JP2018201648A - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP2018201648A
JP2018201648A JP2017107597A JP2017107597A JP2018201648A JP 2018201648 A JP2018201648 A JP 2018201648A JP 2017107597 A JP2017107597 A JP 2017107597A JP 2017107597 A JP2017107597 A JP 2017107597A JP 2018201648 A JP2018201648 A JP 2018201648A
Authority
JP
Japan
Prior art keywords
image
light
subject
imaging
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017107597A
Other languages
Japanese (ja)
Other versions
JP6535701B2 (en
Inventor
菅野 哲生
Tetsuo Sugano
哲生 菅野
大河 北口
Taiga Kitaguchi
大河 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Engineering Co Ltd
Original Assignee
Mitsubishi Electric Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Engineering Co Ltd filed Critical Mitsubishi Electric Engineering Co Ltd
Priority to JP2017107597A priority Critical patent/JP6535701B2/en
Publication of JP2018201648A publication Critical patent/JP2018201648A/en
Application granted granted Critical
Publication of JP6535701B2 publication Critical patent/JP6535701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Endoscopes (AREA)

Abstract

To provide an imaging device having a near infrared light illumination for capturing an image, which allows fluid in a living body, such as blood, to be observed.SOLUTION: The imaging device includes: illumination means (a visible light emission part 2 and a near infrared light emission part 4) for emitting a light of a wavelength band including a near infrared band and irradiating a subject with the light; high-speed imaging means (a camera head block part 12) for capturing a light image from the subject of the wavelength band including a near infrared band at high speed by using the illumination means; and image processing means (a visible image processing part 13 and a near infrared image processing part 14) for capturing an image of the subject, and executing signal processing for observing fluid flowing in the subject on the basis of the image captured by the high-speed imaging means. The image processing means includes brightness detection means for detecting the brightness from the image captured by the high-speed imaging means, and movement amount detection means for detecting a movement amount per unit time of the brightness detected by the brightness detection means.SELECTED DRAWING: Figure 1

Description

本発明は、医療用の撮像装置に関するもので、特に、患部の撮像とともに血流などの観測を行う撮像装置に関するものである。   The present invention relates to a medical imaging apparatus, and more particularly to an imaging apparatus that observes blood flow and the like together with imaging of an affected area.

従来、体腔内の組織を観察する内視鏡システムが広く知られており、白色光の照射によって体腔内の被観察部を撮像して通常画像を得、その通常画像をモニタ画面上に表示する電子式内視鏡システムが広く実用化されている。   Conventionally, endoscope systems for observing tissue in a body cavity are widely known, and a normal image is obtained by imaging a portion to be observed in a body cavity by irradiation with white light, and the normal image is displayed on a monitor screen. Electronic endoscope systems have been widely put into practical use.

また、上記のような内視鏡システムとしては、通常画像とともに、励起光の照射によって被観察部から発せられた自家蛍光画像を撮像して自家蛍光画像を得、モニタ画面上に表示する蛍光画像撮像システムが広く実用化されている。   Moreover, as an endoscope system as described above, a normal image and a fluorescent image displayed on a monitor screen by capturing an autofluorescent image emitted from an observed part by irradiation of excitation light to obtain an autofluorescent image. Imaging systems are widely used.

たとえば、蛍光造影剤であるインドシアニングリーン(ICG)の投与による血管血流や病変組織での蛍光観察は以前より行われており、750〜790mmの励起光照射に対して830〜840mmの蛍光が得られることが一般で知られている。波長帯的には近赤外のため、ここで得られる画像はモノクロであり、得られる輝度変化画像により観察者が目視で血管内血流の確認を行うものである。これは、内視鏡だけでなく手術用顕微鏡にも応用されている。   For example, fluorescence observation of vascular blood flow and lesion tissue by administration of indocyanine green (ICG), which is a fluorescent contrast agent, has been performed for a long time, and fluorescence of 830 to 840 mm is emitted for excitation light irradiation of 750 to 790 mm. It is generally known that it can be obtained. Since the wavelength band is near infrared, the image obtained here is monochrome, and the observer visually confirms blood flow in the blood vessel using the obtained luminance change image. This is applied not only to an endoscope but also to a surgical microscope.

そこで、特許文献1に記載の蛍光観察装置では、観察者が観察しやすいように、通常画像と蛍光画像とを適宜切り替えて、モニタ画面上に表示することが提案されている。   Therefore, in the fluorescence observation apparatus described in Patent Document 1, it has been proposed that a normal image and a fluorescence image are appropriately switched and displayed on a monitor screen so that an observer can easily observe.

特許第3560671号公報Japanese Patent No. 3560671

しかしながら、現行の医療用撮像装置では、可視光画像および蛍光画像にて撮像画像を表示するのみで、得られる輝度変化画像により観察者が目視で血管内血流の確認する必要がある。   However, in the current medical imaging apparatus, it is only necessary to display a captured image as a visible light image and a fluorescent image, and an observer needs to visually confirm the blood flow in the blood vessel from the obtained luminance change image.

また、定量的な観測の例として、記録済み画像に対しソフトウエアによる後処理を行うことで、部分的な血流変化の観測が可能な例が存在するが、あくまで撮像後の画像処理が前提であったり、逐次検出位置の設定が必要であったりなど、必ずしも使い勝手のよいものではなかった。   In addition, as an example of quantitative observation, there is an example in which partial blood flow changes can be observed by performing post-processing with software on recorded images. It is not always easy to use because it is necessary to set the detection position sequentially.

本発明は、上記の問題に鑑みてなされたもので、所望の観測を撮像と同時に行うことができる撮像装置を提供する。   The present invention has been made in view of the above problem, and provides an imaging apparatus capable of performing desired observation simultaneously with imaging.

本発明に係る撮像装置は、医療用の撮像装置であって、近赤外を含む波長帯域の光を発光して被写体へ照射する照明手段と、前記照明手段を使用し、近赤外を含む波長帯域の被写体からの光像を高速に撮像する高速撮像手段と、前記高速撮像手段により撮像された画像に基づいて被写体の画像の撮像とともに被写体内に流れる流体の観測のための信号処理を行う画像処理手段とを備え、前記画像処理手段は、前記高速撮像手段にて撮像された画像より輝度を検出する輝度検出手段と、前記輝度検出手段にて検出された輝度の単位時間当たりの移動量を検出する移動量検出手段とを備える。   An imaging apparatus according to the present invention is a medical imaging apparatus, and includes an illumination unit that emits light in a wavelength band including near infrared and irradiates a subject, and includes the near infrared using the illumination unit. A high-speed imaging unit that captures a light image from a subject in a wavelength band at high speed, and a signal process for observing a fluid flowing in the subject along with the imaging of the subject based on the image captured by the high-speed imaging unit An image processing means, wherein the image processing means detects a luminance from an image picked up by the high-speed image pickup means, and a moving amount per unit time of the luminance detected by the luminance detection means. A movement amount detecting means for detecting.

本発明によれば、照明に近赤外光を使用することで、無侵襲にて生体の中を観察可能となる。   According to the present invention, it is possible to observe the inside of a living body non-invasively by using near infrared light for illumination.

また、本発明によれば、高速撮像手段を用いることで、流速の早い血流の観測を行うことができる。   Further, according to the present invention, it is possible to observe a blood flow with a high flow velocity by using a high-speed imaging means.

本発明によれば、撮像しながら輝度変化を検出することで、画像表示と同時に観測を行うことが可能である。   According to the present invention, it is possible to perform observation simultaneously with image display by detecting a change in luminance while imaging.

本発明の実施の形態1に係る撮像装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the imaging device which concerns on Embodiment 1 of this invention. 図1に示されるカメラヘッドブロック12の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the camera head block 12 shown by FIG. 図2に示されるノッチフィルター28の特性図である。FIG. 3 is a characteristic diagram of the notch filter 28 shown in FIG. 2. 図1に示される近赤外画像処理部14の内部構成を示すブロック図ある。It is a block diagram which shows the internal structure of the near-infrared image processing part 14 shown by FIG. 図1に示される近赤外画像処理部14の画像処理例を示す図である。It is a figure which shows the image processing example of the near-infrared image process part 14 shown by FIG. 図1に示される近赤外画像処理部14による観測用画像処理フローチャートである。It is the image processing flowchart for observation by the near-infrared image processing part 14 shown by FIG. 本発明の実施の形態2に係る撮像装置を説明するもので、図1に示されるカメラヘッドブロック12の内部構成を示すブロック図である。FIG. 2 is a block diagram illustrating an internal configuration of a camera head block 12 illustrated in FIG. 1 for describing an imaging device according to a second embodiment of the present invention. 本発明の実施の形態2に係る撮像装置を説明するもので、図1に示される近赤外画像処理部14の画像処理例を示す図である。FIG. 7 is a diagram illustrating an image processing apparatus according to Embodiment 2 of the present invention, and illustrating an example of image processing performed by the near-infrared image processing unit 14 illustrated in FIG. 1.

実施の形態1.   Embodiment 1 FIG.

以下、本発明の実施の形態1に係る撮像装置について、硬性鏡システムに適用した例として図を用いて説明する。図1は本発明の実施の形態1に係る撮像装置の概略構成を示すブロック図、図2は図1に示されるカメラヘッドブロック12の内部構成を示すブロック図、図3は図2に示されるノッチフィルター28の特性図、図4は図1に示される近赤外画像処理部14の内部構成を示すブロック図、図5は画像処理例、図6は画像処理のフローチャートをそれぞれ示す。   Hereinafter, the imaging apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings as an example applied to a rigid endoscope system. 1 is a block diagram showing a schematic configuration of an imaging apparatus according to Embodiment 1 of the present invention, FIG. 2 is a block diagram showing an internal configuration of a camera head block 12 shown in FIG. 1, and FIG. 3 is shown in FIG. FIG. 4 is a block diagram showing the internal configuration of the near-infrared image processing unit 14 shown in FIG. 1, FIG. 5 shows an example of image processing, and FIG. 6 shows a flowchart of image processing.

本発明の実施の形態1に係る撮像装置は、図1に示すように、レーザー光源による可視発光部2と近赤外発光部4などにて照明手段が構成されており、可視発光部2と近赤外発光部4からの可視光と近赤外光とが照明混合部5で混合されたのち、デリバリーファイバー6にて硬性鏡7へ注入され、照明出射部8より被写体へ照射される。   As shown in FIG. 1, the imaging apparatus according to Embodiment 1 of the present invention includes a visible light emitting unit 2 using a laser light source, a near-infrared light emitting unit 4, and the like. Visible light and near-infrared light from the near-infrared light emitting unit 4 are mixed by the illumination mixing unit 5, injected into the rigid mirror 7 by the delivery fiber 6, and irradiated to the subject from the illumination emitting unit 8.

このとき、近赤外光は、血流観察のための造影剤であるインドシアニングリーン(indocyanine green;以下ICGと称す)の励起波長中心約785mmで発光するもので、蛍光発光効率がよい。可視光は青と緑と赤の3原色を発光させることで可視照明を構成する。   At this time, near-infrared light is emitted at an excitation wavelength center of about 785 mm of indocyanine green (hereinafter referred to as ICG), which is a contrast agent for blood flow observation, and has good fluorescence emission efficiency. Visible light constitutes visible illumination by emitting three primary colors of blue, green and red.

被写体からの光像は、可視の反射光とともにICGからの蛍光像が硬性鏡7の対物レンズ10及びアダプターレンズ11を通してカメラヘッドブロック12へ送られる。カメラヘッドブロック12は、照明手段を使用し、近赤外を含む波長帯域の被写体からの光像を高速に撮像する高速撮像手段を構成するもので、図2にその概略構成が示されており、ICGの励起光はノッチフィルター28でカットされたうえで、ビームスプリッター21で波長分光され、通常の可視光像L3は結像光学系25を介して可視センサー26へ、近赤外光像L4は特殊光カットフィルタ22を透過し結像光学系23を介して近赤外センサー24へ、それぞれ送られて光電変換が実行される。   The light image from the subject is sent to the camera head block 12 through the objective lens 10 and the adapter lens 11 of the rigid mirror 7 together with the visible reflected light and the fluorescent image from the ICG. The camera head block 12 constitutes a high-speed imaging means that uses a lighting means and picks up a light image from a subject in a wavelength band including near infrared at high speed, and its schematic configuration is shown in FIG. The ICG excitation light is cut by the notch filter 28 and then subjected to wavelength spectroscopy by the beam splitter 21, and the normal visible light image L3 is transmitted to the visible sensor 26 via the imaging optical system 25, and the near infrared light image L4. Passes through the special light cut filter 22 and is sent to the near-infrared sensor 24 via the imaging optical system 23 to perform photoelectric conversion.

ここで、ノッチフィルター28は、図3にその特性30と31を示す。励起光をカットする必要があり、蛍光観察時のコントラスト確保のため、可視の帯域や蛍光帯域が若干抑制される。   Here, the notch filter 28 has its characteristics 30 and 31 shown in FIG. The excitation light needs to be cut, and the visible band and the fluorescence band are slightly suppressed in order to secure the contrast during fluorescence observation.

カメラヘッドブロック12の可視センサー26及び近赤外センサー24により光電変換されて出力される画像信号は、撮像制御ユニット27を介してCDS/AGC(相関二重サンプリング/自動利得制御)処理やA/D変換処理が施され、後段の画像処理部としての可視画像処理部13及び近赤外画像処理部14へ送られ、撮像画像表示とともに血流観測のための信号処理が行われる。   An image signal that is photoelectrically converted and output by the visible sensor 26 and the near-infrared sensor 24 of the camera head block 12 is subjected to CDS / AGC (correlated double sampling / automatic gain control) processing or A / The D conversion process is performed, and the signal is sent to the visible image processing unit 13 and the near infrared image processing unit 14 as the subsequent image processing unit, and the signal processing for blood flow observation is performed together with the captured image display.

なお、図1において、15は撮像画像とともに血流観測のための信号処理結果を表示する画像表示部、16は可視画像処理部13及び近赤外画像処理部14を制御するとともに、可視発光部2及び近赤外発光部4を制御する可視発光制御部1及び近赤外光制御部3に制御指示を与える制御部である。   In FIG. 1, 15 is an image display unit that displays a signal processing result for blood flow observation together with a captured image, 16 controls the visible image processing unit 13 and the near infrared image processing unit 14, and a visible light emitting unit. 2 and a control unit that gives control instructions to the visible light emission control unit 1 and the near infrared light control unit 3 that control the near infrared light emission unit 4.

次に、血流観測のための信号処理について、図4に示す近赤外画像処理部14の内部構成、図5に示す近赤外画像処理部14の画像処理例、図6に示す近赤外画像処理部14による観測用画像処理フローチャートを参照して説明する。   Next, regarding the signal processing for blood flow observation, the internal configuration of the near infrared image processing unit 14 shown in FIG. 4, the image processing example of the near infrared image processing unit 14 shown in FIG. 5, and the near red shown in FIG. A description will be given with reference to an image processing flowchart for observation by the outer image processing unit 14.

体内の血流速度は、頸動脈などの大動脈では毎秒60cmを超えるため、従来の30フレームカメラシステムでは、画角によってはフレームアウトしてしまうため、リアルタイムでの血流観測には不向きであった。そこで、本発明では、近赤外センサー24として、30フレームより高速に撮影が可能なセンサーを採用することで、撮像とともに同時観測を可能とした。   Since the blood flow velocity in the body exceeds 60 cm per second in the aorta such as the carotid artery, the conventional 30-frame camera system is out of frame depending on the angle of view, so it is not suitable for real-time blood flow observation. . Therefore, in the present invention, as the near infrared sensor 24, a sensor capable of photographing at a speed higher than 30 frames is adopted, so that simultaneous observation with imaging is possible.

まず、通常の可視画像表示のため、可視画像処理部13は、画像出力フォームに合せた処理を行う。これと同時に、近赤外蛍光画像表示のため、近赤外画像処理部14は、図4のように、nフレーム目で輝度値検出部35にてある値以上の輝度情報fnを検出する。 fn:A1(X1,Y1)   First, for normal visible image display, the visible image processing unit 13 performs processing according to the image output form. At the same time, for near-infrared fluorescence image display, the near-infrared image processing unit 14 detects luminance information fn greater than a certain value by the luminance value detection unit 35 at the nth frame as shown in FIG. fn: A1 (X1, Y1)

つまり、ICG投与時に血管内を高速で移動する蛍光輝度のピーク量を検出し(図6のステップS50)、その量(A)と位置(X,Y)を一旦記憶部37に記憶する。このときのピーク量とは、ある規定値を超える高輝度な範囲であり、血管の断面積に相当する値と定義しておく。   That is, the peak amount of fluorescence luminance that moves at high speed in the blood vessel during ICG administration is detected (step S50 in FIG. 6), and the amount (A) and position (X, Y) are temporarily stored in the storage unit 37. The peak amount at this time is defined as a value corresponding to the cross-sectional area of the blood vessel, which is a high-luminance range that exceeds a specified value.

そして、単位時間で画像比較を行う(図6のステップS51)。つまり、nフレームの次のn+1フレーム目での輝度情報f(n+1)を抽出し、比較部36にてnフレーム目での輝度情報fnとの比較を行い、差分を検出することで単位時間での移動量を検出する(図6のステップS52)。
f(n+1):A2(X2,Y2)
Then, image comparison is performed in unit time (step S51 in FIG. 6). That is, the luminance information f (n + 1) in the next n + 1 frame after the n frame is extracted, and the comparison unit 36 compares the luminance information fn in the n frame and detects the difference in unit time. Is detected (step S52 in FIG. 6).
f (n + 1): A2 (X2, Y2)

この検出を、近赤外画像処理部14の画像処理例を示す図5のように、単位時間ns毎に繰り返すことで、計測データとして制御部15内部に纏めて記憶される。なお、図5において、40−44は、単位時間ns毎のフレームn、n+1〜n+4を示し、45−49は各フレームでのピーク量を示す。   By repeating this detection every unit time ns as shown in FIG. 5 showing an image processing example of the near-infrared image processing unit 14, the detection data is collectively stored in the control unit 15. In FIG. 5, 40-44 indicates frames n and n + 1 to n + 4 for each unit time ns, and 45-49 indicates the peak amount in each frame.

差分の検出を繰り返すことで、流速、流量、方向性の検出を行う(図6のステップS53)。たとえば、毎秒200フレームの撮像系で画角が約Φ50mmの条件で、フレーム間の位置(YX)の差分が1mm、量が面積2mmであれば、血流速は20cm/秒、血流量は、400mm/秒ということが分かる。これら演算は、演算部38で行われ、制御部16で制御される。 By repeating the difference detection, the flow velocity, flow rate, and directionality are detected (step S53 in FIG. 6). For example, if the difference in position (YX) between frames is 1 mm and the amount is 2 mm 2 under the condition of an imaging system of 200 frames per second and an angle of view of about Φ50 mm, the blood flow rate is 20 cm / second and the blood flow is , 400 mm 3 / sec. These calculations are performed by the calculation unit 38 and controlled by the control unit 16.

このように、実施の形態1に係る撮像装置では、図2に示す構成において、ノッチフィルター28など励起光抑制策が必要ながら、ICGなど血液造影剤にて比較的容易に得られる蛍光画像を利用し、その輝度のピーク量や位置を単位時間で差分を検出し演算することで、撮像と同時に血液など生体内の血流計測を行うことが可能となる。   As described above, the imaging apparatus according to Embodiment 1 uses a fluorescence image that is relatively easily obtained with a blood contrast agent such as ICG while requiring an excitation light suppression measure such as the notch filter 28 in the configuration shown in FIG. Then, by detecting and calculating the difference in peak amount and position of the luminance in unit time, it becomes possible to measure blood flow in a living body such as blood simultaneously with imaging.

上述した説明では、計測のための演算に、毎秒200フレームの繰り返し周期を使用したが、血流計測が可能な範囲であれば、いずれの値でもよく、演算の効率を考慮して固定でなく可変としてもよい。また、硬性鏡への応用例を示したが、これに限らず、もちろん手術用顕微鏡に応用してもよいのは勿論である。   In the above description, a repetition period of 200 frames per second is used for calculation for measurement. However, any value may be used as long as blood flow measurement is possible, and it is not fixed in consideration of calculation efficiency. It may be variable. Moreover, although the application example to the rigid endoscope was shown, it is needless to say that the present invention is not limited to this and may be applied to a surgical microscope.

また、照明にレーザー光源を利用することでエネルギー効率がアップするが、LEDであっても勿論実現可能な内容である。採取画像から血流観測を行う場合、上記に加え動きベクトルを利用することでもよく、また、動き検知機能を追加し計測に応用してもよい、また、術野中血管一本のだけでなく複数本同時観測可能である。蛍光造影剤はICGに限らず、計測可能な波長であればいずれでもよく、どちらかといえば、体に低侵襲な近赤外が好ましい。   Moreover, although energy efficiency improves by utilizing a laser light source for illumination, even if it is LED, it is a content which can be realized. When performing blood flow observation from collected images, motion vectors may be used in addition to the above, and motion detection functions may be added to the measurement. This simultaneous observation is possible. The fluorescent contrast agent is not limited to ICG, and any wavelength can be used as long as it is measurable. Rather, near-infrared light that is minimally invasive to the body is preferable.

また、撮像手段に使用される撮像センサーの画素数は、血流計測が可能であれば基本的に何れでも良いが、ヘモグロビンなどの微小な被写体を撮像するために、やはり1920×1080ハイビジョンもしくはこれを超える高精細な画素数が望ましい。このとき高精細センサーは、しばしば撮像感度が課題となる場合があるが、たとえば必要に応じて画素加算を行うなど、可能な範囲で解像度を犠牲にして、必要感度を確保する手法をとっても良いのは言うまでもない。   In addition, the number of pixels of the image sensor used for the image pickup means may be basically any as long as blood flow measurement is possible. A high-definition pixel number exceeding 1 is desirable. In this case, the high-definition sensor often has a problem of imaging sensitivity. For example, a pixel addition may be performed as necessary, and a method of ensuring the necessary sensitivity at the expense of resolution is possible. Needless to say.

実施の形態2.   Embodiment 2. FIG.

次に、本発明の実施の形態2に係る撮像装置について、硬性鏡システムに適用した例として図を用いて説明する。本発明の実施の形態2に係る撮像装置においては、実施の形態1と同様に、図1に示す撮像装置の概略構成、図4に示す近赤外画像処理部14の内部構成、図6に示す画像処理のフローチャートを用いる。しかし、図1に示されるカメラヘッドブロック12の内部構成としては、図7に示すブロック図を用いると共に、近赤外画像処理部14の画像処理例としては、図8を用いる。なお、図7において、図2とは異なり、ノッチフィルター28を用いてない。   Next, an imaging apparatus according to Embodiment 2 of the present invention will be described with reference to the drawings as an example applied to a rigid endoscope system. In the imaging apparatus according to Embodiment 2 of the present invention, as in Embodiment 1, the schematic configuration of the imaging apparatus shown in FIG. 1, the internal configuration of the near-infrared image processing unit 14 shown in FIG. 4, and FIG. A flowchart of the image processing shown is used. However, the block diagram shown in FIG. 7 is used as the internal configuration of the camera head block 12 shown in FIG. 1, and FIG. 8 is used as an image processing example of the near-infrared image processing unit 14. In FIG. 7, unlike FIG. 2, the notch filter 28 is not used.

本発明の実施の形態2に係る撮像装置は、図1に示すように、レーザー光源による可視発光部2と近赤外発光部4などにて照明手段が構成されており、可視発光部2と近赤外発光部4からの可視光と近赤外光とが照明混合部5で混合されたのち、デリバリーファイバー6にて硬性鏡7へ注入され、照明出射部より被写体へ照射される。   As shown in FIG. 1, the imaging apparatus according to Embodiment 2 of the present invention includes a visible light emitting unit 2 using a laser light source, a near-infrared light emitting unit 4, and the like. Visible light and near-infrared light from the near-infrared light emitting unit 4 are mixed by the illumination mixing unit 5, injected into the rigid mirror 7 by the delivery fiber 6, and irradiated to the subject from the illumination output unit.

このとき、近赤外光は、生体へ低侵襲な波長帯域800〜900mmを利用する。可視光は青と緑と赤の3原色を発光させることで可視照明を構成する。   At this time, near-infrared light uses a wavelength band of 800 to 900 mm that is less invasive to the living body. Visible light constitutes visible illumination by emitting three primary colors of blue, green and red.

被写体からの光像は、可視と近赤外の反射光像が硬性鏡7の対物レンズ10及びアダプターレンズ11を通してカメラヘッドブロック12へ送られる。カメラヘッドブロック12は、照明手段を使用し、近赤外を含む波長帯域の被写体からの光像を高速に撮像する高速撮像手段を構成するもので、図2にその概略構成が示されており、ICGの励起光はノッチフィルター28でカットされたうえで、ビームスプリッター21で波長分光され、通常の可視光像L3は結像光学系25を介して可視センサー26へ、近赤外光像L4は特殊光カットフィルタ22を透過し結像光学系23を介して近赤外センサー24へ、それぞれ送られて光電変換が実行される。   As a light image from the subject, a reflected light image of visible and near infrared is sent to the camera head block 12 through the objective lens 10 and the adapter lens 11 of the rigid mirror 7. The camera head block 12 constitutes a high-speed imaging means that uses a lighting means and picks up a light image from a subject in a wavelength band including near infrared at high speed, and its schematic configuration is shown in FIG. The ICG excitation light is cut by the notch filter 28 and then subjected to wavelength spectroscopy by the beam splitter 21, and the normal visible light image L3 is transmitted to the visible sensor 26 via the imaging optical system 25, and the near infrared light image L4. Passes through the special light cut filter 22 and is sent to the near-infrared sensor 24 via the imaging optical system 23 to perform photoelectric conversion.

カメラヘッドブロック12による光電変換後、実施の形態1と同様に、光電変換された画像信号は、さらに後段の画像処理部としての可視画像処理部13及び近赤外処理部14へ送られ、撮像画像表示とともに血流観測のための信号処理が行われる。   After photoelectric conversion by the camera head block 12, as in the first embodiment, the photoelectrically converted image signal is further sent to a visible image processing unit 13 and a near-infrared processing unit 14 as an image processing unit in the subsequent stage, and imaging is performed. Signal processing for blood flow observation is performed along with image display.

次に、血流観測のための信号処理について、図4に示す近赤外画像処理部14の内部構成、図8に示す近赤外画像処理部14の画像処理例、図6に示す近赤外画像処理部14による観測用画像処理フローチャートを参照して説明する。   Next, regarding the signal processing for blood flow observation, the internal configuration of the near infrared image processing unit 14 shown in FIG. 4, the image processing example of the near infrared image processing unit 14 shown in FIG. 8, and the near red shown in FIG. A description will be given with reference to an image processing flowchart for observation by the outer image processing unit 14.

体内の血流速度は、頸動脈などの大動脈では毎秒60cmを超えるため、従来の30フレームカメラシステムでは、画角によってはフレームアウトしてしまうため、リアルタイムでの血流観測には不向きであった。そこで、本発明では、近赤外センサー24として、30フレームより高速に撮影が可能なセンサーを採用することで、撮像とともに同時観測が可能とした。   Since the blood flow velocity in the body exceeds 60 cm per second in the aorta such as the carotid artery, the conventional 30-frame camera system is out of frame depending on the angle of view, so it is not suitable for real-time blood flow observation. . Therefore, in the present invention, as the near infrared sensor 24, a sensor capable of photographing at a speed higher than 30 frames is adopted, so that simultaneous observation with imaging is possible.

まず、通常の可視画像表示のため、可視画像処理部13は、画像出力フォームに合せた処理を行う。これと同時に、近赤外蛍光画像表示のため、近赤外画像処理部14は、図4のように、nフレーム目で輝度値検出部35にてある値以上の輝度情報fnを検出する。   First, for normal visible image display, the visible image processing unit 13 performs processing according to the image output form. At the same time, for near-infrared fluorescence image display, the near-infrared image processing unit 14 detects luminance information fn greater than a certain value by the luminance value detection unit 35 at the nth frame as shown in FIG.

そのとき、近赤外センサー24として、高精細且つ高速な撮像センサーを使用することで、血管内のヘモグロビンもしくは赤血球の流れを直接観測する。ただし、ヘモグロビンもしくは赤血球を1個づつ観測するのではなく、図8の単位時間nS毎のフレーム63−65のテクスチャー60〜62のように、複数のヘモグロビンをひとつのテクスチャー(模様)として扱う。   At that time, by using a high-definition and high-speed imaging sensor as the near-infrared sensor 24, the flow of hemoglobin or red blood cells in the blood vessel is directly observed. However, instead of observing hemoglobin or red blood cells one by one, a plurality of hemoglobins are handled as one texture (pattern) as in the textures 60 to 62 of the frames 63 to 65 per unit time nS in FIG.

つまり、ICG投与時に血管内を高速で移動する蛍光輝度のテクスチャーを検出し、その量(A)と位置(X、Y)を一旦記憶部37に記憶する。このときのテクスチャー値とは、ある規定値を超える高輝度な範囲であり、血管の断面積に相当する値と定義しておく。
fn:A1(X1,Y1)
That is, a texture of fluorescence intensity that moves at high speed in the blood vessel at the time of ICG administration is detected, and the amount (A) and position (X, Y) are temporarily stored in the storage unit 37. The texture value at this time is defined as a value corresponding to the cross-sectional area of the blood vessel, which is a high-luminance range that exceeds a specified value.
fn: A1 (X1, Y1)

たとえば、nフレームの次のn+1フレーム目での輝度情報f(n+1)を抽出し、比較部36にて比較を行い、単位時間での移動量を検出する。
f(n+1):A2(X2、Y2)
For example, the luminance information f (n + 1) in the n + 1th frame after the nth frame is extracted and compared by the comparison unit 36 to detect the movement amount per unit time.
f (n + 1): A2 (X2, Y2)

この検出を、図8のように、単位時間nS毎のフレーム63−65について繰り返すことで、計測データとして制御部15内部に纏めて記憶される。   As shown in FIG. 8, the detection is repeated for the frames 63 to 65 for each unit time nS, so that the measurement data is collectively stored in the control unit 15.

たとえば、毎秒200フレームの撮像系で画角が約Φ50mmの条件で、フレーム間の位置(YX)の差分が1mm、量が面積2mmであれば、血流速は20cm/秒、血流量は、400mm/秒ということが分かる。これら演算は、演算部38で行われ、制御部15で制御される。 For example, if the difference in position (YX) between frames is 1 mm and the amount is 2 mm 2 under the condition of an imaging system of 200 frames per second and an angle of view of about Φ50 mm, the blood flow rate is 20 cm / second and the blood flow is , 400 mm 3 / sec. These calculations are performed by the calculation unit 38 and controlled by the control unit 15.

このように、実施の形態2に係る撮像装置によれば、高精細なカメラにて直接ヘモグロビンや赤血球の流れを検出することで、ICGなどの血液造影剤を利用しなくとも、量相当の値と位置情報を単位時間で差分を検出し演算することで、撮像と同時に血液など生体内の血流計測を行うことが可能となる。   Thus, according to the imaging apparatus according to the second embodiment, a value corresponding to an amount can be obtained by directly detecting the flow of hemoglobin or red blood cells with a high-definition camera without using a blood contrast agent such as ICG. The position information is detected and calculated in unit time, so that blood flow in a living body such as blood can be measured simultaneously with imaging.

また、撮像手段に使用される撮像センサーの画素数は、血流計測が可能であれば基本的に何れでも良いが、ヘモグロビンなどの微小な被写体を撮像するために、やはり1920×1080ハイビジョンもしくはこれを超える高精細な画素数が望ましい。このとき高精細センサーは、しばしば撮像感度が課題となる場合があるが、たとえば必要に応じて画素加算を行うなど、可能な範囲で解像度を犠牲にして、必要感度を確保する手法をとっても良いのは言うまでもない。   In addition, the number of pixels of the image sensor used for the image pickup means may be basically any as long as blood flow measurement is possible. However, in order to image a minute subject such as hemoglobin, 1920 × 1080 high-definition or this is also used. A high-definition pixel number exceeding 1 is desirable. In this case, the high-definition sensor often has a problem of imaging sensitivity. For example, a pixel addition may be performed as necessary, and a method of ensuring the necessary sensitivity at the expense of resolution is possible. Needless to say.

上述した説明では、計測のための演算に、200フレームの繰り返し周期を使用したが、血流計測が可能な範囲であれば、いずれの値でもよく、演算の効率を考慮して固定でなく可変としてもよい。また、硬性鏡への応用例を示したが、これに限らず、もちろん手術用顕微鏡に応用してもよいのは勿論である。   In the above description, a repetition period of 200 frames is used for calculation for measurement. However, any value may be used as long as blood flow measurement is possible, and it is not fixed but variable in consideration of calculation efficiency. It is good. Moreover, although the application example to the rigid endoscope was shown, it is needless to say that the present invention is not limited to this and may be applied to a surgical microscope.

また、照明にレーザー光源を利用することでエネルギー効率がアップするが、LEDであってももちろん実現可能な内容である。さらに、ヘモグロビンもしくは赤血球は、テクスチャーでとらえなくとも、もちろん個々に直接その量がわかれば、そのままでも問題はなく、むしろ正確かと思われる。ヘモグロビンや赤血球を直接観察するには、さらに高感度のカメラを用いる、もしくは、さらなる高精細のカメラを利用してもよい。   In addition, the energy efficiency is improved by using a laser light source for illumination. Furthermore, even if hemoglobin or erythrocytes are not captured by texture, of course, if the amount is directly known to each individual, there is no problem even if it is directly detected, but it seems rather accurate. In order to directly observe hemoglobin and erythrocytes, a camera with higher sensitivity or a camera with higher definition may be used.

以上のように、本発明によれば、照明に近赤外光を使用することで、無侵襲にて生体の中を観察可能となる。   As described above, according to the present invention, by using near infrared light for illumination, the inside of a living body can be observed non-invasively.

また、本発明によれば、高速撮像手段を用いることで、流速の早い血流の観測を行うことができる。   Further, according to the present invention, it is possible to observe a blood flow with a high flow velocity by using a high-speed imaging means.

また、本発明によれば、撮像しながら輝度変化を検出することで、画像表示と同時に観測を行うことが可能である。   In addition, according to the present invention, it is possible to perform observation simultaneously with image display by detecting a change in luminance while imaging.

さらに、本発明によれば、照明にレーザー照明を使用することで、被写体に対して効率良く光を伝送・照射することができる。   Furthermore, according to the present invention, by using laser illumination for illumination, light can be efficiently transmitted / irradiated to a subject.

1 可視発光制御部
2 可視発光部
3 近赤外発光制御部
4 近赤外発光部
5 照明混合部
6 デリバリーファイバー
7 硬性鏡
8 照明出射部
9 照明照射範囲例
10 対物レンズ
11 アダプターレンズ
12 カメラヘッドブロック
13 可視画像処理部
14 近赤外画像処理部
15 画像表示部
16 制御部
28 ノッチフィルター
35 比較部
DESCRIPTION OF SYMBOLS 1 Visible light emission control part 2 Visible light emission part 3 Near-infrared light emission control part 4 Near-infrared light emission part 5 Illumination mixing part 6 Delivery fiber 7 Rigid mirror 8 Illumination emitting part 9 Illumination irradiation range example 10 Objective lens 11 Adapter lens 12 Camera head Block 13 Visible image processing unit 14 Near-infrared image processing unit 15 Image display unit 16 Control unit 28 Notch filter 35 Comparison unit

Claims (8)

医療用の撮像装置であって、
近赤外を含む波長帯域の光を発光して被写体へ照射する照明手段と、
前記照明手段を使用し、近赤外を含む波長帯域の被写体からの光像を高速に撮像する高速撮像手段と、
前記高速撮像手段により撮像された画像に基づいて被写体の画像の撮像とともに被写体内に流れる流体の観測のための信号処理を行う画像処理手段と
を備え、
前記画像処理手段は、
前記高速撮像手段にて撮像された画像より輝度を検出する輝度検出手段と、
前記輝度検出手段にて検出された輝度の単位時間当たりの移動量を検出する移動量検出手段と
を備える撮像装置。
A medical imaging device,
Illumination means for emitting light in a wavelength band including near infrared to irradiate a subject;
High-speed imaging means that uses the illuminating means to capture a light image from a subject in a wavelength band including near infrared at high speed;
Image processing means for performing signal processing for observing the fluid flowing in the subject together with the imaging of the image of the subject based on the image captured by the high-speed imaging means,
The image processing means includes
Brightness detection means for detecting brightness from an image captured by the high-speed imaging means;
An image pickup apparatus comprising: a movement amount detection unit that detects a movement amount of the luminance detected by the luminance detection unit per unit time.
前記照明手段は、蛍光造影剤のための近赤外励起光を含む波長帯域の光を発光して被写体へ照射し、
前記高速撮像手段は、前記照明手段を使用し、近赤外蛍光を含む波長帯域の光像を高速に撮像し、
前記画像処理手段は、蛍光造影剤より得られた蛍光画像情報を利用し、被写体内に流れる流体の観測のための信号処理を行う
ことを特徴とする請求項1に記載の撮像装置。
The illumination means emits light in a wavelength band including near-infrared excitation light for a fluorescent contrast agent and irradiates the subject,
The high-speed imaging means uses the illuminating means to capture a light image in a wavelength band including near-infrared fluorescence at a high speed,
The imaging apparatus according to claim 1, wherein the image processing unit performs signal processing for observing a fluid flowing in a subject using fluorescence image information obtained from a fluorescent contrast agent.
前記照明手段は、
可視光帯域の光を発光する第一照明手段と、
蛍光造影剤のための近赤外励起光を発光する第二照明手段と
を備え、
前記高速撮像手段は、前記第一照明手段と第二照明手段を使用し、近赤外蛍光を含む波長帯域の光像を高速に撮像し、
前記画像処理手段は、蛍光造影剤より得られた蛍光画像情報を利用し、被写体内に流れる流体の観測のための信号処理を行う
ことを特徴とする請求項1に記載の撮像装置。
The illumination means includes
First illumination means for emitting light in the visible light band;
Second illumination means for emitting near-infrared excitation light for the fluorescent contrast agent,
The high-speed imaging means uses the first illuminating means and the second illuminating means, and images a light image in a wavelength band including near-infrared fluorescence at a high speed,
The imaging apparatus according to claim 1, wherein the image processing unit performs signal processing for observing a fluid flowing in a subject using fluorescence image information obtained from a fluorescent contrast agent.
前記照明手段は、レーザー光源を使用する
ことを特徴とする請求項1ないし3のいずれか1項に記載の撮像装置。
The imaging device according to claim 1, wherein the illumination unit uses a laser light source.
前記照明手段は、前記近赤外光として、生体へ低侵襲な波長帯域を使用し、
前記画像処理手段は、蛍光造影剤を使用することなく、被写体内に流れる流体の観測のための信号処理を行う
ことを特徴とする請求項1に記載の撮像装置。
The illumination means uses a wavelength band that is minimally invasive to the living body as the near-infrared light,
The imaging apparatus according to claim 1, wherein the image processing unit performs signal processing for observing a fluid flowing in a subject without using a fluorescent contrast agent.
前記照明手段は、
可視光帯域の光を発光する第一照明手段と、
近赤外光を発光する第二照明手段と
を備え、
前記第二照明手段は、前記近赤外光として、生体へ低侵襲な波長帯域を使用し、
前記高速撮像手段は、前記第一照明手段と第二照明手段を使用し、近赤外を含む波長帯域の光像を高速に撮像し、
前記画像処理手段は、蛍光造影剤を使用することなく、被写体内に流れる流体の観測のための信号処理を行う
ことを特徴とする請求項1に記載の撮像装置。
The illumination means includes
First illumination means for emitting light in the visible light band;
Second illumination means for emitting near-infrared light,
The second illumination means uses a wavelength band that is minimally invasive to the living body as the near-infrared light,
The high-speed imaging means uses the first illuminating means and the second illuminating means, and images a light image in a wavelength band including near infrared at high speed,
The imaging apparatus according to claim 1, wherein the image processing unit performs signal processing for observing a fluid flowing in a subject without using a fluorescent contrast agent.
前記照明手段は、レーザー光源を使用する
ことを特徴とする請求項5または6に記載の撮像装置。
The imaging apparatus according to claim 5, wherein the illumination unit uses a laser light source.
前記高速撮像手段は、ハイビジョンもしくはこれを超える高精細な画素数の撮像素子を用いる
ことを特徴とする請求項1ないし7のいずれか1項に記載の撮像装置。
The image pickup apparatus according to claim 1, wherein the high-speed image pickup unit uses an image pickup device having a high-definition pixel number exceeding that of high definition.
JP2017107597A 2017-05-31 2017-05-31 Imaging device Active JP6535701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017107597A JP6535701B2 (en) 2017-05-31 2017-05-31 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017107597A JP6535701B2 (en) 2017-05-31 2017-05-31 Imaging device

Publications (2)

Publication Number Publication Date
JP2018201648A true JP2018201648A (en) 2018-12-27
JP6535701B2 JP6535701B2 (en) 2019-06-26

Family

ID=64954408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017107597A Active JP6535701B2 (en) 2017-05-31 2017-05-31 Imaging device

Country Status (1)

Country Link
JP (1) JP6535701B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022015779A (en) * 2020-07-10 2022-01-21 三菱電機エンジニアリング株式会社 Luminaire and endoscope apparatus

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002517269A (en) * 1998-06-08 2002-06-18 グリンヴァルド,アミラム Imaging and analyzing the movement of individual red blood cells in blood vessels
JP2005521499A (en) * 2002-04-02 2005-07-21 エダ リサーチ アンド ディベロップメント カンパニー リミティド Characterization of moving substances in a stationary background
US20060066798A1 (en) * 2004-09-30 2006-03-30 Lg Philips Lcd Co., Ltd. In-plane switching liquid crystal display device
JP2006158611A (en) * 2004-12-07 2006-06-22 Hamamatsu Univ School Of Medicine Indocyanine green quantitative catheter system
WO2009028136A1 (en) * 2007-08-29 2009-03-05 Panasonic Corporation Fluorescence observation device
JP2010017396A (en) * 2008-07-11 2010-01-28 Olympus Corp Method and device for observing living body
JP2010187925A (en) * 2009-02-18 2010-09-02 Nagoya Univ Blood flow observation apparatus
JP2011062348A (en) * 2009-09-17 2011-03-31 Fujifilm Corp Endoscope system
JP2012113191A (en) * 2010-11-26 2012-06-14 Kao Corp Method for forming image of blood flow
JP2013188242A (en) * 2012-03-12 2013-09-26 Olympus Corp Endoscope system
JP2014000246A (en) * 2012-06-19 2014-01-09 Mitsubishi Electric Engineering Co Ltd Blood vessel visualization device and blood vessel visualization method
JP2014166271A (en) * 2013-02-28 2014-09-11 Canon Inc Image processing apparatus and image processing method
JP2014217588A (en) * 2013-05-09 2014-11-20 国立大学法人新潟大学 Optical image analysis method of brain activity
JP2015100432A (en) * 2013-11-22 2015-06-04 三星電子株式会社Samsung Electronics Co.,Ltd. Heart rate measuring apparatus and heart rate measuring method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002517269A (en) * 1998-06-08 2002-06-18 グリンヴァルド,アミラム Imaging and analyzing the movement of individual red blood cells in blood vessels
JP2005521499A (en) * 2002-04-02 2005-07-21 エダ リサーチ アンド ディベロップメント カンパニー リミティド Characterization of moving substances in a stationary background
US20060066798A1 (en) * 2004-09-30 2006-03-30 Lg Philips Lcd Co., Ltd. In-plane switching liquid crystal display device
JP2006158611A (en) * 2004-12-07 2006-06-22 Hamamatsu Univ School Of Medicine Indocyanine green quantitative catheter system
WO2009028136A1 (en) * 2007-08-29 2009-03-05 Panasonic Corporation Fluorescence observation device
JP2010017396A (en) * 2008-07-11 2010-01-28 Olympus Corp Method and device for observing living body
JP2010187925A (en) * 2009-02-18 2010-09-02 Nagoya Univ Blood flow observation apparatus
JP2011062348A (en) * 2009-09-17 2011-03-31 Fujifilm Corp Endoscope system
JP2012113191A (en) * 2010-11-26 2012-06-14 Kao Corp Method for forming image of blood flow
JP2013188242A (en) * 2012-03-12 2013-09-26 Olympus Corp Endoscope system
JP2014000246A (en) * 2012-06-19 2014-01-09 Mitsubishi Electric Engineering Co Ltd Blood vessel visualization device and blood vessel visualization method
JP2014166271A (en) * 2013-02-28 2014-09-11 Canon Inc Image processing apparatus and image processing method
JP2014217588A (en) * 2013-05-09 2014-11-20 国立大学法人新潟大学 Optical image analysis method of brain activity
JP2015100432A (en) * 2013-11-22 2015-06-04 三星電子株式会社Samsung Electronics Co.,Ltd. Heart rate measuring apparatus and heart rate measuring method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MONFARED, A ET AL.,: "In Vivo Imaging of Mammalian Cochlear Blood Flow Using Fluorescence Microendoscopy", OTOLOGY & NEUROTOLOGY, vol. 27, no. 2, JPN6018016821, 11 February 2010 (2010-02-11), ISSN: 0003936283 *
三輪光春: "ICG螢光法による光生体計測", 医学のあゆみ, vol. 232, no. 13, JPN6018048764, 27 March 2010 (2010-03-27), pages 1298 - 1300, ISSN: 0003936284 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022015779A (en) * 2020-07-10 2022-01-21 三菱電機エンジニアリング株式会社 Luminaire and endoscope apparatus

Also Published As

Publication number Publication date
JP6535701B2 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
CN107072520B (en) Endoscope system for parallel imaging with visible and infrared wavelengths
JP2015029841A (en) Imaging device and imaging method
US8996087B2 (en) Blood information measuring method and apparatus
JP7021183B2 (en) Endoscope system, processor device, and how to operate the endoscope system
JP6581984B2 (en) Endoscope system
JP2011200367A (en) Image pickup method and device
JP5358368B2 (en) Endoscope system
JP7289296B2 (en) Image processing device, endoscope system, and method of operating image processing device
WO2019087557A1 (en) Endoscope system
US20180033142A1 (en) Image-processing apparatus, biological observation apparatus, and image-processing method
JP2010005056A (en) Image obtainment method and apparatus
JP6989619B2 (en) How to operate the endoscopic image acquisition system and the endoscopic image acquisition system
US9788709B2 (en) Endoscope system and image generation method to generate images associated with irregularities of a subject
US9596982B2 (en) Endoscope system and composite image generation method
US20230283742A1 (en) Imaging system having structural data enhancement for non-visible spectra
JP5399187B2 (en) Method of operating image acquisition apparatus and image acquisition apparatus
JP2001161696A (en) Method and apparatus for acquiring fluorescent image
JP6535701B2 (en) Imaging device
JP5264382B2 (en) Image acquisition device
JP5483522B2 (en) Image acquisition device
JP3946985B2 (en) Fluorescence imaging device
JP5320233B2 (en) Fluorescence imaging device
JP5480432B2 (en) Fluorescence imaging device
CN114627045A (en) Medical image processing system and method for operating medical image processing system
JP2013081709A (en) Endoscope system, processor device of endoscope system and image generating method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R150 Certificate of patent or registration of utility model

Ref document number: 6535701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250