JP2018200035A - 燃料蒸発システムの制御装置及び燃料蒸発システム - Google Patents

燃料蒸発システムの制御装置及び燃料蒸発システム Download PDF

Info

Publication number
JP2018200035A
JP2018200035A JP2017105740A JP2017105740A JP2018200035A JP 2018200035 A JP2018200035 A JP 2018200035A JP 2017105740 A JP2017105740 A JP 2017105740A JP 2017105740 A JP2017105740 A JP 2017105740A JP 2018200035 A JP2018200035 A JP 2018200035A
Authority
JP
Japan
Prior art keywords
fuel
temperature
evaporation
vapor pressure
acquisition unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017105740A
Other languages
English (en)
Inventor
渡辺 直樹
Naoki Watanabe
直樹 渡辺
直規 栗本
Naoki Kurimoto
直規 栗本
淳 大坂
Jun Osaka
淳 大坂
武山 雅樹
Masaki Takeyama
雅樹 武山
篤紀 岡林
Atsunori Okabayashi
篤紀 岡林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017105740A priority Critical patent/JP2018200035A/ja
Publication of JP2018200035A publication Critical patent/JP2018200035A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】燃料の蒸発特性が用いられる内燃機関の運転制御を適正化することができる燃料蒸発システムの制御装置及び燃料蒸発システムを提供する。【解決手段】燃料蒸発システム30は燃料蒸発装置31及び制御ユニット32を有している。燃料蒸発装置31は、燃料タンク16に接続された蒸発配管33を有しており、この蒸発配管33には燃料弁34及び空気弁35が取り付けられている。蒸発配管33の内部空間により蒸発室33aが形成されており、蒸発室33aには燃料タンク16から燃料が取り込まれる。燃料弁34が閉状態にあることで蒸発室33aには燃料が貯留され、空気弁35が閉状態にあることで蒸発室33aでの蒸気圧力が圧力センサ37により検出される。蒸発配管33には真空ポンプ38が接続されており、真空ポンプ38の駆動に伴って蒸発室33aの減圧が行われる。【選択図】図1

Description

この明細書による開示は、燃料蒸発システムの制御装置及び燃料蒸発システムに関する。
内燃機関に供給される燃料の性状を推定する技術として、例えば特許文献1には、燃料の動粘度に基づいて燃料の蒸留性状を推定する技術が開示されている。この技術では、燃料を貯留する燃料タンクに動粘度センサが設けられており、この動粘度センサにより燃料の動粘度が検出される。ここでは、燃料が90%蒸発する温度であるT90を蒸留性状として用いており、動粘度が大きいほどT90が高くなるという関係を利用して、動粘度に基づいてT90を推定している。そして、T90に基づいて内燃機関での燃料の燃焼に関する燃焼制御を行っている。
特開2016−166591号公報
しかしながら、T90等の蒸留性状は、燃料の蒸発に関する特性を示す蒸発特性の一種である一方で、動粘度は蒸発特性とは異なる性状である。このため、蒸留性状と動粘度との間に相関があるとはいっても、動粘度に基づいて蒸留性状を推定する構成では、その推定精度が低下することが懸念される。このように、蒸留性状の推定精度が低下すると、燃焼制御等の内燃機関の運転制御が適正に行われない可能性が高くなってしまう。
本開示の主な目的は、燃料の蒸発特性が用いられる内燃機関の運転制御を適正化することができる燃料蒸発システムの制御装置及び燃料蒸発システムを提供することにある。
上記目的を達成するため、開示された第1の態様は、
内燃機関(11)に液体燃料を供給する燃料供給システム(10a)から液体燃料を取り込み、燃料供給システムから取り込んだ液体燃料を蒸発させることが可能な燃料蒸発システム(30)、に適用される制御装置(32)であって、
液体燃料を蒸発させるために燃料蒸発システムの動作制御を行う蒸発制御部(S103,S201〜S204,S301,S302,S401,S402,S501〜S503,S604,S612)と、
蒸発制御部による液体燃料の蒸発に伴って液体燃料の蒸発特性を取得する蒸発取得部(S104〜S113,S603,S605〜S611,S613〜S620)と、
を備えている燃料蒸発システムの制御装置である。
第1の態様によれば、内燃機関の運転に用いられる燃料を燃料供給システムにおいて実際に蒸発させることで、この燃料の蒸発特性を直接的に取得できる。このため、蒸発特性の取得精度を高めることができる。このように精度の高い蒸発特性を燃料噴射制御等の内燃機関の運転制御に用いることで、内燃機関の運転制御を適正化することができる。
第2の態様は、
内燃機関(11)に液体燃料を供給する燃料供給システム(10a)から液体燃料を取り込み、燃料供給システムから取り込んだ液体燃料を蒸発させることが可能な燃料蒸発システム(30)であって、
液体燃料を蒸発させる蒸発室(33a)と、
蒸発室での液体燃料の温度を検出する温度検出部(36)と、
蒸発室に液体燃料が貯留された状態で蒸発室を開閉することが可能な開閉部(34,35,51)と、
を備えている燃料蒸発システムである。
第2の態様によれば、蒸発室内に液体燃料及び空気の両方が取り込まれた状態が開閉部により保持されるため、温度検出部の検出結果を用いることで蒸発室での燃料の蒸発態様を取得することができる。この蒸発態様に基づいて蒸発特性を取得することで、上記第1の態様と同様の効果を奏することができる。
なお、特許請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものにすぎず、技術的範囲を限定するものではない。
第1実施形態における燃料蒸発システムの構成を示す模式図。 近似直線を示す図。 蒸留特性を示す図。 蒸気圧特性としてT50用の蒸気圧マップを示す図。 蒸気圧特性としてT10用の蒸気圧マップを示す図。 蒸気圧特性としてT90用の蒸気圧マップを示す図。 燃料蒸発処理の手順を示すフローチャート。 密度マップを示す図。 セタン価マップを示す図。 発熱量マップを示す図。 噴射圧マップを示す図。 第2実施形態における燃料蒸発システムの構成を示す模式図。 第3実施形態における燃料蒸発システムの構成を示す模式図。 準備処理の手順を示すフローチャート。 第4実施形態における燃料蒸発システムの構成を示す模式図。 燃料蒸発処理の手順を示すフローチャート。 第5実施形態における燃料蒸発システムの構成を示す模式図。 第6実施形態における燃料蒸発システムの構成を示す模式図。 燃料蒸発処理の手順を示すフローチャート。 第7実施形態における燃料蒸発システムの構成を示す模式図。 燃料蒸発処理の手順を示すフローチャート。 第8実施形態における燃料蒸発システムの構成を示す模式図。 第9実施形態における燃料蒸発システムの構成を示す模式図。 温度差直線を示す図。 温度差特性を示す図。 燃料蒸発処理の手順を示すフローチャート。
以下、本開示の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施例の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。そして、複数の実施形態及び変形例に記述された構成同士の明示されていない組み合わせも、以下の説明によって開示されているものとする。
(第1実施形態)
図1に示す燃焼システム10は、エンジン11、吸気通路12、スロットル弁13、燃料噴射弁15、燃料タンク16、燃料供給ポンプ17、コモンレール18及びECU19を有しており、車両に搭載されている。エンジン11は、ディーゼルエンジン等の内燃機関であり、吸気通路12は、外気等の吸入空気をエンジン11の燃焼室11aに供給する。スロットル弁13は、吸気通路12に設けられた電子スロットルであり、吸気通路12を開閉することで燃焼室11aへの吸入空気の供給量を調整する。エンジン11は、ピストン11bを有しており、ピストン11bは、シリンダブロックやシリンダヘッドと共に燃焼室11aを区画している。燃料噴射弁15は、燃焼室11aに向けて軽油等の液体燃料を噴射する燃料噴射装置である。本実施形態では、液体燃料のことを単に燃料と称する。
燃料タンク16は燃料を貯留しており、コモンレール18は、供給通路21を通じて燃料タンク16に接続されている。燃料供給ポンプ17は、供給通路21に設けられており、燃料タンク16から汲み上げた燃料を加圧してコモンレール18に圧送する。コモンレール18には、分配通路22を通じて複数の燃料噴射弁15が接続されている。コモンレール18は、燃料供給ポンプ17から供給された高圧燃料を一時的に蓄える蓄圧容器であり、圧力を保持したまま各燃料噴射弁15に燃料を分配する。
燃料噴射弁15及びコモンレール18は、戻り通路23を通じて燃料タンク16に接続されている。燃料噴射弁15は、燃料を噴射する噴孔を有しており、供給通路21から供給される高圧燃料の一部を利用して噴孔の開閉を行っている。燃料噴射弁15において噴孔の開閉に利用された燃料は、戻り通路23を通じて燃料タンク16に戻される。コモンレール18は、蓄えている燃料の圧力を調整する圧力調整部として圧力レギュレータ18aを有しており、圧力レギュレータ18aは、圧力調整に伴って余剰になった燃料を戻り通路23を通じて燃料タンク16に戻す。なお、戻り通路23はドレイン管により形成されており、戻り通路23をドレインラインと称することもできる。
エンジン11では、吸気工程において吸入空気が吸気通路12を通じて燃焼室11aに吸入され、圧縮工程においてピストン11bにより空気が圧縮される。燃焼工程においては、燃料噴射弁15から噴射された燃料が自着火して燃焼し、排気工程において排気が燃焼室11aから排気通路を通じて排出される。
ECU(Engine Control Unit)19は、燃焼システム10の動作制御を行う制御装置である。ECU19は、プロセッサやRAM、記憶媒体、入出力インターフェース等を含んで構成されたコンピュータを有している。ECU19においては、燃焼システム10の動作制御を行うためのプログラムが記憶媒体に記憶されており、このプログラムがプロセッサにより実行される。ECU19は、スロットル弁13や燃料噴射弁15といったアクチュエータに電気的に接続されており、指令信号を出力することでこれらアクチュエータの動作制御を行う。
燃焼システム10には、燃焼室11aに燃料を供給する燃料供給システム10aが含まれている。燃料供給システム10aは、燃料噴射弁15、燃料タンク16、燃料供給ポンプ17、コモンレール18、供給通路21、分配通路22、戻り通路23を有している。
本実施形態では、燃料供給システム10aからエンジン11に供給される燃料を実際に蒸発させることで、燃料の蒸発特性を直接的に取得することができるようになっている。具体的には、燃料の蒸発特性をオンボードで取得するために燃料を蒸発させる燃料蒸発システム30が、燃料供給システム10aと共に車両に搭載されている。なお、燃料蒸発システム30は、本実施形態では燃焼システム10や燃料供給システム10aに含まれていないが、これら燃焼システム10や燃料供給システム10aに含まれていてもよい。
燃料蒸発システム30は、燃料を蒸発させることが可能な燃料蒸発装置31と、燃料蒸発装置31の動作制御を行う制御装置としての制御ユニット32とを有している。燃料蒸発装置31は、蒸発配管33、燃料弁34、空気弁35、温度センサ36、圧力センサ37及び真空ポンプ38を有している。蒸発配管33は、燃料タンク16に貯留された燃料と空気との両方を取り込むことが可能になっている。
蒸発配管33は、燃料が蒸発する蒸発室33aと、蒸発室33aに燃料を出入りさせる燃料通路33bと、蒸発室33aに空気を出入りさせる空気通路33cとを有している。蒸発配管33は、燃料タンク16の外周部を貫通した状態で設けられている。蒸発配管33においては、一方の端部が燃料タンク16の内部に入り込んでおり、他方の端部が燃料タンク16の外部に配置されている。燃料通路33bは、蒸発配管33の一方の端部から延びており、空気通路33cは、蒸発配管33の他方の端部から延びている。燃料通路33bは燃料タンク16の内部空間に通じており、空気通路33cは燃料タンク16の外部に通じている。蒸発室33aは、燃料通路33bと空気通路33cとの間に配置されており、これら燃料通路33b及び空気通路33cのそれぞれに連通されている。
燃料弁34は、蒸発室33aと燃料通路33bとの境界部に設けられており、燃料タンク16から蒸発室33aへの燃料の出入りを規制する燃料規制部に相当する。燃料弁34は、開状態と閉状態とに移行可能な電磁弁等の電動式の開閉装置であり、開状態にある場合に蒸発室33aへの燃料の出入りを許可し、閉状態にある場合に蒸発室33aへの燃料の出入りを停止させる。空気弁35は、蒸発室33aと空気通路33cとの境界部に設けられており、空気通路33cを通じた蒸発室33aへの空気の出入りを規制する空気規制部に相当する。空気弁35は、開状態と閉状態とに移行可能な電磁弁等の電動式の開閉装置であり、開状態にある場合に蒸発室33aへの空気の出入りを許可し、閉状態にある場合に蒸発室33aへの空気の出入りを停止させる。なお、燃料弁34及び空気弁35はいずれも開閉体に相当する。
蒸発配管33は、上下方向に延びた状態で燃料タンク16の天井部を貫通しており、下端側に燃料通路33bが配置され、上端側に空気通路33cが配置されている。燃料タンク16の内部においては、蒸発配管33が燃料タンク16の底面に向けて延びており、燃料タンク16において燃料の貯留率が例えば60%など所定値に達していれば、蒸発室33aに燃料が進入するようになっている。このため、燃料タンク16への給油が行われた後であれば、燃料通路33b及び燃料弁34は燃料に浸り、蒸発室33aに燃料が存在することになる。
温度センサ36は、蒸発配管33に取り込まれた燃料の温度を検出する温度検出部であり、燃料の温度に応じた検出信号を出力する。圧力センサ37は、蒸発室33aの内部圧力を絶対圧として検出する圧力検出部であり、内部圧力に応じた検出信号を出力する。真空ポンプ38は、空気通路33cに接続されており、空気通路33cから空気を強制的に排出させることで蒸発室33aの圧力を減少させる電動式の減圧部である。真空ポンプ38は、蒸発室33aからの空気の排出をある程度継続することで、蒸発室33aを真空状態又は真空に近い状態にすることが可能になっている。この場合、空気通路33cは、蒸発室33aの空気を排出することで蒸発室33aの圧力を減少させる減圧通路に相当する。
燃料蒸発装置31においては、蒸発室33aに燃料が取り込まれた状態で燃料弁34が閉状態にあることで、蒸発室33aに燃料が貯留されている。そして、真空ポンプ38により蒸発室33aから空気が吸引された後に、空気弁35が閉状態に移行すると、蒸発室33aが真空状態又はそれに近い状態で保持される。このように、蒸発室33aの内部圧力が低くされることで、蒸発室33aに貯留された燃料が常温などの比較的低温であっても、圧力センサ37が蒸発室33aでの燃料の飽和蒸気圧を検出可能になっている。なお、蒸発室33aを、飽和蒸気圧を計測するための計測室と称することもできる。
真空ポンプ38は、燃料蒸発装置31と車両のブレーキシステム41との両方に含まれている。ブレーキシステム41は、真空ポンプ38に加えて、ブレーキペダル42、ブレーキスイッチ43、ブレーキブースタ44及びブレーキ配管45を有している。ブレーキスイッチ43は、運転者によるブレーキペダル42の踏み込みを検出する。真空ポンプ38は、ブレーキ配管45を介してブレーキブースタ44に接続されており、ブレーキブースタ44は、真空ポンプ38による負圧を用いて、運転者によりブレーキペダルに付与されたブレーキ圧力を増加させる。このように、ブレーキシステム41は、真空ポンプ38を動作させることで運転者によるブレーキペダル42の踏み込みをアシストする。真空ポンプ38は、蒸発配管33及びブレーキ配管45の両方に通じており、駆動することで蒸発配管33及びブレーキ配管45の両方から空気を吸引する。
制御ユニット32は、プロセッサ32a、記憶部32b、入出力インターフェース等を含んで構成されたコンピュータを有している。記憶部32bとしては、RAMや記憶媒体が挙げられる。制御ユニット32においては、燃料蒸発装置31の動作制御を行うためのプログラムが記憶部32b等に記憶されており、このプログラムがプロセッサ32aにより実行される。また、記憶部32bには、蒸発特性に関する情報などの各種データが記憶されている。なお、車両においては、SCU(Sensor Control Unit)が制御ユニット32として用いられてもよい。
制御ユニット32には、燃料弁34、空気弁35、温度センサ36、圧力センサ37及び真空ポンプ38が電気的に接続されている。制御ユニット32は、指令信号を出力することで燃料弁34、空気弁35及び真空ポンプ38の動作制御を行う。温度センサ36及び圧力センサ37は、検出信号を制御ユニット32に対して出力する。また、制御ユニット32は、ECU19に電気的に接続されており、ECU19との間で各種信号を授受する。
本発明者は、燃料蒸発システム30により直接的に取得された燃料の蒸発特性に基づいて燃料の燃焼特性を推定することでその推定精度が向上する、という知見を得た。燃料の蒸発特性としては、飽和蒸気圧や蒸留特性が挙げられる。ここで、飽和蒸気圧と温度との関係を示す蒸気圧曲線について、温度変化が数十度など限られた範囲では飽和蒸気圧と温度とが比例関係にあるとして、蒸気圧曲線を近似した近似直線を得ることができる。図2に示す近似直線おいては、横軸が燃料温度T[℃]を示し、縦軸が燃料の飽和蒸気圧P[mmHg]を示しており、燃料温度Tが高いほど飽和蒸気圧Pが高くなっている。燃料蒸発装置31においては、温度センサ36が燃料温度Tを検出可能になっており、圧力センサ37が飽和蒸気圧Pを検出可能になっている。
図3に示す蒸留特性においては、横軸が燃料の蒸留量[wt%]を示し、縦軸が燃料の蒸留温度[℃]を示す。この蒸留特性には、燃料が50%蒸発する温度である50%蒸留温度がT50として含まれている。例えば、図3では、燃料A〜Dの各T50のうち、燃料DのT50が最も小さくなっている。T50と同様に、10%蒸留温度であるT10や90%蒸留温度であるT90も蒸留特性に含まれている。
燃料について蒸発特性を用いて燃焼特性を推定する場合、蒸留温度を蒸発特性として用いることが一般的であると考えられる。ここで、燃料の蒸留温度を計測するには、蒸留可能な200℃等の蒸留温度帯まで燃料を加熱する必要が生じるが、蒸留温度を計測するためだけに燃料タンク16内の燃料を蒸留温度帯まで加熱することは現実的ではない。特に、燃料供給システム10aが搭載された車両においては、安全性の観点などからして現実的ではない。
そこで、本発明者は、飽和蒸気圧P及び燃料温度Tを用いて蒸留温度を推定することができるようにするために蒸気圧特性を新規に作成した。図4〜図6に示す蒸気圧特性においては、横軸が基準蒸気圧Ps[mmHg]を示し、縦軸が蒸気圧傾きRmを示し、さらに、斜めに延びる斜め軸が蒸留温度[℃]を示す。蒸気圧特性は、例えばT10,T50,T90といった蒸留量[wt%]ごとにマップ化されており、このマップを蒸気圧マップと称する。
図4に示すマップは、T50を推定するためのT50用の蒸気圧マップである。このマップにおいては、燃料タンク16に貯留された燃料について取得された基準蒸気圧Ps及び蒸気圧傾きRmがプロットされると、このプロット位置が燃料のT50を示す。また、このマップにおいては、燃料BのT50が約300℃であることを示し、燃料DのT50が約200℃であることを示す。
図5に示すマップは、T10を推定するためのT10用の蒸気圧マップである。このマップにおいては、基準蒸気圧Ps及び蒸気圧傾きRmがプロットされると、このプロット位置が燃料のT10を示す。また、このマップにおいては、燃料AのT10が200℃よりも少し低い温度であることを示し、燃料BのT10が225℃よりも少し高い温度であることを示す。
図6に示すマップは、T90を推定するためのT90用の蒸気圧マップである。このマップにおいては、基準蒸気圧Ps及び蒸気圧傾きRmがプロットされると、このプロット位置が燃料のT90を示す。また、このマップにおいては、燃料AのT90が400℃より少し低い温度であることを示し、燃料CのT90が300℃と350℃との中間温度であることを示す。
次に、基準蒸気圧Ps及び蒸気圧傾きRmについて説明する。蒸気圧傾きRmは、温度センサ36及び圧力センサ37の各検出結果を用いて算出した算出値であり、基準蒸気圧Psは、蒸気圧傾きRmを用いて算出した算出値である。蒸気圧傾きRmは、燃料温度Tの変化に対する飽和蒸気圧Pの変化の割合を示す値であり、燃料温度Tと飽和蒸気圧Pとの比例定数を示す値にもなっている。燃料温度Tは、蒸留温度帯よりも低い常温等の計測温度帯の範囲に含まれており、このため、温度センサ36によるオンボードでの実測値として取得可能になっている。計測温度帯としては、例えば10〜40℃程度といった常温を含む温度範囲を想定している。計測温度帯にて燃料温度Tが変化した場合、この燃料温度Tの変化量を温度変化量ΔTmと称する。
飽和蒸気圧Pは、燃料温度Tに対応した圧力センサ37の検出結果であるため、圧力センサ37によるオンボードでの実測値として取得可能になっている。燃料温度Tが変化した場合、温度変化量ΔTmに対応した飽和蒸気圧Pの変化量を蒸気圧変化量ΔPmと称する。蒸気圧傾きRmは、蒸気圧変化量ΔPmを温度変化量ΔTmにて除算することで取得される。この関係式を、ΔPm/ΔTm=Rmと表現することもできる。
例えば、図2に示す近似直線のように、燃料温度Tが第1温度Tm1から第2温度Tm2に上昇した場合、これら温度Tm1,Tm2の差が温度変化量ΔTmになる。そして、燃料温度Tが第1温度Tm1である場合の飽和蒸気圧Pを第1蒸気圧Pm1とし、燃料温度Tが第2温度Tm2である場合の飽和蒸気圧Pを第2蒸気圧Pm2とすると、これら第1蒸気圧Pm1と第2蒸気圧Pm2との差が蒸気圧変化量ΔPmになる。
基準蒸気圧Psは、計測温度帯での飽和蒸気圧Pであり、計測温度帯に含まれた基準温度Tsと蒸気圧傾きRmとに基づいて推定される。基準温度Tsは、基準蒸気圧Psの算出に用いられるパラメータであり、例えば20℃など計測温度帯に含まれる値に設定される。また、基準温度Tsは、図4〜図6に示すような蒸気圧特性を作成する際の試験等について、試験等の条件に含まれる値である。本実施形態では、燃料蒸発システム30において、互いに対応する燃料温度Tと飽和蒸気圧Pとの組み合わせを2点取得し、これら2点を通る近似直線(図2参照)を用いて、基準温度Tsに対応する基準蒸気圧Psを算出する。ここで、温度変化量ΔTmが適度に大きい方が基準蒸気圧Psの算出精度が向上しやすく、算出精度を適正に保つには温度変化量ΔTmが20℃以上に設定されることが好ましいと考えられる。
例えば、基準温度Tsとして20度があらかじめ設定されている場合に、第1温度Tm1の計測値が10度であり、第2温度Tm2の計測値が40℃である状況では、基準蒸気圧Psが、第1蒸気圧Pm1と第2蒸気圧Pm2との間の値として算出される。なお、基準温度Tsが第1温度Tm1及び第2温度Tm2のいずれよりも高い場合、基準蒸気圧Psは第1蒸気圧Pm1及び第2蒸気圧Pm2のいずれよりも大きい値になる。さらに、基準温度Tsが第1温度Tm1及び第2温度Tm2のいずれよりも低い場合、基準蒸気圧Psも第1蒸気圧Pm1及び第2蒸気圧Pm2のいずれよりも小さい値になる。
本発明者は、多数の燃料について燃料性状を解析したことで、蒸気圧特性として図4〜図6に示すような蒸気圧マップを作成できるという知見を得た。この知見は、図3に示すような蒸留特性を多数の燃料について取得し、T50等の蒸留温度ごとに基準温度Tsを設定することで得られたとも言える。また、蒸気圧傾きRm及び基準蒸気圧Psのうち一方だけでなく、両方を用いることで蒸気圧特性を作成したことで、蒸留温度の推定精度が高められている。これは、例えば図3に示すT50用の蒸気圧マップについて、燃料C,Dでは、蒸気圧傾きRmに大きな差がないにもかかわらず、基準蒸気圧Psに大きな差があることでT50が大きく異なっている、ということから明らかである。また、同じく図3に示すT50用の蒸気圧マップについて、燃料A,Dでは、基準蒸気圧Psに大きな差がないにもかかわらず、蒸気圧傾きRmに大きな差があることでT50が大きく異なっている、ということからも明らかである。
制御ユニット32は、蒸発室33aにて燃料を蒸発させてその燃料の蒸発特性を取得する燃料蒸発処理を行う。この処理は、イグニッションスイッチがオフ状態になっていても実行される。この処理については、図7のフローチャートを参照しつつ説明する。なお、本燃料蒸発処理では、蒸留温度としてT50を用いるが、蒸留温度としてはT10やT90を用いてもよく、複数の蒸留温度を用いてもよい。
図7において、ステップS101では、通常処理を行う。この通常処理では、燃料弁34を開状態に保持し、空気弁35を閉状態に保持している。このように、空気弁35を閉状態に保持していることで、車両の走行などに伴って燃料タンク16等が揺れたとしても燃料が蒸発配管33を逆流して真空ポンプ38やブレーキシステム41に浸入することが抑制される。
ステップS102では、給油が行われたか否かを判定する。ここでは、燃料タンク16の給油口が開放されたか否かを判定する処理や、燃料が例えば10Lなど所定量だけ増えたか否かを判定する処理、開放された給油口が再び閉鎖されたか否かを判定する処理などを行う。例えば、これら処理の全てが肯定された場合に、給油が行われたと判断して、ステップS103に進む。なお、給油作業が完了した場合に給油が行われたと判断する。給油が完了していない場合、ステップS101に戻り、給油が完了するまでステップS101,S102の処理を繰り返し行う。
ステップS103では、燃料の飽和蒸気圧Pを計測するための準備処理を行う。この準備処理では、蒸発室33aが密閉された空間になるように燃料弁34及び空気弁35の動作制御を行う。ここでは、通常処理において燃料弁34が開状態に保持されていることに起因して、給油に伴って新たな燃料が蒸発室33aに導入された状態になっていると想定する。この場合、空気弁35の閉状態を保ちつつ、燃料弁34を閉状態に移行することで、蒸発室33aに燃料が貯留された状態で、蒸発室33aが密閉空間になる。
準備処置では、蒸発室33aを密閉空間にするよりも前の段階で、真空ポンプ38を駆動させて蒸発室33aを減圧することで、蒸発室33aを真空状態又は真空に近い状態にする。例えば、圧力センサ37の検出信号に基づいて蒸発室33aの内部圧力を取得し、蒸発室33aが真空状態又は真空に近い状態になったか否かを判定する。蒸発室33aが真空状態又は真空に近い状態になった場合、空気弁35を閉状態に移行させて蒸発室33aを密閉空間にして、真空ポンプ38の駆動を停止させる。これにより、蒸発室33aについて、飽和蒸気圧Pを計測するための条件が整ったことになる。
なお、上記準備処理においては、燃料弁34及び空気弁35をそれぞれ開状態に移行させ、これら弁34,35がいずれも開状態にある期間を確保した後に燃料弁34を閉状態に移行してもよい。この場合、空気弁35を開状態に移行させない構成に比べて、蒸発室33aへの燃料の流入が蒸発室33a内の空気により阻害されるということが生じにくくなるため、給油に伴う新規の燃料を蒸発室33aにより確実に取り込むことができる。
また、ブレーキシステム41での動作として、既に真空ポンプ38が駆動している場合には、真空ポンプ38に新たな指令信号を出力せずに、駆動中の真空ポンプ38の吸引力を利用して蒸発室33aの減圧を行う。ただし、ブレーキシステム41によるブレーキ動作の支障になる可能性がある場合には、ブレーキシステム41での動作としての真空ポンプ38の駆動が停止するまで待ち、停止した後に改めて真空ポンプ38を駆動させて準備処理を行う。
ステップS104〜S107にて、第1蒸気圧Pm1及び第1温度Tm1を計測する第1計測処理を行う。第1計測処理においてステップS104では、圧力センサ37の検出信号に基づいて、蒸発室33aの内部圧力を蒸気圧力として検出する。ここで、ステップS103にて準備処理が行われた後は、蒸発室33aの内部圧力が燃料の蒸発に伴って変化すると考えられ、圧力センサ37により燃料の蒸気圧力が検出されることになる。ステップS104では、燃料の蒸発に伴って変化する蒸気圧力が飽和したか否かを判定する。蒸気圧力が飽和した場合、ステップS105に進み、蒸気圧力が飽和していない場合、蒸気圧力が飽和するまでステップS104,S105の処理を繰り返し行う。なお、上記ステップS103の準備処理で蒸発室33aが真空状態にならなかったとしても、蒸気圧力が飽和するまでに要する時間が長くなるだけで、いずれは蒸気圧力が飽和して飽和蒸気圧に達する可能性が高いと考えられる。
ステップS106では、蒸気圧力が飽和した値を第1蒸気圧Pm1として取得する。ステップS107では、温度センサ36の検出信号に基づいて第1温度Tm1を検出する。第1温度Tm1は、蒸気圧力が第1蒸気圧Pm1になった時の燃料温度Tである。すなわち、第1温度Tm1は、第1蒸気圧Pm1に対応した燃料温度Tである。
ステップS108では、温度変化量ΔTmが判定値Nに達したか否かを判定する。すなわち、燃料温度Tが第2温度Tm2に達したか否かを判定する。温度変化量ΔTmは、Tm1−Tm2の絶対値であり、判定値Nは、例えば20℃より大きい値に設定されている。ここで、給油後にエンジン11が再始動されると、燃料噴射弁15やコモンレール18にて熱を得た燃料が燃料タンク16に戻ることで燃料タンク16内の燃料が温度上昇しやすく、それに伴って蒸発室33a内の燃料も温度上昇しやすいと考えられる。その一方で、燃料タンク16内の燃料や蒸発室33a内の燃料は蒸留温度帯にまで温度上昇する可能性が非常に低いと考えられる。そこで、判定値Nは、燃料温度Tが数分〜数十分などある程度の時間で上昇する範囲で極力大きな値に設定されている。温度変化量ΔTmが判定値Nに達した場合はステップS109に進み、温度変化量ΔTmが判定値Nに達していない場合は、ステップS108の処理を繰り返し行うことで、温度変化量ΔTmが判定値Nより大きくなるまで待機する。
ステップS109,S110では、第2蒸気圧Pm2及び第2温度Tm2を計測する第2計測処理を行う。第2計測処理においてステップS109では、圧力センサ37の検出信号に基づいて第2蒸気圧Pm2を検出する。ここで、第1蒸気圧Pm1が計測された後は、蒸発室33aにおいて飽和状態が保持されたまま燃料の温度が変化すると考えられる。そこで、温度変化量ΔTmが判定値Nに達した時の蒸気圧力を第2蒸気圧Pm2として取得する。ステップS110では、第2温度Tm2を取得する。ここでは、第1温度Tm1に判定値Nを加えた値を第2温度Tm2として取得する。なお、第2蒸気圧Pm2を検出したタイミングでの温度センサ36の検出信号に基づいて、第2温度Tm2を改めて検出してもよい。
ステップS111では、蒸気圧傾きRmを算出する。ここでは、温度Tm1,Tm2を用いて温度変化量ΔTmを算出し、蒸気圧Pm1,Pm2を用いて蒸気圧変化量ΔPmを算出し、これら変化量ΔTm,ΔPmを用いて蒸気圧傾きRmを算出する。
ステップS112では、蒸気圧傾きRm及び基準温度Tsを用いて基準蒸気圧Psを算出する。ここでは、蒸気圧傾きRmと基準温度Tsとの積をとることで基準蒸気圧Psを算出する処理や、蒸気圧傾きRmから作成した図2のような近似直線に基準温度Tsをプロットすることで基準蒸気圧Psを取得する処理を行う。基準温度Tsは、蒸気圧特性を示す蒸気圧マップが作成される時点で既に設定されている値であり、記憶部32bにあらかじめ記憶されている。
なお、第1温度Tm1又は第2温度Tm2が基準温度Tsに一致している場合には、第1蒸気圧Pm1及び第2蒸気圧Pm2のうち、基準温度Tsに一致した温度に対応する方の蒸気圧を基準蒸気圧Psとする。例えば、第1温度Tm1が基準温度Tsに一致している場合には、第1蒸気圧Pm1を基準蒸気圧Psとする。この場合、蒸気圧傾きRmを用いて基準蒸気圧Psを算出するという必要がなくなる。
ステップS113では、蒸留温度を推定する。ここでは、基準蒸気圧Ps、蒸気圧傾きRm及びT50用の蒸気圧マップを用いて蒸留温度としてのT50を推定する。各蒸留温度用の蒸気圧マップはいずれも、あらかじめ記憶部32bに記憶されており、記憶部32bからT50用の蒸気圧マップを読み込む。そして、T50用の蒸気圧マップに基準蒸気圧Ps及び蒸気圧傾きRmをプロットすることでT50を推定する。また、T50を含む蒸発特性に関する情報については、時刻等に対応させて記憶部32bに記憶させる。
ステップS114では、燃料について、蒸留特性、蒸気圧特性等の蒸発特性とは異なる性状を特定性状として取得する。ここでは、特定性状として、密度やセタン価、発熱量を取得する。密度、セタン価及び発熱量の取得には周知の技術を用いており、説明を省略する。なお、密度、セタン価及び発熱量の取得に必要な各種情報については、各種センサやECU19からの信号を用いて取得する。
ステップS115では、燃焼システム10での燃料の燃焼条件を取得する。ここでは、燃焼条件として、燃料噴射弁15からの燃料の噴射圧を取得する。噴射圧の取得には周知の技術を用いており、説明を省略する。なお、噴射圧の取得に必要な各種情報については、各種センサやECU19からの信号を用いて取得する。
ステップS116では、T50を用いて燃料の燃焼特性を推定する。ここでは、T50に加えて、特定性状として密度やセタン価、発熱量を用いることで、燃焼特性として煤の発生しやすさや着火しやすさを推定する。なお、煤の生成しやすさとしては、煤の生成量が多くなることが挙げられる。
例えば、T50及び密度を用いて燃焼特性を推定する場合には、図8に示すように、T50と密度との関係を密度特性として示す密度マップを用いる。この密度マップにおいては、密度が大きく且つT50の温度が低いほど煤が発生しやすく、密度が小さく且つT50が大きいほど着火性が向上しやすくなっている。ここでは、密度マップにT50及び密度をプロットすることで、煤の発生しやすさや着火しやすさを推定する。
T50及びセタン価を用いて燃焼特性を推定する場合には、図9に示すように、T50とセタン価との関係をセタン価特性として示すセタン価マップを用いる。このセタン価マップにおいては、T50に関係なくセタン価が大きいほど着火性が向上しやすく、T50が大きく且つセタン価が小さいほど煤が発生しやすくなっている。ここでは、セタン価マップにT50及びセタン価をプロットすることで、煤の発生しやすさや着火しやすさを推定する。
T50及び発熱量を用いて燃焼特性を推定する場合には、図10に示すように、T50と発熱量との関係を発熱量特性として示す発熱量マップを用いる。この発熱量マップにおいては、発熱量及びT50の両方が大きいほど着火性が向上しやすく、発熱量が小さく且つT50が大きいほど煤が発生しやすくなっている。ここでは、発熱量マップにT50及び発熱量をプロットすることで、煤の発生しやすさや着火しやすさを推定する。
また、本ステップS116では、T50に加えて、燃焼条件として噴射圧を用いることで、燃焼特性として燃焼室11aでの燃料の燃焼位置を推定する。T50及び噴射圧を用いて燃焼特性を推定する場合には、図11に示すように、T50と噴射圧との関係を噴射圧特性として示す噴射圧マップを用いる。この噴射圧マップにおいては、噴射圧及びT50の両方が大きいほど燃焼位置としての燃焼先端位置が噴孔から遠くなりやすくなっている。すなわち、噴孔と燃焼先端位置との離間距離が大きくなりやすくなっている。ここでは、噴射圧マップにT50及び噴射圧をプロットすることで、燃焼先端位置を推定する。
なお、密度マップ、セタン価マップ、発熱量マップ及び噴射圧マップは、いずれも記憶部32bにあらかじめ記憶されている。燃焼特性の推定処理においては、これらマップを記憶部32bから読み込んで燃焼特性の推定に用いる。また、燃焼特性に関する情報については、T50等の燃料性状に関する情報に対応させて記憶部32bに記憶させる。
ステップS117では、制御モード処理を行う。ここでは、過去の燃料性状や燃焼特性に関する情報を記憶部32bから読み込み、今回の給油に伴って推定した燃料性状や燃焼特性である今回情報と、前回の給油に伴って推定した燃料性状や燃焼特性である前回情報との差異が許容範囲を越えたか否かを判定する。例えば、今回給油でのT50と前回給油でのT50との差異が許容値より大きいか否かを判定する。そして、今回情報と前回情報との差異が許容範囲を越えた場合には、制御モードの変更を推奨するモード変更信号をECU19に対して出力する。なお、モード変更信号には、今回情報及び前回情報も含まれている。
ECU19は、モード変更信号を受信した場合、燃焼システム10の制御モードを変更する。例えば、モード変更信号に、煤が許容範囲を越えて生成しやすくなったという情報が含まれている場合、噴射圧が大きくなるように制御モードを変更することで、煤の生成量を低減させることができる。また、モード変更信号に、着火性が許容範囲を越えて良くなってしまったという情報が含まれている場合、噴射タイミングを遅らせるように制御モードを変更することで、着火タイミングが早くなり過ぎることを抑制できる。さらに、モード変更信号に、燃焼先端位置が許容範囲を越えて噴孔から遠くなってしまったという情報が含まれている場合、噴射圧が小さくなるように制御モードを変更することで、燃焼に伴う熱損失が大きくなり過ぎることを抑制できる。
ステップS118では、完了処理を行う。この処理では、燃料弁34を閉状態から開状態に移行させ、空気弁35を閉状態のまま保持する。なお、空気弁35を一時的に閉状態から開状態に移行させてもよい。この場合、空気通路33cを通じて蒸発室33aに空気が流入することで蒸発室33aの内部圧力が低下する。このため、蒸発室33aが負圧のまま燃料弁34が開状態に移行した場合に比べて、蒸発室33aでの燃料の液面が燃料タンク16での燃料の液面に比べて過剰に高い位置に移動するということが生じにくくなる。
制御ユニット32においては、燃料蒸発処理の各ステップの処理を実行する機能を有している。ステップS103の処理を実行する機能が蒸発制御部に相当し、ステップS104〜S113の処理を実行する機能が蒸発取得部に相当する。蒸発取得部として、ステップS104の処理を実行する機能が圧力取得部に相当し、ステップS106,S109の処理を実行する機能が飽和圧取得部に相当し、ステップS107,S110の処理を実行する機能が温度取得部に相当する。また、蒸発取得部として、ステップS111の処理を実行する機能が傾き取得部に相当し、ステップS112の処理を実行する機能が基準取得部に相当し、ステップS113の処理を実行する機能が蒸留推定部に相当する。さらに、蒸発取得部として、ステップS114の処理を実行する機能が特定取得部に相当する。
ここまで説明した本実施形態によれば、燃焼室11aでの燃焼に用いられる燃料を蒸発室33aにて蒸発させるため、飽和蒸気圧Pや基準蒸気圧Ps、蒸留温度T50等を燃料の蒸発特性として直接的に取得できる。このため、例えば動粘度等の特定性状に基づいて蒸留温度を間接的に推定して取得した構成に比べて、蒸発特性の取得精度を高めることができる。そして、精度の高い蒸発特性としてT50等を用いて制御モード処理を行うことで、噴射圧を調整するなどの燃料噴射制御であるエンジン11の運転制御を適正化することができる。
なお、例えば動粘度に基づいてT50等の蒸留温度を推定する技術は、一般的に、燃料について動粘度及びT90の両方が燃料成分の炭素数により決まることを利用したものである。ところが、動粘度は燃料成分の分子構造によっても異なると考えられ、この分子構造の差異は、動粘度からT90を推定する際の誤差要因になることが懸念される。例えば、炭化水素については、同じ炭素数であっても直鎖より環状の方が燃料の動粘度を高くしやすく、同じ動粘度を有する燃料であってもT90が異なることがあると考えられる。したがって、燃料について、動粘度をパラメータとして蒸留性状等の蒸発特性を間接的に推定する構成では、その推定精度が低下することが懸念される。
本実施形態によれば、圧力センサ37の検出信号を用いて蒸発室33aでの蒸気圧力が検出されるため、この蒸気圧力を用いることで蒸発特性としての飽和蒸気圧Pを直接的に計測することができる。このように、蒸発特性を精度良く取得できる構成を実現できる。
本実施形態によれば、飽和蒸気圧Pと燃料温度Tとが互いに対応した状態で取得されるため、この対応関係を表す近似直線等を用いることで、基準温度Tsに対応した基準蒸気圧Psを算出することができる。しかも、基準温度Tsが計測温度帯に含まれているため、第1温度Tm1や第2温度Tm2といった実際に計測した温度に近い値を基準温度Tsとすることができ、その結果、基準蒸気圧Psの算出精度を高めることができる。
本実施形態によれば、蒸気圧傾きRmが取得されるため、燃料が基準温度Tsにある場合を想定して基準蒸気圧Psを算出する際にその算出精度を高めることができる。しかも、蒸気圧傾きRmを取得するための温度変化量ΔTmが判定値Nにより設定されるため、判定値Nをある程度大きい値にすることで蒸気圧傾きRmを、実際の蒸気圧曲線が有する傾きに近付けることができる。このため、蒸気圧傾きRmを用いて基準蒸気圧Psを算出する際の算出精度を更に高めることができる。なお、温度変化量ΔTmを算出する際、第1温度Tm1及び第2温度Tm2といった2つの実測値がいずれも計測温度帯に含まれるように判定値Nが設定されることで、蒸気圧傾きRmを実際の蒸気圧曲線が有する傾きに近付きやすくなる。
本実施形態によれば、蒸気圧傾きRmが蒸留温度の推定に用いられるため、例えば動粘度等の特定性状が蒸留温度の推定に用いられる構成に比べて、その推定精度を高めることができる。これは、蒸気圧傾きRm及び蒸留温度が、いずれも蒸発特性の一種であることに起因して互いに相関があるためである。本実施形態では、この相関を示す情報を蒸気圧特性と称している。ここで、蒸気圧傾きRmは蒸気圧力や飽和蒸気圧Pを用いて算出されているため、蒸気圧力が蒸留温度の推定に用いられていることにもなる。しかも、蒸気圧傾きRm及び蒸留温度に加えて蒸気圧力も蒸発特性の一種である。したがって、蒸気圧力が蒸留温度の推定に用いられることでこの推定精度が向上したと言うこともできる。
本実施形態によれば、蒸気圧傾きRm及び基準蒸気圧Psに基づいて蒸留温度が推定される場合に蒸気圧特性が用いられるため、蒸留温度の推定精度を高めることができる。これは、本発明者が、多数の燃料について燃料性状を解析して、飽和蒸気圧と蒸留特性との関連付けができるような情報を蒸気圧特性に含ませたためである。特に、蒸気圧特性においては、蒸気圧傾きRm及び基準蒸気圧Psという、いずれも計測温度帯に含まれる比較的低温での実測値から取得された値が用いられるため、蒸留温度の推定精度を高めることができるようになっている。
本実施形態によれば、蒸気圧特性においては蒸気圧傾きRm及び基準蒸気圧Psの両方が大きいほど蒸留温度が高くなっているため、この蒸気圧特性を容易にマップ化することができる。このため、蒸気圧特性である蒸気圧マップを燃焼特性の推定や燃料噴射の制御等に用いる際に、これら推定や制御の処理負担を低減することができる。
本実施形態によれば、燃料性状として、T50等の蒸発特性に加えて、動粘度等の特定性状も取得されるため、燃焼特性の推定や燃料噴射の制御にこれら蒸発特性及び特定性状の両方を用いることができる。これにより、燃焼特性の推定精度や燃料噴射の制御精度を高めることができる。
本実施形態によれば、燃料蒸発システム30が蒸発室33a、燃料弁34及び空気弁35を有しているため、蒸発室33aを密閉空間にすることができる。このため、蒸発室33aでの燃料の蒸発に伴って飽和蒸気圧Pを正確に計測することができる。しかも、蒸発室33a内の燃料温度Tが温度センサ36により直接的に計測されるため、この燃料温度Tを用いてT50等の蒸留温度を精度良く推定することができる。さらに、蒸発室33aでの飽和蒸気圧Pが圧力センサ37により直接的に計測されるため、互いに対応する燃料温度T及び飽和蒸気圧Pを用いることで蒸留温度の推定精度を高めることができる。
本実施形態によれば、蒸発室33aが空気通路33cを介して真空ポンプ38に接続されているため、蒸発室33a内の空気を空気通路33cから強制的に排出して、蒸発室33aを減圧することができる。蒸発室33aが減圧された後に蒸発室33aにて燃料を蒸発させるため、蒸発室33aが減圧されない構成に比べて、飽和蒸気圧Pを計測するための所要時間を短縮することができる。この所要時間が短いほど燃料温度Tが変化しにくいため、飽和蒸気圧Pの計測精度を高めることができる。
本実施形態によれば、蒸発室33aが燃料通路33bを介して燃料タンク16の内部空間に連通しているため、実際に燃焼室11aでの燃焼に用いる燃料を燃料タンク16から蒸発室33aに取り込むことができる。この場合、燃焼室11aでの燃料の燃焼状態を精度良く推定できるため、燃焼システム10の制御モードを適正化することができる。
(第2実施形態)
上記第1実施形態では、蒸発配管33がブレーキシステム41の真空ポンプ38に接続されていたが、第2実施形態では、蒸発配管33が吸気通路12に接続されている。すなわち、上記第1実施形態では、蒸発室33aの減圧を行う減圧部として真空ポンプ38を利用したが、第2実施形態では、減圧部として吸気通路12を利用する。本実施形態では、第1実施形態との相違点を中心に説明する。
図12に示すように、蒸発配管33は、吸気通路12においてスロットル弁13と燃焼室11aとの間の領域に接続されている。吸気通路12では、エンジン11の吸気工程において吸入空気が燃焼室11aに吸入される際に負圧が発生し、本実施形態では、この吸気通路12での負圧を利用して蒸発室33aの減圧が行われる。この場合、蒸発室33aの空気が空気通路33cを通じて吸気通路12に流入することになる。なお、スロットル弁13の開度が小さいほど吸気通路12では負圧が大きくなりやすく、蒸発室33aが真空状態に近づきやすくなる。
本実施形態では、スロットル弁13が制御ユニット32の制御対象になっておらず、燃料蒸発システム30にはスロットル弁13が含まれていない。このため、制御ユニット32は、飽和蒸気圧Pを計測する際に蒸発室33aの減圧を任意のタイミングでは行うことができないが、エンジン11の運転状態に合わせて蒸発室33aの減圧が行われたタイミングに合わせて、飽和蒸気圧Pを計測することはできる。
制御ユニット32は、基本的に上記第1実施形態と同様の燃料蒸発処理を実行する。ただし、ステップS103の準備処理に関する処理が上記第1実施形態とは異なる。本実施形態では、制御ユニット32は、ステップS102での給油完了か否かの判定に加えて、エンジン11が運転状態にあるか否かの判定を行う。そして、給油完了し且つエンジン11が運転状態にある場合に、ステップS103にて準備処理を行う。上記第1実施形態では、真空ポンプ38を駆動させることで蒸発室33aの減圧が行われるため、エンジン11が運転状態及び停止状態のいずれにある場合でも準備処理を行うことができた。これに対して、本実施形態では、吸気通路12の負圧を利用して蒸発室33aの減圧が行われるため、エンジン11が停止状態にある場合には準備処理を行うことができない。
ステップS103の準備処理では、スロットル弁13が開状態にあるか否かを判定し、スロットル弁13が開状態にある場合に、燃料弁34を閉状態とし、空気弁35を開状態とする。そして、エンジン11の吸気工程が行われることで、圧力センサ37により検出された蒸発室33aの内部圧力が真空状態又はそれに近い状態になった場合に、空気弁35を閉状態に移行する。なお、本準備処理では、ECU19に信号を出力することでスロットル弁13を強制的に開状態に移行させてもよい。また、本準備処理では、スロットル弁13が閉状態にある場合に空気弁35を閉状態から開状態に移行させることで、蒸発室33aの減圧を行ってもよい。
本実施形態によれば、吸気通路12の負圧を利用して蒸発室33aを減圧することができる。このため、例えば燃料蒸発システム30と共に車両に搭載されたブレーキシステム41が真空ポンプ38を必要としないタイプだった場合に、蒸発室33aを減圧するためだけに真空ポンプ38を車両に搭載するという必要がない。すなわち、蒸発室33aを減圧するための専用の減圧部を燃料蒸発システム30に付与する必要がない。したがって、燃料蒸発システム30を燃料供給システム10aに対して構築する際にコスト低減を実現できる。
(第3実施形態)
上記第1実施形態では、燃料タンク16から蒸発室33aに燃料が取り込まれる構成としたが、第3実施形態では、戻り通路23から蒸発室33aに燃料が取り込まれる構成とする。本実施形態では、上記第1実施形態との相違点を中心に説明する。
図13に示すように、蒸発室33aが燃料通路33bを介して戻り通路23に接続されている。この場合、蒸発配管33がドレイン管に接続されている。本実施形態では、真空ポンプ38が燃料蒸発装置31専用のアクチュエータになっている。すなわち、真空ポンプ38は、ブレーキシステム41に含まれておらず、専用品になっている。
本実施形態では、蒸発配管33が、蒸発室33aに空気を取り込むための取り込み通路33dを有している。この構成では、空気通路33cは、蒸発室33aから空気を排出するための排出通路になる。蒸発配管33は、燃料通路33bから遠ざかる向きに2つに分岐しており、一方の分岐部分に空気通路33cが形成され、他方の分岐部分に取り込み通路33dが形成されている。蒸発配管33の分岐に合わせて、蒸発室33aも分岐している。蒸発室33aは、燃料通路33b、空気通路33c及び取り込み通路33dのそれぞれに連通している。蒸発室33aと取り込み通路33dとの境界部には、取り込み通路33dから蒸発室33aの空気の取り込みを規制する取り込み規制部としての取り込み弁51が設けられている。取り込み弁51は、燃料弁34や空気弁35と同様に、開状態と閉状態とに移行可能な電磁弁等の電動式の開閉装置である。なお、取り込み弁51は、燃料弁34及び空気弁35と同様に開閉部に相当する。
制御ユニット32は、基本的に上記第1実施形態と同様の燃料蒸発処理を実行する。ただし、上記第1実施形態のステップS101の通常処理及びS103の準備処理の内容が異なる。ステップS101の通常処理については、燃料弁34を閉状態に保ち且つ空気弁35を開状態に保つことは上記第1実施形態と同じであるが、本実施形態では、取り込み弁51を空気弁35と同様に開状態に保つ。ここで、戻り通路23では燃料圧が比較的低いことに起因して、戻り通路23から蒸発配管33には燃料が進入しにくくなっている。このため、通常処理が行われている状態では、蒸発室33aに燃料が導入されていない可能性が高い。
ステップS103の準備処理については、図14のフローチャートを参照しつつ説明する。準備処理においては、まず、ステップS201にて第1減圧処理を行う。この処理では、空気弁35を開状態に移行させ、燃料弁34及び取り込み弁51を閉状態に移行させる。この状態で、真空ポンプ38を駆動させて蒸発室33aの減圧を行う。そして、圧力センサ37の検出信号に基づいて、蒸発室33aが真空状態又はそれに近い状態になったか否かを判定し、これら状態になった場合にステップS202に進む。
ステップS202では、燃料導入処理を行う。この処理では、空気弁35及び取り込み弁51を閉状態に保持しながら、燃料弁34だけを開状態に移行することで、蒸発室33aの負圧を利用して戻り通路23から蒸発室33aに燃料を流入させる。そして、燃料弁34を開状態に移行させた後に速やかに閉状態に戻す。これは、蒸発室33aが真空状態又はそれに近い状態になっていることに起因して蒸発室33aへの燃料の導入量が過剰に多くなる、ということを回避するためである。この場合、蒸発室33aは、まだ負圧が保たれた状態になっている。なお、上記ステップS201の第1減圧処理では、蒸発室33aを負圧になる程度に減圧するにとどめてもよい。この場合、燃料導入処理において燃料弁34を開状態に保つ時間が長くても、蒸発室33aへの燃料の導入量が過剰に多くなるということが抑制される。
ステップS203では、空気層形成処理を行う。この処理では、燃料弁34を閉状態に保持しながら、空気弁35及び取り込み弁51を開状態に移行することで、蒸発室33aの負圧を利用して空気通路33c及び取り込み通路33dを通じて蒸発室33aに空気を取り込む。これにより、蒸発室33aに燃料層及び空気層の両方が形成される。
ステップS204では、第2減圧処理を行う。この処理では、取り込み弁51を開状態から閉状態に移行させることで、空気弁35だけが開状態にある状態にする。この状態で真空ポンプ38を駆動させることで蒸発室33aの減圧を行い、蒸発室33aを真空状態又はそれに近い状態に移行させる。そして、空気弁35を閉状態に移行させ、真空ポンプ38の駆動を停止させることで、圧力センサ37により飽和蒸気圧Pを計測するための準備処理が完了する。なお、ステップS201〜S204の処理を実行する機能が蒸発制御部に相当する。
本実施形態によれば、ブレーキシステム41等の他のシステムに属さない真空ポンプ38が減圧部として燃料蒸発システム30に含まれている。このため、真空ポンプ38を駆動させることで、エンジン11が運転状態及び停止状態のいずれにある場合でも、蒸発室33aの減圧を行うことで飽和蒸気圧Pの計測を行うことができる。このため、給油後に速やかに燃料の蒸留温度や燃焼特性を推定することができる。
(第4実施形態)
第4実施形態では、蒸発室33aに取り込まれた燃料が熱源により強制的に加熱される構成とする。本実施形態では、上記第1実施形態との相違点を中心に説明する。
図15に示すように、燃料蒸発装置31がヒータ装置53を有している。ヒータ装置53は、熱源としてヒータ部53aを有しており、ヒータ部53aは、蒸発配管33において蒸発室33aを形成する部分に接触又は接近する位置に設けられている。蒸発配管33においては、少なくともヒータ部53aが接触又は接近する部分が伝熱性の高い材料により形成されており、ヒータ部53aの加熱によって蒸発室33a内の燃料が温度上昇しやすくなっている。
ヒータ部53aは、電流が流れることで発熱する発熱抵抗体等により形成されており、ヒータ装置53は、ヒータ部53aの通電及び通電停止を切り替えるスイッチ部を有している。ヒータ装置53は、スイッチ部が制御ユニット32に電気的に接続されていることで、制御ユニット32からの指令信号に応じて動作制御されるアクチュエータになっている。
ヒータ部53aは、蒸発配管33の長手方向に沿って延びており、ヒータ部53aの少なくとも一部が燃料タンク16の内部に配置されている。ヒータ部53aは、燃料タンク16において燃料が満杯になった場合の燃料液面から上方に離間した位置に配置されている。このため、ヒータ部53aが燃料タンク16内で燃料に浸るということが生じないようになっている。
制御ユニット32は、基本的に上記第1実施形態と同様の燃料蒸発処理を実行する。ただし、ステップS103の準備処理の内容と、ヒータ装置53の動作制御の追加と、が上記第1実施形態とは異なる。
ステップS103の準備処理においては、真空ポンプ38により蒸発室33aの減圧を行った後、空気弁35を閉状態に移行し、燃料弁34を開状態に移行する。すると、蒸発室33aの負圧に伴って燃料タンク16から蒸発室33aが吸い上げられるように取り込まれ、蒸発室33aでの燃料液面が燃料タンク16での燃料液面より高い位置まで上昇する。これにより、蒸発配管33では、ヒータ部53aにより加熱される高さ位置まで燃料が到達し、蒸発室33a内の燃料がヒータ部53aによる加熱に伴って温度上昇しやすくなる。このため、蒸発室33a内の燃料を加熱する上でヒータ装置53の熱損失を小さくできる。その一方で、ヒータ部53aが燃料タンク16での燃料液面から上方に離間した位置にあるため、燃料タンク16内の燃料がヒータ部53aにより加熱されるということを回避できる。
次に、ヒータ装置53の動作制御について説明する。本実施形態では、図16において、ステップS104〜S107にて第1計測処理を行った後、ステップS301に進み、加熱処理を行う。この加熱処理では、ヒータ装置53に対して指令信号を出力することでヒータ部53aを発熱させ、蒸発室33a内の燃料温度Tを強制的に上昇させる。
ステップS301の後、上記第1実施形態と同様にステップS108にて、温度変化量ΔTmが判定値Nに達したか否かを判定するが、本実施形態では、上記第1実施形態に比べて判定値Nが大きい値に設定されている。例えば、判定値Nが50℃より大きい値に設定されている。このように判定値Nが大きな値に設定されていても、ヒータ部53aによる加熱に伴って燃料温度Tが第2温度Tm2に到達しやすくなっている。ここで、温度変化量ΔTmを用いて蒸気圧傾きRmを算出する場合、温度変化量ΔTmがある程度大きいと、蒸気圧傾きRmを用いて算出する基準蒸気圧Psの算出精度が向上しやすくなっている。その結果、基準蒸気圧Psを用いて推定する蒸留温度や燃焼状態の推定精度が向上することになる。
ステップS108にて温度変化量ΔTmが判定値Nに達した場合、ステップS302に進み、加熱終了処理を行う。この処理では、指令信号を出力することでヒータ部53aの発熱を停止させる。これにより、ヒータ部53aによる燃料加熱が過剰に行われてエネルギー損失が大きくなるということを回避できる。
なお、ステップS301,S302の処理を実行する機能が蒸発制御部に相当する。蒸発制御部として、ステップS301の処理を実行する機能が冷熱実行部に相当する。
また、本実施形態では、制御ユニット32により制御可能なヒータ部53aが熱源として用いられていたが、エンジン11等を冷却するための冷却水等の冷媒が熱源として用いられていてもよい。例えば、冷媒が流れる冷媒管が、ヒータ部53aに代えて、蒸発配管33において蒸発室33aを形成する部分に接近又は接触する位置に設けられた構成とする。この構成では、エンジン11等から熱が付与されて比較的温度が高くなった冷媒が蒸発室33a内の燃料との間で熱交換することで、燃料温度Tを強制的に上昇させることができる。ただし、燃料蒸発システム30とは異なる燃焼システム10などに含まれる冷媒を熱源として用いる構成では、ステップS301,S302の処理を行わないことになる。
(第5実施形態)
第5実施形態では、蒸発室33aに取り込まれた燃料が、戻り通路23から燃料タンク16に戻される戻り燃料により強制的に加熱される。本実施形態では、上記第4実施形態での熱源をヒータ部53aではなく戻り燃料に置き換えた構成になっており、上記第4実施形態との相違点を中心に説明する。
図17に示すように、燃料蒸発装置31においては、戻り通路23の下流端部が、蒸発配管33において蒸発室33aを形成する部分に接触又は接近する位置に配置されている。蒸発配管33においては、戻り通路23から放出される戻り燃料が直接的にかかる部分が伝熱性の高い材料により形成されており、戻り燃料が有する熱により蒸発室33a内の燃料が温度上昇しやすくなっている。戻り通路23を形成する戻り配管は、燃料タンク16の天井部を上下に貫通しており、戻り通路23の下流端部は、燃料タンク16の内部において燃料が満杯になった場合の燃料液面から上方に離間した位置に配置されている。
制御ユニット32は、基本的に上記第4実施形態と同様の燃料蒸発処理を実行する。例えば、ステップS103の準備処理については、蒸発室33aでの燃料液面が燃料タンク16での燃料液面より高い位置になるように蒸発室33a内に燃料が吸い上げられる、という点で共通している。この処理が行われることで、蒸発配管33では、戻り通路23から放出される戻り燃料により加熱される高さ位置まで燃料が到達し、蒸発室33a内の燃料が戻り燃料による加熱に伴って温度上昇しやすくなる。この場合、戻り燃料は蒸発配管33に熱を付与することで温度低下しやすくなる。このため、戻り燃料が有する熱によって燃料タンク16内の燃料温度が上昇するということを抑制できる。
本実施形態では、戻り通路23からの戻り燃料により蒸発室33a内の燃料温度Tが上昇しやすいため、ステップS108の判定処理に用いる判定値Nは、上記第4実施形態と同様に、上記第1実施形態に比べて大きい50℃などの値に設定されている。これにより、蒸留温度の推定に際して基準蒸気圧Psの算出精度を高めることができる。ただし、戻り通路23からの戻り燃料の熱を利用して蒸発室33a内の燃料の加熱を行うため、上記第4実施形態のようなヒータ装置53により燃料加熱が行われる構成とは異なり、燃料加熱のタイミングや加熱温度などを調整することが困難になっている。
(第6実施形態)
第6実施形態では、蒸発室33aに取り込まれた燃料が冷却源により強制的に冷却される構成とする。本実施形態では、上記第4実施形態での熱源を冷却源に置き換えた構成になっており、上記第4実施形態との相違点を中心に説明する。
図18に示すように、燃料蒸発装置31が冷却装置54を有している。冷却装置54は、冷却源として冷却部54aを有しており、冷却部54aは、上記第4実施形態においてヒータ部53aと同様の位置に設けられている。冷却部54aは、電流が流れることで温度低下するペルチェ素子等により形成されており、冷却装置54は、冷却部54aの通電及び通電停止を切り替えるスイッチ部を有している。冷却装置54は、スイッチ部が制御ユニット32に電気的に接続されていることで、制御ユニット32からの指令信号に応じて動作制御されるアクチュエータになっている。
制御ユニット32は、基本的に上記第4実施形態と同様の燃料蒸発処理を実行する。ただし、ヒータ装置53の動作制御が冷却装置54の動作制御に置き換わった点が上記第4実施形態とは異なる。
上記第4実施形態と同じ点としては、ステップS103の準備処理が挙げられる。この準備処理の内容は、蒸発室33aでの燃料液面が燃料タンク16での燃料液面より高い位置になるように蒸発室33a内に燃料が吸い上げられる、という点で共通している。このため、蒸発室33a内の燃料を冷却する上で冷却装置54の冷却損失を小さくできる。
次に、冷却装置54の動作制御について説明する。本実施形態では、図19に示すように、上記第4実施形態でのステップS301,S302に代えて、ステップS401,S402の処理を行う。ステップS401では、冷却装置54に対して指令信号を出力することで冷却部54aを冷却し、蒸発室33a内の燃料温度Tを強制的に低下させる。
ステップS401の後、上記第4実施形態と同様にステップS108にて、温度変化量ΔTmが判定値Nに到達したか否かを判定する。ここで、本実施形態では、蒸発室33aを冷却することで第2温度Tm2が第1温度Tm1よりも低い温度になるため、Tm1−Tm2がマイナスの値になるが、この値の絶対値を温度変化量ΔTmとして判定値Nと比較する。ここで、本実施形態では、冷却部54aにより蒸発室33a内の燃料温度Tを強制的に変化させるため、上記第4実施形態と同様に、判定値Nが上記第1実施形態に比べて大きい50℃などの値に設定されている。これにより、蒸留温度の推定に際して基準蒸気圧Psの算出精度を高めることができる。
ステップS108にて温度変化量ΔTmが判定値Nに達した場合、ステップS402に進み、冷却終了処理を行う。この処理では、指令信号を出力することで冷却部54aの冷却を停止させる。これにより、冷却部54aによる燃料冷却が過剰に行われてエネルギー損失が大きくなるということを回避できる。
なお、ステップS401,S402の処理を実行する機能が蒸発制御部に相当する。蒸発制御部として、ステップS401の処理を実行する機能が冷熱実行部に相当する。
また、本実施形態では、制御ユニット32により制御可能な冷却部54aが冷却源として用いられていたが、空調システム等において空気等から熱を奪われた冷媒が冷却源として用いられていてもよい。例えば、冷媒が流れる冷媒管が、冷却部54aに代えて、蒸発配管33において蒸発室33aを形成する部分に接近又は接触する位置に設けられた構成とする。この構成では、空調システム等において熱が奪われて比較的温度が低くなった冷媒が蒸発室33a内の燃料との間で熱交換することで、燃料温度Tを強制的に低下させることができる。ただし、燃料蒸発システム30とは異なる空調システムなどに含まれる冷媒を熱源として用いる構成では、ステップS401,S402の処理を行わないことになる。
(第7実施形態)
上記第4実施形態では、減圧部としての真空ポンプ38により蒸発室33aが減圧された後に飽和蒸気圧Pの計測が行われる構成としたが、第7実施形態では、蒸発室33aの減圧を行わずに飽和蒸気圧Pの計測が行われる。本実施形態では、上記第4実施形態との相違点を中心に説明する。
図20に示すように、蒸発配管33が真空ポンプ38等の減圧部に接続されていない。その一方で、燃料蒸発装置31は、絶対圧を検出する圧力センサ37に代えて、ゲージ圧としての差圧を検出する差圧センサ56を有している。差圧センサ56は、蒸発室33aの絶対圧と大気圧との差を差圧として検出する差圧検出部であり、圧力センサ37に代えて制御ユニット32に電気的に接続されている。差圧センサ56は、蒸発室33aでの差圧に応じた検出信号を制御ユニット32に対して出力し、制御ユニット32は、差圧センサ56の検出信号に基づいて蒸発室33aでの差圧を検出する。
制御ユニット32は、基本的に上記第4実施形態と同様の燃料蒸発処理を実行する。ただし、蒸発室33aの減圧を行わないこと、及び第1計測処理において燃料を加熱すること、が上記第4実施形態とは異なる。
まず、蒸発室33aの減圧を行わないことに関して説明する。ステップS103の準備処理においては、空気弁35を閉状態に保持し、燃料弁34を閉状態に移行させる。ここで、蒸発室33aの減圧を行わない場合、蒸発室33aにおいては、燃料の蒸発に伴う蒸気圧力の上昇度合いが緩やかになり、この蒸気圧力が飽和するまでに過剰に長い時間が必要になることが懸念される。
そこで、本実施形態では、ヒータ部53aにより蒸発室33a内の燃料を加熱することで蒸気圧力が飽和するまでの時間の短縮化を図る。図21において、ステップS103にて準備処理を行った後、ステップS501に進み、第1加熱処理を行う。この第1加熱処理では、上記第4実施形態のステップS301と同様に、ヒータ部53aによる蒸発室33a内の燃料加熱を行う。このように、ステップS104〜S107の第1計測処理よりも前の段階で第1加熱処理を行うことで、燃料温度Tがある程度まで上昇するため、蒸発室33aでは蒸気圧力が飽和蒸気圧Pに達しやすくなる。第1加熱処理では、燃料加熱の継続時間が例えば数分などあらかじめ定めた所定時間に達したか否かの判定や、燃料温度Tが例えば50℃などあらかじめ定めた所定温度に達したか否かの判定を行い、これら判定が肯定された場合に燃料加熱を終了する。
その後、第1計測処理においてステップS104では、上記第4実施形態とは異なり、差圧センサ56の検出信号に基づいて差圧を蒸気圧力として検出する。ここで、蒸発室33aの減圧を行わずに飽和蒸気圧Pを計測する場合には、蒸発室33aの内部圧力が大気圧になっている状態から燃料の蒸発が開始されるため、蒸発室33aの絶対圧ではなく蒸発室33aでの大気圧との差圧が蒸気圧力になる。なお、差圧を検出する構成としては、差圧センサ56を用いる構成の他に、蒸発室33aの絶対圧を検出する圧力センサ37と、大気圧を検出する大気圧センサとを用い、これら絶対圧と大気圧との差を差圧として取得する構成が挙げられる。
なお、ステップS501〜S503の処理を実行する機能が蒸発制御部に相当する。蒸発制御部として、ステップS501,S502の処理を実行する機能が冷熱実行部に相当する。
(第8実施形態)
上記第7実施形態では、蒸発配管33の内部空間の一部が蒸発室33aになっていたが、第8実施形態では、燃料タンク16の内部空間が蒸発室になっている。本実施形態では、上記第7実施形態との相違点を中心に説明する。
図22に示すように、本実施形態の燃料蒸発装置31においては、燃料タンク16の内部空間全体が蒸発室16aになっている。燃料タンク16においては、給油にて燃料が満杯になった状態でも、燃料が貯留されない残りの空間が確保されるようになっており、この残りの空間を蒸発室16aとして、飽和蒸気圧Pの計測が行われる。燃料タンク16においては、給油口が上記第7実施形態での燃料通路33b及び空気通路33cの両方の機能を有しており、給油口を閉じる給油キャップが燃料弁34及び空気弁35の両方の機能を有している。この場合、給油キャップが蒸発室33aに燃料を貯留した状態で蒸発室33aを開閉する開閉体に相当する。本実施形態では、燃料蒸発装置31が蒸発配管33ではなく燃料タンク16を有していることになる。
本実施形態では、温度センサ36が、燃料タンク16に貯留された燃料の温度を検出し、差圧センサ56が、燃料タンク16内の圧力を蒸発室16aの蒸気圧力として検出する。
本実施形態では、上記第7実施形態と同様に、蒸発室33aに減圧部が接続されておらず、このことに起因して、制御ユニット32は、基本的に上記第7実施形態と同様の燃料蒸発処理を実行する。ただし、ステップS103の準備処理においては、給油キャップにより給油口が閉じられたか否かの判定を行い、閉鎖されたと判定した場合に準備処理が完了したとする。なお、給油キャップが閉じられたことは、燃料タンク16や給油キャップに設けられたセンサにより検出されてもよく、給油キャップを覆うフタ部の閉鎖がセンサにより検出されてもよい。
本実施形態では、蒸発室33aの減圧及び蒸発室33a内の燃料の加熱や冷却も行われないため、ステップS104〜S107による第1計測処理に要する時間が長くなりやすいと想定される。この場合でも、蒸気圧力が飽和するまで第1計測処理を継続することができれば、第1蒸気圧Pm1及び第1温度Tm1を計測することができ、その結果、燃料の蒸留温度T50や燃焼特性を推定することができる。なお、本実施形態では、エンジン11が停止状態にある場合に燃料蒸発処理が実行される。これは、エンジン11が運転状態にある場合に燃料蒸発処理が実行されると、燃料噴射弁15からの燃料噴射に伴って燃料タンク16内の燃料が減ってしまい、蒸発室33aでの飽和蒸気圧Pの検出精度が低下してしまうためである。
(第9実施形態)
上記第1実施形態では、圧力センサ37により検出した燃料の飽和蒸気圧Pを用いて蒸留温度を推定していたが、第9実施形態では、飽和蒸気圧Pを用いずに蒸留温度を推定する。本実施形態では、上記第1実施形態との相違点を中心に説明する。
図23に示すように、燃料蒸発装置31は圧力センサ37を有していない。その一方で、燃料蒸発装置31は、蒸発室33aの断熱を行う断熱部58を有している。断熱部58は、ゴムや合成樹脂材料などにより形成されており、蒸発配管33において、蒸発室33aが形成された部分の外周面を覆っている。断熱部58は、蒸発室33aの内部への熱の伝達を規制する熱規制部に相当する。このため、燃料弁34及び空気弁35が閉状態にある場合、蒸発室33a内の燃料は、外気や燃料タンク16内の燃料からの熱によっては温度が変化しにくくなっている。
制御ユニット32は、温度センサ36により検出した燃料温度Tを用いて蒸留温度の推定を行う。この場合、燃料の蒸発に伴う燃料温度Tの変化態様が蒸発特性に含まれることになる。上記第1実施形態では、図4に示す蒸気圧特性のように、蒸留温度を推定するための2つのパラメータとして蒸気圧傾きRm及び基準蒸気圧Psを用いていたが、本実施形態では、2つのパラメータとして、温度差傾きSm及び基準温度差dTsを用いる。
燃料蒸発装置31においては、蒸発室33aが減圧された場合、燃料の蒸発に伴って燃料温度Tが変化する。これは、燃料の潜熱としての蒸発熱により燃料の温度が低下するためである。このため、燃料の蒸発に伴って蒸発室33aでの燃料の蒸気が飽和した状態に達した場合、燃料の温度低下が終了すると考えられる。この場合、燃料温度Tの低下が始まる時の燃料温度Tと、燃料蒸気が飽和して燃料温度Tの低下が終了した時の燃料温度Tとの差を飽和温度差dTと称すると、この飽和温度差dTは、燃料の飽和蒸気圧Pに対応する値になる。これは、燃料蒸気が飽和した場合、飽和温度差dTに基づいて燃料の蒸発量を推定することができ、この蒸発量に基づいて蒸気圧の大きさを推定することができ、さらに、燃料蒸気が飽和した時の蒸気圧力が飽和蒸気圧Pであるためである。
燃料温度Tと飽和温度差dTとの関係を温度差直線と称すると、この温度差直線においては、燃料温度Tが高いほど飽和温度差dTが大きくなっている。図24に示す温度差直線においては、横軸が燃料温度T[℃]を示し、縦軸が飽和温度差dT[℃]を示す。
本実施形態では、蒸留温度の推定に際して、蒸気圧傾きRmではなく温度差傾きSmを用いる。互いに対応する飽和温度差dTと燃料温度Tとの組み合わせを2組取得した場合、これら2組の飽和温度差dT及び燃料温度Tを用いることで、温度差直線を作成するなどして温度差傾きSmを算出することができる。例えば、燃料温度Tが第1温度Tm1である場合の飽和温度差dTが第1温度差dT1であり、燃料温度Tが第2温度Tm2である場合の飽和温度差dTが第2温度差dT2である場合を想定する。この場合、上記第1実施形態と同様に第1温度Tm1から第2温度Tm2への変化量を温度変化量ΔTmと称する一方で、第1温度差dT1から第2温度差dT2への変化量を温度差変化量ΔTxと称する。そして、温度差傾きSmは、温度差変化量ΔTxを温度変化量ΔTmで除算することで取得される。この関係式を、ΔTx/ΔTm=Smと表現することもできる。
互いに対応する飽和温度差dTと燃料温度Tとの組み合わせとしては、飽和温度差dTを算出するために用いた燃料の温度について、燃料蒸気の飽和前の温度及び飽和後の温度のうち一方を燃料温度Tとする。飽和前の温度及び飽和後の温度のいずれを燃料温度Tとして選択するのかは、複数の飽和温度差dTについて統一する。例えば、第1温度差dT1及び第2温度差dT2については、飽和後の温度をそれぞれが対応する第1温度Tm1及び第2温度Tm2とする。
本実施形態では、上記第1実施形態において基準温度Tsに対応する基準蒸気圧Psが算出されたのと同様に、基準温度Tsに対応する基準温度差dTsが算出される。簡単に説明すると、温度変化が数十度など限られた範囲では燃料温度Tと飽和温度差dTとが比例関係にあるとして、燃料温度Tと飽和温度差dTとの関係を近似直線で表現することができる。そこで、燃料温度Tと飽和温度差dTとの比例関係を利用して、基準温度Tsに対応する基準温度差dTsを算出する。上記第1実施形態と同様に、温度変化量ΔTmが適度に大きい方が基準温度差dTsの算出精度が向上しやすく、算出精度を適正に保つには温度変化量ΔTmが20℃以上に設定されることが好ましいと考えられる。
本実施形態では、蒸留温度の推定に際して、温度差傾きSmと基準温度差dTsと蒸留温度との関係を示す温度差特性が用いられる。図25に示す温度差特性においては、横軸が基準温度差dTs[℃]を示し、縦軸が温度差傾きSmを示し、さらに、斜めに延びる斜め軸が蒸留温度[℃]を示す。温度差特性は、例えばT50等の蒸留量[wt%]ごとにマップ化されており、このマップを温度差マップと称する。図25に示すマップは、T50を推定するためのT50用の温度差マップである。このマップにおいては、基準温度差dTs及び温度差傾きSmがプロットされると、このプロット位置が燃料のT50を示す。
制御ユニット32が実行する燃料蒸発処理について、図26のフローチャートを参照しつつ説明する。ここでは、図7のフローチャートとの相違点を中心に説明する。図26において、ステップS601,S602,S621〜S625では、上記第1実施形態のステップS101,S102,S114〜S118と同じ処理を行う。
ステップS603〜S609では、第1温度差dT1及び第1温度Tm1を取得するための第1処理を行う。この第1処理において、ステップS603では、蒸発室33aを閉鎖空間にしていない状態で、燃料が蒸発する前の蒸発室33a内の燃料温度Tを蒸発前第1温度T1aとして、温度センサ36の検出信号に基づいて検出する。ステップS604では、第1準備処理として、上記第1実施形態でのステップS103と同じ準備処理を行い、蒸発室33aを真空状態又はそれに近い状態にする。
ステップS605では、温度センサ36の検出信号に基づいて燃料温度Tを検出する。この検出処理は、ステップS606の処理により、燃料温度Tの変化態様が飽和するまで繰り返し行われる。燃料温度Tが飽和した場合、燃料温度Tの低下が終了したとして、ステップS607に進み、飽和した際の燃料温度Tを蒸発後第1温度T1bとして、温度センサ36の検出信号に基づいて検出する。ステップS608では、蒸発前第1温度T1a及び蒸発後第1温度T1bを用いて第1温度差dT1を算出する。ステップS609では、蒸発後第1温度T1bを、第1温度差dT1に対応する第1温度Tm1として取得する。
ステップS610では、上記第1実施形態のステップS108と同様に、温度変化量ΔTmが判定値Nに達したか否かを判定する。ただし、ここでは、第1温度Tm1と温度変化量ΔTmとの和を第2温度Tm2とはしない。本実施形態では、後述するように、ステップS617にて蒸発後第2温度T2bを第2温度Tm2として取得する。なお、蒸発室33a内の燃料を熱源や冷却源により強制的に温度変化させる構成としてもよい。例えば、断熱部58と蒸発配管33との間に熱源や冷却源が設けられた構成とする。
ステップS611〜S617では、第2温度差dT2及び第2温度Tm2を取得するための第2処理を行う。この第2処理において、ステップS611〜S617では、基本的には第1処理のステップS603〜S609と同様の処理を行う。ステップS611では蒸発前第2温度T2aを検出する。ここで、蒸発室33aにおいては、燃料が飽和するまで蒸発したことで、ステップS604での第1準備処理にて蒸発室33aの減圧を行った時に比べて内部圧力が上昇していると考えられる。そこで、ステップS612では、燃料弁34、空気弁35及び真空ポンプ38の動作制御を行うことで、蒸発室33aを再び真空状態又はそれに近い状態にする。
ステップS613,S614では、燃料温度Tの変化態様が飽和するまで燃料温度Tを繰り返し検出する。ステップS615では、蒸発後第2温度T2bを検出し、ステップS616では、蒸発前第2温度T2a及び蒸発後第2温度T2bを用いて第2温度差dT2を算出する。ステップS617では、上述したように、蒸発後第2温度T2bを第2温度差dT2に対応する第2温度Tm2として取得する。
ステップS618では、第1温度Tm1、第2温度Tm2、第1温度差dT1及び第2温度差dT2を用いて温度差傾きSmを算出する。ステップS619では、温度差傾きSm及び基準温度Tsを用いて基準温度差dTsを算出する。なお、第1温度Tm1又は第2温度Tm2が基準温度Tsに一致している場合には、第1温度差dT1及び第2温度差dT2のうち、基準温度Tsに一致した温度に対応する方の温度差を基準温度差dTsとする。例えば、第2温度Tm2が基準温度Tsに一致している場合には、第2温度差dT2を基準温度差dTsとする。その後、ステップS620では、図25に示すT50用の温度差マップ等の温度差特性を用いてT50等の蒸留温度を推定する。
なお、ステップS604,S612の処理を実行する機能が蒸発制御部に相当し、ステップS603,S605〜S611,S613〜S620の処理を実行する機能が蒸発取得部に相当する。蒸発取得部として、ステップS603,S605,S607の処理を実行する機能が温度取得部に相当し、ステップS608の処理を実行する機能が第1温度差取得部に相当し、ステップS616の処理を実行する機能が第2温度差取得部に相当する。また、蒸発取得部として、ステップS618の処理を実行する機能が傾き取得部に相当し、ステップS619の処理を実行する機能が基準取得部に相当し、ステップS620の処理を実行する機能が蒸留推定部に相当する。
本実施形態によれば、蒸発室33aでの燃料の蒸発に伴って変化する燃料温度Tを蒸発特性として直接的に取得できる。そして、燃料温度Tと同様に蒸発特性に含まれる基準温度差dTsや蒸留温度T50を、燃料温度Tを用いることで取得することができる。このため、上記第1実施形態と同様に、蒸発特性の取得精度を高めることができる。
本実施形態によれば、飽和温度差dTと燃料温度Tとが互いに対応した状態で取得されるため、この対応関係を示す近似直線等を用いることで、基準温度Tsに対応した基準温度差dTsを算出することができる。しかも、基準温度Tsが計測温度帯に含まれているため、蒸発前第1温度T1aや蒸発後第1温度T1b、蒸発前第2温度T2a、蒸発後第2温度T2bといった実際に計測した温度に近い値を基準温度Tsすることができる。その結果、基準温度差dTsの算出精度を高めることができる。
本実施形態によれば、温度差傾きSmが取得されるため、燃料が基準温度Tsにある場合を想定して基準温度差dTsを算出する際にその算出精度を高めることができる。しかも、温度差傾きSmを取得するための温度変化量ΔTmが判定値Nにより設定されるため、判定値Nをある程度大きい値に設定することで温度差傾きSmを、実際の温度差直線が有する傾きに近付けることができる。このため、温度差傾きSmを用いて基準温度差dTsを算出する際の算出精度を更に高めることができる。
本実施形態によれば、温度差傾きSmが蒸留温度の推定に用いられるため、例えば動粘度等の特定性状が蒸留温度の推定に用いられる構成に比べて、その推定精度を高めることができる。これは、温度差傾きSm及び蒸留温度は、いずれも蒸発特性の一種であることに起因して互いに相関があるためである。本実施形態では、この相関を示す情報を温度差特性と称している。ここで、温度差傾きSmは燃料温度Tや飽和温度差dTを用いて算出されているため、燃料温度Tが蒸留温度の推定に用いられていることにもなる。しかも、温度差傾きSm及び蒸留温度に加えて燃料温度Tの変化態様も蒸発特性の一種である。したがって、燃料温度Tの変化態様が蒸留温度の推定に用いられることでこの推定精度が向上したと言うこともできる。
本実施形態によれば、温度差傾きSm及び基準温度差dTsに基づいて蒸留温度が推定される場合に温度差特性が用いられるため、蒸留温度の推定精度を高めることができる。これは、本発明者が、多数の燃料について燃料性状を解析して、燃料温度Tの変化態様と蒸留特性との関連付けができるような情報を温度差特性に含ませたためである。特に、蒸気圧特性においては、蒸気圧傾きRm及び基準温度差dTsという、いずれも計測温度帯に含まれる比較的低温での実測値から取得された値が用いられるため、蒸留温度の推定精度を高めることができるようになっている。
本実施形態によれば、温度差特性においては温度差傾きSm及び基準温度差dTsの両方が大きいほど蒸留温度が高くなっているため、この温度差特性を容易にマップ化することができる。このため、温度差特性である温度差マップを燃焼特性の推定や燃料噴射の制御等に用いる際に、これら推定や制御の処理負担を低減することができる。
本実施形態によれば、蒸発室33a内の燃料への外部からの熱の伝達が断熱部58により規制されているため、燃料の気化熱に伴う燃料温度Tの変化を温度センサ36により精度良く検出することができる。このため、上記第1実施形態のように圧力センサ37による燃料の蒸気圧力を検出しなくても、温度センサ36による計測値である燃料温度Tを用いることで、燃料温度Tの変化態様とは異なる蒸発特性として、温度差傾きSmや基準温度差dTs、蒸留温度等を取得することができる。
(他の実施形態)
以上、本開示による複数の実施形態について説明したが、本開示は、上記実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
変形例1として、上記第1〜7,9実施形態において、蒸発室33a、燃料通路33b及び空気通路33cは、1つの部材である蒸発配管33により形成されているのではなく、それぞれ別部材により形成されていてもよい。例えば、蒸発室33aが縦や横に偏平した箱状のタンクにより形成され、燃料通路33b及び空気通路33cがそのタンクに別々に接続された配管により形成された構成とする。
変形例2として、上記第1,2,4〜7,9実施形態では、上記第3実施形態と同様に、真空ポンプ38等の減圧部により蒸発室33aを減圧する前の段階では、燃料タンク16内の燃料が燃焼室11aに流入しない構成としてもよい。例えば、燃料タンク16において燃料が満杯になった場合の燃料液面よりも高い位置に燃料弁34が配置された構成とする。この構成では、燃料弁34が開状態にあったとしても、燃料が蒸発室33aに流入しにくくなっている。この場合、蒸発配管33は燃料タンク16の天井部に接続されていてもよい。
変形例3として、上記第1〜8実施形態において、基準温度Tsは、計測温度帯よりも高い温度であってもよい。ただし、あまり高い温度帯であると、基準温度Tsと飽和蒸気圧Pとの関係が比例関係で近似できず、基準温度Tsに対応した基準蒸気圧Psの算出精度が低下することが懸念される。
変形例4として、上記第1〜8実施形態では、蒸気圧特性を蒸留量ごとに分けてマップ化していたが、複数の蒸留量についての蒸留量に関する情報が1つのマップに含まれていてもよい。
変形例5として、上記第1〜8実施形態では、蒸気圧特性をマップ化して蒸留温度の推定に用いていたが、蒸気圧特性は数式化や係数化するなどして蒸留温度の推定に用いてもよい。同様に、上記第9実施形態でも、温度差特性をマップ化して蒸留温度の推定に用いていたが、温度差特性は数式化や係数化するなどして蒸留温度の推定に用いてもよい。
変形例6として、上記第1〜8実施形態では、飽和蒸気圧Pを用いて蒸気圧傾きRm及び基準蒸気圧Psを取得した後に蒸留温度を推定していたが、数式や係数などを用いることで、蒸気圧傾きRmや基準蒸気圧Psを取得せずに蒸留温度を推定してもよい。例えば、第1蒸気圧Pm1、第2蒸気圧Pm2、第1温度Tm1及び第2温度Tm2という情報から直接的に蒸留温度を推定できるように、数式や係数が設定された構成とする。また、あらかじめ設定しておいた数式や係数を用いることで飽和蒸気圧Pから蒸留温度を推定する構成としてもよい。同様に、上記第9実施形態でも、数式や係数などを用いることで、温度差傾きSmや基準温度差dTsを取得せずに蒸留温度を推定してもよい。
変形例7として、燃料蒸発システム30の制御装置としての機能を発揮する構成は、制御ユニット32ではなく、車両に搭載された種々の演算装置であってもよく、複数の演算装置が協働で制御装置としての機能を発揮してもよい。また、各演算装置に設けられたフラッシュメモリやハードディスク等の非遷移的実体的記憶媒体に各種プログラムが記憶されていてもよい。例えば、制御ユニット32に代えてECU19が制御装置として燃料蒸発システム30に含まれた構成とする。
10a…燃料供給システム、11…内燃機関としてのエンジン、30…燃料蒸発システム、32…制御装置としての制御ユニット、33a…蒸発室、33b…燃料通路、33c…減圧通路としての空気通路、34…開閉部及び燃料規制部としての燃料弁、35…開閉部及び空気規制部としての空気弁、36…温度検出部としての温度センサ、37…圧力検出部としての圧力センサ、51…開閉部としての取り込み弁、58…熱規制部としての断熱部、dT…飽和温度差、dT1…第1温度差、dT2…第2温度差、dTs…基準温度差、P…飽和蒸気圧、Ps…基準蒸気圧、Rm…蒸気圧傾き、Sm…温度差傾き、T…燃料温度、Tm1…第1温度、Tm2…第2温度、Ts…基準温度、T50…蒸留温度、ΔTm…温度変化量、ΔTx…温度差変化量、ΔPm…蒸気圧変化量。

Claims (20)

  1. 内燃機関(11)に液体燃料を供給する燃料供給システム(10a)から前記液体燃料を取り込み、前記燃料供給システムから取り込んだ前記液体燃料を蒸発させることが可能な燃料蒸発システム(30)、に適用される制御装置(32)であって、
    前記液体燃料を蒸発させるために前記燃料蒸発システムの動作制御を行う蒸発制御部(S103,S201〜S204,S301,S302,S401,S402,S501〜S503,S604,S612)と、
    前記蒸発制御部による前記液体燃料の蒸発に伴って前記液体燃料の蒸発特性を取得する蒸発取得部(S104〜S113,S603,S605〜S611,S613〜S620)と、
    を備えている燃料蒸発システムの制御装置。
  2. 前記蒸発取得部は、前記液体燃料の蒸発に伴って発生する蒸気の圧力として蒸気圧力を取得する圧力取得部(S104)を有している、請求項1に記載の燃料蒸発システムの制御装置。
  3. 前記蒸発取得部は、
    前記圧力取得部により取得された前記蒸気圧力に基づいて、前記液体燃料の飽和蒸気圧(P)を取得する飽和圧取得部(S106,S109)と、
    前記飽和圧取得部により取得された前記飽和蒸気圧に対応させて、前記燃料蒸発システムでの前記液体燃料の温度である燃料温度(T)を取得する温度取得部(S107,S110)と、
    を有している、請求項2に記載の燃料蒸発システムの制御装置。
  4. 前記蒸発取得部は、
    前記燃料温度の変化量(ΔTm)と、この変化量に対応した前記飽和蒸気圧の変化量(ΔPm)と、の比である蒸気圧傾き(Rm)を取得する傾き取得部(S111)を有している、請求項3に記載の燃料蒸発システムの制御装置。
  5. 前記蒸発取得部は、
    前記傾き取得部により取得された前記蒸気圧傾きに基づいて前記液体燃料の蒸留温度(T50)を推定する蒸留推定部(S113)を有している、
    請求項4に記載の燃料蒸発システムの制御装置。
  6. 前記蒸発取得部は、
    あらかじめ定められた基準温度(Ts)を想定した場合に、前記基準温度に対応した前記飽和蒸気圧を基準蒸気圧(Ps)として取得する基準取得部(S112)を有しており、
    前記蒸留推定部は、
    前記蒸気圧傾きと前記基準蒸気圧と前記蒸留温度との関係を示す蒸気圧特性を用いて、前記蒸気圧傾き及び前記基準蒸気圧に基づいて前記蒸留温度を推定する、請求項5に記載の燃料蒸発システムの制御装置。
  7. 前記蒸気圧特性は、前記蒸気圧傾き及び前記基準蒸気圧の両方が大きいほど前記蒸留温度が高くなるという関係を示す、請求項6に記載の燃料蒸発システムの制御装置。
  8. 前記蒸発制御部は、
    前記燃料蒸発システムにおいて前記液体燃料の加熱又は冷却を行わせる冷熱実行部(S301,S401,S501,S502)を有している、請求項2〜7のいずれか1つに記載の燃料蒸発システムの制御装置。
  9. 前記蒸発取得部は、
    前記圧力取得部により取得された前記蒸気圧力に基づいて蒸留温度(T50)を推定する蒸留推定部(S113)を有している、請求項2〜4のいずれか1つに記載の燃料蒸発システムの制御装置。
  10. 前記液体燃料について、前記蒸気圧力とは異なる少なくとも1つの性状を特定性状として取得する特定取得部(S114)を備えている、請求項2〜9のいずれか1つに記載の燃料蒸発システムの制御装置。
  11. 前記蒸発取得部は、前記液体燃料の蒸発に伴って変化する前記液体燃料の温度として燃料温度(T)を取得する温度取得部(S107,S110,S603,S605,S607)を有している、請求項1に記載の燃料蒸発システムの制御装置。
  12. 前記蒸発取得部は、
    前記液体燃料の蒸気が飽和するまでの前記燃料温度の変化量を示す飽和温度差(dT)として、前記燃料温度が第1温度(Tm1)にある場合に対応した第1温度差(dT1)を取得する第1温度差取得部(S608)と、
    前記飽和温度差として、前記燃料温度が前記第1温度とは異なる第2温度(Tm2)にある場合に対応した第2温度差(dT2)を取得する第2温度差取得部(S616)と、
    前記燃料温度が前記第1温度及び前記第2温度の一方から他方に変化する場合の変化量(ΔTm)と、前記燃料温度の変化に対応して前記第1温度差及び前記第2温度差の一方から他方に変化する場合の変化量(ΔTx)との比である温度差傾き(Sm)を取得する傾き取得部(S618)と、
    を有している、請求項11に記載の燃料蒸発システムの制御装置。
  13. 前記蒸発取得部は、
    前記傾き取得部により取得された前記温度差傾きに基づいて、前記液体燃料の蒸留温度(T50)を推定する蒸留推定部(S620)を有している、請求項12に記載の燃料蒸発システムの制御装置。
  14. 前記蒸発取得部は、
    あらかじめ定められた基準温度(Ts)を想定した場合に、前記基準温度に対応した前記飽和温度差を基準温度差(dTs)として取得する基準取得部(S619)を有しており、
    前記蒸留推定部は、
    前記温度差傾きと前記基準温度差と前記蒸留温度との関係を示す蒸気圧特性を用いて、前記温度差傾き及び前記基準温度差に基づいて前記蒸留温度を推定する、請求項13に記載の燃料蒸発システムの制御装置。
  15. 前記蒸気圧特性は、前記温度差傾き及び前記基準温度差の両方が大きいほど前記蒸留温度が高くなるという関係を示す、請求項14に記載の燃料蒸発システムの制御装置。
  16. 内燃機関(11)に液体燃料を供給する燃料供給システム(10a)から前記液体燃料を取り込み、前記燃料供給システムから取り込んだ前記液体燃料を蒸発させることが可能な燃料蒸発システム(30)であって、
    前記液体燃料を蒸発させる蒸発室(33a)と、
    前記蒸発室での前記液体燃料の温度を検出する温度検出部(36)と、
    前記蒸発室に前記液体燃料が貯留された状態で前記蒸発室を開閉することが可能な開閉部(34,35,51)と、
    を備えている燃料蒸発システム。
  17. 前記蒸発室の圧力を検出する圧力検出部(37)を備えている請求項16に記載の燃料蒸発システム。
  18. 前記蒸発室から空気を排出することで前記蒸発室の圧力を減少させる減圧通路(33c)を備え、
    前記開閉部は、前記減圧通路を通じた前記蒸発室からの空気の排出を規制する空気規制部(35)を有している、請求項16又は17に記載の燃料蒸発システム。
  19. 前記燃料供給システムの一部と前記蒸発室とを接続し、前記燃料供給システムから前記蒸発室に前記液体燃料を供給する燃料通路(33b)を備え、
    前記開閉部は、前記燃料通路を通じた前記蒸発室への前記液体燃料の供給を規制する燃料規制部(34)を有している、請求項16〜18のいずれか1つに記載の燃料蒸発システム。
  20. 前記蒸発室の内部への熱の伝達を規制する熱規制部(58)が、前記蒸発室の外周を覆うように設けられている、請求項16〜19のいずれか1つに記載の燃料蒸発システム。
JP2017105740A 2017-05-29 2017-05-29 燃料蒸発システムの制御装置及び燃料蒸発システム Pending JP2018200035A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017105740A JP2018200035A (ja) 2017-05-29 2017-05-29 燃料蒸発システムの制御装置及び燃料蒸発システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017105740A JP2018200035A (ja) 2017-05-29 2017-05-29 燃料蒸発システムの制御装置及び燃料蒸発システム

Publications (1)

Publication Number Publication Date
JP2018200035A true JP2018200035A (ja) 2018-12-20

Family

ID=64667034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017105740A Pending JP2018200035A (ja) 2017-05-29 2017-05-29 燃料蒸発システムの制御装置及び燃料蒸発システム

Country Status (1)

Country Link
JP (1) JP2018200035A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144544A (ja) * 2007-12-12 2009-07-02 Nissan Motor Co Ltd 車載用燃料性状判定システム及び燃料性状判定方法
JP2011026987A (ja) * 2009-07-22 2011-02-10 Toyota Motor Corp 燃料性状検出装置
JP2011026976A (ja) * 2009-07-22 2011-02-10 Toyota Motor Corp 燃料性状検出装置
US20110224886A1 (en) * 2010-03-10 2011-09-15 Gm Global Technology Operations, Inc. On-board fuel property detection using pattern recognition and power spectral analysis of cylinder pressure signal
CN102859156A (zh) * 2009-10-30 2013-01-02 Bp北美公司 在最低燃料消耗下降低柴油发动机的nox和烟气排放的组合物和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144544A (ja) * 2007-12-12 2009-07-02 Nissan Motor Co Ltd 車載用燃料性状判定システム及び燃料性状判定方法
JP2011026987A (ja) * 2009-07-22 2011-02-10 Toyota Motor Corp 燃料性状検出装置
JP2011026976A (ja) * 2009-07-22 2011-02-10 Toyota Motor Corp 燃料性状検出装置
CN102859156A (zh) * 2009-10-30 2013-01-02 Bp北美公司 在最低燃料消耗下降低柴油发动机的nox和烟气排放的组合物和方法
US20110224886A1 (en) * 2010-03-10 2011-09-15 Gm Global Technology Operations, Inc. On-board fuel property detection using pattern recognition and power spectral analysis of cylinder pressure signal

Similar Documents

Publication Publication Date Title
US7272485B2 (en) Fuel nature measuring device of internal combustion engine and internal combustion engine having the same
CN101429896B (zh) 确定共轨喷射系统中燃料温度的方法
US7128057B2 (en) Device for determining fuel quality and corresponding method
KR20080087127A (ko) 연료의 휘발성을 차량상에서 결정하는 방법
US10465849B2 (en) Gas filling method
CN105715399B (zh) 超临界燃料的直接喷射方法
JP6978429B2 (ja) エンジンを動作させるための装置
US8869610B2 (en) Fuel level gauge control systems and methods
US9841412B2 (en) Method and system for determining the volatility of a fuel
RU2704371C2 (ru) Способ (варианты) и система для определения состава антидетонационной жидкости
US10837393B2 (en) Method for operating a diesel engine
US20110040473A1 (en) Method for regulating an air/fuel ratio and method for recognizing a fuel quality
JP4171279B2 (ja) 内燃機関の運転方法および装置
US20110100329A1 (en) Method for determining a fuel temperature in an injection system
CN106715875A (zh) 用于启动内燃机的方法
JP2010138706A (ja) 燃料蒸気圧測定装置
JP2018200035A (ja) 燃料蒸発システムの制御装置及び燃料蒸発システム
US7069141B2 (en) Method for determining the oil temperature in an internal combustion engine
KR101394078B1 (ko) 탱크 환기 장치의 재생 가스 유동에서의 연료 농도를 교정하는 방법 및 장치
CN109072799B (zh) 用于确定在驱动系统的废气中的水含量的方法
RU2677915C2 (ru) Способ (варианты) и система для оценки внешнего давления при помощи кислородного датчика
US8874350B2 (en) Method for determining a concentration of alcohol in a fuel mixture
US5886625A (en) Residual fuel amount-estimating system for fuel tank of internal combustion engine
JP4991045B2 (ja) 内燃機関を運転する方法
JP5079744B2 (ja) 燃料蒸気圧計測システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211019