET material. In light irradiation (particularly UV-C), in a container having a narrow opening and a depth, a limit is imposed on the light that can enter the inside, and attenuation of the light makes it difficult to sterilize the deep part. Therefore, the present inventors decided to investigate the influence of ultraviolet rays having a wavelength range of 320 to 400 nm that can penetrate the PET material but have no sterilizing ability on the activation of hydrogen peroxide.

あらかじめ容器内面に過酸化水素ガスを噴霧し、内表面にムラなく過酸化水素を付着させた後に、容器(ボトル)開口側、側面もしくは底面側からPET材質を透過する波長域の紫外線を照射できる光源を用いて、PET材質を介して紫外線を照射し、PET材質を透過した紫外線により容器内面に付着した過酸化水素を活性化させ、その後ボトル内面に付着した過酸化水素を乾燥除去した。その結果、過酸化水素との併用では254nmの波長域を含まない紫外光でも過酸化水素を活性化することができ、過酸化水素と254nmの波長域を含まない紫外光とを併用した場合にも効果的に殺菌できることを見いだした。260nm付近の波長の紫外線(UV−C)を透過しないペットボトルやガラス瓶の殺菌に、過酸化水素ガスと波長域320〜400nmの紫外線とを併用する方法が展開できると考えた。すなわち、ペットボトルの開口部分より低濃度の過酸化水素ガスをペットボトルの内面に噴霧した後、波長域320〜400nmの紫外線を照射することができる光源を用いて、ペットボトルの外側、例えばペットボトルの開口部上方から、ペットボトルの内面に直接、及びペットボトルの外壁のPET材質を介して波長域320〜400nmの紫外線を照射して、次いでペットボトルの内面に付着した過酸化水素ガスを温風で乾燥除去することにより、過酸化水素と紫外線の相乗効果によるペットボトルの効果的な殺菌が達成しうることを見いだし、本発明を完成することに至った。   After spraying hydrogen peroxide gas on the inner surface of the container in advance and attaching hydrogen peroxide evenly on the inner surface, UV light in a wavelength range that transmits the PET material can be irradiated from the container (bottle) opening side, side surface or bottom surface side. Using a light source, ultraviolet rays were irradiated through the PET material, and the hydrogen peroxide adhering to the inner surface of the container was activated by the ultraviolet rays transmitted through the PET material, and then the hydrogen peroxide adhering to the inner surface of the bottle was removed by drying. As a result, when combined with hydrogen peroxide, hydrogen peroxide can be activated even with ultraviolet light not including the 254 nm wavelength region, and when hydrogen peroxide and ultraviolet light not including the 254 nm wavelength region are used together. Also found that it can be sterilized effectively. It was considered that a method using hydrogen peroxide gas and ultraviolet rays having a wavelength range of 320 to 400 nm in combination could be developed for sterilization of PET bottles and glass bottles that do not transmit ultraviolet rays (UV-C) having a wavelength near 260 nm. That is, after spraying a hydrogen peroxide gas having a lower concentration than the opening portion of the PET bottle on the inner surface of the PET bottle, using a light source capable of irradiating ultraviolet rays having a wavelength range of 320 to 400 nm, From above the opening of the bottle, directly irradiate the inner surface of the PET bottle with ultraviolet rays in the wavelength range of 320 to 400 nm through the PET material on the outer wall of the PET bottle, and then the hydrogen peroxide gas adhering to the inner surface of the PET bottle. It has been found that by removing by drying with warm air, effective sterilization of the PET bottle can be achieved by the synergistic effect of hydrogen peroxide and ultraviolet rays, and the present invention has been completed.

すなわち、本発明は、以下の事項により特定される発明に関する。
(1)波長域100〜280nmの紫外線が通過しない材質からなる容器の殺菌方法であって、容器の内面を低濃度の過酸化水素ガスで処理した後に、波長域320〜400nmの紫外線を容器の外側から容器外壁を介して照射することを特徴とする容器の殺菌方法。
(2)容器が、開口部が絞られた細口容器であることを特徴とする上記(1)記載の殺菌方法。
(3)容器がペットボトルであることを特徴とする上記(1)又は(2)記載の殺菌方法。
(4)低濃度の過酸化水素ガスが、10%以下の低濃度の過酸化水素水を沸点以上に加熱して気化させたものであることを特徴とする上記(1)〜(3)のいずれか記載の殺菌方法。
(5)低濃度の過酸化水素ガスが、濃度75〜1200ppmの過酸化水素ガスであることを特徴とする上記(1)〜(4)のいずれか記載の殺菌方法。
(6)波長域320〜400nmの紫外線の光源が、高圧水銀ランプ、キセノンランプ、メタルハライドランプ、LEDであることを特徴とする上記(1)〜(5)のいずれか記載の殺菌方法。
(7)容器の外側から容器外壁を介しての照射が、容器の開口部上方からの照射であることを特徴とする上記(1)〜(6)のいずれか記載の殺菌方法。
(8)容器の外側から容器外壁を介しての照射が、容器の底面側及び/又は側面側の照射であることを特徴とする上記(1)〜(6)のいずれか記載の殺菌方法。
(9)紫外線を照射した後、温風で過酸化水素を乾燥除去することを特徴とする上記(1)〜(8)のいずれか記載の殺菌方法。
That is, this invention relates to the invention specified by the following matters.
(1) A method of sterilizing a container made of a material that does not allow ultraviolet rays in the wavelength range of 100 to 280 nm to pass through, and after treating the inner surface of the container with a low-concentration hydrogen peroxide gas, the ultraviolet rays in the wavelength range of 320 to 400 nm are Irradiating from the outside through the outer wall of the container.
(2) The sterilization method according to the above (1), wherein the container is a narrow-mouthed container having a narrowed opening.
(3) The sterilization method according to (1) or (2) above, wherein the container is a PET bottle.
(4) The above-mentioned (1) to (3), wherein the low-concentration hydrogen peroxide gas is vaporized by heating a low-concentration hydrogen peroxide solution of 10% or less to a boiling point or higher. The sterilization method according to any one of the above.
(5) The sterilization method according to any one of (1) to (4) above, wherein the low concentration hydrogen peroxide gas is a hydrogen peroxide gas having a concentration of 75 to 1200 ppm.
(6) The sterilization method according to any one of (1) to (5), wherein the ultraviolet light source having a wavelength region of 320 to 400 nm is a high-pressure mercury lamp, a xenon lamp, a metal halide lamp, or an LED.
(7) The sterilization method according to any one of (1) to (6) above, wherein the irradiation from the outside of the container through the container outer wall is irradiation from above the opening of the container.
(8) The sterilization method according to any one of (1) to (6) above, wherein the irradiation from the outside of the container through the container outer wall is irradiation on the bottom surface side and / or side surface side of the container.
(9) The sterilization method according to any one of (1) to (8), wherein the hydrogen peroxide is removed by drying with warm air after irradiation with ultraviolet rays.

従来では考えられていなかったペットボトル、ガラス瓶などの透明容器の外側から、単独では殺菌効果がないがPET材質を透過する波長域を含む紫外線照射と、過酸化水素の併用により殺菌相乗効果が認められ、その結果残留過酸化水素量を低減でき、かつ充填包装機のラインスピードに見合った処理時間内に殺菌することができる新しい殺菌システムが構築できる。   From the outside of transparent containers such as PET bottles and glass bottles, which were not considered in the past, there is no sterilization effect by itself. As a result, the amount of residual hydrogen peroxide can be reduced, and a new sterilization system capable of sterilization within a processing time corresponding to the line speed of the filling and packaging machine can be constructed.

分光エネルギー分布及び波長と殺菌力の関係を示す図である。It is a figure which shows the relationship between spectral energy distribution and a wavelength, and bactericidal power. 高圧水銀ランプの分光エネルギー分布図である。It is a spectral energy distribution map of a high pressure mercury lamp. UV(365nm)−LEDの分光分布図である。It is a spectral distribution map of UV (365 nm) -LED. 低圧水銀ランプの分光分布図である。It is a spectral distribution map of a low-pressure mercury lamp. PET樹脂の紫外線透過率の測定結果を示す図である。It is a figure which shows the measurement result of the ultraviolet-ray transmittance of PET resin. 裏面に過酸化水素ガスが付着したPET材に、低圧水銀ランプと高圧水銀ランプをそれぞれ照射した場合の過酸化水素活性化を示す模式図である。It is a schematic diagram which shows hydrogen peroxide activation at the time of irradiating the low pressure mercury lamp and the high pressure mercury lamp, respectively, to the PET material with the hydrogen peroxide gas attached to the back surface. 開口部の上方に配置された、反射板を備えた光源から波長域320〜400nmの紫外線をペットボトルに照射した場合の配光パターンを示す図である。It is a figure which shows the light distribution pattern at the time of irradiating a ultraviolet ray with a wavelength range of 320-400 nm from the light source provided with the reflecting plate arrange | positioned above the opening part. ペットボトルの開口部の上方に配置された、反射板を備えた高圧水銀ランプと、ペットボトルの側方部に配置されたUV−LED殺菌装置(365nm)とから、紫外線を照射した場合のUV光照射パターンを示す図である。UV when irradiated with ultraviolet rays from a high-pressure mercury lamp provided with a reflector, disposed above the opening of the PET bottle, and a UV-LED sterilizer (365 nm) disposed on the side of the PET bottle. It is a figure which shows a light irradiation pattern. ペットボトル詰めミネラルウオーターの製造装置を示す模式図である。It is a schematic diagram which shows the manufacturing apparatus of a pet bottled mineral water.

本発明の波長域100〜280nmの紫外線が通過しない材質からなる容器の殺菌方法としては、容器の内面を低濃度の過酸化水素ガスで処理した後に、波長域320〜400nmの紫外線を容器の外側から容器外壁を介して照射することを含む方法であれば特に制限されず、前記波長域100〜280nmの紫外線が通過しない材質からなる容器としては、ペットボトルやガラス瓶等の開口部が絞られた細口容器を例示することができるが、ペットボトルを特に好適に例示することができる。   As a method for sterilizing a container made of a material that does not allow ultraviolet rays in the wavelength range of 100 to 280 nm of the present invention to pass, ultraviolet rays in the wavelength range of 320 to 400 nm are applied to the outside of the container after treating the inner surface of the container with a low-concentration hydrogen peroxide gas. As long as the method includes irradiation through the outer wall of the container, the method is not particularly limited. As a container made of a material that does not pass ultraviolet rays in the wavelength range of 100 to 280 nm, an opening such as a plastic bottle or a glass bottle is narrowed. Although a narrow mouth container can be illustrated, a PET bottle can be illustrated especially suitably.

上記「低濃度の過酸化水素ガス」としては、15質量%以下、好ましくは10質量%以下で1質量%以上、好ましくは2質量%以上、より好ましくは5質量%以上の過酸化水素水を、特開2001−224669、特開2001−276189等に記載されたガス化装置を用いて沸点以上に加熱して気化させた、濃度3000ppm以下、好ましくは2000ppm以下、より好ましくは1500ppm以下、さらに好ましくは1000ppm以下、中でも800ppm以下で、50ppm以上、好ましくは100ppm以上、より好ましくは200ppm以上、特に好ましくは300ppm以上、さらに好ましくは500ppm以上の濃度の過酸化水素ガス、例えば濃度50〜200ppmの過酸化水素ガスや、濃度75〜500ppmの過酸化水素ガスや、濃度800〜1200ppmの過酸化水素ガスを挙げることができる。気化した過酸化水素ガスは、内径6〜10mm程度の細いパイプでボトル内に1〜10秒間、好ましくは2〜7秒間、より好ましくは3〜5秒間噴霧させ、ボトル内表面に過酸化水素を付着させることができる。また、ボトルの内面を低濃度の過酸化水素ガスで処理(ガス暴露)する前に、ボトル等の食品包装材料の表面温度を40〜80℃に予備加熱しておくこともできる。   The “low concentration hydrogen peroxide gas” is 15% by mass or less, preferably 10% by mass or less, 1% by mass or more, preferably 2% by mass or more, more preferably 5% by mass or more. The concentration is 3000 ppm or less, preferably 2000 ppm or less, more preferably 1500 ppm or less, more preferably vaporized by heating to a boiling point or higher using a gasifier described in JP-A-2001-224669, JP-A-2001-276189, or the like. Is a hydrogen peroxide gas having a concentration of 1000 ppm or less, particularly 800 ppm or less, 50 ppm or more, preferably 100 ppm or more, more preferably 200 ppm or more, particularly preferably 300 ppm or more, and even more preferably 500 ppm or more, for example, a peroxide of 50 to 200 ppm. Hydrogen gas, or a concentration of 75-500 ppm And oxidizing the hydrogen gas, and hydrogen peroxide gas concentration 800~1200Ppm. The vaporized hydrogen peroxide gas is sprayed into the bottle for 1 to 10 seconds, preferably 2 to 7 seconds, more preferably 3 to 5 seconds with a thin pipe having an inner diameter of about 6 to 10 mm. Can be attached. In addition, the surface temperature of the food packaging material such as the bottle can be preheated to 40 to 80 ° C. before the inner surface of the bottle is treated with low concentration hydrogen peroxide gas (gas exposure).

容器の内面を低濃度の過酸化水素ガスで処理(暴露)した後に、波長域320〜400nmの紫外線が容器の外側から容器外壁を介して間接的に容器内面に照射されるが、光源がペットボトルの開口部の上方に配置される場合は、紫外線の一部はペットボトルの開口部から直接容器内面を照射することになる。紫外線の一部がペットボトルの開口部から直接容器内面を照射する場合も、本発明における「波長域320〜400nmの紫外線を容器の外側から容器外壁を介して照射する」場合に含まれる。   After the inner surface of the container is treated (exposed) with low-concentration hydrogen peroxide gas, ultraviolet light in the wavelength region of 320 to 400 nm is indirectly irradiated from the outer side of the container through the outer wall of the container, but the light source is a pet. When arranged above the opening of the bottle, a part of the ultraviolet rays directly irradiates the inner surface of the container from the opening of the plastic bottle. The case where a part of ultraviolet rays irradiates the inner surface of the container directly from the opening of the PET bottle is also included in the case of “irradiating ultraviolet rays having a wavelength region of 320 to 400 nm from the outer side of the container through the outer wall of the container” in the present invention.

紫外線の波長区分は次の通りに区分され、一般的なPETの紫外線透過性は次のようにまとめられている。
UV : 100〜400nm;高波長側は透過
UV−A: 315〜400nm;平均で7割方透過
UV−B: 280〜315nm;ほとんど透過しない
UV−C: 100〜280nm;透過しない
The wavelength division of ultraviolet rays is classified as follows, and the ultraviolet transmittance of general PET is summarized as follows.
UV: 100 to 400 nm; high wavelength side is transmitted UV-A: 315 to 400 nm; average 70% transmission UV-B: 280 to 315 nm; hardly transmitted UV-C: 100 to 280 nm; not transmitted

次に、「分光エネルギー分布及び波長と殺菌力の関係」を図1に、「高圧水銀ランプ分光エネルギー分布図」を図2に、「365nm UV−LED分光分布」を図3に、「低圧水銀ランプ分光分布」を図4に、0.14〜0.25mmの種々の厚みの「PET樹脂の紫外線透過率の測定結果」を図5に示す。また、裏面に過酸化水素ガスが付着したPET材に、低圧水銀ランプと高圧水銀ランプをそれぞれ照射した場合の過酸化水素活性化を模式的に図6に示す。図1に示されるように、300nmを超える波長域の紫外線には殺菌効果はない。図2に示されるように、高圧水銀ランプからは、殺菌効果を有するがPET材質を透過できない波長域(250〜270nm)と、殺菌効果を有さないがPET材質を透過できる波長域(360〜370nm)の紫外線が放射される。図5からわかるように、略320nm以上の波長域の紫外線はPET樹脂を透過できることがわかる。また図6には、PET材質を通過した波長域(360〜370nm)の紫外線により、PET材質裏面に付着した過酸化水素が活性化される様子が模式的に示されている。   Next, “Relationship between spectral energy distribution and wavelength and bactericidal power” is shown in FIG. 1, “High pressure mercury lamp spectral energy distribution diagram” is shown in FIG. 2, “365 nm UV-LED spectral distribution” is shown in FIG. The “lamp spectral distribution” is shown in FIG. 4, and the “measurement results of the UV transmittance of PET resin” having various thicknesses of 0.14 to 0.25 mm are shown in FIG. Further, FIG. 6 schematically shows the activation of hydrogen peroxide when the PET material with the hydrogen peroxide gas attached to the back surface is irradiated with the low-pressure mercury lamp and the high-pressure mercury lamp, respectively. As shown in FIG. 1, ultraviolet rays having a wavelength region exceeding 300 nm have no bactericidal effect. As shown in FIG. 2, the high-pressure mercury lamp has a wavelength range (250 to 270 nm) that has a bactericidal effect but cannot transmit the PET material, and a wavelength range (360 to 360 nm) that does not have the bactericidal effect but can transmit the PET material. 370 nm) is emitted. As can be seen from FIG. 5, it is understood that ultraviolet rays having a wavelength range of about 320 nm or more can pass through the PET resin. Further, FIG. 6 schematically shows a state in which hydrogen peroxide attached to the back surface of the PET material is activated by ultraviolet rays in a wavelength region (360 to 370 nm) that has passed through the PET material.

波長域320〜400nmの紫外線の光源としては、高圧水銀ランプ(中圧水銀ランプとも呼ばれる)、キセノンランプ、メタルハライドランプ、UV−LED等を例示することができる。また、紫外線による殺菌力は、紫外線の照射線量、すなわち、照度(紫外線の強さ)×照射時間に依存することから、照射時間はより照度の高い光源を使用することで短縮することができるが、波長域320〜400nmの紫外線の照射時間は通常1〜20秒、好ましくは4〜16秒である。なお、光源として高圧水銀ランプを用いて紫外線を照射する装置を高圧水銀殺菌装置、光源として低圧水銀ランプを用いて紫外線を照射する装置を低圧水銀殺菌装置、光源としてUV−LEDを用いて紫外線を照射する装置をUV−LED殺菌装置という。   Examples of the ultraviolet light source having a wavelength range of 320 to 400 nm include a high-pressure mercury lamp (also called a medium-pressure mercury lamp), a xenon lamp, a metal halide lamp, and a UV-LED. Moreover, since the sterilizing power by ultraviolet rays depends on the irradiation dose of ultraviolet rays, that is, illuminance (intensity of ultraviolet rays) × irradiation time, the irradiation time can be shortened by using a light source with higher illuminance. The irradiation time of ultraviolet rays in the wavelength range of 320 to 400 nm is usually 1 to 20 seconds, preferably 4 to 16 seconds. The device that irradiates ultraviolet rays using a high-pressure mercury lamp as a light source is a high-pressure mercury sterilizer, the device that irradiates ultraviolet rays using a low-pressure mercury lamp as a light source, and a UV-LED as a light source. The device for irradiation is called a UV-LED sterilizer.

次に、ペットボトルCの開口部の上方に配置された、反射板を備えた高圧水銀ランプ1から波長域320〜400nmの紫外線を照射した場合の配光パターンを図7に示す(図7中、直線は直射光を、破線は透過光を示す)。図7(a)は、反射光をボトル口部に集めるパターンであり、図7(b)は、反射光をボトル肩部に照射して、肩部より透過した透過光が過酸化水素を活性化させるパターンであり、図7(c)は、容器の口部が細く、直射光の入射が期待できない場合、かつ、肩が張った形状の容器(例えば、ウイスキーの瓶)には平行光が有効になり、容器を透過した透過光により過酸化水素を活性化させるパターンである。
また、ペットボトルの開口部の上方に配置された、反射板を備えた高圧水銀ランプ1と、ペットボトルの側方部に配置された波長365nmのUV−LED殺菌装置7とから、紫外線を照射した場合のUV光照射パターンを図8に示す。
Next, FIG. 7 shows a light distribution pattern in the case where ultraviolet rays having a wavelength region of 320 to 400 nm are irradiated from the high-pressure mercury lamp 1 provided with a reflector, which is disposed above the opening of the plastic bottle C (in FIG. 7). The straight line indicates direct light, and the broken line indicates transmitted light). Fig.7 (a) is a pattern which collects reflected light in a bottle mouth part, FIG.7 (b) irradiates a bottle shoulder part with reflected light, and the transmitted light permeate | transmitted from the shoulder part activates hydrogen peroxide. FIG. 7C shows a pattern in which the mouth of the container is thin and direct light cannot be incident, and parallel light is applied to a container with a shoulder shape (for example, a whiskey bottle). It is a pattern that becomes effective and activates hydrogen peroxide by transmitted light transmitted through the container.
In addition, ultraviolet rays are irradiated from the high-pressure mercury lamp 1 having a reflecting plate disposed above the opening of the PET bottle and the UV-LED sterilizer 7 having a wavelength of 365 nm disposed on the side of the PET bottle. The UV light irradiation pattern in this case is shown in FIG.

紫外線の照射後、40〜60℃、好ましくは50℃の温風で5〜60秒間、好ましくは10〜40秒間乾燥処理し、容器内面に付着した過酸化水素を除去する。例えば、1000ppmの過酸化水素ガスで4秒間処理したペットボトルを50℃の温風で10秒間乾燥処理すると残留過酸化水素は0.1ppm未満となる。残留過酸化水素量は、乾燥処理後のペットボトルに蒸留水を充填し、残留過酸化水素を蒸留水中に溶出し、溶出した蒸留水中の過酸化水素濃度を、分光光度計を用いたチオシアン酸アンモニウム比色法で測定し、残留値として算出した。   After irradiation with ultraviolet rays, the substrate is dried with warm air of 40 to 60 ° C., preferably 50 ° C. for 5 to 60 seconds, preferably 10 to 40 seconds to remove hydrogen peroxide adhering to the inner surface of the container. For example, when a PET bottle treated with 1000 ppm of hydrogen peroxide gas for 4 seconds is dried with hot air of 50 ° C. for 10 seconds, the residual hydrogen peroxide becomes less than 0.1 ppm. The amount of residual hydrogen peroxide is measured by filling the PET bottle after drying with distilled water, eluting the residual hydrogen peroxide into distilled water, and measuring the hydrogen peroxide concentration in the eluted distilled water using a spectrophotometer. It was measured by an ammonium colorimetric method and calculated as a residual value.

図9は、ペットボトル詰めミネラルウオーターの製造装置を示す模式図である。ボトル底受けレール5上の空ペットボトルは、ボトルキャリア4により間欠的に送られ、殺菌チャンバー6内の過酸化水素ガス噴射ステーションにおいて、ガス噴射ノズル2から空ペットボトル内に低濃度の過酸化水素ガスを噴霧して、ボトル内表面に過酸化水素を付着させる。次に、紫外線照射ステーションにおいて、高圧水銀ランプ1を用いて、ボトル開口部上方及び底面下方から紫外線(UV−A)を照射する。その後、乾燥ステーションに順次移送されていき、温風ノズル3で温風を噴射して過酸化水素を乾燥除去することになる。   FIG. 9 is a schematic diagram showing an apparatus for producing a PET bottled mineral water. Empty PET bottles on the bottle bottom receiving rail 5 are intermittently sent by the bottle carrier 4, and at a hydrogen peroxide gas injection station in the sterilization chamber 6, low-concentration hydrogen peroxide gas from the gas injection nozzle 2 into the empty PET bottle. To spray hydrogen peroxide on the inner surface of the bottle. Next, ultraviolet rays (UV-A) are irradiated from above the bottle opening and below the bottom using the high-pressure mercury lamp 1 at the ultraviolet irradiation station. Thereafter, the air is sequentially transferred to a drying station, and hot air is sprayed from the hot air nozzle 3 to dry and remove hydrogen peroxide.

[比較例1;PET材を透過する紫外線単独での殺菌効果]
市販のペットボトルをカットし、指標菌(枯草菌芽砲)を10μlピペットで滴下して乾燥させた。岩崎電気社製の低圧水銀殺菌装置(オゾンレスランプ波長253.7nm)と高圧水銀殺菌装置(オゾンレスランプ)を使用して、植菌した箇所の反対方向からPET材を介して、紫外線照射し殺菌効果を確認した。照射時間は10秒とした。照度はテストピース表面(光源側)で10mW/cmとなるように距離を調整した。照射後に菌を回収して殺菌効果を確認したが10秒の照射では、低圧水銀ランプ及び高圧水銀ランプ共に殺菌効果は得られなかった。PET材を透過する光の波長は320nm以上で殺菌に関与する波長254nmの光は透過できなかったため菌に損傷を与えられなかった。
[Comparative Example 1; bactericidal effect with ultraviolet light alone that passes through PET material]
A commercially available PET bottle was cut, and the indicator fungus (B. subtilis bud) was dropped with a 10 μl pipette and dried. Using Iwasaki Electric's low-pressure mercury sterilizer (ozone-less lamp wavelength 253.7 nm) and high-pressure mercury sterilizer (ozone-less lamp), ultraviolet rays are irradiated through the PET material from the opposite direction of the inoculated area. The bactericidal effect was confirmed. The irradiation time was 10 seconds. The distance was adjusted so that the illuminance was 10 mW / cm 2 on the test piece surface (light source side). Bacteria were recovered after irradiation and the bactericidal effect was confirmed. However, the bactericidal effect was not obtained with the low-pressure mercury lamp and the high-pressure mercury lamp when irradiated for 10 seconds. The wavelength of light transmitted through the PET material was 320 nm or more, and light having a wavelength of 254 nm related to sterilization could not be transmitted, so that the bacteria were not damaged.

[比較例2;過酸化水素単独での殺菌効果]
市販のペットボトルをカットし、指標菌(枯草菌芽砲)を10μlピペットで滴下して乾燥させた。過酸化水素ガス発生装置でテストピースを4秒間処理し(過酸化水素ガスに4秒間暴露させ)、その後、50℃の温風で30秒間処理し、過酸化水素を除去した。菌を回収して殺菌効果を確認したが、過酸化水素ガス単独での殺菌効果はなかった。ガス濃度は約1000ppmであった。
[Comparative Example 2; bactericidal effect with hydrogen peroxide alone]
A commercially available PET bottle was cut, and the indicator fungus (B. subtilis bud) was dropped with a 10 μl pipette and dried. The test piece was treated with a hydrogen peroxide gas generator for 4 seconds (exposed to hydrogen peroxide gas for 4 seconds), and then treated with hot air at 50 ° C. for 30 seconds to remove hydrogen peroxide. Bacteria were collected to confirm the bactericidal effect, but there was no bactericidal effect with hydrogen peroxide gas alone. The gas concentration was about 1000 ppm.

[過酸化水素とPET材通過紫外線併用での殺菌効果]
市販のペットボトルをカットし、指標菌(枯草菌芽砲)を10μlピペットで滴下して乾燥させた。過酸化水素ガス発生装置でテストピースを4秒間処理した。過酸化水素ガスは低濃度の過酸化水素(10%以下)を沸点以上に加熱気化させたもの(ガス濃度として約1000ppm)を噴霧した。次に、低圧水銀殺菌装置、高圧水銀殺菌装置、UV−LED殺菌装置(365nm)をそれぞれ使用して、植菌した箇所の反対方向からPET材を介して、紫外線を10秒間照射した。その後、50℃の温風で30秒間処理し、過酸化水素を除去した。菌を回収して殺菌効果を確認したところ、低圧水銀ランプを除き、高圧水銀ランプやUV−LEDでは生残菌は検出されなかった。これにより、単独では殺菌効果が得られない過酸化水素ガスと、ペットボトルを透過できる波長の紫外光とを併用することで殺菌効果が得られることが明らかになった。
以上のことから、公知の方法である紫外線UV−Cでの過酸化水素の活性化による相乗効果ではなく、UV−C、UV−B以外のPET材透過可能な波長の光UV−Aでの活性化が認められた。過酸化水素とPETを透過する波長の光で相乗効果が得られ、殺菌効果があることが確認できたため、実際にペットボトルで殺菌効果を評価した。
[Bactericidal effect by combined use of hydrogen peroxide and ultraviolet rays passing through PET material]
A commercially available PET bottle was cut, and the indicator fungus (B. subtilis bud) was dropped with a 10 μl pipette and dried. The test piece was treated with a hydrogen peroxide gas generator for 4 seconds. The hydrogen peroxide gas was sprayed with a low-concentration hydrogen peroxide (10% or less) heated and vaporized above the boiling point (gas concentration of about 1000 ppm). Next, using a low pressure mercury sterilizer, a high pressure mercury sterilizer, and a UV-LED sterilizer (365 nm), ultraviolet rays were irradiated for 10 seconds through the PET material from the opposite direction of the inoculated part. Then, it processed with the warm air of 50 degreeC for 30 second, and removed hydrogen peroxide. Bacteria were collected to confirm the bactericidal effect. As a result, no survival bacteria were detected in the high-pressure mercury lamp and UV-LED except for the low-pressure mercury lamp. As a result, it became clear that a sterilizing effect can be obtained by using hydrogen peroxide gas, which cannot be sterilized by itself, and ultraviolet light having a wavelength that can be transmitted through a PET bottle.
From the above, it is not a synergistic effect due to activation of hydrogen peroxide in the ultraviolet ray UV-C that is a known method, but in the light UV-A having a wavelength capable of transmitting a PET material other than UV-C and UV-B. Activation was observed. Since a synergistic effect was obtained with light having a wavelength that transmits hydrogen peroxide and PET, and a bactericidal effect was confirmed, the bactericidal effect was actually evaluated using a PET bottle.

[280mlペットボトルでの評価(口部;開口部側からの照射)]
指標菌(枯草菌芽胞)を280mlペットボトル内面全体に二流体ノズルを用いてスプレーし、一晩乾燥させてテストに使用した。この植菌ペットボトルに沸点以上に加熱、気化した過酸化水素ガス(ガス濃度として約1000ppm)を細いパイプ(内径6〜10mm)で4秒間噴霧し、ボトル内表面に過酸化水素を付着させた。その後、ボトル開口部(口側)上方に配置した岩崎電気社製高圧水銀殺菌装置から、ペットボトルを透過する波長域の紫外線を照射し、50℃の温風で30秒間乾燥除去した。比較対照として254nmの単独波長を放射する低圧水銀殺菌装置を用いた。結果を[表1]に示す。なお、[表1]中、「1Log」は、菌数が10−1になったことを、「6Log」は、菌数が10−6になったことを意味する。
[Evaluation with 280 ml PET bottle (mouth; irradiation from the opening side)]
The indicator bacteria (B. subtilis spores) were sprayed on the entire inner surface of the 280 ml PET bottle using a two-fluid nozzle, dried overnight and used for the test. This inoculated PET bottle was sprayed with hydrogen peroxide gas (gas concentration of about 1000 ppm) heated to the boiling point or more for 4 seconds with a thin pipe (inner diameter 6 to 10 mm) to attach hydrogen peroxide to the inner surface of the bottle. . Thereafter, ultraviolet light in a wavelength range that passed through the PET bottle was irradiated from a high-pressure mercury sterilizer manufactured by Iwasaki Electric Co., Ltd. disposed above the bottle opening (mouth side), and dried and removed with hot air at 50 ° C. for 30 seconds. As a comparative control, a low-pressure mercury sterilizer that emits a single wavelength of 254 nm was used. The results are shown in [Table 1]. In [Table 1], “1 Log” means that the number of bacteria has become 10 −1 , and “6 Log” means that the number of bacteria has become 10 −6 .

上の結果より、低圧水銀ランプでは254nmの波長しか放射されていないためボトル内に入射できるのはボトル口部の開口部に限定され、その結果殺菌効果が低く、照射時間を長くしても殺菌効果が上がらない結果となった。280ml小型ボトルは肩部分が張っている(いかり肩形状)ために開口部から入射できる光量にかなりの制限がある。一方、高圧水銀ランプからはボトルを透過する波長365、415、435nmの光も放射されているので、ボトル内へは開口部から入射する光の他にボトルショルダーや側面部から透過した光により過酸化水素が活性化され殺菌効果が増加した結果が得られた。また、ガラスビンでも同様の効果が得られた。   From the above results, the low-pressure mercury lamp emits only a wavelength of 254 nm, so that it can enter the bottle only at the opening of the bottle mouth. As a result, the sterilization effect is low and sterilization is possible even if the irradiation time is extended. The result did not go up. Since the shoulder portion of the 280 ml small bottle is stretched (a shoulder shape), the amount of light that can enter from the opening is considerably limited. On the other hand, light of wavelengths 365, 415, and 435 nm that is transmitted through the bottle is also emitted from the high-pressure mercury lamp, so that the bottle is excessively transmitted by light transmitted from the bottle shoulder and side surface in addition to the light incident from the opening. The result that hydrogen oxide was activated and the bactericidal effect increased was obtained. The same effect was obtained with a glass bottle.

[500mlペットボトルでの評価(口部;開口部側からの照射)]
指標菌(枯草菌芽胞)を500mlペットボトル内面全体に二流体ノズルを用いてスプレーし、一晩乾燥させてテストに使用した。かかる植菌ペットボトルに沸点以上に加熱、気化した過酸化水素ガス(ガス濃度として約1000ppm)を細いパイプ(テストでは内径6〜10mm)で4秒間噴霧し、ボトル内表面に過酸化水素を付着させた。その後、ボトル開口部(口側)よりペットボトルを透過する波長域の光を放射することのできる光源を備えた岩崎電気社製高圧水銀殺菌装置を用いて照射し、次いで50℃の温風で30秒間乾燥して過酸化水素を除去した。比較対照として、高圧水銀殺菌装置に代えて、254nmの単独波長を放射する低圧水銀殺菌装置を用いた。結果を[表2]に示す。
[Evaluation with 500 ml PET bottle (mouth; irradiation from the opening side)]
The indicator bacteria (B. subtilis spores) were sprayed on the entire inner surface of a 500 ml PET bottle using a two-fluid nozzle, dried overnight and used for the test. This inoculated PET bottle is sprayed with hydrogen peroxide gas (gas concentration of about 1000 ppm) heated above the boiling point for 4 seconds with a thin pipe (inner diameter 6 to 10 mm in the test), and the hydrogen peroxide adheres to the inner surface of the bottle. I let you. Then, it irradiates using the high-pressure mercury sterilizer by Iwasaki Electric Co., Ltd. equipped with the light source which can radiate | emit the light of the wavelength range which permeate | transmits a PET bottle from a bottle opening part (mouth side), and then with hot air of 50 degreeC. Dry for 30 seconds to remove hydrogen peroxide. As a comparative control, a low-pressure mercury sterilizer that emits a single wavelength of 254 nm was used instead of the high-pressure mercury sterilizer. The results are shown in [Table 2].

上の結果より、ボトルのサイズが大きくなると、光源からボトル底面までの距離が遠くなるため光の減衰が起こり、殺菌効果も低下することが分かる。光量の減衰は照射時間を延ばすことで対応できる。低圧水銀ランプでの殺菌効果が280mlボトルよりも高い理由はボトル形状が大きく関与しており、500mlボトルでは肩部分が張っていない(なで肩)ため開口部よりボトル内に入射できる光量が多いことが考えられる。   From the above results, it can be seen that when the bottle size is increased, the distance from the light source to the bottom surface of the bottle is increased, so that the light is attenuated and the sterilizing effect is also reduced. The attenuation of the amount of light can be dealt with by extending the irradiation time. The reason why the sterilization effect of the low-pressure mercury lamp is higher than that of the 280 ml bottle is largely related to the shape of the bottle, and the shoulder portion of the 500 ml bottle is not stretched. Conceivable.

[500mlペットボトルでの評価(口部;開口部側と底面又は側面からの照射)]
指標菌(枯草菌芽胞)を500mlペットボトル内面全体に二流体ノズルを用いてスプレーし、一晩乾燥させてテストに使用した。植菌ペットボトルに沸点以上に加熱、気化した過酸化水素ガス(ガス濃度として約1000ppm)を細いパイプ(テストでは内径6〜10mm)で4秒間噴霧し、ボトル内表面に過酸化水素を付着させた。その後、以下の[表3]に示す照射条件で、ボトル開口部(口側)、ボトル底面、ボトル側面よりペットボトルを透過する波長域の光を放射することのできる光源を備えた岩崎電気社製高圧水銀殺菌装置を用いて照射し、50℃の温風(流速約70〜80m/s)で30秒間乾燥除去した。結果を[表3]に示す。なお、[表3]の殺菌効果の欄の「3Log(順次)」は、開口部側からの照射(4秒)をした後、ボトル底面側からの照射(4秒)を順次行った結果、菌数が10−3になったことを意味し、「6Log」は、開口部側からの照射(4秒)と、ボトル底面側からの照射(4秒)を同時に行った結果、菌数が10−6になったことを意味する。
[Evaluation with a 500 ml PET bottle (mouth; irradiation from the opening side and bottom or side)]
The indicator bacteria (B. subtilis spores) were sprayed on the entire inner surface of a 500 ml PET bottle using a two-fluid nozzle, dried overnight and used for the test. Spray the inoculated PET bottle with hydrogen peroxide gas (gas concentration approximately 1000ppm) heated to the boiling point or higher for 4 seconds with a thin pipe (inner diameter 6 to 10mm in the test), and attach the hydrogen peroxide to the inner surface of the bottle. It was. Thereafter, under the irradiation conditions shown in [Table 3] below, Iwasaki Electric Co., Ltd. equipped with a light source capable of emitting light in a wavelength range that passes through the PET bottle from the bottle opening (mouth side), the bottom of the bottle, and the side of the bottle. Irradiation was performed using a high-pressure mercury sterilizer, and the product was dried and removed for 30 seconds with hot air at 50 ° C. (flow rate: about 70 to 80 m / s). The results are shown in [Table 3]. In addition, “3 Log (sequential)” in the column of the bactericidal effect of [Table 3] is a result of performing irradiation from the bottom side of the bottle (4 seconds) sequentially after irradiation from the opening side (4 seconds), This means that the number of bacteria has reached 10 -3 , and “6 Log” indicates that the number of bacteria is the result of simultaneous irradiation from the opening side (4 seconds) and irradiation from the bottom side of the bottle (4 seconds). It means that it became 10 -6 .

なお、表3の殺菌欄「※2」の結果は、指標菌が枯草菌芽胞ではなく、紫外線に抵抗力をもつことが知られているクロコウジカビ胞子を指標菌として用いて評価した結果、殺菌効果5以上が得られたことを示している。   In addition, the result of the sterilization column “* 2” in Table 3 is the result of evaluation using the Aspergillus niger spores, which are known to be resistant to ultraviolet rays, instead of Bacillus subtilis spores as the indicator bacteria. It shows that the effect 5 or more was obtained.

上の結果より開口部側からの照射に加え、底面あるいは側面からの照射を併用することでより短時間で高い殺菌効果が得られることが明らかになった。また非開口部側(底面、側面)からの照射に使用する光源として高圧水銀ランプのように複数の発光スペクトルがあるものでなく、365nm、385nm単波長の光源を備えたUV−LED殺菌装置でも十分な効果が得られた。   From the above results, it has been clarified that a high bactericidal effect can be obtained in a shorter time by using irradiation from the bottom or side in addition to irradiation from the opening side. Further, the light source used for irradiation from the non-opening side (bottom surface, side surface) does not have a plurality of emission spectra as in the high-pressure mercury lamp, but is also a UV-LED sterilizer equipped with a 365 nm, 385 nm single wavelength light source. A sufficient effect was obtained.

[極低濃度過酸化水素ガスの使用]
指標菌(枯草菌芽胞)を280ml及び500mlペットボトル内面全体に二流体ノズルを用いてスプレーし、一晩乾燥させてテストに使用した。この植菌ペットボトルに沸点以上に加熱、気化した過酸化水素ガス(ガス濃度として125ppm)を細いパイプ(内径6mm)で4秒間噴霧し、ボトル内表面に過酸化水素を付着させた。その後、ボトル開口部(口側)上方及びボトル底部に配置した岩崎電気社製高圧水銀殺菌装置から、ペットボトルを透過する波長域の紫外線を10秒間照射し、50℃の温風で30秒間乾燥除去した。その結果、キルレート6Logという殺菌効果が得られた。また、残存過酸化水素量は0.03〜0.05ppmであった。
[Use of extremely low concentration hydrogen peroxide gas]
The indicator bacteria (Bacillus subtilis spores) were sprayed on the entire inner surface of 280 ml and 500 ml PET bottles using a two-fluid nozzle, dried overnight and used for the test. This inoculated PET bottle was sprayed with hydrogen peroxide gas (gas concentration 125 ppm) heated and vaporized above its boiling point for 4 seconds with a thin pipe (inner diameter 6 mm), and hydrogen peroxide was adhered to the inner surface of the bottle. Then, UV light in the wavelength range that passes through the PET bottle is irradiated for 10 seconds from the high-pressure mercury sterilizer manufactured by Iwasaki Electric Co., Ltd., which is placed above the bottle opening (mouth side) and at the bottom of the bottle, and dried for 30 seconds with hot air at 50 ° C. Removed. As a result, a bactericidal effect of kill rate 6 Log was obtained. Moreover, the residual hydrogen peroxide amount was 0.03 to 0.05 ppm.

[比較例3;低濃度の過酸化水素ガス単独での殺菌効果]
指標菌(枯草菌芽胞)を280ml及び500mlのペットボトル内面全体に二流体ノズルを用いてスプレーし、一晩乾燥させてテストに使用した。植菌ペットボトルに沸点以上に加熱、気化した過酸化水素ガス(ガス濃度として約1000ppm)を細いパイプ(テストでは内径6〜10mm)で4秒間噴霧し、ボトル内表面に過酸化水素を付着させた。その後、50℃の温風(流速約70〜80m)で30秒間乾燥して、過酸化水素を除去した。殺菌効果の結果を[表4]に示す。その結果、約1000ppmという低濃度の過酸化水素ガス単独処理ではほとんど殺菌効果が得られないことがわかった。
[Comparative Example 3; Bactericidal effect with low concentration hydrogen peroxide gas alone]
The indicator bacteria (Bacillus subtilis spores) were sprayed on the entire inner surface of the 280 ml and 500 ml PET bottles using a two-fluid nozzle, dried overnight and used for the test. Spray the inoculated PET bottle with hydrogen peroxide gas (gas concentration approximately 1000ppm) heated to the boiling point or higher for 4 seconds with a thin pipe (inner diameter 6 to 10mm in the test), and attach the hydrogen peroxide to the inner surface of the bottle. It was. Then, it dried with 50 degreeC warm air (flow rate of about 70-80 m) for 30 seconds, and removed hydrogen peroxide. The results of the bactericidal effect are shown in [Table 4]. As a result, it was found that a sterilizing effect could hardly be obtained by treatment with hydrogen peroxide gas having a low concentration of about 1000 ppm.

[比較例4;高出力UV−LED単独での殺菌効果]
指標菌(枯草菌芽胞)を280ml及び500mlのペットボトル内面全体に二流体ノズルを用いてスプレーし、一晩乾燥させてテストに使用した。植菌ペットボトルのボトル開口部(口側)上方に配置した岩崎電気社製高出力UV−LED殺菌装置から、波長385nmの紫外線を4秒間照射した。殺菌効果の結果を[表5]に示す。その結果、高出力UV−LED照射単独処理ではほとんど殺菌効果が得られないことがわかった。
[Comparative Example 4; bactericidal effect with high output UV-LED alone]
The indicator bacteria (Bacillus subtilis spores) were sprayed on the entire inner surface of the 280 ml and 500 ml PET bottles using a two-fluid nozzle, dried overnight and used for the test. UV light having a wavelength of 385 nm was irradiated for 4 seconds from a high-power UV-LED sterilizer manufactured by Iwasaki Electric Co., Ltd. disposed above the bottle opening (mouth side) of the inoculated PET bottle. The results of the bactericidal effect are shown in [Table 5]. As a result, it was found that the bactericidal effect was hardly obtained by the high power UV-LED irradiation single treatment.

[残存過酸化水素量]
次に従来技術である過酸化水素ガスで殺菌を行う場合と本発明方法で殺菌を行う場合の過酸化水素残留について比較検証した。結果を[表6]に示す。
[Residual hydrogen peroxide content]
Next, the hydrogen peroxide residue in the case of sterilization with hydrogen peroxide gas, which is the prior art, and the case of sterilization by the method of the present invention were compared and verified. The results are shown in [Table 6].

上の結果より従来法であるペットボトル殺菌方法であるボトル予備加熱⇒高濃度過酸化水素ガス噴霧⇒熱風による乾燥除去と比べて、本発明方法では予備加熱は不要で、低濃度ガスとボトル透過光の併用による相乗効果で殺菌効果が発揮できるため乾燥時間も短かく、非常にエネルギーコスト、短時間処理可能な殺菌システムとなる。   From the above results, bottle preheating, which is a conventional method for sterilizing PET bottles ⇒ High concentration hydrogen peroxide gas spray ⇒ Compared with dry removal by hot air, the method of the present invention does not require preheating, and low concentration gas and bottle permeation Since the sterilization effect can be exhibited by the synergistic effect of the combined use of light, the drying time is short, and the sterilization system can be processed at a very low energy cost and for a short time.

本発明は、ペットボトルやガラス瓶の殺菌分野で有用である。   The present invention is useful in the field of sterilization of PET bottles and glass bottles.

1 高圧水銀ランプ
2 ガス噴射ノズル
3 温風ノズル
4 ボトルキャリア
5 ボトル底受けレール
6 殺菌チャンバー
7 UV−LED殺菌装置
C ペットボトル
DESCRIPTION OF SYMBOLS 1 High pressure mercury lamp 2 Gas injection nozzle 3 Hot air nozzle 4 Bottle carrier 5 Bottle bottom receiving rail 6 Sterilization chamber 7 UV-LED sterilizer C PET bottle

Claims (9)

波長域100〜280nmの紫外線が通過しない材質からなる容器の殺菌方法であって、容器の内面を低濃度の過酸化水素ガスで処理した後に、波長域320〜400nmの紫外線を容器の外側から容器外壁を介して照射することを特徴とする容器の殺菌方法。 A method for sterilizing a container made of a material that does not allow ultraviolet light in the wavelength range of 100 to 280 nm to pass through, and after treating the inner surface of the container with a low-concentration hydrogen peroxide gas, the ultraviolet light in the wavelength range of 320 to 400 nm is applied from the outside of the container. A container sterilization method characterized by irradiating through an outer wall. 容器が、開口部が絞られた細口容器であることを特徴とする請求項1記載の殺菌方法。 The sterilization method according to claim 1, wherein the container is a narrow-mouthed container having a narrowed opening. 容器がペットボトルであることを特徴とする請求項1又は2記載の殺菌方法。 The sterilization method according to claim 1 or 2, wherein the container is a plastic bottle. 低濃度の過酸化水素ガスが、10%以下の低濃度の過酸化水素水を沸点以上に加熱して気化させたものであることを特徴とする請求項1〜3のいずれか記載の殺菌方法。 The sterilization method according to any one of claims 1 to 3, wherein the low-concentration hydrogen peroxide gas is vaporized by heating a low-concentration hydrogen peroxide solution of 10% or less to a boiling point or higher. . 低濃度の過酸化水素ガスが、濃度75〜1200ppmの過酸化水素ガスであることを特徴とする請求項1〜4のいずれか記載の殺菌方法。 The sterilization method according to any one of claims 1 to 4, wherein the low-concentration hydrogen peroxide gas is a hydrogen peroxide gas having a concentration of 75 to 1200 ppm. 波長域320〜400nmの紫外線の光源が、高圧水銀ランプ、キセノンランプ、メタルハライドランプ、LEDであることを特徴とする請求項1〜5のいずれか記載の殺菌方法。 6. The sterilization method according to claim 1, wherein the ultraviolet light source having a wavelength range of 320 to 400 nm is a high-pressure mercury lamp, a xenon lamp, a metal halide lamp, or an LED. 容器の外側から容器外壁を介しての照射が、容器の開口部上方からの照射であることを特徴とする請求項1〜6のいずれか記載の殺菌方法。 The sterilization method according to any one of claims 1 to 6, wherein the irradiation from the outside of the container through the container outer wall is irradiation from above the opening of the container. 容器の外側から容器外壁を介しての照射が、容器の底面側及び/又は側面側の照射であることを特徴とする請求項1〜6のいずれか記載の殺菌方法。 The sterilization method according to any one of claims 1 to 6, wherein the irradiation from the outer side of the container through the outer wall of the container is irradiation on a bottom surface side and / or a side surface side of the container. 紫外線を照射した後、温風で過酸化水素を乾燥除去することを特徴とする請求項1〜8のいずれか記載の殺菌方法。 The sterilization method according to any one of claims 1 to 8, wherein the hydrogen peroxide is removed by drying with warm air after irradiation with ultraviolet rays.
JP2017110786A 2017-06-05 2017-06-05 Container sterilization method Active JP7228950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017110786A JP7228950B2 (en) 2017-06-05 2017-06-05 Container sterilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017110786A JP7228950B2 (en) 2017-06-05 2017-06-05 Container sterilization method

Publications (2)

Publication Number Publication Date
JP2018203340A true JP2018203340A (en) 2018-12-27
JP7228950B2 JP7228950B2 (en) 2023-02-27

Family

ID=64955066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017110786A Active JP7228950B2 (en) 2017-06-05 2017-06-05 Container sterilization method

Country Status (1)

Country Link
JP (1) JP7228950B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023059220A (en) * 2021-10-14 2023-04-26 大日本印刷株式会社 Content filling system and sterilization method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5730934A (en) * 1996-10-11 1998-03-24 Tetra Laval Holdings & Finance S.A. Method and apparatus for sterilizing packaging TRX-349
JP2003072719A (en) * 2001-08-28 2003-03-12 Toppan Printing Co Ltd Sterilizing filling method and method for sterilizing container
JP2009126040A (en) * 2007-11-22 2009-06-11 Nippon Steel Chem Co Ltd Manufacturing method of transparent laminate film
WO2013008426A1 (en) * 2011-07-08 2013-01-17 四国化工機株式会社 Method for sterilizing packaging container using dilute hydrogen peroxide-containing gas
JP2013513420A (en) * 2009-12-10 2013-04-22 シデル エッセ.ピ.ア. コン ソシオ ウニコ Sterilization and disinfection equipment
US20140291320A1 (en) * 2011-08-31 2014-10-02 Sig Technology Ag Method and Device for Sterilising Edges of Packaging Material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5730934A (en) * 1996-10-11 1998-03-24 Tetra Laval Holdings & Finance S.A. Method and apparatus for sterilizing packaging TRX-349
JP2003072719A (en) * 2001-08-28 2003-03-12 Toppan Printing Co Ltd Sterilizing filling method and method for sterilizing container
JP2009126040A (en) * 2007-11-22 2009-06-11 Nippon Steel Chem Co Ltd Manufacturing method of transparent laminate film
JP2013513420A (en) * 2009-12-10 2013-04-22 シデル エッセ.ピ.ア. コン ソシオ ウニコ Sterilization and disinfection equipment
WO2013008426A1 (en) * 2011-07-08 2013-01-17 四国化工機株式会社 Method for sterilizing packaging container using dilute hydrogen peroxide-containing gas
US20140291320A1 (en) * 2011-08-31 2014-10-02 Sig Technology Ag Method and Device for Sterilising Edges of Packaging Material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023059220A (en) * 2021-10-14 2023-04-26 大日本印刷株式会社 Content filling system and sterilization method

Also Published As

Publication number Publication date
JP7228950B2 (en) 2023-02-27

Similar Documents

Publication Publication Date Title
WO2018207787A1 (en) Aseptic filling machine and aseptic filling method
FI93626B (en) Method of sterilizing packaging material and packaging material whose surface has been sterilized
US11110641B2 (en) Method and apparatus for sterilizing preform
JP7409452B2 (en) Aseptic filling machine and aseptic filling method
US20120294760A1 (en) Method and apparatus for the sterilization of packaging means
EP2303338A1 (en) Methods, systems and apparatus for monochromatic uv light sterilization
WO2004011038A1 (en) Method and device for affecting a chemical or mechanical property of a target site
JP2013537433A (en) Plasma generated gas sterilization method
CN108066786B (en) A method of pulse sterilization technology is sterilized applied to drinking water packaging material
KR102159071B1 (en) Continuous packaging process using ultraviolet c light to sterilise bottles
JP6049616B2 (en) Disinfection method for packaging containers using dilute hydrogen peroxide-containing gas
WO2018061946A1 (en) Device and method for heating preforms, aseptic blow moulding machine, and aseptic blow moulding method
JP7228950B2 (en) Container sterilization method
WO2018186484A1 (en) Aseptic filling method and aseptic filling machine
GB2457057A (en) Sterilisation of food contained within a sealed receptacle
JP2016137629A (en) Blow-molding device
JP2020019568A (en) Filling system and filling method
JP2003146313A (en) Sterilization method
JP6057656B2 (en) Inactivation method and processing apparatus by electron beam irradiation
JP2005110799A (en) Non-heating sterilization method by infrared ray irradiation
JP6458842B2 (en) Preform heating apparatus and heating method
JP6292275B1 (en) Preform heating apparatus and heating method
JP6439946B2 (en) Preform sterilization method and apparatus
JP6907754B2 (en) Preform heating device and preform heating method
RU2333872C1 (en) Method of disinfection of consumer package with ultraviolet radiation made of polymer material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211011

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220107

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220912

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221013

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221020

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20221027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221118

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230111

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230213

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230214

R150 Certificate of patent or registration of utility model

Ref document number: 7228950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150