JP2018196370A - Cell cultivation base material formed of multilayer film comprising conductive polymer layer and polymer layer for cell adhesion - Google Patents

Cell cultivation base material formed of multilayer film comprising conductive polymer layer and polymer layer for cell adhesion Download PDF

Info

Publication number
JP2018196370A
JP2018196370A JP2018082903A JP2018082903A JP2018196370A JP 2018196370 A JP2018196370 A JP 2018196370A JP 2018082903 A JP2018082903 A JP 2018082903A JP 2018082903 A JP2018082903 A JP 2018082903A JP 2018196370 A JP2018196370 A JP 2018196370A
Authority
JP
Japan
Prior art keywords
cell
fiber
cells
polymer
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018082903A
Other languages
Japanese (ja)
Other versions
JP6856862B2 (en
Inventor
直也 武田
Naoya Takeda
直也 武田
景一 今任
Keiichi Imato
景一 今任
啓太 田中
Keita Tanaka
啓太 田中
美沙 中谷
Misa Nakatani
美沙 中谷
小毛 謝
Xiaomao Xie
小毛 謝
英明 福士
Hideaki Fukushi
英明 福士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
JNC Corp
Original Assignee
Waseda University
JNC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, JNC Corp filed Critical Waseda University
Publication of JP2018196370A publication Critical patent/JP2018196370A/en
Application granted granted Critical
Publication of JP6856862B2 publication Critical patent/JP6856862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

To provide a base material which serves as a foothold for efficiently producing a tissue, especially, a skeletal muscle or a nerve tissue in vitro.SOLUTION: The inventors have found a novel phenomenon in which, when producing a fiber foothold material having a laminated multilayer film or a coaxial two-layer structure in which a conductive polymer is a core and a biodegradable polymer is a sheath, instead of using a conductive polymer cell having a high conductance and an adhesion polymer and mixing them, a cell does not directly contact the conductive polymer in the fiber, however, on the fiber, a myotube formation efficiency is improved however no voltage is applied. There is provided a base material for cell cultivation formed into a fiber shape, the base material being a multilayer film base material formed of a conductive polymer layer and a cell adhesion layer, especially, the base material being a coaxial multilayer fiber in which, the conductive polymer is included therein and on an outermost layer, the cell adhesion polymer is coaxially laminated.SELECTED DRAWING: Figure 4

Description

本発明は、導電性ポリマー層と細胞接着用ポリマー層とを含む多層膜からなる細胞培養用基材、該基材を用いる細胞分化誘導及び/又は増殖方法等に関する。   The present invention relates to a cell culture substrate composed of a multilayer film including a conductive polymer layer and a cell adhesion polymer layer, a cell differentiation induction and / or proliferation method using the substrate, and the like.

細胞工学及び再生医療等への応用を目的として、培養細胞の分化誘導及び/又は増殖を促進し、所望とする細胞を得るための方法及びそのための基材の研究がなされている。   For the purpose of application to cell engineering, regenerative medicine, etc., research has been conducted on a method for obtaining desired cells by promoting differentiation induction and / or proliferation of cultured cells, and a base material therefor.

例えば、筋管細胞に分化する筋芽細胞や神経線維や突起形成を有する神経細胞については、これらの細胞を効率よく培養し、分化誘導及び/又は増殖を促進し、所望とする細胞を作製する技術の確立が求められている。これらの細胞は、電気信号に対して応答性を有するところから、培養基材として導電性ポリマーを使用し、電気的刺激を負荷した条件や(非特許文献1)、金属含有導電性ポリマーの利用による細胞培養が試みられている(非特許文献2)。   For example, for myoblasts that differentiate into myotubes and nerve cells that have nerve fibers or protrusion formation, these cells are efficiently cultured to promote differentiation induction and / or proliferation to produce desired cells. Establishment of technology is required. Since these cells have responsiveness to electrical signals, the conductive polymer is used as a culture substrate, and the conditions under which electrical stimulation is applied (Non-patent Document 1), utilization of the metal-containing conductive polymer Has been attempted (see Non-Patent Document 2).

骨格筋組織をin vitroで効率的に作製するためには電気刺激が有利に働き、導電性ポリマーとしてポリピロールやポリアニリン等が知られ(特許文献1、2)、ポリアニリンを生分解性で細胞接着性を有するポリマー(ポリカプロラクトン)に混ぜ合わせたファイバー状の細胞足場材料での筋芽細胞の培養において、電圧を負荷しなくとも筋管形成効率が向上するとの報告もなされている(非特許文献3)。   In order to efficiently produce skeletal muscle tissue in vitro, electrical stimulation is advantageous, and polypyrrole, polyaniline, etc. are known as conductive polymers (Patent Documents 1 and 2). Polyaniline is biodegradable and has cell adhesion properties. It has also been reported that myotube formation efficiency is improved without impressing voltage in the culture of myoblasts in a fibrous cell scaffold material mixed with a polymer having poly (procaprolactone) (Non-patent Document 3). ).

さらに、導電性ポリマーPPY/PLCL(polypyrrole/poly(l-lactic acid- co-ε-caprolactone)を抹消神経細胞の足場基材として用い、電気刺激の負荷と共に神経細胞を培養することにより神経細胞線維(軸索)径の拡大促進効果や神経機能の回復促進効果等をもたらすことが報告されている(非特許文献1)。   Furthermore, the conductive polymer PPY / PLCL (polypyrrole / poly (l-lactic acid-co-ε-caprolactone)) is used as a scaffold for peripheral nerve cells. It has been reported that (axon) diameter enlargement promoting effect, nerve function recovery promoting effect, etc. are brought about (Non-patent Document 1).

特開昭63-40211号公報JP 63-40211 A 特開2006-241613号公報JP 2006-241613 A

Song Jら、Front Mol Neurosci. Vol. 9:Art.117: 1-13 (2016).Song J et al., Front Mol Neurosci. Vol. 9: Art. 117: 1-13 (2016). Yang H Sら、Adv Healthc Mater. 5: 137-145 (2016)Yang H S et al., Adv Healthc Mater. 5: 137-145 (2016) S H Kuら、Biomaterials, 33: 6098-6104 (2012).S H Ku et al., Biomaterials, 33: 6098-6104 (2012).

本発明は、組織、特に、骨格筋組織又は神経組織をin vitroで効率的に作製するための足場となる基材、該組織の作製効率を向上させる方法、及び、該方法で製造される細胞を提供することを課題とする。   The present invention relates to a substrate serving as a scaffold for efficiently producing tissue, particularly skeletal muscle tissue or nerve tissue in vitro, a method for improving the production efficiency of the tissue, and a cell produced by the method It is an issue to provide.

本発明者らは、高い導電率を誇る導電性ポリマー層と細胞接着用ポリマー層を用いて、これらを混ぜ合わせるのではなく、導電性ポリマー層の培養液側に細胞接着用ポリマー層を積層させた多層膜の足場材料、特に、導電性ポリマー層を芯としてその外側に細胞接着ポリマー層を積層した芯・鞘構造又は同軸多層構造を有する多層ファイバーを作製すると、この足場構造において細胞が導電性ポリマーに直接接触しないにも関わらず、かつ、該ファイバーに、電圧を負荷しないにもかかわらず筋管形成効率が向上するとの現象を見出し、本発明を完成した。   The present inventors use a conductive polymer layer and a cell adhesion polymer layer, which boast high conductivity, and do not mix them, but stack a cell adhesion polymer layer on the culture solution side of the conductive polymer layer. When a multi-layer fiber having a core / sheath structure or coaxial multilayer structure in which a cell adhesion polymer layer is laminated on the outer side of a multi-layer scaffold material, in particular, a conductive polymer layer is formed as a core, the cells are electrically The present invention was completed by finding a phenomenon that myotube formation efficiency was improved despite no direct contact with the polymer and no voltage applied to the fiber.

具体的には、本発明は、細胞を分化誘導及び/又は増殖するための培養用の基材であって、導電性ポリマーを含む導電性ポリマー層と、細胞接着用ポリマーを含む細胞接着用ポリマー層とを含む少なくとも2層構造を有する多層膜である基材を提供する。   Specifically, the present invention relates to a culture substrate for inducing and / or proliferating cells, and comprising a conductive polymer layer containing a conductive polymer and a cell adhesion polymer containing a cell adhesion polymer. A substrate that is a multilayer film having at least a two-layer structure including a layer is provided.

本発明の基材において、前記細胞がファイバー形状形成能を有する細胞であり、前記多層膜がファイバー状の前記導電性ポリマー層を内包し、最外層に前記導電性ポリマー層と同軸状に、少なくとも1層の前記細胞接着用ポリマー層が積層されることにより芯・鞘構造又は同軸多層構造を有する多層ファイバーである場合がある。   In the substrate of the present invention, the cell is a cell having a fiber shape-forming ability, the multilayer film includes the fiber-like conductive polymer layer, and the outermost layer is coaxial with the conductive polymer layer, at least. There may be a multilayer fiber having a core / sheath structure or a coaxial multilayer structure by laminating one cell adhesion polymer layer.

本発明の基材において、前記導電性ポリマーが、PEDOT/PSS[ポリ(3,4-エチレン. ジオキシチオフェン)/ポリ(4-スチレンスルホン酸)]、ポリアニリン又はポリピロールから選択され、前記細胞接着用ポリマーが、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、又はこれらの共重合体を含む細胞接着性ポリマー;ポリメタクリル酸メチル又はポリスチレンを含む汎用培養器材用ポリマー;及び、コラーゲン又はゼラチンを含む生体由来ポリマー;からなる群から選択される少なくとも1種である場合がある。   In the substrate of the present invention, the conductive polymer is selected from PEDOT / PSS [poly (3,4-ethylene.dioxythiophene) / poly (4-styrenesulfonic acid)], polyaniline or polypyrrole, and the cell adhesion Cell adhesion polymer containing polycaprolactone, polylactic acid, polyglycolic acid, or a copolymer thereof; polymer for general-purpose culture equipment containing polymethyl methacrylate or polystyrene; and biological origin containing collagen or gelatin The polymer may be at least one selected from the group consisting of:

本発明の基材において、前記ファイバー形状形成能を有する細胞が筋芽細胞、神経細胞、これらの株化細胞若しくは初代細胞又はモデル細胞から選択される場合がある。   In the substrate of the present invention, the cells having the ability to form a fiber may be selected from myoblasts, nerve cells, established cell lines or primary cells, or model cells.

また、本発明は、細胞の分化誘導及び/又は増殖を促進する方法であって、導電性ポリマーを含む導電性ポリマー層と細胞接着用ポリマーを含む細胞接着用ポリマー層とを含む多層膜を基材として、前記細胞を培養する方法を提供する。   The present invention also relates to a method for promoting cell differentiation induction and / or proliferation, which is based on a multilayer film including a conductive polymer layer containing a conductive polymer and a cell adhesion polymer layer containing a cell adhesion polymer. As a material, a method for culturing the cells is provided.

本発明の方法において、前記細胞が、ファイバー形状形成能を有する細胞であり、
前記基材が、ファイバー状の導電性ポリマー層を内包し、最外層に少なくとも1層の細胞接着用ポリマー層を有する同軸多層ファイバーであり、
前記細胞を前記基材上で培養する場合がある。
In the method of the present invention, the cell is a cell having a fiber shape-forming ability,
The base material is a coaxial multilayer fiber including a fiber-like conductive polymer layer and having at least one cell adhesion polymer layer as an outermost layer;
The cell may be cultured on the substrate.

また、本発明の方法において、前記導電性ポリマーが、PEDOT/PSS[ポリ(3,4-エチレン. ジオキシチオフェン)/ポリ(4-スチレンスルホン酸)]、ポリアニリン又はポリピロールから選択され、
前記細胞接着用ポリマーが、
ポリカプロラクトン、ポリ乳酸、ポリグリコール酸又はこれらの共重合体を含む細胞接着性ポリマー;
ポリメタクリル酸メチル又はポリスチレンを含む汎用培養器材用ポリマー;及び、
コラーゲン又はゼラチンを含む生体由来ポリマー;
からなる群から選択される少なくとも1種である場合がある。
In the method of the present invention, the conductive polymer is selected from PEDOT / PSS [poly (3,4-ethylene.dioxythiophene) / poly (4-styrenesulfonic acid)], polyaniline or polypyrrole,
The cell adhesion polymer is
A cell adhesive polymer comprising polycaprolactone, polylactic acid, polyglycolic acid or a copolymer thereof;
A polymer for general culture equipment comprising polymethyl methacrylate or polystyrene; and
A bio-derived polymer comprising collagen or gelatin;
And at least one selected from the group consisting of:

また、本発明の方法において、ファイバー形状形成能を有する細胞が筋芽細胞、神経細胞、これらの株化細胞若しくは初代細胞、又はこれらのモデル細胞から選択される場合がある。   In the method of the present invention, the cells having the ability to form a fiber may be selected from myoblasts, nerve cells, cell lines or primary cells thereof, or model cells thereof.

さらに、本発明は、前記本発明の基材を用いて培養される細胞を提供する。   Furthermore, the present invention provides a cell cultured using the substrate of the present invention.

さらに、本発明は、前記本発明の方法を用いて培養される細胞を提供する。   Furthermore, the present invention provides a cell that is cultured using the method of the present invention.

本発明の細胞において、前記細胞が、組織工学用又は再生医療用の細胞である場合がある。   In the cell of the present invention, the cell may be a tissue engineering cell or a regenerative medicine cell.

本発明により、組織、特に、骨格筋組織又は神経組織をin vitroで効率的に作製するための足場となる基材、該組織の作製効率を向上させる方法、及び、該方法で製造される細胞を提供することができ、これらの基材や方法で作製される細胞は、組織工学や再生医療の分野で利用できる。   According to the present invention, a substrate serving as a scaffold for efficiently producing tissue, particularly skeletal muscle tissue or nerve tissue in vitro, a method for improving the production efficiency of the tissue, and cells produced by the method The cells produced by these base materials and methods can be used in the fields of tissue engineering and regenerative medicine.

PEDOT/PSS、ポリアニリン(polyaniline)、ポリピロール(polypyrrole)各材料についてのファイバー足場の電子顕微鏡(SEM)像を表す図(スケールバーは20 μmを表す)。コアシース:芯・鞘二重構造のファイバー足場、ブレンド液:芯と鞘の成分を混合した場合のファイバー足場、シース溶液のみ:鞘成分のみでのファイバー足場をそれぞれ表す。The figure which represents the electron microscope (SEM) image of the fiber scaffold about each material of PEDOT / PSS, polyaniline (polyaniline), polypyrrole (polypyrrole) (a scale bar represents 20 micrometers). Core sheath: a fiber scaffold having a core / sheath dual structure, blend liquid: a fiber scaffold when the core and sheath components are mixed, and sheath solution only: a fiber scaffold with only the sheath component. 図1の芯・鞘ファイバーの拡大電子顕微鏡写真を表す図。The figure showing the enlarged electron micrograph of the core and sheath fiber of FIG. PEDOT/PSSを用い、シース溶液のみ:鞘溶液のみで形成したファイバー足場、コアシース:芯・鞘構造二重構造のファイバー足場、ブレンド溶液:芯・鞘混合溶液の各ファイバー足場での筋管形成促進効果を表す写真図 (スケールバーは200 μmを表す)Using PEDOT / PSS, sheath solution only: fiber scaffold formed with sheath solution only, core sheath: core / sheath structure double-layer fiber scaffold, blend solution: facilitating myotube formation in each fiber scaffold of core / sheath mixed solution Photograph showing effect (Scale bar represents 200 μm) PEDOT/PSSを用いたファイバー足場作製条件での筋管面積占有率を評価した結果を表す図 。シース:鞘成分のみで形成したファイバー足場(N=4)、コアシース:芯・鞘二重構造のファイバー足場(N = 4)、ブレンド:芯・鞘成分を混合して形成したファイバー足場(N = 3)、**p < 0.01、*p <0.05)The figure showing the result of having evaluated the myotube area occupation rate on the fiber scaffold preparation conditions using PEDOT / PSS. Sheath: Fiber scaffold formed only by sheath component (N = 4), Core sheath: Fiber scaffold with double core / sheath structure (N = 4), Blend: Fiber scaffold formed by mixing core / sheath component (N = 3), ** p <0.01, * p <0.05) 芯流量を変化させた場合での筋管形成評価における分化誘導培養液に変更後0日目の顕微鏡写真図を表す。スケールバーは 200 μmを表し、緑はミオシン重鎖を、青は核を表す。The photomicrograph of the 0th day after changing to the differentiation induction culture solution in myotube formation evaluation in the case of changing the core flow rate is shown. The scale bar represents 200 μm, green represents the myosin heavy chain, and blue represents the nucleus. 芯流量を変化させた場合での筋管形成評価における分化誘導培養液に変更後5日目の顕微鏡写真図を表す。スケールバーは 200 μmを表し、緑はミオシン重鎖を 青は核を表す。The photomicrograph of the 5th day after changing to the differentiation induction culture solution in the myotube formation evaluation in the case of changing the core flow rate is shown. The scale bar represents 200 μm, green represents the myosin heavy chain, and blue represents the nucleus. 芯流量を変えた場合での筋管形成を評価した結果を表す図。各分化誘導日数における(A)細胞密度の変化、(B)ミオシン重鎖を発現している細胞の占有面積比率、(C)融合細胞率、(D)筋管本数、(E)筋管長さを表す(Mean±S.D., * : p<0.05, ** : p<0.01, n= 3)。The figure showing the result of having evaluated myotube formation in the case of changing a core flow rate. (A) Change in cell density, (B) Occupied area ratio of cells expressing myosin heavy chain, (C) Fusion cell rate, (D) Myotube number, (E) Myotube length (Mean ± SD, *: p <0.05, **: p <0.01, n = 3). 鞘PCL/ゼラチン溶液の濃度を変更した場合での各分化誘導日数における (A)分化誘導中の細胞密度変化、(B) ミオシン重鎖(MHC)を発現する細胞の占有面積比率、(C)筋管本数、(D) 筋管長さ、(E) 細胞融合率を表す(n = 1)。(A) Change in cell density during differentiation induction, (B) Occupied area ratio of cells expressing myosin heavy chain (MHC), (C) in each differentiation induction day when the concentration of sheath PCL / gelatin solution is changed Represents the number of myotubes, (D) myotube length, and (E) cell fusion rate (n = 1). 鞘PCL/ゼラチン溶液濃度を変化させて作製した足場上での筋管形成の継時変化を表す顕微鏡写真図。緑はミオシン重鎖(MHC)を表し、青は細胞核を表し、スケールバーは200 μmを表す。The micrograph figure showing the change over time of myotube formation on the scaffold produced by changing the sheath PCL / gelatin solution concentration. Green represents myosin heavy chain (MHC), blue represents cell nucleus, and scale bar represents 200 μm.

1.細胞培養用基材
本発明の実施形態の1つは、細胞を分化誘導及び/又は増殖するための培養用の基材であって、導電性ポリマーを含む導電性ポリマー層と、細胞接着用ポリマーを含む細胞接着用ポリマー層とを含む少なくとも2層構造を有する多層膜である基材である。好ましくは、該基材は、前記細胞がファイバー形状形成能を有する細胞であり、前記多層膜がファイバー状の前記導電性ポリマー層を内包し、最外層に前記導電性ポリマー層と略同軸状に、少なくとも1層の前記細胞接着用ポリマー層が積層されることにより芯・鞘構造又は略同軸多層構造を有する多層ファイバーである。
1. One embodiment of the present invention is a culture substrate for inducing and / or proliferating cells, and comprising a conductive polymer layer containing a conductive polymer and a cell adhesion polymer. A base material that is a multilayer film having at least a two-layer structure including a polymer layer for cell adhesion. Preferably, the base material is a cell in which the cells have a fiber shape-forming ability, the multilayer film encloses the fiber-like conductive polymer layer, and the outermost layer is substantially coaxial with the conductive polymer layer. A multilayer fiber having a core / sheath structure or a substantially coaxial multilayer structure by laminating at least one cell adhesion polymer layer.

前記基材において、前記導電性ポリマーの例としては、PEDOT/PSS[ポリ(3,4-エチレン. ジオキシチオフェン)/ポリ(4-スチレンスルホン酸)]、ポリアニリン又はポリピロールから選択され、前記細胞接着用ポリマーの例としては、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、又はこれらの共重合体を含む細胞接着性ポリマー;ポリメタクリル酸メチル又はポリスチレンを含む汎用培養器材用ポリマー;並びに、コラーゲン又はゼラチンを含む生体由来ポリマー;からなる群から選択される少なくとも1種である。   In the substrate, the conductive polymer is selected from PEDOT / PSS [poly (3,4-ethylene.dioxythiophene) / poly (4-styrenesulfonic acid)], polyaniline or polypyrrole, Examples of adhesion polymers include cell adhesion polymers comprising polycaprolactone, polylactic acid, polyglycolic acid, or copolymers thereof; polymers for general culture equipment comprising polymethyl methacrylate or polystyrene; and collagen or gelatin A bio-derived polymer comprising: at least one selected from the group consisting of:

本発明の基材についてのより具体的な例として、PEDOT/PSS を導電性ポリマーとして使用する場合が挙げられる。PEDOT/PSSは、ポリ(4-スチレンスルホン酸)をドープしたポリ(3,4-エチレン. ジオキシチオフェン)であり、PEDOTは、導電性が良好なこと、ドーピングされた(導体)状態での環境安定性が優れていること、および薄膜として使用した場合の光透過性も有する。PEDOTコーティングは、一般的に、PEDOTとポリアニオンポリ(スチレンスルホン酸塩)すなわちPEDOT-PSSの混合物からなる水分散液を使用して行うことができる。   A more specific example of the substrate of the present invention is when PEDOT / PSS is used as the conductive polymer. PEDOT / PSS is poly (3,4-ethylene dioxythiophene) doped with poly (4-styrene sulfonic acid), PEDOT has good conductivity, in doped (conductor) state It has excellent environmental stability and light transparency when used as a thin film. PEDOT coating can generally be performed using an aqueous dispersion consisting of a mixture of PEDOT and polyanionic poly (styrene sulfonate) or PEDOT-PSS.

本明細書において、「細胞接着用ポリマー」とは、本発明の多層性ポリマー基材において、細胞に直接接触することのない導電性ポリマー層と、培養細胞との間に配置され、培養細胞に直接接触するポリマー層のポリマー材料のことをいう。すなわち、「細胞接着用ポリマー」とは、細胞が接着すればよく、細胞接着を促進する活性を有する分子を含む優れた細胞接着活性を有するポリマーに限定されるものではない。本明細書において、この「細胞接着用ポリマー」を、その材料の種類等により、「細胞接着性ポリマー」、「汎用培養器材用ポリマー」及び「生体由来ポリマー」に分類して記載する。しかし、これらは、いずれも優れた細胞接着性を有することを必ずしも意味するものではない。   In the present specification, the “polymer for cell adhesion” refers to a multilayer polymer substrate of the present invention, which is disposed between a conductive polymer layer that does not directly contact cells and the cultured cells, and It refers to the polymer material of the polymer layer that is in direct contact. That is, the “cell adhesion polymer” is not limited to a polymer having an excellent cell adhesion activity, including a molecule having an activity of promoting cell adhesion, as long as cells adhere. In this specification, the “cell adhesion polymer” is classified and described as “cell adhesion polymer”, “polymer for general-purpose culture equipment”, and “bio-derived polymer” depending on the type of the material. However, these do not necessarily mean that they have excellent cell adhesion.

細胞接着用ポリマーの例としては、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、又はこれらの共重合体を含む細胞接着性ポリマー;ポリメタクリル酸メチル又はポリスチレンを含む汎用培養器材用ポリマー;及び、コラーゲン又はゼラチンを含む生体由来ポリマー等が挙げられる。   Examples of cell adhesion polymers include cell adhesion polymers comprising polycaprolactone, polylactic acid, polyglycolic acid, or copolymers thereof; polymers for general culture equipment comprising polymethyl methacrylate or polystyrene; and collagen or Examples thereof include bio-derived polymers containing gelatin.

本明細書において、前記多層性ポリマー基材を構成する積層膜の製造のためのコーティング方法として、スピン・コーティング法、ディッピング法、スプレー・コーティング法、電界重合法、蒸着法、蒸着重合法、ブラシコーティング法、ブレードコーティング法、ローラコーティング法及びロール・ツー・ロール法等の公知の方法が使用できる。また、芯・鞘構造又は同軸多層構造を有する多層ファイバーを製造する場合には、エレクトロスピニング法を用いることができる。   In this specification, spin coating method, dipping method, spray coating method, electric field polymerization method, vapor deposition method, vapor deposition polymerization method, brush are used as the coating method for producing the laminated film constituting the multilayer polymer substrate. Known methods such as a coating method, a blade coating method, a roller coating method, and a roll-to-roll method can be used. Further, when producing a multilayer fiber having a core / sheath structure or a coaxial multilayer structure, an electrospinning method can be used.

エレクトロスピニング法によって、前記同軸多層ファイバーを製造する場合には、導電性ポリマーの溶液を芯溶液とし、細胞接着用ポリマーの溶液又は該ポリマーの架橋反応前の原料溶液を鞘溶液として使用し、電界紡糸装置を用いて、導電性ポリマーを芯として、その外側に生分解性ポリマーを積層させることにより、芯・鞘構造を形成する同軸2層構造のファイバーを製造することができる。   When the coaxial multilayer fiber is produced by electrospinning, a conductive polymer solution is used as a core solution, and a cell adhesion polymer solution or a raw material solution before the cross-linking reaction of the polymer is used as a sheath solution. A fiber having a coaxial two-layer structure that forms a core / sheath structure can be manufactured by laminating a biodegradable polymer on the outside of a conductive polymer as a core using a spinning device.

上記の方法で製造した導電性ポリマー層と細胞接着用ポリマー層との多層膜基材、又は、これらのポリマー層を有する同軸2層構造のファイバー基材を足場として培養液中に配置し、当業者に公知の適切な培養液中で、細胞を培養することにより、細胞の細胞分化誘導及び/又は細胞増殖を促進し、所望とする組織、組織モデル、バイオアクチュエーター等を取得できる。また、同軸多層構造ファイバーを基材として用いる場合には、この足場基材に沿って細胞が配列した人工組織を得ることができる。   A multilayer base material of a conductive polymer layer and a cell adhesion polymer layer produced by the above method or a coaxial two-layer fiber base material having these polymer layers is placed in a culture solution as a scaffold. By culturing the cells in an appropriate culture medium known to those skilled in the art, cell differentiation induction and / or cell proliferation can be promoted, and a desired tissue, tissue model, bioactuator and the like can be obtained. When a coaxial multilayer structure fiber is used as a base material, an artificial tissue in which cells are arranged along this scaffold base material can be obtained.

また、前記ファイバー形状形成能を有する細胞は、細胞線維や細胞突起を延伸可能な細胞である限り含まれ、より具体的な例としては、筋管を形成する能力を有する細胞及び/又は突起を伸張させる能力を有する細胞が挙げられる。具体的には、筋芽細胞、神経細胞、これらの株化細胞若しくは初代細胞又はモデル細胞から選択される。モデル細胞の例としては、筋芽細胞モデルとしてC2C12細胞が、神経細胞モデルとして、PC12細胞が挙げられる。また、人工多能性幹細胞(iPS細胞)又は胚性幹細胞(ES細胞)を分化誘導して作製した細胞を使用することができる。   In addition, the cells having the fiber shape-forming ability are included as long as they are cells capable of stretching cell fibers and cell processes, and more specific examples include cells and / or processes having the ability to form myotubes. Examples include cells that have the ability to stretch. Specifically, it is selected from myoblasts, nerve cells, their established cell lines, primary cells, or model cells. Examples of model cells include C2C12 cells as a myoblast model and PC12 cells as a neuronal cell model. In addition, cells prepared by inducing differentiation of induced pluripotent stem cells (iPS cells) or embryonic stem cells (ES cells) can be used.

これらの本発明の実施で使用する細胞は、哺乳類由来の細胞であればよく、例えば、ヒト、マウス、ラット、モルモット、イヌ、ネコ、サル、ブタ、ウシ、ウマ、ヒツジ又はウサギ由来の細胞が挙げられる。   The cells used in the practice of the present invention may be cells derived from mammals, for example, cells derived from humans, mice, rats, guinea pigs, dogs, cats, monkeys, pigs, cows, horses, sheep or rabbits. Can be mentioned.

筋芽細胞を上記足場と共に培養した場合、筋管(myotube)に分化誘導することができる。また、人工多能性幹細胞や胚性幹細胞を、前記各細胞に分化誘導した後、本発明の足場基材と共に培養することにより、所望とするファイバー形状を有する細胞を、本発明の足場基材を使用しない場合と比較して、短期間の培養期間で取得することもできる。   When myoblasts are cultured with the scaffold, differentiation can be induced into myotubes. In addition, the induced pluripotent stem cell or embryonic stem cell is induced to differentiate into each of the cells, and then cultured together with the scaffold base material of the present invention, whereby cells having a desired fiber shape are obtained. Compared to the case where no is used, it can also be obtained in a short culture period.

本発明の培養基材を用いて製造される細胞は、例えば、組織工学や再生医療等の分野に応用できる。   The cells produced using the culture substrate of the present invention can be applied to fields such as tissue engineering and regenerative medicine.

本発明の培養基材を用いて製造される細胞を組織工学に用いる場合、例えば、創薬研究分野において、3次元的に構築された培養組織を組織モデルとして、薬剤の有効性や安全性の評価を行うための研究材料、及び、人工筋肉としてのバイオアクチュエーター等への利用等が可能となる。   When cells produced using the culture substrate of the present invention are used for tissue engineering, for example, in the field of drug discovery research, a three-dimensionally constructed cultured tissue is used as a tissue model for the effectiveness and safety of drugs. It can be used for research materials for evaluation and bioactuators as artificial muscles.

また、本発明の培養基材を用いて作製される細胞を再生医療に用いる場合、例えば、上記の基材を使用して製造される培養細胞を、組織が損傷した患者の損傷部位に移植し使用することにより、損傷組織を再生させるための再生医療用の材料として使用できる。特に、同軸多層ファイバー基材を使用して分化誘導又は増殖させた細胞は移植用の細胞として使用できる。また、本発明の基材を患者の損傷部位に移植することにより、損傷部位の修復を促進できる。   In addition, when cells produced using the culture substrate of the present invention are used for regenerative medicine, for example, the cultured cells produced using the above-mentioned substrate are transplanted to a damaged site of a patient whose tissue has been damaged. By using it, it can be used as a material for regenerative medicine for regenerating damaged tissue. In particular, cells induced or proliferated using a coaxial multilayer fiber substrate can be used as cells for transplantation. Moreover, the repair of a damaged site can be accelerated | stimulated by transplanting the base material of this invention to a patient's damaged site.

上記組織損傷にかかわる疾患としては、遺伝的欠陥、損傷、適切な細胞分化の欠如(例えば、細胞増殖性疾患におけるもの)、正常な身体の摩耗、又は生活習慣により、影響を受けた組織または臓器の機能または構造が、時間をかけて徐々に悪化する生活習慣病等の疾患を含む。より具体的には、組織損傷にかかわる疾患の例としては、例えば、交通事故等を典型例とする事故による筋肉組織や脳挫傷等の脳組織への外傷性の組織損傷、アルツハイマー病、パーキンソン病、ハンチントン病、多発性硬化症および筋萎縮性側索硬化症(ALS)等の神経変性疾患での組織損傷;例えば、横断性脊髄炎、脳または脊髄への外傷後に生じる脱髄、急性脳損傷、頭部外傷、脊髄損傷、末梢神経損傷、虚血性脳損傷、CNSの遺伝性ミエリン障害、てんかん、周生期仮死、仮死、低酸素症、てんかん重積状態、シャイ−ドレーガー症候群、自閉症、および脳卒中等の神経系障害等での組織損傷;例えば、肺癌、肝臓がん等のがん、若しくは化学療法剤による抗癌治療から生じる薬剤の細胞毒性によって惹起される組織損傷;例えば、糖尿病及びニーマンピック病等の代謝障害による組織損傷;例えば、エリテマトーデス、炎症性腸疾患(IBD)、前立腺炎、変形性関節症、骨粗鬆症、関節リウマチ、狼瘡、糖尿病、および喘息等の自己免疫又は炎症関連障害による組織損傷;例えば、緑内障、網膜色素変性症、ノリエ病、および黄斑変性症等の眼障害による組織損傷;例えば、アテローム性動脈硬化症、心不全、心筋梗塞及び狭心症等の循環器障害による組織損傷;例えば、ウィスコット−アルドリッチ症候群等の血液障害;筋ジストロフィー;消化器疾患、腎臓疾患、肝臓疾患又は肺疾患での組織損傷;例えば、アジソン病等の副腎疾患での組織損傷;例えば、C型肝炎感染および後天的免疫不全症等のウイルスや微生物等の感染による感染性組織障害による組織損傷等が挙げられる。   Diseases associated with tissue damage include tissues or organs affected by genetic defects, damage, lack of proper cell differentiation (eg, in cell proliferative disorders), normal body wear, or lifestyle. These include diseases such as lifestyle-related diseases that gradually deteriorate in function or structure over time. More specifically, examples of diseases related to tissue damage include, for example, traumatic tissue damage to brain tissue such as muscle tissue and brain contusion due to accidents such as traffic accidents, Alzheimer's disease, Parkinson's disease Tissue damage in neurodegenerative diseases such as Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis (ALS); for example, transverse myelitis, demyelination that occurs after trauma to the brain or spinal cord, acute brain injury Head injury, spinal cord injury, peripheral nerve injury, ischemic brain injury, hereditary myelin disorder of the CNS, epilepsy, perinatal asphyxia, asphyxia, hypoxia, status epilepticus, Shy-Drager syndrome, autism, and Tissue damage due to nervous system disorders such as stroke; for example, cancer such as lung cancer, liver cancer, or tissue damage caused by cytotoxicity of drugs resulting from anticancer treatment with chemotherapeutic agents; Or tissue damage due to metabolic disorders such as diabetes and Niemann-Pick disease; Tissue damage due to inflammation-related disorders; for example, eye damage such as glaucoma, retinitis pigmentosa, Norie disease, and macular degeneration; for example, circulation such as atherosclerosis, heart failure, myocardial infarction and angina Tissue damage due to genital disorders; for example, blood disorders such as Wiscott-Aldrich syndrome; muscular dystrophy; tissue damage due to digestive, renal, liver or lung diseases; for example, tissue damage due to adrenal diseases such as Addison's disease; For example, tissue caused by infectious tissue damage caused by infection with viruses or microorganisms such as hepatitis C infection and acquired immunodeficiency Scratches and the like.

2.ファイバー形状形成能を有する細胞の培養方法
本発明のもう1つの実施形態は、培養細胞の増殖を促進する方法であって、導電性ポリマーを含む導電性ポリマー層と細胞接着用ポリマーを含む細胞接着用ポリマー層とを含む多層膜を基材として、前記細胞を培養する方法である。特に、本方法において、前記細胞がファイバー形状形成能を有する細胞であり、前記基材が、ファイバー状の導電性ポリマー層を内包し、最外層に少なくとも1層の細胞接着用ポリマー層を有する同軸多層ファイバーからなる基材であり、前記細胞を前記基材上で培養する方法が好ましい。
2. Method for culturing cells having fiber shape forming ability Another embodiment of the present invention is a method for promoting the growth of cultured cells, comprising a conductive polymer layer containing a conductive polymer and a cell adhesion containing a cell adhesion polymer. The cell is cultured using a multilayer film including a polymer layer for use as a base material. In particular, in this method, the cell is a cell having a fiber shape-forming ability, and the base material includes a fiber-like conductive polymer layer, and the outermost layer has at least one cell adhesion polymer layer. A method of culturing the cells on the substrate, which is a substrate composed of multilayer fibers, is preferable.

本発明のファイバー状細胞の培養方法に用いる基材を構成する導電性ポリマー、細胞接着用ポリマーは、上記細胞培養用基材の実施形態に記載した各材料を使用して、上記の培養用基材を製造し、本発明の方法に使用することができる。   The conductive polymer and the cell adhesion polymer constituting the substrate used in the method for culturing fibrous cells of the present invention are prepared by using the materials described in the embodiment of the cell culture substrate and using the materials described above. A material can be produced and used in the method of the present invention.

また、ファイバー形状を有する細胞を形成するために培養する細胞は、ファイバー形状を形成する能力を有する細胞であり、より具体的には、筋管を形成する能力を有する細胞及び/又は突起を伸張させる能力を有する細胞が挙げられ、例えば、筋管を形成する能力を有する細胞として筋芽細胞が、突起を伸張させる能力を有する細胞として、神経細胞が挙げられる。さらに、これらの株化細胞若しくは初代細胞、又はこれらのモデル細胞等も使用できる。モデル細胞としては、例えば、筋芽細胞モデルとしてC2C12細胞が、神経細胞のモデル細胞であるPC12細胞等が挙げられる。また、人工多能性幹細胞や胚性幹細胞を、これらの細胞に分化誘導し、これらの細胞を使用することができる。   The cells cultured to form cells having a fiber shape are cells having the ability to form fiber shapes, and more specifically, cells and / or processes having the ability to form myotubes are stretched. For example, myoblasts are cells having the ability to form myotubes, and neurons are examples of cells having the ability to extend processes. Furthermore, these cell lines or primary cells, or these model cells can also be used. Examples of the model cells include C12C12 cells as myoblast models and PC12 cells which are model cells of nerve cells. In addition, induced pluripotent stem cells and embryonic stem cells can be induced to differentiate into these cells, and these cells can be used.

前記ファイバー状細胞の培養方法で製造されるファイバー状細胞は、細胞工学用、より具体的には、創薬研究分野における薬剤の有効性や安全性を評価するための組織モデル、若しくは、バイオアクチュエーター等、又は、再生医療分野における、上記各種疾患における組織損傷を受けた患者の組織の再生を促進させるために損傷部位に移植等を行うことにより使用できる。   Fibrous cells produced by the method for culturing fibrous cells are used for cell engineering, more specifically, tissue models or bioactuators for evaluating the effectiveness and safety of drugs in the field of drug discovery research. Or in the field of regenerative medicine, it can be used by transplanting the damaged site in order to promote regeneration of the tissue of a patient who has suffered tissue damage in the above-mentioned various diseases.

3.ファイバー形状を有する細胞
本発明のもう1つの実施態様は、前記基材及び培養方法を用いて分化誘導及び/又は増殖された細胞である。特に、前記多層ファイバー基材を使用して、又は、前記多層ファイバー基材を使用する方法によって培養される細胞は、ファイバー形状形成能を有する細胞が好ましい。ファイバー形状形成能を有する細胞として筋管を形成する能力を有する細胞、及び/又は、突起を伸張させる能力を有する細胞が挙げられ、具体的には、ファイバー形状形成能を有する細胞として筋管を形成する能力を有する細胞として筋芽細胞が、神経突起から軸索を伸張させる、すなわち、神経線維を伸張させる能力を有する細胞として、神経細胞が挙げられる。また、これらの細胞の株化細胞若しくは初代細胞、又はこれらのモデル細胞が挙げられる。
3. Cell having fiber shape Another embodiment of the present invention is a cell that has been induced and / or proliferated using the substrate and the culture method. In particular, the cells cultured using the multilayer fiber substrate or by the method using the multilayer fiber substrate are preferably cells having fiber shape-forming ability. Examples of cells having the ability to form myotubes include cells that have the ability to form myotubes and / or cells that have the ability to extend processes. A cell having an ability to form a myoblast and a cell having an ability to extend an axon from a neurite, that is, a nerve fiber, includes a nerve cell. Moreover, the cell line of these cells, a primary cell, or these model cells are mentioned.

例えば、これらの細胞を同軸多層ファイバー基材と共に培養することにより、細胞が、本基材に接着し、分化誘導及び/又は増殖が、本基材を使用しないときと比較し、促進される。これにより、所望とするファイバー形状を有する細胞を取得できる。また、これらの細胞によって構成される組織や組織モデルは、組織工学や再生医療等に利用できる。   For example, by culturing these cells with a coaxial multilayer fiber substrate, the cells adhere to the substrate, and differentiation induction and / or proliferation is promoted compared to when the substrate is not used. Thereby, the cell which has a desired fiber shape is acquirable. In addition, tissues and tissue models composed of these cells can be used for tissue engineering, regenerative medicine, and the like.

例えば、これらの細胞を組織工学に利用する場合、より具体的には、創薬研究分野における薬剤の有効性や安全性を評価するための組織モデル、若しくは、バイオアクチュエーター等に利用できる。   For example, when these cells are used for tissue engineering, more specifically, they can be used for a tissue model or a bioactuator for evaluating the effectiveness and safety of a drug in the field of drug discovery research.

また、このファイバー形状を有する細胞を、組織損傷のある患者の損傷部位に移植することにより、再生医療用の細胞、又はこれらの細胞によって構成される組織は、再生医療用の組織として利用できる。この再生医療用の細胞又は組織を使用する対象疾患としては、上記培養細胞用基材の実施形態に記載した各種疾患が挙げられる。   In addition, by transplanting cells having this fiber shape into an injured site of a patient with tissue damage, cells for regenerative medicine or tissues composed of these cells can be used as tissues for regenerative medicine. Examples of the target disease using cells or tissues for regenerative medicine include the various diseases described in the embodiment of the cultured cell substrate.

また、筋芽細胞を前記同軸多層ファイバー基材を用いて培養して得られる細胞を筋肉損傷部位を有する患者の損傷部位に移植することにより、筋肉損傷に対して治癒までの期間を短縮でき、再生医療用の細胞として使用できる。また、神経細胞を前記同軸多層ファイバー基材を用いて培養して得られる細胞を神経損傷を有する患者の損傷部位に移植することにより、神経損傷に対して治癒までの期間を短縮でき、再生医療用の細胞として使用できる。これらの筋肉損傷や神経損傷の例としては、交通事故等の筋肉や神経の外傷性損傷や老化等に伴うヘルニア等による神経損傷を伴う疾患が挙げられる。   In addition, by transplanting cells obtained by culturing myoblasts using the coaxial multilayer fiber base material to a damaged site of a patient having a muscle injury site, it is possible to shorten the period until healing for muscle injury, It can be used as a cell for regenerative medicine. In addition, by transplanting cells obtained by culturing nerve cells using the coaxial multilayer fiber base material to the damaged site of a patient having nerve damage, it is possible to shorten the time until healing for nerve damage, and regenerative medicine It can be used as a cell for use. Examples of such muscle damage and nerve damage include diseases involving nerve damage due to traumatic damage of muscles and nerves such as traffic accidents, and hernia accompanying aging.

本明細書において言及される全ての文献はその全体が引用により本明細書に取り込まれる。ここに記述される実施例は本発明の実施形態を例示するものであり、本発明の範囲を限定するものとして解釈されるべきではない。   All documents mentioned herein are hereby incorporated by reference in their entirety. The examples described herein are illustrative of embodiments of the invention and should not be construed as limiting the scope of the invention.

1.実験材料及び装置
ポリカプロラクトンはSigmaAldrich社製、1,1,3,3,3-hexafluoro-2-isopropanol (HFIP)は和光純薬社製、PEDOT/PSS分散液はDenatron(ナガセケムテクス社製)、ポリアニリン及びポリピロールはSigma Aldrich社製を使用した。その他の実験に使用した試薬は、適宜、実験方法の記載で記載した。
電界紡糸装置 Nanon(MECC社製)の芯・鞘ファイバー作製システムを紡糸に使用した。また、電子顕微鏡は、3Dリアルサーフェスビュー顕微鏡(VE-9800、Keyence社製)を使用した。
1. Experimental materials and equipment Polycaprolactone is manufactured by SigmaAldrich, 1,1,3,3,3-hexafluoro-2-isopropanol (HFIP) is manufactured by Wako Pure Chemicals, and PEDOT / PSS dispersion is Denatron (manufactured by Nagase ChemteX) Polyaniline and polypyrrole manufactured by Sigma Aldrich were used. Reagents used in other experiments were appropriately described in the description of the experimental method.
The core / sheath fiber production system of the electrospinning device Nanon (MECC) was used for spinning. The electron microscope used was a 3D real surface view microscope (VE-9800, manufactured by Keyence).

2.ファイバーの作製方法
鞘溶液として、ポリカプロラクトン(PCL、平均分子量85,000)を有機溶媒である1,1,3,3,3-hexafluoro-2-isopropanol (HFIP) に溶かし5 wt%溶液を作製し、HFIP容量に対し5% (w/v)になるようにゼラチンを混合し、作製した。これを鞘溶液とした。導電性ポリマーを形成するための芯溶液としてPEDOT/PSS分散液(Denatron, ナガセケムテクス社製)原液を使用した。電界紡糸装置 Nanon(MECC社製)の芯・鞘ファイバー作製システムを用い、エレクトロスピニング法で紡糸した。その際、芯溶液と鞘溶液の流量比は1:10とし、電圧は25 kV、紡糸距離は15 cmとした(図1、2)。
2. Fiber production method As sheath solution, polycaprolactone (PCL, average molecular weight 85,000) is dissolved in organic solvent 1,1,3,3,3-hexafluoro-2-isopropanol (HFIP) to make 5 wt% solution. Gelatin was mixed so as to be 5% (w / v) with respect to the HFIP capacity. This was used as a sheath solution. A PEDOT / PSS dispersion (Denatron, manufactured by Nagase ChemteX Corporation) stock solution was used as a core solution for forming a conductive polymer. Spinning was performed by an electrospinning method using a core / sheath fiber production system of an electrospinning apparatus Nanon (manufactured by MECC). At that time, the flow ratio of the core solution to the sheath solution was 1:10, the voltage was 25 kV, and the spinning distance was 15 cm (FIGS. 1 and 2).

紡糸されたファイバーは高速回転(毎分2500回転)するドラムコレクターで巻き取り回収した。   The spun fiber was wound up and collected by a drum collector rotating at high speed (2500 revolutions per minute).

比較サンプルとして鞘溶液と芯溶液の各溶液を完全に混合した液(ブレンド液)を調製し、上記と同様に紡糸した。PEDOT/PSS以外の他の導電性ポリマーとしてポリアニリンとポリピロールを使用して、それ以外は、上記と同様の材料について、それぞれをHFIPに1 %(w/v)の溶液に調整し、芯溶液として使用し、ファイバーを作製した(図1)。上記の方法で作成した各ファイバーの平均径を表1に示した。なお、コアシースは芯・鞘二重構造のファイバー足場を、ブレンド液は芯及び鞘の各成分を混合して形成したファイバー足場を、シース溶液のみは鞘成分で形成したファイバー足場を表す。   As a comparative sample, a solution (blend solution) in which the sheath solution and the core solution were completely mixed was prepared and spun in the same manner as described above. Using polyaniline and polypyrrole as other conductive polymers other than PEDOT / PSS, except for the same materials as above, adjust each to a 1% (w / v) solution in HFIP as a core solution Used to produce a fiber (FIG. 1). Table 1 shows the average diameter of each fiber prepared by the above method. The core sheath represents a fiber scaffold having a core / sheath dual structure, the blend solution represents a fiber scaffold formed by mixing the core and sheath components, and the sheath solution represents a fiber scaffold formed of the sheath component.

3. PEDOT/PSSを用いたファイバー足場における筋管形成効率の評価
実験方法
ファイバー足場に含有されたゼラチンが培地中に溶け出ないようにするため、化学架橋による構造の安定化が必須であった。そこで、使用前に25%グルタルアルデヒドの蒸気に曝し架橋処理をおこなった。未反応のグルタルアルデヒドにより細胞に損傷を与える可能性があるため、細胞を播種する前日に足場を培地に浸漬させ、培地中のアミノ酸やタンパク質と反応させた。
3. Method for evaluating myotube formation efficiency in fiber scaffolds using PEDOT / PSS In order to prevent gelatin contained in the fiber scaffolds from dissolving in the medium, it was essential to stabilize the structure by chemical crosslinking. Therefore, before use, it was exposed to 25% glutaraldehyde vapor for crosslinking. Since there is a possibility of damaging the cells with unreacted glutaraldehyde, the scaffold was immersed in the medium the day before cell seeding and reacted with amino acids and proteins in the medium.

ファイバー足場上にマウス筋芽細胞由来の株化細胞であるC2C12細胞を足場面積に対し、5.0×104 cells/cm2の密度で播種した。その後、通常の増殖用培地 (DMEM, 10%ウシ胎児血清, 1% ペニシリン/ストレプトマイシン)で37℃, 5% CO2のインキュベーター内で24h培養した。その後、分化誘導用培地 (DMEM, 2% ウマ血清, 1% ペニシリン/ストレプトマイシン) に交換し、5日間培養を継続し、1日おきに分化誘導用培地を交換した。 C2C12 cells, which are cell lines derived from mouse myoblasts, were seeded on the fiber scaffold at a density of 5.0 × 10 4 cells / cm 2 with respect to the scaffold area. Thereafter, the cells were cultured in a normal growth medium (DMEM, 10% fetal bovine serum, 1% penicillin / streptomycin) in a 37 ° C., 5% CO 2 incubator for 24 hours. Thereafter, the medium was changed to a differentiation induction medium (DMEM, 2% horse serum, 1% penicillin / streptomycin), and the culture was continued for 5 days, and the differentiation induction medium was changed every other day.

培養終了後に細胞を4%パラホルムアルデヒドで固定し、ミオシン重鎖を蛍光免疫染色(緑色)し、筋管への分化を定量的に評価した。細胞の核はHoechst(青)蛍光試薬(Invitrogen社製)を用いて染色した。統計学的解析は、一元配置分散分析(ANOVA)とTukey-Kramer法を使用し、post-hoc解析を行った。   After completion of the culture, the cells were fixed with 4% paraformaldehyde, the myosin heavy chain was fluorescent immunostained (green), and the differentiation into myotubes was quantitatively evaluated. Cell nuclei were stained with Hoechst (blue) fluorescent reagent (Invitrogen). Statistical analysis was performed using one-way analysis of variance (ANOVA) and Tukey-Kramer method for post-hoc analysis.

実験結果
芯・鞘のファイバー足場を用いた場合、その他2条件と比べ有意に筋管形成率が向上した。鞘のみのファイバーとブレンドのファイバーとの比較から、PEDOT/PSSの存在が筋管の形成に有利に働いていることが分かるが、芯・鞘構造によって筋管の形成効率は最大となった(図3、4)。
Experimental results When the core and sheath fiber scaffolds were used, myotube formation rate was significantly improved compared to the other two conditions. The comparison between the sheath-only fiber and the blended fiber shows that the presence of PEDOT / PSS favors myotube formation, but the core-sheath structure maximizes myotube formation efficiency ( 3 and 4).

小活
上記のマウスの筋芽細胞であるC2C12細胞を用い、PEDOT/PSSを導電性ポリマーとして、ポリカプロラクトンとゼラチンとを細胞接着用ポリマーとして製造した同軸多層ファイバー基材と共に培養することにより、細胞分化効率について、顕著な促進効果を発揮することを認めた。
Small live cells Using C2C12 cells, the mouse myoblasts described above, by culturing with PEDOT / PSS as a conductive polymer and a coaxial multi-layer fiber substrate made from polycaprolactone and gelatin as a cell adhesion polymer. It was confirmed that the differentiation efficiency was remarkable.

4.表面抵抗率測定による電気的性質の評価
ファイバーマットの表面抵抗値、及び導電率を測定した。その結果を表2に示す。本実験で使用した抵抗測定器Hiresta-UXでは1000Vの高電圧を印加することにより、〜1014(Ω)と非常に高い抵抗値までを測定を可能とし、極微弱な電流を検出できる。本実験でも、全サンプルについて1000 Vの電圧を印加して測定した。「鞘PCL/Gelatin溶液のみ」と「芯鞘材料混合」の時に表面抵抗値は最も高くなり、芯PEDOT/PSS水分散液を導入することで表面抵抗値は2〜3桁低下した。またPEDOT/PSS流量を上げることによる表面抵抗値の低下も見られた。これは芯PEDOT/PSS水分散液の流量を上げたことにより、ファイバー内へのPEDOT/PSS層が厚くなったためと考えられる。いずれの条件で作製した足場でも抵抗値は絶縁体というべき1010(Ω)を超えているものの、導電性の芯層を絶縁体の鞘で覆っているにも関わらず導電性が向上した。この点から、測定時に芯層まで電流が届いている可能性が考えられた。これらの値は既往研究において導電性ポリマーPolyanilineやPolypyrroleを混合したファイバーと比べと比べると抵抗値が8〜9桁高い値である。単純に足場へ混合している系では、足場表面に均一に導電性ポリマーが存在しているため測定値が高くなると考えられる。
4). Evaluation of electrical properties by surface resistivity measurement The surface resistance value and electrical conductivity of the fiber mat were measured. The results are shown in Table 2. The resistance measuring device Hiresta-UX used in this experiment can measure up to a very high resistance value of ~ 10 14 (Ω) by applying a high voltage of 1000 V, and can detect a very weak current. In this experiment, a voltage of 1000 V was applied to all samples and measured. The surface resistance value was highest when “sheath PCL / Gelatin solution only” and “core-sheath material mixture”, and the surface resistance value decreased by 2 to 3 orders of magnitude by introducing the core PEDOT / PSS aqueous dispersion. In addition, the surface resistance value decreased with increasing PEDOT / PSS flow rate. This is thought to be because the PEDOT / PSS layer in the fiber became thicker as the flow rate of the core PEDOT / PSS aqueous dispersion was increased. Although the resistance value of the scaffold manufactured under any condition exceeded 10 10 (Ω), which should be called an insulator, the conductivity was improved even though the conductive core layer was covered with an insulator sheath. From this point, the possibility that current reached the core layer at the time of measurement was considered. These values are 8 to 9 orders of magnitude higher in resistance compared with fibers mixed with conductive polymers such as Polyaniline and Polypyrrole. In a system that is simply mixed into the scaffold, the measured value is considered to be high because the conductive polymer is uniformly present on the scaffold surface.

さらに、鞘PCL/Gelatin溶液濃度が4 wt (%) のとき、5 wt (%) のときと比べ1ケタ表面抵抗値が下がることを確認した(表3)。これはTEM観察から見えた様に、鞘層が薄くなったことで芯部分と通電しやすくなった可能性が考えられた。   Furthermore, when the sheath PCL / Gelatin solution concentration was 4 wt (%), it was confirmed that the single-digit surface resistance value was lower than when it was 5 wt (%) (Table 3). As seen from TEM observation, it was considered that the core layer could easily be energized by the thin sheath layer.

本実験の測定時に印加した電圧は1000 Vと生体における電位(数十mV)と比べ非常に高いため、足場の導電性と細胞挙動と結びつけることは現状では難しい。
Since the voltage applied during the measurement in this experiment is 1000 V, which is very high compared to the potential in the living body (several tens of mV), it is difficult to link the scaffold conductivity with the cellular behavior at present.

5.芯流量を変えて作製したファイバー足場上での筋管形成の比較
芯・鞘二重構造を有するファイバーをエレクトロスピニング法で作製する際、芯のPEDOT/PSS水分散液の流量を変化させて作製し、筋管形成に対する影響を比較した。
5. Comparison of myotube formation on fiber scaffolds made with different core flow rates When producing fibers with a core / sheath dual structure by electrospinning, produced by changing the flow rate of the PEDOT / PSS aqueous dispersion of the core The effects on myotube formation were compared.

芯のPEDOT/PSS水分散液の流量を変化させて作製した足場の場合、培養液を分化誘導培養液に変更することによる分化誘導開始後の細胞密度が統計学的に有意ではないものの継時的に減少する傾向を示した。分化誘導5日目において最も芯流量が大きい「芯流量0.63 ml/h」の足場で、融合細胞率、本数、筋管長さがいずれも全足場条件の中で最大になる傾向を示した(図5B、図6A‐C)。   In the case of scaffolds made by changing the flow rate of PEDOT / PSS aqueous dispersion of the core, the cell density after the start of differentiation induction by changing the culture medium to the differentiation-inducing medium is not statistically significant. Showed a tendency to decrease. On the fifth day of differentiation induction, the scaffold with the highest core flow rate of “core flow 0.63 ml / h” showed a tendency that the fusion cell rate, number, and myotube length were all the highest among all scaffold conditions (Fig. 5B, FIGS. 6A-C).

分化誘導初期0日目と1日目から筋管形成が確認でき、誘導日数0日目〜3日目でも「芯流量0.5 ml/h」と「芯流量0.63 ml/h」で最も筋管形成が高くなった。分化誘導最終日ので5日目では、「芯流量0.5 ml/h」と「芯流量0.63 ml/h」で同等の筋管形率となった。また、芯流量0〜0.33 ml/hの間では筋管形成に大きな影響が見られず、0.50 ml/h以上で筋管形成効率が高まったことから、ある量以上の芯PEDOT/PSS水分散液を導入すると筋管形成が促進されることが示された(図6B)。   Myotube formation can be confirmed from day 0 and day 1 of differentiation induction, and myotube formation is the highest at `` core flow rate 0.5 ml / h '' and `` core flow rate 0.63 ml / h '' on induction days 0 to 3 Became high. On the fifth day of differentiation induction, the myotube shape rate was the same at “core flow rate 0.5 ml / h” and “core flow rate 0.63 ml / h”. In addition, there was no significant effect on myotube formation between the core flow rates of 0 and 0.33 ml / h, and myotube formation efficiency increased at 0.50 ml / h or more, so a certain amount of core PEDOT / PSS water dispersion It was shown that myotube formation was promoted when fluid was introduced (FIG. 6B).

6.鞘PCL(ポリカプロラクトン)/ゼラチン溶液濃度を変更させて作製した足場での筋管形成評価
次に、鞘層の厚みを変化させた場合での筋管形成を評価した。
6). Evaluation of myotube formation in scaffolds prepared by changing the sheath PCL (polycaprolactone) / gelatin solution concentration Next, myotube formation was evaluated when the thickness of the sheath layer was changed.

芯・鞘二重構造ファイバーの紡糸において、各層の厚みはポリマー溶液の濃度に関係することが示されている(Elahi, M. F. et al., J. Bioeng. Biomed. Sci. 3, 1-14 2013)。仮に鞘層表面のC2C12細胞と内部のPEDOT/PSSが影響を及ぼし合っていると仮定した場合、鞘層が薄くなることでより表面の細胞が影響を受けやすくなる、つまり、筋管形成が促進されやすくなると仮定した。   In the spinning of core / sheath dual structure fibers, the thickness of each layer has been shown to be related to the concentration of the polymer solution (Elahi, MF et al., J. Bioeng. Biomed. Sci. 3, 1-14 2013 ). Assuming that C2C12 cells on the surface of the sheath layer and the internal PEDOT / PSS are influencing each other, the thinned sheath layer makes the surface cells more susceptible, that is, promoting myotube formation We assumed that it would be easier.

筋管形成評価の結果を図7、8に示した。分化誘導期間全日において各足場の細胞密度に大きな差は見られなかった。一方、鞘PCL/ゼラチン溶液濃度を低下するにつれてミオシン重鎖が陽性の面積比率、筋管本数、融合細胞率が向上し、鞘PCL/ゼラチン溶液濃度が最も低い3 wt (%)の時にそれぞれ最大となる傾向が見られた。筋管長さについては分化誘導5日目にて鞘濃度4 wt (%)と3 wt (%)の間で顕著な差は見られない。しかし、組織全体として機能する骨格筋を効率的に作製する場合、筋管形成の評価項目として面積比率や筋管本数が多い方が重要と考えられるため、3 wt (%)足場が筋管形成誘導足場として優れていると考えた。また、鞘濃度を4 wt (%)にした際に足場の表面抵抗値が鞘濃度5 wt (%)と比べ、1桁低下した点を踏まえると、芯・鞘二重ファイバーの鞘層を薄くしたことにより優位に筋管形成を促進したと考えられる。   The results of myotube formation evaluation are shown in FIGS. There was no significant difference in the cell density of each scaffold throughout the differentiation induction period. On the other hand, as the sheath PCL / gelatin solution concentration decreased, the area ratio, myotube number, and fused cell rate positive for myosin heavy chain increased, and the maximum when the sheath PCL / gelatin solution concentration was the lowest 3 wt (%). The tendency to become was seen. Regarding myotube length, there is no significant difference between the sheath concentration of 4 wt (%) and 3 wt (%) on the 5th day of differentiation induction. However, when efficiently creating skeletal muscle that functions as an entire tissue, it is considered important to have a larger area ratio and number of myotubes as evaluation items for myotube formation, so a 3 wt (%) scaffold is myotube formation. We thought that it was excellent as an induction scaffold. In addition, when the sheath concentration was 4 wt (%), the surface resistance of the scaffold was reduced by an order of magnitude compared to the sheath concentration of 5 wt (%). This is thought to have facilitated myotube formation.

総括
以上の結果より、導電性ポリマーを芯として内包し、その外側に細胞接着性を有するゲルを鞘として芯・鞘構造の二重層を有する足場として、筋芽細胞を培養すると、筋管形成誘導作用を有することを本研究で認めた。
Summary From the above results, when myoblasts are cultured as a scaffold with a core / sheathed double layer encapsulating a conductive polymer as the core and a cell-adhesive gel on the outside, induction of myotube formation It was confirmed in this study that it has an effect.

この鞘構造は、高い表面抵抗値を有することから培養液が直接導電性ポリマーと接触することにより培養細胞に作用するものではないと考えられる。また、本作用は、芯構造を厚くする、又は、鞘構造を薄くすることにより促進されることから、芯構造の導電性ポリマーの効果が、筋管形成作用の発揮に影響するものと考えられる。   Since this sheath structure has a high surface resistance value, it is considered that the sheath solution does not act on the cultured cells by directly contacting the conductive polymer. Further, since this action is promoted by increasing the core structure or reducing the sheath structure, it is considered that the effect of the conductive polymer of the core structure affects the performance of the myotube formation action. .

Claims (11)

細胞を分化誘導及び/又は増殖するための培養用の基材であって、導電性ポリマーを含む導電性ポリマー層と、細胞接着用ポリマーを含む細胞接着用ポリマー層とを含む少なくとも2層構造を有する多層膜であることを特徴とする、基材。   A culture substrate for inducing and / or proliferating cells, comprising a conductive polymer layer containing a conductive polymer and a cell adhesion polymer layer containing a cell adhesion polymer. A base material characterized by being a multilayer film. 前記細胞がファイバー形状形成能を有する細胞であり、
前記多層膜がファイバー状の前記導電性ポリマー層を内包し、最外層に前記導電性ポリマー層と同軸状に、少なくとも1層の前記細胞接着用ポリマー層が積層されることにより芯・鞘構造又は同軸多層構造を有する多層ファイバーであることを特徴とする、請求項1に記載の基材。
The cell is a cell having a fiber-forming ability;
The multilayer film encloses the fiber-like conductive polymer layer, and at least one cell adhesion polymer layer is laminated coaxially with the conductive polymer layer in the outermost layer, whereby a core / sheath structure or The substrate according to claim 1, wherein the substrate is a multilayer fiber having a coaxial multilayer structure.
前記導電性ポリマーが、PEDOT/PSS[ポリ(3,4-エチレン. ジオキシチオフェン)/ポリ(4-スチレンスルホン酸)]、ポリアニリン又はポリピロールから選択され、
前記細胞接着用ポリマーが、
ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、又はこれらの共重合体を含む細胞接着性ポリマー;
ポリメタクリル酸メチル又はポリスチレンを含む汎用培養器材用ポリマー;及び、
コラーゲン又はゼラチンを含む生体由来ポリマー;
からなる群から選択される少なくとも1種であることを特徴とする、請求項1又は2に記載の基材。
The conductive polymer is selected from PEDOT / PSS [poly (3,4-ethylene dioxythiophene) / poly (4-styrenesulfonic acid)], polyaniline or polypyrrole;
The cell adhesion polymer is
A cell adhesion polymer comprising polycaprolactone, polylactic acid, polyglycolic acid, or a copolymer thereof;
A polymer for general culture equipment comprising polymethyl methacrylate or polystyrene; and
A bio-derived polymer comprising collagen or gelatin;
The base material according to claim 1, wherein the base material is at least one selected from the group consisting of:
前記ファイバー形状形成能を有する細胞が筋芽細胞、神経細胞、これらの株化細胞若しくは初代細胞又はモデル細胞から選択されることを特徴とする、請求項1〜3のいずれか1項に記載の基材。   4. The cell according to claim 1, wherein the cell having the ability to form a fiber is selected from a myoblast, a nerve cell, a cell line or a primary cell thereof, or a model cell. 5. Base material. 細胞の分化誘導及び/又は増殖を促進する方法であって、導電性ポリマーを含む導電性ポリマー層と細胞接着用ポリマーを含む細胞接着用ポリマー層とを含む多層膜を基材として、前記細胞を培養することを特徴とする、方法。   A method of promoting differentiation induction and / or proliferation of a cell, comprising a multilayer film comprising a conductive polymer layer containing a conductive polymer and a cell adhesion polymer layer containing a cell adhesion polymer as a base material. A method comprising culturing. 前記細胞が、ファイバー形状形成能を有する細胞であり、
前記基材が、ファイバー状の導電性ポリマー層を内包し、最外層に少なくとも1層の細胞接着用ポリマー層を有する同軸多層ファイバーであり、
前記細胞を前記基材上で培養することを特徴とする、請求項5に記載の方法。
The cell is a cell having a fiber shape forming ability,
The base material is a coaxial multilayer fiber including a fiber-like conductive polymer layer and having at least one cell adhesion polymer layer as an outermost layer;
The method according to claim 5, wherein the cells are cultured on the substrate.
前記導電性ポリマーが、PEDOT/PSS[ポリ(3,4-エチレン. ジオキシチオフェン)/ポリ(4-スチレンスルホン酸)]、ポリアニリン又はポリピロールから選択され、
前記細胞接着用ポリマーが、
ポリカプロラクトン、ポリ乳酸、ポリグリコール酸又はこれらの共重合体を含む細胞接着性ポリマー;
ポリメタクリル酸メチル又はポリスチレンを含む汎用培養器材用ポリマー;及び、
コラーゲン又はゼラチンを含む生体由来ポリマー;
からなる群から選択される少なくとも1種であることを特徴とする、請求項5又は6に記載の方法。
The conductive polymer is selected from PEDOT / PSS [poly (3,4-ethylene dioxythiophene) / poly (4-styrenesulfonic acid)], polyaniline or polypyrrole;
The cell adhesion polymer is
A cell adhesive polymer comprising polycaprolactone, polylactic acid, polyglycolic acid or a copolymer thereof;
A polymer for general culture equipment comprising polymethyl methacrylate or polystyrene; and
A bio-derived polymer comprising collagen or gelatin;
The method according to claim 5, wherein the method is at least one selected from the group consisting of:
ファイバー形状形成能を有する細胞が筋芽細胞、神経細胞、これらの株化細胞若しくは初代細胞、又はこれらのモデル細胞から選択されることを特徴とする、請求項5〜7のいずれか1項に記載の方法。   The cell having a fiber shape-forming ability is selected from myoblasts, nerve cells, cell lines or primary cells thereof, or model cells thereof, according to any one of claims 5 to 7, The method described. 請求項1〜4のいずれか1項に記載の基材を用いて培養されることを特徴とする、細胞。   A cell, characterized by being cultured using the substrate according to any one of claims 1 to 4. 請求項5〜8のいずれか1項に記載の方法を用いて培養されることを特徴とする、細胞。   A cell, characterized by being cultured using the method according to any one of claims 5 to 8. 前記細胞が、細胞工学用及び/又は再生医療用の細胞であることを特徴とする、請求項9又は10に記載の細胞。   The cell according to claim 9 or 10, wherein the cell is a cell for cell engineering and / or regenerative medicine.
JP2018082903A 2017-05-24 2018-04-24 A cell culture substrate composed of a multilayer film containing a conductive polymer layer and a polymer layer for cell adhesion. Active JP6856862B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017102582 2017-05-24
JP2017102582 2017-05-24

Publications (2)

Publication Number Publication Date
JP2018196370A true JP2018196370A (en) 2018-12-13
JP6856862B2 JP6856862B2 (en) 2021-04-14

Family

ID=64662485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018082903A Active JP6856862B2 (en) 2017-05-24 2018-04-24 A cell culture substrate composed of a multilayer film containing a conductive polymer layer and a polymer layer for cell adhesion.

Country Status (1)

Country Link
JP (1) JP6856862B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109847104A (en) * 2019-03-07 2019-06-07 宁波光远致信生物科技有限公司 A kind of neural restoration film and its preparation method and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109847104A (en) * 2019-03-07 2019-06-07 宁波光远致信生物科技有限公司 A kind of neural restoration film and its preparation method and application

Also Published As

Publication number Publication date
JP6856862B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
Dong et al. Conductive biomaterials for muscle tissue engineering
Babaie et al. Synergistic effects of conductive PVA/PEDOT electrospun scaffolds and electrical stimulation for more effective neural tissue engineering
Bertuoli et al. Electrospun conducting and biocompatible uniaxial and Core–Shell fibers having poly (lactic acid), poly (ethylene glycol), and polyaniline for cardiac tissue engineering
Zhao et al. Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues
Wang et al. Nanofiber yarn/hydrogel core–shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation
Xie et al. Electrospun nanofibers for neural tissue engineering
Gupta et al. Aligned carbon nanotube reinforced polymeric scaffolds with electrical cues for neural tissue regeneration
Sirivisoot et al. Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration
Liu et al. Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating
Ghasemi‐Mobarakeh et al. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering
Magaz et al. Modulation of neuronal cell affinity on PEDOT–PSS nonwoven silk scaffolds for neural tissue engineering
Jin et al. The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine
Wang et al. Enhancement of Schwann cells function using graphene-oxide-modified nanofiber scaffolds for peripheral nerve regeneration
Rahmani et al. Conductive electrospun scaffolds with electrical stimulation for neural differentiation of conjunctiva mesenchymal stem cells
Bechara et al. Electroconductive polymeric nanowire templates facilitates in vitro C17. 2 neural stem cell line adhesion, proliferation and differentiation
Harris et al. Organic electrodes and communications with excitable cells
Meng Nerve cell differentiation using constant and programmed electrical stimulation through conductive non-functional graphene nanosheets film
Chen et al. Three-dimensional electrical conductive scaffold from biomaterial-based carbon microfiber sponge with bioinspired coating for cell proliferation and differentiation
Lee Electrically conducting polymer-based nanofibrous scaffolds for tissue engineering applications
Weng et al. Bio‐interface of conducting polymer‐based materials for neuroregeneration
Browe et al. Optimizing C2C12 myoblast differentiation using polycaprolactone–polypyrrole copolymer scaffolds
Zeng et al. Fabrication of conductive NGF-conjugated polypyrrole–poly (l-lactic acid) fibers and their effect on neurite outgrowth
Aval et al. Nano-featured poly (lactide-co-glycolide)-graphene microribbons as a promising substrate for nerve tissue engineering
Li et al. Fabrication of multilayered nanofiber scaffolds with a highly aligned nanofiber yarn for anisotropic tissue regeneration
Satish et al. Tailored release of triiodothyronine and retinoic acid from a spatio-temporally fabricated nanofiber composite instigating neuronal differentiation

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180529

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210225

R150 Certificate of patent or registration of utility model

Ref document number: 6856862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250