JP2018200248A - Gas sensor and manufacturing method thereof - Google Patents

Gas sensor and manufacturing method thereof Download PDF

Info

Publication number
JP2018200248A
JP2018200248A JP2017105404A JP2017105404A JP2018200248A JP 2018200248 A JP2018200248 A JP 2018200248A JP 2017105404 A JP2017105404 A JP 2017105404A JP 2017105404 A JP2017105404 A JP 2017105404A JP 2018200248 A JP2018200248 A JP 2018200248A
Authority
JP
Japan
Prior art keywords
gas sensor
electrodes
support
pair
metal conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017105404A
Other languages
Japanese (ja)
Inventor
正博 小杉
Masahiro Kosugi
正博 小杉
亮 割栢
Akira Warikashi
亮 割栢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2017105404A priority Critical patent/JP2018200248A/en
Publication of JP2018200248A publication Critical patent/JP2018200248A/en
Pending legal-status Critical Current

Links

Abstract

To provide a gas sensor capable of being manufactured at low cost, and excellent in reliability.SOLUTION: A gas sensor for detecting the concentration of a specific component in gas, comprises: a support 1; a pair of electrodes 2a, 2b provided on one surface of the support 1, and to which an electrical signal is applied; a sensitive substance 3a bridged between the pair of electrodes 2a, 2b, and whose electric characteristics change by reaction with the specific component; and a coating member 6 provided on the one surface side of the support 1, and forming a flow passage. Each of the electrodes 2a, 2b is coated with a carbon continuous film with a thickness of 1 μm or more.SELECTED DRAWING: Figure 1

Description

本発明は、ガスセンサ及びその製造方法に関し、特にガスセンシング技術を改良したものに関する。   The present invention relates to a gas sensor and a manufacturing method thereof, and more particularly to an improved gas sensing technique.

現在、医療は高度に発達し、患者の血液、唾液、尿などの体液や呼気を分析することで、その容態を把握できる。例えば、唾液のpH測定によって虫歯の有無を判断することや、涙の血糖値を測定することで糖尿病の診断を行うことなどが研究されている。また、呼気中の一酸化窒素や硫化水素を調べることで、気管や口内の炎症,感染などの状態を把握できる。一般的にこれらの検査は医療機関において行われる。医療機関において、被験者の体液や呼気が採取され、採取された検体の測定及び解析が行われる。   Currently, medical care is highly developed, and its condition can be grasped by analyzing body fluids such as blood, saliva, urine, and exhaled breath. For example, research has been conducted on determining the presence or absence of dental caries by measuring the pH of saliva and diagnosing diabetes by measuring the blood sugar level of tears. In addition, by examining nitric oxide and hydrogen sulfide in exhaled breath, it is possible to grasp the state of inflammation, infection, etc. in the trachea and mouth. In general, these tests are performed in medical institutions. In a medical institution, body fluid and breath of a subject are collected, and the collected specimen is measured and analyzed.

一方、被検者が在宅で体液や呼気を採取し、採取した検体の測定及び解析を行うための装置も開発されている。これは、検査や解析の迅速化を可能とするのみならず、以下に説明するように、医療コストを削減する手段として利用できる。   On the other hand, an apparatus has been developed for a subject to collect body fluid and breath at home and to measure and analyze the collected sample. This not only enables rapid examination and analysis, but can also be used as a means for reducing medical costs, as will be described below.

一般に、体調の異変を自覚した後に、医療機関で診察を受ける。しかし、その段階では、既に病状が進行し、高度な医療や高価な薬剤の投与が行われ、その結果、医療費負担が増大する場合がある。   In general, after being aware of a change in physical condition, see a medical institution. However, at that stage, the medical condition has already progressed, and advanced medical treatment and administration of expensive drugs are performed, and as a result, the medical cost burden may increase.

体調の異変を早期に発見することができれば、生活習慣を見直すことなどにより、治癒できる可能性がある。そのため、健康保険組合が主催する予防治療として定期健診が実施されている。   If a change in physical condition can be detected at an early stage, it may be cured by reviewing lifestyle habits. For this reason, regular checkups are carried out as preventive treatments organized by the Health Insurance Association.

しかしながら、定期検診は一般的に年1回から2回程度であるため、検診と検診との間に空白期間が生じ、この期間に発症した疾患については認識することができない。   However, since regular screening is generally about once to twice a year, there is a blank period between screenings, and diseases that develop during this period cannot be recognized.

被検者自身が在宅で体液や呼気を採取し、採取した検体の測定及び解析を行える装置を利用すれば、検査頻度を高めることができる。それ故、体調の異変を、自覚する前に発見することが可能になる。従って、高度な医療や高価な薬剤の投与が必要な機会が減少し、医療コストの削減が可能になる。   If the subject himself / herself collects bodily fluids and exhaled breaths at home and uses a device that can measure and analyze the collected specimens, the test frequency can be increased. Therefore, it becomes possible to detect a change in physical condition before being aware of it. Therefore, opportunities for advanced medical care and administration of expensive drugs are reduced, and medical costs can be reduced.

生体センシングの手法としては、様々なものがあるが、微量成分を感度よく検出できるという理由で、電気化学的手法が広く用いられている。電気化学手法では、化学的特性である生体情報を電気的信号として検出できるため、半導体デバイスなどを用いて得られた信号を処理及び解析しやすいという利点がある。このため、新たな電気化学的センシング装置及びそれを用いたセンシング手法の開発が世界的に活発に行われている。   There are various biosensing techniques, but electrochemical techniques are widely used because trace components can be detected with high sensitivity. In the electrochemical technique, biological information that is a chemical characteristic can be detected as an electrical signal, and thus there is an advantage that it is easy to process and analyze a signal obtained using a semiconductor device or the like. For this reason, development of new electrochemical sensing devices and sensing methods using the same has been actively carried out worldwide.

例えば、特許文献1には、電極表面にイオノマーを導入し呼気中の一酸化窒素濃度を測定するための電気化学センサが記載されている
また、特許文献2には、貴金属を担持した酸化コバルト感応層の抵抗値を測定することにより一酸化炭素濃度を分析する電気化学センサが記載されている。
For example, Patent Document 1 describes an electrochemical sensor for introducing an ionomer to the electrode surface and measuring the concentration of nitric oxide in exhaled breath. Patent Document 2 describes a cobalt oxide-sensitive material carrying a noble metal. An electrochemical sensor is described that analyzes the carbon monoxide concentration by measuring the resistance of the layer.

また、特許文献3には、酸化チタン、酸化セリウム、酸化バナジウムを含んだ感応層の抵抗値を測定することによりメルカプタンまたは硫化水素の濃度を分析する電気化学センサが記載されている。   Patent Document 3 describes an electrochemical sensor that analyzes the concentration of mercaptan or hydrogen sulfide by measuring the resistance value of a sensitive layer containing titanium oxide, cerium oxide, and vanadium oxide.

これらの技術においては、汗や呼吸といった生体から発生する気体や、環境中の気体を採取し、その中に含まれる様々な化学物質を、電極を覆う感応物質に吸着させることで、その電極間に流れる電流値や、抵抗値、容量値の変化を測定する。これらの変化は非常に小さいものであるため、電極の安定性や、電極間距離を一定に保つことが重要である。   In these technologies, gases generated from living bodies such as sweat and breath, and gases in the environment are collected, and various chemical substances contained in the gases are adsorbed to the sensitive substances that cover the electrodes, so Measure the change in the current value, resistance value, and capacitance value flowing through the. Since these changes are very small, it is important to keep the electrode stability and the distance between the electrodes constant.

このような材料としては、貴金属のほか、炭素が用いられる。炭素は電気化学的に不活性な材料であるためである。   As such a material, carbon is used in addition to a noble metal. This is because carbon is an electrochemically inactive material.

例えば、特許文献4には、炭素を電気化学センサの電極材料として使用することが記載されている。ここに記載された炭素電極は、絶縁性基板と、絶縁性基板上に設けられた導電層と、導電層上に設けられた第1炭素層と、第1炭素層を覆うように設けられた第2炭素層とを含んでいる。第1炭素層は、SP2結合とSP3結合とを有し、アモルファス構造を有する炭素を含んでいる。第2炭素層は、SP2結合を有する炭素を含んでいる。第1炭素層は、具体的には、気相成長法によって形成した、アモルファス構造を持つダイヤモンドライクカーボン又はアモルファスカーボンからなる炭素層である。   For example, Patent Document 4 describes using carbon as an electrode material for an electrochemical sensor. The carbon electrode described here was provided so as to cover the insulating substrate, the conductive layer provided on the insulating substrate, the first carbon layer provided on the conductive layer, and the first carbon layer. A second carbon layer. The first carbon layer includes carbon having an SP2 bond and an SP3 bond and having an amorphous structure. The second carbon layer contains carbon having an SP2 bond. Specifically, the first carbon layer is a carbon layer made of diamond-like carbon or amorphous carbon having an amorphous structure, formed by vapor phase growth.

特許第6076749号公報Japanese Patent No. 6076749 特開2015−040753号公報Japanese Patent Laying-Open No. 2015-040753 特開2016−125916号公報JP-A-2006-125916 特許第5120453号公報Japanese Patent No. 5120453

本発明者らが、本発明を発明するに際して、先行技術について見出した問題点を以下に記載する。   The problems found by the inventors regarding the prior art when inventing the present invention are described below.

特許文献1から4に示されるように、生体から得られたガスや体液の成分を電気化学的に測定及び解析して、バイオマーカとしての数値を得る生体センサが発明されてきた。   As shown in Patent Documents 1 to 4, a biosensor has been invented that electrochemically measures and analyzes components of gas and body fluid obtained from a living body to obtain a numerical value as a biomarker.

このような既存の生体センサについては、信頼性を向上させる必要がある。また、これを広く普及させるためには、低コスト化や製造における生産性の向上が望まれる。   About such an existing biosensor, it is necessary to improve reliability. Moreover, in order to widely disseminate this, it is desired to reduce costs and improve productivity in manufacturing.

これらを実現するうえで最も重要な点の1つは、電気化学的測定を行うときに重要な要素である電極が、形態、材料及び製造方法に関して、コスト等も含めた様々な観点で、実際の製造に適合し得るかどうかという点である。   One of the most important points to realize these is that the electrode, which is an important element when performing electrochemical measurements, is actually used from various viewpoints including cost, etc. in terms of form, material and manufacturing method. Whether it can be adapted to the manufacture of

電極の形態については、測定電極は、用途に合わせて様々な形状とし得ることが必要である。例えば、測定電極は、平面でなく、曲面や立体形状とすることで、多様な装置への適合性が向上する。   About the form of an electrode, it is necessary for a measurement electrode to be able to be made into various shapes according to a use. For example, the measurement electrode is not a flat surface but a curved surface or a three-dimensional shape, thereby improving compatibility with various apparatuses.

電気化学的に安定な導電材料としては、一般的に、金及び白金などの貴金属が選ばれる。これらの物質は非常に高価であるため、基板上に薄膜として形成されて、パターニングにより電極の形状とする。しかしながら、ピンホールを避けるためには或る程度の膜厚を確保する必要があるため、薄膜といえども、コストは高くなる。   Generally, noble metals such as gold and platinum are selected as the electrochemically stable conductive material. Since these substances are very expensive, they are formed as a thin film on a substrate and formed into an electrode shape by patterning. However, in order to avoid pinholes, it is necessary to ensure a certain film thickness, so that even a thin film has a high cost.

これに対し、特許文献1においては、基体にガラスやシリコンセラミックを用い、その基体の加工や電極の形成にドライエッチングプロセスを用いるため、製造方法やコストの面で課題がある。   On the other hand, in Patent Document 1, since glass or silicon ceramic is used for the base and a dry etching process is used for processing the base or forming electrodes, there are problems in terms of manufacturing method and cost.

特許文献2、3においては、焼成した感応物質を使用しており持ち運びには便利であるが、貴金属ペーストを焼成して電極を作成するためコスト高になる他、ペースト中に含まれる異物が電極内に残留することで生じる電気化学特性の変化やピンホールの発生の懸念や、立体形状をした基材にペーストを印刷することが困難であることからセンサ形状が限定される課題がある。   In Patent Documents 2 and 3, a baked sensitive material is used, which is convenient to carry. However, since the electrode is produced by baking a noble metal paste, the foreign matter contained in the paste is increased by the electrode. There is a problem that the shape of the sensor is limited because there is a concern about the change in electrochemical characteristics and pinholes that occur due to remaining inside, and the difficulty in printing a paste on a three-dimensional substrate.

特許文献4においては、構造の異なる2種の炭素層を設けているが、該2種の炭素層はそれぞれ製造方法が異なり、製造コスト、製造リードタイムに課題がある。   In Patent Document 4, two types of carbon layers having different structures are provided. However, the two types of carbon layers have different manufacturing methods and have problems in manufacturing cost and manufacturing lead time.

そこで本発明は、低コストで製造できると共に、信頼性に優れたガスセンサ及びその製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a gas sensor that can be manufactured at low cost and has excellent reliability, and a method for manufacturing the gas sensor.

本発明の第1態様によると、2以上の電極を有し、前記電極の表面は炭素膜からなり、前記炭素膜は厚さ1マイクロメール以上の厚さを有する連続膜であり、前記2以上の電極間は感応物質によって架橋されており、この感応物質に流れる電気信号、または感応物質の特性の変化を読み取るガス濃度検出部を備え、気体試料は管形状の流路に沿って流れ、気体試料が効率よく感応物質に供給されるガスセンサが提供される。   According to the first aspect of the present invention, the electrode has two or more electrodes, the surface of the electrode is made of a carbon film, and the carbon film is a continuous film having a thickness of 1 micrometer or more. The electrodes are cross-linked by a sensitive substance, and equipped with a gas concentration detector that reads the electrical signal flowing through the sensitive substance or changes in the characteristics of the sensitive substance, and the gas sample flows along the tube-shaped flow path. A gas sensor is provided in which a sample is efficiently supplied to a sensitive material.

本発明の第2態様によると、めっき法によって炭素からなる厚さ1マイクロメートル以上の連続皮膜を有する電極を得る工程と、気体試料の流路となる管形状を形成する工程と、を含んだガスセンサの製造方法が提供される。   According to the second aspect of the present invention, the method includes a step of obtaining an electrode having a continuous film made of carbon and having a thickness of 1 micrometer or more by a plating method, and a step of forming a tube shape serving as a flow path for a gas sample. A method for manufacturing a gas sensor is provided.

本発明によると、低コストで製造できると共に、信頼性に優れたガスセンサ及びその製造方法が提供される。   According to the present invention, a gas sensor that can be manufactured at low cost and has excellent reliability and a method for manufacturing the gas sensor are provided.

本発明の第1実施形態に係るガスセンサを概略的に示す斜視図。1 is a perspective view schematically showing a gas sensor according to a first embodiment of the present invention. 同ガスセンサの製造工程を概略的に示す斜視図。The perspective view which shows the manufacturing process of the gas sensor roughly. 本発明の第1実施形態に係るガスセンサを概略的に示す平面図。1 is a plan view schematically showing a gas sensor according to a first embodiment of the present invention. 本発明の第2実施形態に係るガスセンサを概略的に示す斜視図。The perspective view which shows schematically the gas sensor which concerns on 2nd Embodiment of this invention. 同ガスセンサを概略的に示す平面図。The top view which shows the same gas sensor roughly. 本発明の第3実施形態に係るガスセンサの製造工程を概略的に示す斜視図。The perspective view which shows roughly the manufacturing process of the gas sensor which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係るガスセンサの製造工程を概略的に示す斜視図。The perspective view which shows schematically the manufacturing process of the gas sensor which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係るガスセンサを概略的に示す平面図。The top view which shows roughly the gas sensor which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係るガスセンサを概略的に示す平面図。The top view which shows roughly the gas sensor which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係るガスセンサを概略的に示す斜視図。The perspective view which shows schematically the gas sensor which concerns on 7th Embodiment of this invention.

以下、本発明の実施形態を図を参照しながら説明する。なお、重複する説明を省略するべく、添付図では、同一又は類似の機能を発揮する構成要素には同一の参照符号を付している。また、説明中に示す各部の寸法は一例であり、使用目的や使用ガスの種類等の各種条件によって適宜変更可能である。
<第1実施形態>
図1は本発明の第1実施形態に係るガスセンサ8を概略的に示す斜視図、図2は同ガスセンサ8の製造工程を概略的に示す斜視図である。ガスセンサ8は電気化学センサである。ガスセンサ8は、気体試料としては、例えば生体由来の呼気、屁、体臭などを使用する。
Embodiments of the present invention will be described below with reference to the drawings. In addition, in order to abbreviate | omit duplicate description, the same referential mark is attached | subjected to the component which exhibits the same or similar function in an accompanying drawing. In addition, the dimensions of each part shown in the description are examples, and can be appropriately changed according to various conditions such as the purpose of use and the type of gas used.
<First Embodiment>
FIG. 1 is a perspective view schematically showing a gas sensor 8 according to the first embodiment of the present invention, and FIG. 2 is a perspective view schematically showing a manufacturing process of the gas sensor 8. As shown in FIG. The gas sensor 8 is an electrochemical sensor. The gas sensor 8 uses, for example, a breath derived from a living body, sputum, body odor and the like as a gas sample.

図1に示すように、ガスセンサ8は、平板状の支持体1と、この支持体1の上面側に対向配置された覆い部材6とを備えている。覆い部材6は、支持体1の長手方向両端部が開口されており、支持体1と覆い部材6とにより角筒体が形成されている。この角筒体によって矢印7に示すように、手前側から奥側へ検査対象となる気体試料が通流する流路が形成されている。支持体1の素材(材質)は、例えば石英や、日本電気硝子製ネオセラムや、コーニング社製バイコールなどのガラスや、サファイアや、チッ化ケイ素や、炭化ケイ素や、プラスチックなどを用いることができる。   As shown in FIG. 1, the gas sensor 8 includes a flat plate-like support body 1 and a cover member 6 disposed to face the upper surface side of the support body 1. The cover member 6 is open at both ends in the longitudinal direction of the support 1, and the support 1 and the cover member 6 form a rectangular tube. As indicated by an arrow 7, a flow path through which a gas sample to be inspected flows from the near side to the far side is formed by this rectangular cylinder. As the material (material) of the support 1, for example, glass such as quartz, Nippon Electric Glass Neoceram, Corning Vycor, sapphire, silicon nitride, silicon carbide, plastic, or the like can be used.

支持体1上には、一対の電極2aと電極2bがその長手方向が通流方向に沿って配置されている。これら、一対の電極2aと電極2bの間は、一定間隔に設定されている。   On the support 1, a pair of electrodes 2a and 2b are arranged such that the longitudinal direction thereof is along the flow direction. The pair of electrodes 2a and 2b is set at a constant interval.

電極2a,2bの間には、感応物質3aが架橋されている。電極2a,2bは炭素膜4によって被覆されている。この炭素膜4は、厚さ1μmの連続膜による保護層であり、ピンホールが生じ難い。電極2a,2bは、図示しない外部の測定器等に接続されている。   The sensitive substance 3a is cross-linked between the electrodes 2a and 2b. The electrodes 2 a and 2 b are covered with a carbon film 4. The carbon film 4 is a protective layer made of a continuous film having a thickness of 1 μm, and pinholes are hardly generated. The electrodes 2a and 2b are connected to an external measuring instrument (not shown).

このようなガスセンサ8は次のような工程で製造される。すなわち、図2の(A)に示すように、幅1mm、長さ40mm、厚さ300μmのステンレス製の基体5を2本準備し、これを500μmの間隔を開けて、互いに平行になるよう保持し、これを幅10mm、長さ50mm、厚さ5mmの支持体1に固定する。   Such a gas sensor 8 is manufactured by the following process. That is, as shown in FIG. 2A, two stainless steel bases 5 having a width of 1 mm, a length of 40 mm, and a thickness of 300 μm are prepared and held so as to be parallel to each other with an interval of 500 μm. And this is fixed to the support body 1 of width 10mm, length 50mm, and thickness 5mm.

次に、図2の(B)に示すように、支持体1に固定した基体5に、めっき法により炭素膜4を厚さ1μmで被覆し、電極2a及び電極2bとした。図示はしないが、各基体(金属導体)5に給電ラインを設け、電気めっきを行った。さらに図2の(C)に示すように、電極2a及び電極2bを架橋するように、感応物質3aとして酸化スズペーストを表面に塗布、焼結させた。   Next, as shown in FIG. 2B, the base 5 fixed to the support 1 was coated with a carbon film 4 with a thickness of 1 μm by plating to form an electrode 2a and an electrode 2b. Although not shown, a power supply line is provided on each base (metal conductor) 5 and electroplating is performed. Further, as shown in FIG. 2C, a tin oxide paste as a sensitive material 3a was applied to the surface and sintered so as to crosslink the electrodes 2a and 2b.

図1に示すように電極2a及び電極2bが内側になるように、支持体1に覆い部材6を被せて管形状を形成してガスセンサ8を得た。ガスセンサの製造方法は、上記に限られたものではなく、基体5にめっき法により炭素膜4を形成した後、炭素膜4で被覆された基体5を支持体1に固定してもよい。   As shown in FIG. 1, a gas sensor 8 was obtained by forming a tube shape by covering the support 1 with a covering member 6 so that the electrodes 2a and 2b were inside. The manufacturing method of the gas sensor is not limited to the above, and after the carbon film 4 is formed on the base 5 by plating, the base 5 covered with the carbon film 4 may be fixed to the support 1.

このように構成された本実施形態に係るガスセンサ8は、図3に示すように使用する。ガスセンサ8は、両端が開いた管形状をしており、図3の(A)に示すように、手前側から奥側に向けて気体試料の流路となり得る形状をしている。なお、気体試料は、矢印7の示す方向に、ガスセンサ8の一方の口(手前側)から、もう一方の口(奥側)へと通り抜けることができる。   The gas sensor 8 according to this embodiment configured as described above is used as shown in FIG. The gas sensor 8 has a tube shape with both ends open, and as shown in FIG. 3A, the gas sensor 8 has a shape that can serve as a flow path for a gas sample from the near side to the far side. Note that the gas sample can pass from one port (front side) of the gas sensor 8 to the other port (back side) in the direction indicated by the arrow 7.

図3の(B)に示すように、ガスセンサ8の管の一方の口を被検者がくわえて、呼気を管に吹き込むと、管形状が呼気の流路となり、呼気を効率よく感応物質3aに供給することができる。このとき、電気信号を感応物質3aに印加していると、特定のガスが存在しない場合の電気的特性と、特定のガスが存在する場合の電気的特性が異なる。この電気的特性を比較することで、そのガスの濃度を測定することが可能となる。   As shown in FIG. 3 (B), when the subject holds one mouth of the tube of the gas sensor 8 and blows exhaled air into the tube, the tube shape becomes the flow channel of exhaled air, and the expiratory material 3a Can be supplied to. At this time, if an electrical signal is applied to the sensitive substance 3a, the electrical characteristics when a specific gas is not present are different from the electrical characteristics when a specific gas is present. By comparing the electrical characteristics, the concentration of the gas can be measured.

また、ガスセンサ8の電極を大型化した場合でも、前記流路により、呼気を効率よく感応物質3aに供給でき、測定精度の向上が期待できる。   In addition, even when the electrode of the gas sensor 8 is enlarged, exhaled gas can be efficiently supplied to the sensitive substance 3a through the flow path, and an improvement in measurement accuracy can be expected.

このように構成された本実施形態に係るガスセンサ8は、上述した課題の1以上を解決し得るものである。本実施形態に係るガスセンサ8は、電極2a及び電極2bの表層が炭素膜4であることを含んだ構造を採用している。この炭素膜4は1μm以上の厚さを有している連続膜である。炭素は、電気化学的に不活性である。それ故、この炭素膜は、生体や液体、気体に接触させたとしても、劣化を生じ難い。   The gas sensor 8 according to the present embodiment configured as described above can solve one or more of the problems described above. The gas sensor 8 according to the present embodiment employs a structure including that the surface layers of the electrodes 2 a and 2 b are the carbon film 4. The carbon film 4 is a continuous film having a thickness of 1 μm or more. Carbon is electrochemically inert. Therefore, even when the carbon film is brought into contact with a living body, a liquid, or a gas, it is difficult to cause deterioration.

しかも、この炭素膜4は、上記の通り、連続膜による保護層である。すなわち、この保護層は、カーボンペーストを使用して形成したものなどとは異なり、多孔質膜又は炭素粒子で構成された膜ではなく、緻密な膜である。そして、この炭素膜4は、十分な厚さを有していることから、ピンホールが生じ難い。   Moreover, the carbon film 4 is a protective layer made of a continuous film as described above. That is, this protective layer is not a porous film or a film composed of carbon particles, but a dense film, unlike those formed using carbon paste. And since this carbon film 4 has sufficient thickness, it is hard to produce a pinhole.

加えて、この炭素膜4は、上記の通り、多孔質膜又は炭素粒子で構成された膜ではなく、連続膜である。それ故、この保護層は、電気伝導率が高い。従って、このガスセンサ8は、信頼性に優れており、高い精度での測定が可能である。また、炭素は、貴金属に比べて安価な材料であり、価格の変動が小さい。それ故、このガスセンサは、比較的低いコストで製造することが可能である。   In addition, as described above, the carbon film 4 is not a porous film or a film composed of carbon particles, but a continuous film. Therefore, this protective layer has high electrical conductivity. Therefore, this gas sensor 8 is excellent in reliability and can be measured with high accuracy. Carbon is a cheaper material than precious metals, and its price fluctuation is small. Therefore, this gas sensor can be manufactured at a relatively low cost.

したがって、本実施形態に係るガスセンサ8によれば、低コストで信頼性を高めることが可能となる。   Therefore, according to the gas sensor 8 which concerns on this embodiment, it becomes possible to improve reliability at low cost.

さらに、炭素膜4は、上記表面のうち、少なくとも気体試料が接触し得る領域全体を被覆していることが好ましい。この炭素膜4は、例えばめっき法により形成する。例えば、アイ’エムセップ株式会社が溶融塩電解を利用して実施している炭素めっき技術を利用することができる。めっき法によれば、厚い保護層を形成することができる。例えば、厚さが0.1〜20μmの保護層を形成することができ、好ましくは保護層の厚さは1〜5μmである。   Furthermore, it is preferable that the carbon film 4 covers at least the entire region where the gas sample can come into contact with the surface. The carbon film 4 is formed by, for example, a plating method. For example, it is possible to use a carbon plating technique that is implemented by I'MCEP Co., Ltd. using molten salt electrolysis. According to the plating method, a thick protective layer can be formed. For example, a protective layer having a thickness of 0.1 to 20 μm can be formed, and preferably the thickness of the protective layer is 1 to 5 μm.

また、めっき法によれば、基体が複雑な形状を有している場合であっても、均一な厚さの炭素膜4を形成することができる。例えば、基体5が湾曲又は屈曲した形状を有している場合、炭素膜4は、基体5の金属表面のうち、少なくとも基体が湾曲又は屈曲した部分に対応した領域を被覆するように形成することができる。   Further, according to the plating method, the carbon film 4 having a uniform thickness can be formed even when the substrate has a complicated shape. For example, when the substrate 5 has a curved or bent shape, the carbon film 4 is formed so as to cover at least a region corresponding to a curved or bent portion of the metal surface of the substrate 5. Can do.

また、めっき法によれば、保護層を、比較的低いコストで及び高い生産性で形成することができる。   Further, according to the plating method, the protective layer can be formed at a relatively low cost and with high productivity.

電気化学的反応を利用して基体5の表面に炭素膜4を形成する他の方法としては、被析出金属を含む電解液中に導電性の炭素粒子を含有させ、基体5が陰極となるように電気化学反応をさせることで炭素膜4を形成する方法がある。炭素粒子としては、例えば、グラファイト構造を含み、sp2構造とsp3構造の混合体からなるものを使用する。   As another method for forming the carbon film 4 on the surface of the substrate 5 using an electrochemical reaction, conductive carbon particles are contained in an electrolytic solution containing a metal to be deposited so that the substrate 5 becomes a cathode. There is a method of forming the carbon film 4 by causing an electrochemical reaction. As the carbon particles, for example, those containing a graphite structure and composed of a mixture of sp2 structure and sp3 structure are used.

被析出金属としては、例えば、金、白金、銀、ロジウム、及びルテニウムなどの貴金属に加え、鉄、ニッケル、コバルト、銅、クロム、亜鉛又はこれらの合金など、水溶液からなる電解めっき液において使用できるものを適宜選択できる。或いは、非水ジメチルスルホン浴を使用した場合には、被析出金属としてアルミニウムを使用することもできる。   As a metal to be deposited, for example, in addition to noble metals such as gold, platinum, silver, rhodium and ruthenium, iron, nickel, cobalt, copper, chromium, zinc or alloys thereof can be used in an electrolytic plating solution made of an aqueous solution. A thing can be selected suitably. Alternatively, when a non-aqueous dimethyl sulfone bath is used, aluminum can be used as the metal to be deposited.

電極2a及び電極2bは、めっき法による炭素膜4の被覆に先立ち、予め基体5をセンサ形状に適合するように形成する。形成としては、基体5を曲げること、必要な形状に切り出すこと、などが挙げられ、これらの加工はプレス加工や旋盤加工などが使用できる。加工した形状の例としては、ダンベル形状、バネ形状やドーナツ形状などを選択できる。電気めっきへの給電ラインは、センシングの電気信号の入出力に使用する場合は、樹脂で封止してもよい。   Prior to coating the carbon film 4 by plating, the electrodes 2a and 2b are formed in advance so that the substrate 5 conforms to the sensor shape. Examples of the formation include bending the base 5 and cutting it into a necessary shape, and press working or lathe processing can be used for these processes. As an example of the processed shape, a dumbbell shape, a spring shape, a donut shape, or the like can be selected. The power supply line to electroplating may be sealed with resin when used for input / output of electrical signals for sensing.

測定には感応物質3aを使用する。感応物質3aとしては、一般的に用いられている酸化物半導体や有機半導体、化合物半導体を使用することができ、酸化物半導体であれば、例えば酸化スズ、酸化亜鉛、酸化インジウム等があり、これらを単独で使用しても、複数組合せて使用しても良い。また特定の化学物質に対して反応を示すものであれば限定されない。   The sensitive material 3a is used for the measurement. As the sensitive substance 3a, generally used oxide semiconductors, organic semiconductors, and compound semiconductors can be used. Examples of oxide semiconductors include tin oxide, zinc oxide, and indium oxide. May be used alone or in combination. Moreover, it will not be limited if it shows reaction with respect to a specific chemical substance.

感応物質3aは電極2a及び電極2bを電気的に接続している必要がある。このため感応物質3aは電極2a及び電極2b間を電気的に接続するように架橋する必要がある。   The sensitive substance 3a needs to electrically connect the electrode 2a and the electrode 2b. For this reason, the sensitive substance 3a needs to be cross-linked so as to electrically connect the electrodes 2a and 2b.

感応物質3aの被覆形状としては、少なくとも2つの電極2a及び電極2bを電気的に接続していれば良いことから、電極2a及び電極2b全体を覆う形状でも良く、また電極2a及び電極2bと感応物質3aが一部でも接触していれば良く、例えば電極2a及び電極2bの側壁だけが感応物質3aと接触していても良い。   As the covering shape of the sensitive substance 3a, it is sufficient that at least two electrodes 2a and 2b are electrically connected. Therefore, the covering shape may be a shape covering the entire electrode 2a and electrode 2b. For example, only the side walls of the electrode 2a and the electrode 2b may be in contact with the sensitive material 3a.

上記理由から、感応物質3aで電極2a及び電極2b間を途切れなく架橋することを実現するために、感応物質3aはゲル状、ペースト状、シート状が好まれる。ゲル、ペーストであれば印刷法や吹付けによる塗布法により十分に厚く塗布し、必要に応じて焼成、乾燥を行うことで使用可能となる。またシート状であれば事前に必要な形状に加工を実施し、電極2a及び電極2b上に貼り付けて使用することが出来、断裁していないシートをガスセンサ全体に貼り付けてから、支持体ごと断裁して使用することも可能であり、後者の場合は感応物質シートの貼り合わせの際に、位置合わせを不要とするメリットが有る。   For the above reasons, the sensitive material 3a is preferably in the form of a gel, a paste, or a sheet in order to achieve a continuous bridge between the electrodes 2a and 2b with the sensitive material 3a. If it is a gel or paste, it can be used by applying it sufficiently thickly by printing or spraying, and firing and drying as necessary. In addition, if it is a sheet, it can be processed in advance to the required shape, and can be used by being affixed on the electrode 2a and electrode 2b. It is also possible to cut and use, and in the latter case, there is a merit that alignment is not required when the sensitive material sheet is bonded.

ガスセンサ8の管の口の外形サイズは、口にくわえる場合を想定した場合、直径0.5〜5cmの円形、或いは一辺の長さが0.5〜5cmの四角形が望ましく、管の長さは操作性から1〜20cmが望ましい。また管の素材の厚みは0.1〜1cmが望ましい。   Assuming that the mouth of the tube of the gas sensor 8 is added to the mouth, a circular shape having a diameter of 0.5 to 5 cm or a square having a side length of 0.5 to 5 cm is desirable, and the length of the tube is 1-20 cm is desirable from the operativity. The thickness of the tube material is preferably 0.1 to 1 cm.

また、ガスセンサ8を管形状とすることで、ガスセンサ8の電極面積を大きくしても、呼気を効率よく感応物質3aに供給することができ、ガスセンサ8の精度向上が見込まれる。   Moreover, even if the electrode area of the gas sensor 8 is increased, the gas sensor 8 can be efficiently supplied to the sensitive substance 3a even if the electrode area of the gas sensor 8 is increased, and the accuracy of the gas sensor 8 is expected to be improved.

化学物質の検出方法としては、上述したように感応物質3aと接触している電極2a及び電極2b間の電気的特性測定し、その変化を捉えることで行う。電気的特性としては、電圧、電流、インダクタンス、容量、インピーダンスなどがある。また測定する際に印加する電気信号としては、直流、交流、任意の正弦波や矩形波、インパルス波形などを自由に選択することができる。   As described above, the chemical substance is detected by measuring the electrical characteristics between the electrode 2a and the electrode 2b in contact with the sensitive substance 3a and capturing the change. The electrical characteristics include voltage, current, inductance, capacity, impedance, and the like. Further, as an electric signal applied at the time of measurement, direct current, alternating current, arbitrary sine wave, rectangular wave, impulse waveform, or the like can be freely selected.

電気信号を測定する際に出来得る限りノイズを小さくする必要があり、そのためには2つ以上の電極において、各電極2a及び電極2b間の間隔は出来る限り小さくするほうが望ましい。   It is necessary to reduce the noise as much as possible when measuring the electric signal. For that purpose, it is desirable to make the distance between the electrodes 2a and 2b as small as possible in two or more electrodes.

各電極2a及び電極2b間の間隔を小さくすることで、感応物質3a自身の抵抗値が小さくなりごく少量の化学物質でも電気的特性の変化を検出しやすくなる。これを実現するためには電極間距離を1mm以下、好ましくは0.5mm以下にすることが望まれる。電極間距離が1mmを超える場合は、それ以下の場合に比べて抵抗値の上昇に寄る検出精度の低下や、材料コスト、焼成・乾燥時間などの面でデメリットとなる。   By reducing the distance between each electrode 2a and electrode 2b, the resistance value of the sensitive substance 3a itself becomes small, and it becomes easy to detect a change in electrical characteristics even with a very small amount of chemical substance. In order to realize this, it is desired that the distance between the electrodes is 1 mm or less, preferably 0.5 mm or less. When the distance between the electrodes exceeds 1 mm, there are disadvantages in terms of a decrease in detection accuracy due to an increase in resistance value, a material cost, baking / drying time, and the like as compared with a case where the distance is less than 1 mm.

基体5は、平面形状であっても、曲面形状であっても、平面形状の組合せであっても、曲面形状の組合せであっても、平面形状と曲面形状の組合せであってもよく、フレキシブルなフィルムであってもよい。   The substrate 5 may have a planar shape, a curved shape, a combination of planar shapes, a combination of curved shapes, a combination of a planar shape and a curved shape, and a flexible It may be a simple film.

電極2a及び電極2bを支持体1の長手方向に沿って配置することで、電極2a及び電極2bの相対する面積が増大し、感応物質3aに反応する気体試料の量を増やすことができ、測定精度を向上させることができる。
<第2実施形態>
図4は本発明の第2の実施形態に係るガスセンサ10を示す斜視図、図5はガスセンサ10の断面図である。図4に示すように、ガスセンサ10の流路に沿って気体試料が移動するように、管入口に送風機9が設置されており、周囲の気体試料を感応物質3aに効率よく供給する。ガスセンサ10は、管形状をしており、図5の通り管形状の一方の口から見ると、管形状の両端が開いており、気体試料の流路となり得る形状をしている。
By disposing the electrode 2a and the electrode 2b along the longitudinal direction of the support 1, the opposing areas of the electrode 2a and the electrode 2b are increased, and the amount of the gas sample that reacts with the sensitive substance 3a can be increased. Accuracy can be improved.
Second Embodiment
FIG. 4 is a perspective view showing a gas sensor 10 according to the second embodiment of the present invention, and FIG. 5 is a cross-sectional view of the gas sensor 10. As shown in FIG. 4, a blower 9 is installed at the inlet of the tube so that the gas sample moves along the flow path of the gas sensor 10, and the surrounding gas sample is efficiently supplied to the sensitive substance 3a. The gas sensor 10 has a tube shape, and when viewed from one tube-shaped mouth as shown in FIG. 5, both ends of the tube shape are open and can be a flow path for a gas sample.

ガスセンサ10には、流路に沿って気体試料が移動するように覆い部材6が設置されており、送風機9で周囲の気体試料を、矢印7の方向に移動させることができ、気体試料を感応物質3aに効率よく供給することができ、測定精度の向上が期待できる。   The gas sensor 10 is provided with a covering member 6 so that the gas sample moves along the flow path. The surrounding gas sample can be moved in the direction of the arrow 7 by the blower 9, and the gas sample is sensitive. The substance 3a can be efficiently supplied, and improvement in measurement accuracy can be expected.

また、ガスセンサ10の電極を大型化した場合でも、前記流路により、周囲の気体試料を効率よく感応物質3aに供給でき、測定精度の向上が期待できる。   Further, even when the electrode of the gas sensor 10 is enlarged, the surrounding gas sample can be efficiently supplied to the sensitive substance 3a through the flow path, and an improvement in measurement accuracy can be expected.

送風機9を備えるガスセンサ10の場合、管の口の外形サイズは、直径1〜10cmの円形、或いは一辺の長さが1〜10cmの四角形が望ましく、管の長さは2〜20cmが望ましい。また管の素材の厚みは0.1〜2cmが望ましい。   In the case of the gas sensor 10 provided with the blower 9, the outer size of the mouth of the tube is preferably a circle having a diameter of 1 to 10 cm, or a square having a side length of 1 to 10 cm, and the length of the tube is preferably 2 to 20 cm. The thickness of the tube material is preferably 0.1 to 2 cm.

例えば体臭を気体試料とする場合、体臭雰囲気下で管形状のガスセンサ10の流路方向に送風機9を設置することにより、体臭を効率よく感応物質3aに供給することができる。
<第3実施形態>
図6は本発明の第3の実施形態に係るガスセンサ8の製造工程を示す斜視図である。図6の(A)に示すように、幅1mm、長さ40mm、厚さ300μmのステンレス製の基体5を4本準備し、これを500μmの間隔を開けて、互いに平行になるよう保持し、これを幅10mm、長さ50mm、厚さ5mmの支持体1に固定した。
For example, when the body odor is used as a gas sample, the body odor can be efficiently supplied to the sensitive substance 3a by installing the blower 9 in the flow direction of the tube-shaped gas sensor 10 in a body odor atmosphere.
<Third Embodiment>
FIG. 6 is a perspective view showing a manufacturing process of the gas sensor 8 according to the third embodiment of the present invention. As shown in FIG. 6A, four stainless steel bases 5 having a width of 1 mm, a length of 40 mm, and a thickness of 300 μm are prepared, and held at intervals of 500 μm so as to be parallel to each other. This was fixed to a support 1 having a width of 10 mm, a length of 50 mm, and a thickness of 5 mm.

次に、図6の(B)に示すように、支持体1に固定した基体5に、めっき法により炭素膜4を厚さ1μmで被覆し電極2a、2b、2c及び2dとした。図示はしないが、各基体5に給電ラインを設け、電気めっきを行った。   Next, as shown in FIG. 6B, the base 5 fixed to the support 1 was coated with a carbon film 4 with a thickness of 1 μm by plating to form electrodes 2a, 2b, 2c and 2d. Although not shown, a power supply line was provided on each base 5 and electroplating was performed.

さらに図6の(C)に示すように、電極2aと2b、及び電極2cと2dのそれぞれの間を架橋するように、それぞれ感応物質3aと感応物質3bとを表面に塗布、焼結させた。第1実施形態と同様に、図6の(C)の電極が内側になるように、支持体1に覆い部材6を被せて管形状を形成し、ガスセンサを得た。更に、第2実施形態と同様に、ガスセンサの流路に沿って気体試料が移動するように、送風機9を設置して、周囲の気体試料を感応物質3aと感応物質3bとに効率よく供給する、ガスセンサを得た。   Further, as shown in FIG. 6C, the sensitive material 3a and the sensitive material 3b were respectively applied to the surfaces and sintered so as to bridge between the electrodes 2a and 2b and between the electrodes 2c and 2d. . Similarly to the first embodiment, a tubular member was formed by covering the support 1 with the covering member 6 so that the electrode of FIG. Further, as in the second embodiment, the blower 9 is installed so that the gas sample moves along the flow path of the gas sensor, and the surrounding gas sample is efficiently supplied to the sensitive substance 3a and the sensitive substance 3b. A gas sensor was obtained.

感応物質3aと感応物質3bとを異なる物質とした場合、同時に2つの成分を測定できる。また、感応物質3aと感応物質3bとを同一の物質とした場合、測定精度を向上させることができる。
<第4実施形態>
図7は本発明の第4の実施形態に係るガスセンサ8の製造工程を示す斜視図である。図7の(A)に示すように、幅1mm、長さ20mm、厚さ300μmのステンレス製の基体5を4本準備し、長辺は500μmの間隔を開け、短編は3mmの間隔を開けて、互いに平行になるよう保持し、これを幅10mm、長さ50mm、厚さ5mmの支持体1に固定した。
When the sensitive substance 3a and the sensitive substance 3b are different substances, two components can be measured simultaneously. Further, when the sensitive substance 3a and the sensitive substance 3b are the same substance, the measurement accuracy can be improved.
<Fourth embodiment>
FIG. 7 is a perspective view showing a manufacturing process of the gas sensor 8 according to the fourth embodiment of the present invention. As shown in FIG. 7A, four stainless steel bases 5 having a width of 1 mm, a length of 20 mm, and a thickness of 300 μm are prepared, the long side is spaced by 500 μm, and the short is spaced by 3 mm. These were held parallel to each other, and fixed to a support 1 having a width of 10 mm, a length of 50 mm, and a thickness of 5 mm.

次に、図7の(B)に示すように、支持体1に固定した基体5に、めっき法により炭素膜4を厚さ1μmで被覆し電極2a、2b、2e及び2fとした。図示はしないが、各基体5に給電ラインを設け、電気めっきを行った。   Next, as shown in FIG. 7B, the substrate 5 fixed to the support 1 was coated with a carbon film 4 with a thickness of 1 μm by plating to form electrodes 2a, 2b, 2e and 2f. Although not shown, a power supply line was provided on each base 5 and electroplating was performed.

さらに図7の(C)に示すように、電極2aと2b、及び電極2eと2fのそれぞれの間を架橋するように、それぞれ感応物質3aと感応物質3cを表面に塗布、焼結させた。第1実施形態と同様に、図7の(C)の電極が内側になるように、支持体1に覆い部材6を被せて管形状を形成し、ガスセンサを得た。更に、第2実施形態と同様に、ガスセンサの流路に沿って気体試料が移動するように、送風機9を設置して、周囲の気体試料を感応物質3aと感応物質3cとに効率よく供給する、ガスセンサを得た。   Further, as shown in FIG. 7C, the sensitive material 3a and the sensitive material 3c were applied and sintered on the surface so as to bridge between the electrodes 2a and 2b and the electrodes 2e and 2f, respectively. Similarly to the first embodiment, a tubular member was formed by covering the support 1 with the covering member 6 so that the electrode of FIG. Further, similarly to the second embodiment, the blower 9 is installed so that the gas sample moves along the flow path of the gas sensor, and the surrounding gas sample is efficiently supplied to the sensitive substance 3a and the sensitive substance 3c. A gas sensor was obtained.

感応物質3aと感応物質3cとを異なる物質とした場合、同時に2つの成分を測定できる。また、感応物質3aと感応物質3cとを同一の物質とした場合、測定精度を向上させることができる。
<第5実施形態>
図8は、本発明の第5実施形態に係るガスセンサ12を概略的に示す断面図である。ガスセンサ12は、上述した支持体1を3組を用い、それぞれの長辺を接続部11を介して接続して、気体試料の流路とする断面三角形状の管形状を形成した。各電極2a,2b、電極2g,2h、電極2i,2jは管形状の内側に位置している。接続部11としては、ゴム、接着剤などである。
When the sensitive substance 3a and the sensitive substance 3c are different substances, two components can be measured simultaneously. Further, when the sensitive substance 3a and the sensitive substance 3c are the same substance, the measurement accuracy can be improved.
<Fifth Embodiment>
FIG. 8 is a sectional view schematically showing a gas sensor 12 according to the fifth embodiment of the present invention. In the gas sensor 12, three sets of the support 1 described above were used, and the long sides of each of the supports 1 were connected via the connection portion 11 to form a tube shape having a triangular cross section serving as a gas sample flow path. Each electrode 2a, 2b, electrode 2g, 2h, electrode 2i, 2j is located inside the tube shape. The connecting portion 11 is rubber, adhesive, or the like.

ガスセンサ12は、3組の電極2a,2b、電極2g,2h、電極2i,2jと、それぞれに架橋配置された感応物質3a,3d,3eを有している。感応物質3a,3d,3eがそれぞれ異なる物質である場合、同時に3種類の成分を測定できる。また、2つないし3つの感応物質が同一の場合、測定精度を向上させることができる。   The gas sensor 12 includes three sets of electrodes 2a and 2b, electrodes 2g and 2h, electrodes 2i and 2j, and sensitive materials 3a, 3d, and 3e that are arranged in a bridge. When the sensitive materials 3a, 3d, and 3e are different materials, three types of components can be measured simultaneously. Further, when two to three sensitive substances are the same, the measurement accuracy can be improved.

このように、電気化学ガスセンサであるガスセンサ12では、複数の組の電極と感応物質を持つことができる。複数の異なる感応物質を使用することで、一度に複数種類の化学物質を測定することが可能になる。また同じ種類の感応物質を複数の組の電極に使用することで、測定精度を高めることが可能になる。
<第6実施形態>
図9は、本発明の第6実施形態に係るガスセンサを概略的に示す断面図である。ガスセンサ14は、上述した支持体1を3組を用い、それぞれの長辺を接続部11を介して接続して、気体試料の流路とする断面三角形状の管形状を形成した。各電極2a,2b、電極2k,2lは管形状の内側に位置している。接続部11としては、ゴム、接着剤などである。
Thus, the gas sensor 12 which is an electrochemical gas sensor can have a plurality of sets of electrodes and sensitive substances. By using a plurality of different sensitive substances, it is possible to measure a plurality of types of chemical substances at a time. In addition, by using the same type of sensitive substance for a plurality of sets of electrodes, the measurement accuracy can be increased.
<Sixth Embodiment>
FIG. 9 is a sectional view schematically showing a gas sensor according to the sixth embodiment of the present invention. The gas sensor 14 used three sets of the above-described supports 1 and connected the long sides of each of the supports 1 via the connecting portion 11 to form a tube shape having a triangular cross section serving as a gas sample flow path. The electrodes 2a and 2b and the electrodes 2k and 2l are located inside the tube shape. The connecting portion 11 is rubber, adhesive, or the like.

ガスセンサ14は、2組の電極2a,2b、電極2k,2lと、それぞれに架橋配置された感応物質3a,3fを有している。感応物質3a,3fがそれぞれ異なる物質である場合、同時に2種類の成分を測定できる。また、2つの感応物質が同一の場合、測定精度を向上させることができる。   The gas sensor 14 includes two sets of electrodes 2a and 2b, electrodes 2k and 2l, and sensitive materials 3a and 3f arranged in a cross-linked manner. When the sensitive materials 3a and 3f are different materials, two kinds of components can be measured simultaneously. Moreover, when two sensitive substances are the same, measurement accuracy can be improved.

このように、電気化学ガスセンサであるガスセンサ12では、複数の組の電極と感応物質を持つことができる。複数の異なる感応物質を使用することで、一度に複数種類の化学物質を測定することが可能になる。また同じ種類の感応物質を複数の組の電極に使用することで、測定精度を高めることが可能になる。
<第7実施形態>
図10は、本発明の第7実施形態に係るガスセンサ8を概略的に示す斜視図である。ガスセンサ8の支持体1には、各部に電源を供給する電源部16、電気信号を発生する電気信号発生部17、電気信号を検出する電気信号検出部18、測定結果を記録する記録部19、測定結果を表示する測定結果表示部15、測定結果を無線で出力する無線出力部20、測定結果を有線で出力する有線出力部21が搭載されている。
Thus, the gas sensor 12 which is an electrochemical gas sensor can have a plurality of sets of electrodes and sensitive substances. By using a plurality of different sensitive substances, it is possible to measure a plurality of types of chemical substances at a time. In addition, by using the same type of sensitive substance for a plurality of sets of electrodes, the measurement accuracy can be increased.
<Seventh embodiment>
FIG. 10 is a perspective view schematically showing a gas sensor 8 according to the seventh embodiment of the present invention. The support 1 of the gas sensor 8 includes a power supply unit 16 that supplies power to each unit, an electrical signal generation unit 17 that generates electrical signals, an electrical signal detection unit 18 that detects electrical signals, a recording unit 19 that records measurement results, A measurement result display unit 15 for displaying the measurement results, a wireless output unit 20 for outputting the measurement results wirelessly, and a wired output unit 21 for outputting the measurement results by wire are mounted.

このように構成されたガスセンサ8によれば、上述したガスセンサ8と同様の機能を有すると共に、電気信号の印加や測定を行うための、電源機能、電気信号発生機能、測定結果検出機能、測定結果を記録する機能、測定結果を表示する機能が必要であり、これらの機能は本ガスセンサ8に内蔵してもよく、外部装置としてもよい。また、測定結果を有線で出力する機能、測定結果を無線で出力する機能を備えていてもよい。   According to the gas sensor 8 configured as described above, the power sensor function, the electric signal generation function, the measurement result detection function, and the measurement result for performing the application and measurement of the electric signal have the same function as the gas sensor 8 described above. And a function for displaying the measurement result are necessary. These functions may be built in the gas sensor 8 or may be an external device. Moreover, you may provide the function to output a measurement result by a wire, and the function to output a measurement result by radio | wireless.

なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。   In addition, this invention is not limited to the said embodiment, In the implementation stage, it can change variously in the range which does not deviate from the summary. Further, the embodiments may be implemented in combination as appropriate, and in that case, the combined effect can be obtained. Furthermore, the present invention includes various inventions, and various inventions can be extracted by combinations selected from a plurality of disclosed constituent elements. For example, even if several constituent requirements are deleted from all the constituent requirements shown in the embodiment, if the problem can be solved and an effect can be obtained, the configuration from which the constituent requirements are deleted can be extracted as an invention.

1…支持体、2a、2b、2c、2d、2e、2f、2g、2h、2i、2j、2k、2l…電極、3a、3b、3c、3d、3e、3f…感応物質、4…炭素膜、5…基体、6…覆い部材、7…気体試料の移動方向、8…ガスセンサ、9…送風機、10…ガスセンサ、11…接続部、12…ガスセンサ、14…ガスセンサ、15…測定結果表示部、16…電源部、17…電気信号発生部、18…電気信号検出部、19…記録部、20…無線出力部、21…有線出力部。   DESCRIPTION OF SYMBOLS 1 ... Support body, 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l ... Electrode, 3a, 3b, 3c, 3d, 3e, 3f ... Sensitive substance, 4 ... Carbon film DESCRIPTION OF SYMBOLS 5 ... Base | substrate, 6 ... Cover member, 7 ... Moving direction of gas sample, 8 ... Gas sensor, 9 ... Blower, 10 ... Gas sensor, 11 ... Connection part, 12 ... Gas sensor, 14 ... Gas sensor, 15 ... Measurement result display part, DESCRIPTION OF SYMBOLS 16 ... Power supply part, 17 ... Electric signal generation part, 18 ... Electric signal detection part, 19 ... Recording part, 20 ... Wireless output part, 21 ... Wired output part

Claims (14)

気体中の特定成分の濃度を検出するガスセンサであって、
支持体と、
この支持体の一方の表面上に設けられ、電気信号が印加された一対の電極と、
前記一対の電極間に架橋され、前記特定成分と反応することで電気的特性が変化する感応物質と、
前記支持体の前記一方の表面上側に設けられて、流路を形成する覆い部材を有しており、
前記各電極は1μm以上の厚さを有した炭素連続膜で被覆されているガスセンサ。
A gas sensor for detecting the concentration of a specific component in a gas,
A support;
A pair of electrodes provided on one surface of the support and applied with an electrical signal;
A sensitive substance that is cross-linked between the pair of electrodes and changes electrical characteristics by reacting with the specific component;
Provided on the upper surface of the one surface of the support, and has a covering member that forms a flow path;
Each of the electrodes is a gas sensor covered with a continuous carbon film having a thickness of 1 μm or more.
気体中の特定成分の濃度を検出するガスセンサであって、
その表面を対向させて管状に配置され流路を形成した3以上の支持体と、
これら支持体のうち少なくとも一の支持体の内側の表面上に設けられ、電気信号が印加された一対の電極と、
前記一対の電極間に架橋され、前記特定成分と反応することで電気的特性が変化する感応物質と、
前記各電極は1μm以上の厚さを有した炭素連続膜で被覆されているガスセンサ。
A gas sensor for detecting the concentration of a specific component in a gas,
Three or more supports that are arranged in a tubular shape with their surfaces facing each other to form a flow path;
A pair of electrodes provided on the inner surface of at least one of the supports, to which an electrical signal is applied;
A sensitive substance that is cross-linked between the pair of electrodes and changes electrical characteristics by reacting with the specific component;
Each of the electrodes is a gas sensor covered with a continuous carbon film having a thickness of 1 μm or more.
前記支持体間を封止する接続部をさらに有している請求項2記載のガスセンサ。   The gas sensor according to claim 2, further comprising a connecting portion for sealing between the supports. 前記流路の一方の開口部には送風機が設けられている請求項1又は2に記載のガスセンサ。   The gas sensor according to claim 1, wherein a blower is provided in one opening of the flow path. 前記一対の電極を、2組以上を備えている請求項1又は2に記載のガスセンサ。   The gas sensor according to claim 1 or 2, comprising two or more pairs of the pair of electrodes. 前記一対の電極は、前記支持体の長手方向に沿って配置されている請求項1又は2に記載のガスセンサ。   The gas sensor according to claim 1 or 2, wherein the pair of electrodes are arranged along a longitudinal direction of the support. 前記流路の開口部は、呼気吹込口が形成されている請求項1又は2に記載のガスセンサ。   The gas sensor according to claim 1 or 2, wherein an opening of the flow path is formed with an exhalation air inlet. 前記感応物質は、酸化物半導体、有機半導体、化合物半導体の少なくとも1つを有する請求項1又は2に記載のガスセンサ。   The gas sensor according to claim 1, wherein the sensitive substance includes at least one of an oxide semiconductor, an organic semiconductor, and a compound semiconductor. 前記一対の電極に電気信号を入力する電気信号発生部と、
前記一対の電極から電気信号を検出する電気信号検出部をさらに備えている請求項1又は2に記載のガスセンサ。
An electric signal generator for inputting an electric signal to the pair of electrodes;
The gas sensor according to claim 1, further comprising an electric signal detector that detects an electric signal from the pair of electrodes.
前記電気信号検出部により検出された測定結果を記録する記録部又は表示する表示部をさらに備えている請求項9に記載のガスセンサ。   The gas sensor according to claim 9, further comprising a recording unit that records a measurement result detected by the electrical signal detection unit or a display unit that displays the measurement result. 前記電気信号検出部により検出された測定結果を外部に出力する無線出力部又は有線出力部の少なくとも一方を有する請求項9に記載のガスセンサ。   The gas sensor according to claim 9, further comprising at least one of a wireless output unit and a wired output unit that outputs measurement results detected by the electrical signal detection unit to the outside. 金属導体を支持体上に接着する工程と、
電気めっきにて前記金属導体を炭素で被覆する工程と、
前記金属導体を内側にして前記支持体に覆い部材によって覆うことで流路を形成する工程を備えるガスセンサの製造方法。
Bonding the metal conductor onto the support;
Coating the metal conductor with carbon by electroplating;
A method of manufacturing a gas sensor comprising a step of forming a flow path by covering the support with a cover member with the metal conductor facing inside.
電気めっきにて金属導体を炭素で被覆する工程と、
前記金属導体を支持体上に接着する工程と、
前記金属導体を内側にして前記支持体に覆い部材によって覆うことで流路を形成する工程を備えるガスセンサの製造方法。
Coating a metal conductor with carbon by electroplating;
Bonding the metal conductor onto a support;
A method of manufacturing a gas sensor comprising a step of forming a flow path by covering the support with a cover member with the metal conductor facing inside.
3以上支持体のうち少なくとも1の支持体上に金属導体を接着する工程と、
電気めっきにて前記金属導体を炭素で被覆する工程と、
前記金属導体を内側にして前記支持体を管状に形成して流路を形成する工程を備えるガスセンサの製造方法。
Adhering a metal conductor on at least one of the three or more supports;
Coating the metal conductor with carbon by electroplating;
A method of manufacturing a gas sensor comprising a step of forming a channel by forming the support in a tubular shape with the metal conductor inside.
JP2017105404A 2017-05-29 2017-05-29 Gas sensor and manufacturing method thereof Pending JP2018200248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017105404A JP2018200248A (en) 2017-05-29 2017-05-29 Gas sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017105404A JP2018200248A (en) 2017-05-29 2017-05-29 Gas sensor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2018200248A true JP2018200248A (en) 2018-12-20

Family

ID=64668089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017105404A Pending JP2018200248A (en) 2017-05-29 2017-05-29 Gas sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2018200248A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114072664A (en) * 2019-07-19 2022-02-18 住友化学株式会社 Electrochemical sensor cell, electrode for electrochemical sensor, and method for manufacturing electrode for electrochemical sensor
JP7440339B2 (en) 2020-05-19 2024-02-28 Koa株式会社 Sulfide detection sensor and method for manufacturing the sulfide detection sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114072664A (en) * 2019-07-19 2022-02-18 住友化学株式会社 Electrochemical sensor cell, electrode for electrochemical sensor, and method for manufacturing electrode for electrochemical sensor
JP7440339B2 (en) 2020-05-19 2024-02-28 Koa株式会社 Sulfide detection sensor and method for manufacturing the sulfide detection sensor

Similar Documents

Publication Publication Date Title
JP6297026B2 (en) Sensor assembly and manufacturing method thereof
US20230051545A1 (en) pH Sensing Technique Based On Graphene Electrodes
EP2548505B1 (en) Water vapour sensor
JP5834319B2 (en) Apparatus for measuring redox potential
US11432744B2 (en) Lung condition monitoring device
KR20190072607A (en) Devices and systems as well as methods for correcting uncompensated resistors in conductive elements of biosensors
JP2018200248A (en) Gas sensor and manufacturing method thereof
Tonello et al. Wireless point-of-care platform with screen-printed sensors for biomarkers detection
WO2007080381A1 (en) Gas sensor
Magori et al. Fractional exhaled nitric oxide measurement with a handheld device
Tonello et al. Preliminary study of a low-cost point-of-care testing system using screen-printed biosensors: For early biomarkers detection related to Alzheimer Disease
US10670580B2 (en) Quantification of inflammatory molecules in exhaled breath condensate using differential pulse voltammetry on reduced graphene oxide sensor
Shetty et al. A review on chemi-resistive human exhaled breath biosensors for early diagnosis of disease
AU2004294915B2 (en) A self-condensing pH sensor
JP2018096875A (en) Biosensor, method for manufacturing the same, and bio-sensing device
Li et al. A vanadium oxide nanotube-based nitric oxide gas sensor
JP2018189480A (en) Chemical sensing electrode, chemical sensing device, and method for manufacturing chemical sensing electrode
Chen et al. Performance Improvement of a ZnGa2O4 Extended-Gate Field-Effect Transistor pH Sensor
Bruno et al. Wearable sensor for real-time monitoring of oxidative stress in simulated exhaled breath
TWI706131B (en) Urine testing strip and urine testing system
Bhowmik Chemical sensors for e-nose: an effective route for disease diagnosis
Burgos Flórez Point-of-care device prototype for the detection, quantification and monitoring of S100B as a biomarker for diagnosis and prediction of severity of traumatic brain injury
Carminati et al. The role of micro-scale current sensing in biomedicine: A unifying view and design guidelines
Zhu Thin Film Based Biocompatible Sensors for Physiological Monitoring
Tonello et al. Preliminary Study of a Low-Cost Point-of-Care Testing System Using Screen-Printed Biosensors