JP2018192409A - Solid catalyst for reductive reaction - Google Patents

Solid catalyst for reductive reaction Download PDF

Info

Publication number
JP2018192409A
JP2018192409A JP2017097044A JP2017097044A JP2018192409A JP 2018192409 A JP2018192409 A JP 2018192409A JP 2017097044 A JP2017097044 A JP 2017097044A JP 2017097044 A JP2017097044 A JP 2017097044A JP 2018192409 A JP2018192409 A JP 2018192409A
Authority
JP
Japan
Prior art keywords
group
formula
transition metal
solid catalyst
reduction reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017097044A
Other languages
Japanese (ja)
Other versions
JP6883257B2 (en
Inventor
稔 脇
Minoru Waki
稔 脇
幹基 氷見山
Tomoki Himiyama
幹基 氷見山
堀井 満正
Mitsumasa Horii
満正 堀井
稲垣 伸二
Shinji Inagaki
伸二 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2017097044A priority Critical patent/JP6883257B2/en
Publication of JP2018192409A publication Critical patent/JP2018192409A/en
Application granted granted Critical
Publication of JP6883257B2 publication Critical patent/JP6883257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a solid catalyst for a reductive reaction that shows high catalytic activity in the reductive reaction in the presence of protein.SOLUTION: A solid catalyst used for a reductive reaction in the presence of protein, contains a transition metal-containing mesoporous organic silica having a structure represented by the following formula (1) [where, M is a transition metal atom to which ligand L may be bound, R-Rrepresent a group constituting the mesoporous organic silica, a hydrogen atom, a halogen atom, or a monovalent or divalent organic group such as an alkyl group].SELECTED DRAWING: None

Description

本発明は、還元反応用固体触媒に関し、より詳しくは、タンパク質存在下での還元反応に使用する還元反応用固体触媒に関する。   The present invention relates to a solid catalyst for reduction reaction, and more particularly to a solid catalyst for reduction reaction used for a reduction reaction in the presence of protein.

酵素は、基質特異的かつ立体選択的な反応を進行させる機能を有するものであり、医薬品の製造過程において有用であることが知られている。しかしながら、これまで、酵素は高価であり、安定的な確保が困難であったため、化学反応における触媒として利用するには多くの課題があった。近年、遺伝子工学技術の進歩により、目的とする酵素を安価で大量に製造することが可能となり、医薬品、生理活性物質、農薬、機能性材料等の製造過程への適用等、酵素の工業的な利用が期待されている。   Enzymes have a function of advancing substrate-specific and stereoselective reactions, and are known to be useful in the manufacturing process of pharmaceuticals. However, until now, enzymes have been expensive, and it has been difficult to ensure their stability, so there have been many problems in using them as catalysts in chemical reactions. In recent years, advances in genetic engineering technology have made it possible to produce target enzymes at low cost and in large quantities, and industrial applications of enzymes such as application to the manufacturing process of pharmaceuticals, bioactive substances, agricultural chemicals, functional materials, etc. Use is expected.

例えば、特開2012−106225号公報(特許文献1)には、オキソバナジウム触媒及びリパーゼの存在下で、環状ラセミ体アリルアルコールとビニルエステルとを反応させて、医薬品等の合成中間体である光学活性アリルエステルを製造する方法が提案されている。この方法では、オキソバナジウム触媒によるアリルアルコールの1,3−転位反応及びラセミ化反応と、リパーゼによる光学分割反応とが同時に進行するため、これらの反応を1つの容器内で行うことによって製造工程の削減を図ることができる。   For example, JP 2012-106225 A (Patent Document 1) describes an optical compound that is a synthetic intermediate for pharmaceuticals and the like by reacting a cyclic racemic allyl alcohol with a vinyl ester in the presence of an oxovanadium catalyst and a lipase. Methods for producing active allyl esters have been proposed. In this method, the 1,3-rearrangement reaction and racemization reaction of allyl alcohol by an oxovanadium catalyst and the optical resolution reaction by lipase proceed simultaneously. Therefore, by performing these reactions in one container, Reduction can be achieved.

特開2012−106225号公報JP 2012-106225 A

しかしながら、オキソバナジウム触媒等の遷移金属触媒を、リパーゼ等の酵素(タンパク質)の存在下で均一系触媒として使用すると、タンパク質の非特異的吸着により遷移金属触媒が失活するという問題があった。また、特許文献1に記載のように、遷移金属化合物をメソポーラスシリカの内部に固定化しても、タンパク質による遷移金属化合物の失活を十分に抑制することは困難であった。   However, when a transition metal catalyst such as an oxovanadium catalyst is used as a homogeneous catalyst in the presence of an enzyme (protein) such as lipase, there is a problem that the transition metal catalyst is deactivated due to nonspecific adsorption of the protein. Moreover, as described in Patent Document 1, even if the transition metal compound is immobilized in the mesoporous silica, it is difficult to sufficiently suppress the deactivation of the transition metal compound by the protein.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、タンパク質の存在下での還元反応において高い触媒活性を示す還元反応用固体触媒を提供することを目的とする。   This invention is made | formed in view of the subject which the said prior art has, and it aims at providing the solid catalyst for reduction reactions which shows high catalytic activity in the reduction reaction in presence of protein.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、ビピリジン基を備えるメソポーラス有機シリカと遷移金属化合物とを混合して、ビピリジン基が前記遷移金属化合物中の遷移金属原子に配位した遷移金属錯体を形成することによって、前記遷移金属化合物がメソポーラス有機シリカの細孔内表面に固定化されることを見出し、さらに、得られた遷移金属含有メソポーラス有機シリカがタンパク質の存在下での還元反応において優れた触媒活性を示すことを見出し、本発明を完成するに至った。   As a result of intensive research to achieve the above object, the present inventors have mixed mesoporous organic silica having a bipyridine group and a transition metal compound, and the bipyridine group is arranged on the transition metal atom in the transition metal compound. It was found that the transition metal compound was immobilized on the pore inner surface of the mesoporous organic silica by forming a transition metal complex, and the obtained transition metal-containing mesoporous organic silica was obtained in the presence of protein. The present inventors have found that the present invention has achieved excellent catalytic activity in the reduction reaction.

すなわち、本発明の還元反応用固体触媒は、下記式(1):   That is, the solid catalyst for reduction reaction of the present invention has the following formula (1):

〔前記式(1)中、Mは、配位子Lが結合していてもよい遷移金属原子を表し、R〜Rのうちの少なくとも1つの基は、下記式(2): [In the formula (1), M represents a transition metal atom to which a ligand L may be bonded, and at least one group of R 1 to R 8 is represented by the following formula (2):

(前記式(2)中、Yは、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、エーテル基、カルボニル基、アミノ基、アミド基及びイミド基からなる群から選択される2価又は3価の有機基或いは単結合であり、Rは炭素数1〜8のアルキル基又は置換若しくは無置換のアリル基を表し、Rは水素原子又はシリル基を表し、kは1又は2であり、iは1〜3の整数であり、jは0〜2の整数であり、1≦i+j≦3であり、iとjとの組み合わせは、複数存在する前記式(2)で表される基においてそれぞれ独立であり、*は隣接する構造との結合部位である。)
で表される基であり、R〜Rのうちの残りの基はそれぞれ独立に水素原子、ハロゲン原子、或いはアルキル基、アリール基、ヒドロキシ基、アルコキシ基、フェノキシ基、カルボキシ基、カルボン酸エステル基、アセチル基、ベンゾイル基、アミノ基、アミド基、イミド基、ニトロ基及びシアノ基からなる群から選択される1価又は2価の有機基である。〕
で表される構造を備える遷移金属含有メソポーラス有機シリカからなり、タンパク質存在下での還元反応に使用することを特徴とするものである。
(In the formula (2), Y is a divalent or trivalent group selected from the group consisting of an alkylene group, an alkenylene group, an alkynylene group, an arylene group, an ether group, a carbonyl group, an amino group, an amide group, and an imide group. An organic group or a single bond, R a represents an alkyl group having 1 to 8 carbon atoms or a substituted or unsubstituted allyl group, R b represents a hydrogen atom or a silyl group, k is 1 or 2, and i Is an integer of 1 to 3, j is an integer of 0 to 2, 1 ≦ i + j ≦ 3, and a plurality of combinations of i and j are present in the group represented by the formula (2). Independent, * is a binding site with an adjacent structure.)
The remaining groups of R 1 to R 8 are each independently a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a hydroxy group, an alkoxy group, a phenoxy group, a carboxy group, or a carboxylic acid. It is a monovalent or divalent organic group selected from the group consisting of an ester group, acetyl group, benzoyl group, amino group, amide group, imide group, nitro group and cyano group. ]
It is characterized by using a transition metal-containing mesoporous organic silica having a structure represented by the following, and used for a reduction reaction in the presence of protein.

このような還元反応用固体触媒において、遷移金属含有メソポーラス有機シリカの中心細孔直径は2〜10nmであることが好ましい。また、前記タンパク質としては生理活性タンパク質が好ましく、血漿タンパク質、酵素、輸送タンパク質、貯蔵タンパク質、抗体からなる群から選択される少なくとも1種がより好ましい。   In such a solid catalyst for reduction reaction, the central pore diameter of the transition metal-containing mesoporous organic silica is preferably 2 to 10 nm. The protein is preferably a physiologically active protein, more preferably at least one selected from the group consisting of plasma protein, enzyme, transport protein, storage protein, and antibody.

また、本発明の還元反応用固体触媒においては、前記遷移金属原子がロジウム原子であることが好ましく、遷移金属原子にペンタメチルシクロペンタジエニルが配位していることが好ましい。さらに、前記還元反応は水素移動反応であることが好ましい。   In the solid catalyst for reduction reaction of the present invention, the transition metal atom is preferably a rhodium atom, and pentamethylcyclopentadienyl is preferably coordinated to the transition metal atom. Furthermore, the reduction reaction is preferably a hydrogen transfer reaction.

本発明によれば、タンパク質の存在下での還元反応において高い触媒活性を示す還元反応用固体触媒を得ることが可能となる。   According to the present invention, it is possible to obtain a solid catalyst for reduction reaction that exhibits high catalytic activity in a reduction reaction in the presence of protein.

調製例1で得られたビピリジン基含有メソポーラス有機シリカ及び合成例1で得られたRh含有メソポーラス有機シリカのX線回折パターンを示すグラフである。2 is a graph showing X-ray diffraction patterns of the bipyridine group-containing mesoporous organic silica obtained in Preparation Example 1 and the Rh-containing mesoporous organic silica obtained in Synthesis Example 1. FIG. 合成例1で得られたRh含有メソポーラス有機シリカの窒素吸脱着等温線を示すグラフである。3 is a graph showing nitrogen adsorption / desorption isotherms of Rh-containing mesoporous organic silica obtained in Synthesis Example 1. FIG. ウシ血清アルブミン濃度と2−シクロヘキセ−1−オンの転化率との関係を示すグラフである。It is a graph which shows the relationship between a bovine serum albumin density | concentration and the conversion rate of 2-cyclohex-1-one. Rh含有メソポーラス有機シリカ、Rh含有ノンポーラスシリカ、又はRh含有メソポーラスシリカを用いた場合の2−シクロヘキセ−1−オンの転化率を示すグラフである。It is a graph which shows the conversion rate of 2-cyclohex-1-one at the time of using Rh containing mesoporous organic silica, Rh containing nonporous silica, or Rh containing mesoporous silica.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

本発明の還元反応用固体触媒は、タンパク質存在下での還元反応に使用されるものであり、下記式(1):   The solid catalyst for reduction reaction of the present invention is used for a reduction reaction in the presence of protein, and has the following formula (1):

〔前記式(1)中、Mは、配位子Lが結合していてもよい遷移金属原子を表し、R〜Rのうちの少なくとも1つの基は、下記式(2): [In the formula (1), M represents a transition metal atom to which a ligand L may be bonded, and at least one group of R 1 to R 8 is represented by the following formula (2):

(前記式(2)中、Yは、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、エーテル基、カルボニル基、アミノ基、アミド基及びイミド基からなる群から選択される2価又は3価の有機基或いは単結合であり、Rは炭素数1〜8のアルキル基又は置換若しくは無置換のアリル基を表し、Rは水素原子又はシリル基を表し、kは1又は2であり、iは1〜3の整数であり、jは0〜2の整数であり、1≦i+j≦3であり、iとjとの組み合わせは、複数存在する前記式(2)で表される基においてそれぞれ独立であり、*は隣接する構造との結合部位である。)
で表される基であり、R〜Rのうちの残りの基はそれぞれ独立に水素原子、ハロゲン原子、或いはアルキル基、アリール基、ヒドロキシ基、アルコキシ基、フェノキシ基、カルボキシ基、カルボン酸エステル基、アセチル基、ベンゾイル基、アミノ基、アミド基、イミド基、ニトロ基及びシアノ基からなる群から選択される1価又は2価の有機基である。〕
で表される構造を備える遷移金属含有メソポーラス有機シリカからなるものである。このような本発明の還元反応用固体触媒においては、タンパク質がメソポーラス有機シリカの細孔内に侵入しにくく、このような細孔内に触媒活性種である遷移金属原子が固定化されているため、タンパク質による触媒の失活が抑制され、タンパク質の存在下においても高い触媒活性を得ることが可能となる。
(In the formula (2), Y is a divalent or trivalent group selected from the group consisting of an alkylene group, an alkenylene group, an alkynylene group, an arylene group, an ether group, a carbonyl group, an amino group, an amide group, and an imide group. An organic group or a single bond, R a represents an alkyl group having 1 to 8 carbon atoms or a substituted or unsubstituted allyl group, R b represents a hydrogen atom or a silyl group, k is 1 or 2, and i Is an integer of 1 to 3, j is an integer of 0 to 2, 1 ≦ i + j ≦ 3, and a plurality of combinations of i and j are present in the group represented by the formula (2). Independent, * is a binding site with an adjacent structure.)
The remaining groups of R 1 to R 8 are each independently a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a hydroxy group, an alkoxy group, a phenoxy group, a carboxy group, or a carboxylic acid. It is a monovalent or divalent organic group selected from the group consisting of an ester group, acetyl group, benzoyl group, amino group, amide group, imide group, nitro group and cyano group. ]
It consists of transition metal containing mesoporous organic silica provided with the structure represented by these. In such a solid catalyst for reduction reaction according to the present invention, proteins are unlikely to enter the pores of mesoporous organic silica, and transition metal atoms that are catalytically active species are immobilized in such pores. Inactivation of the catalyst by the protein is suppressed, and high catalytic activity can be obtained even in the presence of the protein.

本発明の還元反応用固体触媒において、前記式(1)で表される構造は、前記遷移金属含有メソポーラス有機シリカの骨格中に含まれていることが好ましい。これにより、細孔内での反応基質の拡散性が阻害されにくくなり、高い触媒活性を得ることができる。   In the solid catalyst for reduction reaction of the present invention, the structure represented by the formula (1) is preferably contained in the skeleton of the transition metal-containing mesoporous organic silica. Thereby, the diffusibility of the reaction substrate in the pores is hardly inhibited, and high catalytic activity can be obtained.

本発明の還元反応用固体触媒は、前記式(1)で示されるように、ビピリジン基を含有しており、このビピリジン基が遷移金属原子に配位することによって遷移金属錯体が形成され、この遷移金属錯体が活性サイトとなって触媒作用を示す。なお、本発明の還元反応用固体触媒においては、全てのビピリジン基が前記遷移金属原子に配位している必要はない。また、前記遷移金属含有メソポーラス有機シリカにおいては、前記式(2)で表される基は架橋点を有する基(以下、「架橋基」ともいう)であり、この架橋基中のシロキサン結合(Si−O結合)によってビピリジン基が三次元的に架橋されているため、本発明の還元反応用固体触媒は、機械的作用や化学的作用に対して高い耐久性を示すものとなる。   The solid catalyst for reduction reaction of the present invention contains a bipyridine group as represented by the formula (1), and a transition metal complex is formed by coordination of this bipyridine group to a transition metal atom. The transition metal complex becomes an active site and exhibits catalytic action. In the solid catalyst for reduction reaction of the present invention, it is not necessary that all bipyridine groups are coordinated to the transition metal atom. In the transition metal-containing mesoporous organic silica, the group represented by the formula (2) is a group having a crosslinking point (hereinafter, also referred to as “crosslinking group”), and a siloxane bond (Si Since the bipyridine group is three-dimensionally crosslinked by —O bond), the solid catalyst for reduction reaction of the present invention exhibits high durability against mechanical action and chemical action.

前記式(1)において、Mは遷移金属原子を表す。このような遷移金属原子としては、還元反応に触媒活性種として作用するものであれば特に制限はないが、還元反応において高い触媒活性を示す錯体触媒が得られるという観点から、周期表第9族の遷移金属原子が好ましく、ロジウム(Rh)、イリジウム(Ir)がより好ましい。   In the formula (1), M represents a transition metal atom. Such a transition metal atom is not particularly limited as long as it acts as a catalytically active species in the reduction reaction, but from the viewpoint of obtaining a complex catalyst exhibiting high catalytic activity in the reduction reaction, it is Group 9 of the periodic table. Transition metal atoms are preferred, and rhodium (Rh) and iridium (Ir) are more preferred.

また、このような遷移金属原子Mには、配位子Lが結合していてもよい。Mに配位している配位子Lの数は1又は2以上であり、2以上の配位子Lが配位している場合、それらは同一のものであっても異なるものであってもよい。このような配位子Lとしては、前記遷移金属原子に配位するものであれば特に制限はないが、例えば、メトキシ基、エトキシ基、フェノキシ基、ヒドロキシル基、アセトキシ基等の酸素系配位子、カルボニル、1,5−シクロオクタジエン、cis−シクロオクテン、テトラメチルシクロペンタジエン、ペンタメチルシクロペンタジエン、シメン等の炭素系配位子、トリメチルホスフィン、トリブチルホスフィンといったトリアルキルホスフィン、トリフェニルホスフィンといったトリアリールホスフィン等のリン系配位子、アンモニア、シクロヘキシルジアミン、アルキルアミン等の窒素系配位子、クロロ、ブロモ、ヨード等のハロゲン系配位子、トリフラート、トシラート、メシラート等のスルホン酸系配位子が挙げられる。このような配位子のうち、触媒反応時に脱離しやすいという観点から、ハロゲン系配位子、スルホン酸系配位子が好ましく、スルホン酸系配位子がより好ましく、また、遷移金属原子上の電子密度を向上させるという観点から、炭素系配位子が好ましく、テトラメチルシクロペンタジエン、ペンタメチルシクロペンタジエンがより好ましい。また、テトラヒドロフラン(THF)やアセトニトリル(CHCN)等の溶媒分子が配位していてもよい。 Further, the ligand L may be bonded to such a transition metal atom M. The number of ligands L coordinated to M is 1 or 2 or more, and when two or more ligands L are coordinated, they may be the same or different. Also good. Such a ligand L is not particularly limited as long as it coordinates to the transition metal atom. For example, oxygen-based coordination such as methoxy group, ethoxy group, phenoxy group, hydroxyl group, acetoxy group, etc. Carbonyl, 1,5-cyclooctadiene, cis-cyclooctene, tetramethylcyclopentadiene, pentamethylcyclopentadiene, cymene and other carbon-based ligands, trialkylphosphine such as trimethylphosphine and tributylphosphine, and triphenylphosphine Phosphorus ligands such as triarylphosphine, nitrogen ligands such as ammonia, cyclohexyldiamine and alkylamine, halogen ligands such as chloro, bromo and iodo, and sulfonates such as triflate, tosylate and mesylate A rank is listed. Among these ligands, halogen-based ligands and sulfonic acid-based ligands are preferable, sulfonic acid-based ligands are more preferable, and transition metal atoms are more easily removed from the viewpoint of easy elimination during the catalytic reaction. From the standpoint of improving the electron density, a carbon-based ligand is preferable, and tetramethylcyclopentadiene and pentamethylcyclopentadiene are more preferable. Further, solvent molecules such as tetrahydrofuran (THF) and acetonitrile (CH 3 CN) may be coordinated.

また、前記式(1)において、R〜Rのうちの少なくとも1つの基は、前記式(2)で表される架橋基であり、メソ細孔構造が形成されやすいという観点から、R〜Rのうちの少なくとも1つの基及びR〜Rのうちの少なくとも1つの基がそれぞれ独立に前記架橋基であることが好ましく、R及びRがそれぞれ独立に前記架橋基であることがより好ましい。 In the formula (1), at least one group of R 1 to R 8 is a cross-linking group represented by the formula (2), and from the viewpoint that a mesopore structure is easily formed, R Preferably, at least one group of 1 to R 4 and at least one group of R 5 to R 8 are each independently the bridging group, and R 2 and R 6 are each independently the bridging group. More preferably.

前記式(2)中のYは、アルキレン基(好ましくは炭素数1〜12、より好ましくは炭素数1〜6)、アルケニレン基(好ましくは炭素数2〜12、より好ましくは炭素数2〜6)、アルキニレン基(好ましくは炭素数2〜12、より好ましくは炭素数2〜6)、アリーレン基(好ましくは炭素数6〜12)、エーテル基、カルボニル基、アミノ基、アミド基及びイミド基からなる群から選択される2価又は3価の有機基或いは単結合である。   Y in the formula (2) is an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms) or an alkenylene group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms). ), Alkynylene groups (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), arylene groups (preferably having 6 to 12 carbon atoms), ether groups, carbonyl groups, amino groups, amide groups and imide groups. A divalent or trivalent organic group or a single bond selected from the group consisting of

前記アルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基等が挙げられ、前記アルケニレン基としては、エテニレン基、プロペニレン基、ブテニレン基等が挙げられ、前記アルキニレン基としては、エチニレン基、プロピニレン基、ブチニレン基等が挙げられ、前記アリーレン基としては、例えば、フェニレン基等の単環の芳香族環、ナフチレン基、フルオレニレン基等の芳香族縮合環が挙げられる。   Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, and a butylene group. Examples of the alkenylene group include an ethenylene group, a propenylene group, and a butenylene group. Examples of the alkynylene group include an ethynylene group, Examples thereof include a propynylene group and a butynylene group. Examples of the arylene group include a monocyclic aromatic ring such as a phenylene group, and an aromatic condensed ring such as a naphthylene group and a fluorenylene group.

このような2価又は3価の有機基及び単結合のうち、固体触媒の機械的強度及び化学的安定性が向上するという観点から、アルキレン基及び単結合が好ましく、炭素数1〜6のアルキレン基及び単結合がより好ましい。   Among these divalent or trivalent organic groups and single bonds, an alkylene group and a single bond are preferable from the viewpoint of improving the mechanical strength and chemical stability of the solid catalyst, and alkylene having 1 to 6 carbon atoms. Groups and single bonds are more preferred.

前記式(2)中のRは、炭素数1〜8(好ましくは1〜4)のアルキル基又は置換若しくは無置換のアリル基を表し、前記アリル基はメチル基等の置換基を有していてもよい。また、前記式(2)中のRは水素原子又はシリル基を表し、前記シリル基としては、トリメチルシリル基等のアルキルシリル基が挙げられ、Rとしては、化学的安定性が向上するという観点から、シリル基が好ましい。 Ra in the formula (2) represents an alkyl group having 1 to 8 carbon atoms (preferably 1 to 4) or a substituted or unsubstituted allyl group, and the allyl group has a substituent such as a methyl group. It may be. In the formula (2), R b represents a hydrogen atom or a silyl group, and examples of the silyl group include alkylsilyl groups such as a trimethylsilyl group, and R b is said to improve chemical stability. From the viewpoint, a silyl group is preferable.

また、前記式(2)中の*は、隣接する構造との結合部位である。前記隣接する構造としては、前記遷移金属含有メソポーラス有機シリカ中の前記式(1)で表される構造からなる繰り返し単位、後述する式(3)で表される構造からなる繰り返し単位、後述する式(4)で表される構造等が挙げられる。   Moreover, * in the said Formula (2) is a coupling | bond part with an adjacent structure. Examples of the adjacent structure include a repeating unit composed of the structure represented by the formula (1) in the transition metal-containing mesoporous organic silica, a repeating unit composed of a structure represented by the formula (3) described later, and a formula described below. Examples include the structure represented by (4).

前記式(2)中のkは1又は2であり、iは1〜3の整数(好ましくは2〜3の整数)であり、jは0〜2の整数(好ましくは0〜1の整数)であり、1≦i+j≦3(好ましくは2≦i+j≦3)である。なお、iとjとの組み合わせは、複数存在する前記架橋基においてそれぞれ独立であり、本発明の還元反応用固体触媒中の全ての前記架橋基において同じである必要はない。   In the formula (2), k is 1 or 2, i is an integer of 1 to 3 (preferably an integer of 2 to 3), and j is an integer of 0 to 2 (preferably an integer of 0 to 1). And 1 ≦ i + j ≦ 3 (preferably 2 ≦ i + j ≦ 3). The combination of i and j is independent for each of a plurality of the crosslinking groups, and need not be the same for all the crosslinking groups in the solid catalyst for reduction reaction of the present invention.

前記式(1)において、R〜Rのうちの残りの基はそれぞれ独立に水素原子、ハロゲン原子、或いはアルキル基(好ましくは炭素数1〜12)、アリール基(好ましくは炭素数6〜12)、ヒドロキシ基、アルコキシ基(好ましくは炭素数1〜12)、フェノキシ基、カルボキシ基、カルボン酸エステル基(好ましくは炭素数1〜4)、アセチル基、ベンゾイル基、アミノ基、アミド基、イミド基、ニトロ基及びシアノ基からなる群から選択される1価又は2価の有機基である。 In the formula (1), the remaining groups of R 1 to R 8 are each independently a hydrogen atom, a halogen atom, an alkyl group (preferably having 1 to 12 carbon atoms), an aryl group (preferably having 6 to 6 carbon atoms). 12), a hydroxy group, an alkoxy group (preferably having 1 to 12 carbon atoms), a phenoxy group, a carboxy group, a carboxylic acid ester group (preferably having 1 to 4 carbon atoms), an acetyl group, a benzoyl group, an amino group, an amide group, It is a monovalent or divalent organic group selected from the group consisting of an imide group, a nitro group and a cyano group.

前記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられ、前記アリール基としては、例えば、フェニル基等の単環の芳香族環、ナフチル基、フルオレニル基等の芳香族縮合環が挙げられ、前記アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられ、前記カルボン酸エステル基としては、カルボン酸メチル基、カルボン酸エチル基、カルボン酸プロピル基、カルボン酸ブチル基等が挙げられる。   Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, and a butyl group. Examples of the aryl group include a monocyclic aromatic ring such as a phenyl group, and an aromatic group such as a naphthyl group and a fluorenyl group. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group. Examples of the carboxylic acid ester group include a carboxylic acid methyl group, a carboxylic acid ethyl group, and a carboxylic acid propyl group. And carboxylic acid butyl group.

このような1価又は2価の有機基のうち、固体触媒の機械的強度及び化学的安定性が向上するという観点から、水素原子、メチル基、エチル基、メトキシ基、フェニル基、フェノキシ基が好ましく、水素原子がより好ましい。   Among such monovalent or divalent organic groups, from the viewpoint of improving the mechanical strength and chemical stability of the solid catalyst, a hydrogen atom, a methyl group, an ethyl group, a methoxy group, a phenyl group, and a phenoxy group Preferably, a hydrogen atom is more preferable.

前記式(1)で表される構造を備える遷移金属含有メソポーラス有機シリカにおいて、遷移金属含有メソポーラス有機シリカ1gあたりの遷移金属原子の固定化量としては、0.01mmol/g以上であれば特に制限はないが、触媒活性の向上と遷移金属原子の有効利用という観点から、0.01〜3.0mmol/gが好ましく、0.02〜2.5mmol/gがより好ましく、0.05〜2.0mmol/gがさらに好ましく、0.075〜1.5mmol/gが特に好ましく、0.10〜1.0mmol/gが最も好ましい。   In the transition metal-containing mesoporous organic silica having the structure represented by the formula (1), the amount of transition metal atoms immobilized per 1 g of the transition metal-containing mesoporous organic silica is particularly limited as long as it is 0.01 mmol / g or more. However, 0.01 to 3.0 mmol / g is preferred, 0.02 to 2.5 mmol / g is more preferred, and 0.05 to 2. 0 mmol / g is more preferable, 0.075 to 1.5 mmol / g is particularly preferable, and 0.10 to 1.0 mmol / g is most preferable.

このような遷移金属原子の固定化量は、ビピリジン基含有メソポーラス有機シリカ中のビピリジン基の含有量に応じて任意に調整することができ、また、前記ビピリジン基の含有量も任意に調整することができる。特に、本発明の還元反応用固体触媒においては、細孔直径が比較的大きいメソポーラス有機シリカを担体として用いているため、細孔が閉塞したり、細孔直径が小さくなったりしにくいため、触媒性能を低下させることなく、遷移金属原子の固定化量を増加させることができる。   The amount of the transition metal atom immobilized can be arbitrarily adjusted according to the content of the bipyridine group in the bipyridine group-containing mesoporous organic silica, and the content of the bipyridine group can also be arbitrarily adjusted. Can do. In particular, in the solid catalyst for reduction reaction of the present invention, since mesoporous organic silica having a relatively large pore diameter is used as a carrier, the pores are not easily blocked or the pore diameter is not easily reduced. The amount of transition metal atoms immobilized can be increased without degrading the performance.

また、前記式(1)で表される構造を備える遷移金属含有メソポーラス有機シリカにおいては、前記式(1)で表される構造以外の構造(以下、「その他の構造」という)を含んでいてもよい。このようなその他の構造としては、下記式(3)及び(4):   Further, the transition metal-containing mesoporous organic silica having the structure represented by the formula (1) includes a structure other than the structure represented by the formula (1) (hereinafter referred to as “other structure”). Also good. Such other structures include the following formulas (3) and (4):

で表される構造が好ましく、これらの構造はいずれか一方が含まれていても両方が含まれていてもよい。 The structure represented by these is preferable and these structures may contain either one or both.

前記式(3)において、Rは、2〜4価の有機基であり、アルキレン基(好ましくは炭素数1〜12、より好ましくは炭素数1〜6)、アリーレン基(好ましくは炭素数6〜12)等が挙げられる。前記式(3)及び(4)において、Rはそれぞれ独立に炭素数1〜8(好ましくは1〜4)のアルキル基又は置換若しくは無置換のアリル基を表し、前記アリル基はメチル基等の置換基を有していてもよい。また、前記式(3)及び(4)において、Rはそれぞれ独立に水素原子又はシリル基を表し、前記シリル基としては、トリメチルシリル基等のアルキルシリルが挙げられ、Rとしては、化学的安定性が向上するという観点から、シリル基が好ましい。 In the formula (3), R 9 is a divalent to tetravalent organic group, an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms), an arylene group (preferably having 6 carbon atoms). ~ 12) and the like. In the formulas (3) and (4), each R c independently represents an alkyl group having 1 to 8 carbon atoms (preferably 1 to 4) or a substituted or unsubstituted allyl group, and the allyl group is a methyl group or the like. You may have the substituent of. Further, in the formula (3) and (4), R d each independently represent a hydrogen atom or a silyl group, examples of the silyl groups include alkylsilyl such as trimethylsilyl group, as R d is chemically From the viewpoint of improving stability, a silyl group is preferred.

また、前記式(3)及び(4)中の*は、隣接する構造との結合部位である。前記隣接する構造としては、前記遷移金属含有メソポーラス有機シリカ中の前記式(1)で表される構造からなる繰り返し単位、前記式(3)で表される構造からなる繰り返し単位、前記式(4)で表される構造等が挙げられる。   Moreover, * in said Formula (3) and (4) is a coupling | bond part with an adjacent structure. Examples of the adjacent structure include a repeating unit composed of the structure represented by the formula (1) in the transition metal-containing mesoporous organic silica, a repeating unit composed of the structure represented by the formula (3), and the formula (4) ) And the like.

前記式(3)及び(4)中のrはそれぞれ独立に1又は2であり、pはそれぞれ独立に1〜3の整数(好ましくは2〜3の整数)であり、qはそれぞれ独立に0〜2の整数(好ましくは0〜1の整数)であり、1≦p+q≦3(好ましくは2≦p+q≦3)である。なお、pとqとの組み合わせは、複数存在する前記式(3)又は(4)で表される構造においてそれぞれ独立であり、本発明の還元反応用固体触媒中の全ての前記式(3)又は(4)で表される構造において同じである必要はない。   In the formulas (3) and (4), r is independently 1 or 2, p is independently an integer of 1 to 3 (preferably an integer of 2 to 3), and q is independently 0. An integer of ˜2 (preferably an integer of 0 to 1), and 1 ≦ p + q ≦ 3 (preferably 2 ≦ p + q ≦ 3). In addition, the combination of p and q is independent in each of the structures represented by the formula (3) or (4), and all the formulas (3) in the solid catalyst for reduction reaction of the present invention are used. Or it is not necessary to be the same in the structure represented by (4).

前記式(1)で表される構造を備える遷移金属含有メソポーラス有機シリカにおいて、このようなその他の構造の割合としては、前記式(1)で表される構造とその他の構造との合計量に対して、99.5mol%以下であれば特に制限はないが、触媒活性が向上するという観点から、0〜90mol%が好ましく、0〜70mol%がより好ましく、0〜50mol%がさらに好ましく、0〜30mol%が特に好ましい。   In the transition metal-containing mesoporous organic silica having the structure represented by the formula (1), the ratio of the other structure is the total amount of the structure represented by the formula (1) and the other structure. On the other hand, there is no particular limitation as long as it is 99.5 mol% or less, but from the viewpoint of improving catalytic activity, 0 to 90 mol% is preferable, 0 to 70 mol% is more preferable, 0 to 50 mol% is further preferable, and 0 ˜30 mol% is particularly preferred.

本発明にかかる遷移金属含有メソポーラス有機シリカはメソ細孔を有する構造(メソ細孔構造)を有する。このようなメソ細孔構造における細孔径(中心細孔直径)としては、タンパク質が細孔内に侵入することを防ぐという観点から、タンパク質分子の大きさより小さいことが好ましく、具体的には、1〜20nmが好ましく、2〜10nmがより好ましい。中心細孔直径が前記下限未満になると、触媒反応における反応基質がメソ細孔内に十分に拡散せず、触媒反応が十分に進行しない傾向にあり、他方、前記上限を超えると、タンパク質が細孔内に侵入し、触媒活性種である遷移金属原子が失活する傾向にある。   The transition metal-containing mesoporous organic silica according to the present invention has a structure having mesopores (mesopore structure). The pore diameter (center pore diameter) in such a mesopore structure is preferably smaller than the size of the protein molecule from the viewpoint of preventing the protein from entering the pore. -20 nm is preferable and 2-10 nm is more preferable. When the central pore diameter is less than the lower limit, the reaction substrate in the catalytic reaction does not sufficiently diffuse into the mesopores and the catalytic reaction tends not to proceed sufficiently. It tends to enter the pores and deactivate the transition metal atom that is a catalytically active species.

また、前記メソ細孔構造における全細孔容量としては、0.1cm/g以上が好ましく、0.2cm/g以上がより好ましい。全細孔容量が前記下限未満になると、触媒反応における反応基質がメソ細孔内に十分に拡散せず、触媒反応が十分に進行しない傾向にある。さらに、前記遷移金属含有メソポーラス有機シリカにおいて、BET比表面積としては、100cm/g以上が好ましく、300cm/g以上がより好ましい。BET比表面積が前記下限未満になると、十分な触媒活性が得られない傾向にある。 The total pore volume in the mesopore structure is preferably 0.1 cm 3 / g or more, more preferably 0.2 cm 3 / g or more. When the total pore volume is less than the lower limit, the reaction substrate in the catalytic reaction does not sufficiently diffuse into the mesopores, and the catalytic reaction tends not to proceed sufficiently. Further, in the transition metal-containing mesoporous organic silica, the BET specific surface area is preferably 100 cm 2 / g or more, and more preferably 300 cm 2 / g or more. When the BET specific surface area is less than the lower limit, sufficient catalytic activity tends not to be obtained.

なお、前記中心細孔直径とは、細孔容積(V)を細孔直径(D)で微分した値(dV/dD)を細孔直径(D)に対してプロットした曲線(細孔径分布曲線)の最大ピークにおける細孔直径であり、次に述べる方法により求めることができる。すなわち、試料を液体窒素温度(−196℃)に冷却して窒素ガスを導入し、定容量法或いは重量法によりその吸着量を求め、次いで、導入する窒素ガスの圧力を徐々に増加させ、各平衡圧に対する窒素ガスの吸着量をプロットし、吸着等温線を得る。この吸着等温線を用い、DFT(Density−Functional−Theory)法、Cranston−Inklay法、Pollimore−Heal法、BJH法等の計算法により細孔径分布曲線を求めることができる。   The central pore diameter is a curve (pore diameter distribution curve) in which a value (dV / dD) obtained by differentiating the pore volume (V) with respect to the pore diameter (D) is plotted against the pore diameter (D). ) At the maximum peak, and can be determined by the method described below. That is, the sample is cooled to liquid nitrogen temperature (−196 ° C.), nitrogen gas is introduced, the adsorption amount is determined by a constant volume method or a gravimetric method, and then the pressure of the introduced nitrogen gas is gradually increased, Plot the adsorption amount of nitrogen gas against the equilibrium pressure to obtain the adsorption isotherm. Using this adsorption isotherm, a pore size distribution curve can be obtained by a calculation method such as DFT (Density-Functional-Theory) method, Cranston-Inklay method, Pollimore-Heal method, BJH method.

また、本発明にかかる遷移金属含有メソポーラス有機シリカのX線回折パターンには、1〜50nmのd値に相当する回折角度に1本以上の回折ピークが存在していることが好ましい。X線回折ピークは、そのピーク角度に相当するd値の周期構造が試料中に存在することを意味する。従って、1〜50nmのd値に相当する回折角度に1本以上の回折ピークがあることは、細孔が1〜50nmの間隔で規則的に配列している、規則的なメソ細孔構造を備えていることを意味する。このような規則的なメソ細孔構造を備える遷移金属含有メソポーラス有機シリカは、前記遷移金属錯体が安定に固定化されており、触媒活性に優れている。   In the X-ray diffraction pattern of the transition metal-containing mesoporous organic silica according to the present invention, it is preferable that one or more diffraction peaks exist at a diffraction angle corresponding to a d value of 1 to 50 nm. The X-ray diffraction peak means that a periodic structure having a d value corresponding to the peak angle exists in the sample. Therefore, the presence of one or more diffraction peaks at a diffraction angle corresponding to a d value of 1 to 50 nm indicates that a regular mesopore structure in which pores are regularly arranged at intervals of 1 to 50 nm. It means to have. The transition metal-containing mesoporous organic silica having such a regular mesoporous structure has excellent catalytic activity because the transition metal complex is stably immobilized.

このような本発明の還元反応用固体触媒は、例えば、下記式(1a):   Such a solid catalyst for reduction reaction of the present invention includes, for example, the following formula (1a):

〔前記式(1a)中、R〜Rは前記式(1)中のR〜Rと同一の基である。〕
で表される構造を備えるビピリジン基含有メソポーラス有機シリカと遷移金属化合物とを混合することによって製造することができる。これにより、前記式(1a)中の窒素原子が前記遷移金属化合物中の遷移金属原子に配位し、前記式(1)で表される構造を備える遷移金属含有メソポーラス有機シリカが得られる。このような混合は、触媒反応を行う前に、触媒反応系とは異なる系で行なってもよいし、触媒反応系において行なってもよい。
[In the formula (1a), R 1 to R 8 are the same groups as R 1 to R 8 in the formula (1). ]
It can manufacture by mixing a bipyridine group containing mesoporous organic silica provided with the structure represented by these, and a transition metal compound. Thereby, the nitrogen atom in the said formula (1a) coordinates to the transition metal atom in the said transition metal compound, and the transition metal containing mesoporous organic silica provided with the structure represented by the said Formula (1) is obtained. Such mixing may be performed in a system different from the catalytic reaction system before the catalytic reaction, or may be performed in the catalytic reaction system.

前記遷移金属化合物としては特に制限はないが、遷移金属原子Mに1又は2以上の前記配位子Lが配位している遷移金属錯体が好ましい。このような遷移金属錯体としては、(ペンタメチルシクロペンタジエニル)ロジウム(III)ジクロリドダイマー([RhCpCl)、(ペンタメチルシクロペンタジエニル)イリジウム(III)ジクロリドダイマー([IrCpCl)等が挙げられる。 The transition metal compound is not particularly limited, but a transition metal complex in which one or two or more of the ligands L are coordinated to the transition metal atom M is preferable. Such transition metal complexes include (pentamethylcyclopentadienyl) rhodium (III) dichloride dimer ([RhCp * Cl 2 ] 2 ), (pentamethylcyclopentadienyl) iridium (III) dichloride dimer ([IrCp * Cl 2 ] 2 ) and the like.

前記式(1a)で表される構造を備えるメソポーラス有機シリカにおいて、前記式(1a)で表される構造は、前記メソポーラス有機シリカの骨格中に含まれていることが好ましい。これにより、細孔内での反応基質の拡散性が阻害されにくく、高い触媒活性を有する還元反応用固体触媒を得ることができる。   In the mesoporous organic silica having the structure represented by the formula (1a), the structure represented by the formula (1a) is preferably included in the skeleton of the mesoporous organic silica. Thereby, the diffusibility of the reaction substrate in the pores is hardly inhibited, and a solid catalyst for reduction reaction having high catalytic activity can be obtained.

また、上述したように、前記式(1a)中のR〜Rは前記式(1)中のR〜Rと同一の基である。前記式(1a)における前記式(2)中のRとしては、化学的安定性が向上するという観点から、シリル基が好ましい。また、前記式(1a)における前記式(2)中の結合部位*に結合する隣接する構造としては、前記メソポーラス有機シリカ中の前記式(1a)で表される構造からなる繰り返し単位、前記式(3)で表される構造、前記式(4)で表される構造等が挙げられる。 In addition, as described above, R 1 to R 8 in the formula (1a) are the same groups as R 1 to R 8 in the formula (1). Rb in the formula (2) in the formula (1a) is preferably a silyl group from the viewpoint of improving chemical stability. Further, as the adjacent structure bonded to the binding site * in the formula (2) in the formula (1a), the repeating unit consisting of the structure represented by the formula (1a) in the mesoporous organic silica, the formula Examples include the structure represented by (3) and the structure represented by the formula (4).

前記式(1a)で表される構造を備えるメソポーラス有機シリカにおいて、メソポーラス有機シリカ1gあたりの前記式(1a)で表される構造の導入量としては、0.01mmol/g以上であれば特に制限はないが、遷移金属錯体の形成のしやすさという観点から、0.05mmol/g以上が好ましく、0.10mmol/g以上がより好ましく、0.15mmol/g以上がさらに好ましく、0.20mmol/g以上が特に好ましい。なお、前記式(1a)で表される構造の導入量の上限としては特に制限はないが、4mmol/g以下が好ましい。本発明の還元反応用固体触媒においては、このような前記式(1a)で表される構造の導入量(すなわち、ビピリジン基の導入量)を適宜調整することができ、その結果、遷移金属原子の固定化量を容易に制御することが可能となる。   In the mesoporous organic silica having the structure represented by the formula (1a), the amount of the structure represented by the formula (1a) per 1 g of the mesoporous organic silica is particularly limited as long as it is 0.01 mmol / g or more. However, from the viewpoint of easy formation of a transition metal complex, 0.05 mmol / g or more is preferable, 0.10 mmol / g or more is more preferable, 0.15 mmol / g or more is more preferable, and 0.20 mmol / g g or more is particularly preferable. The upper limit of the introduction amount of the structure represented by the formula (1a) is not particularly limited, but is preferably 4 mmol / g or less. In the solid catalyst for reduction reaction of the present invention, the introduction amount of the structure represented by the formula (1a) (that is, the introduction amount of the bipyridine group) can be appropriately adjusted, and as a result, the transition metal atom It is possible to easily control the amount of immobilization.

また、前記式(1a)で表される構造を備えるメソポーラス有機シリカにおいては、前記式(1a)で表される構造以外の構造(以下、「その他の構造」という)を含んでいてもよい。このようなその他の構造としては、前記式(3)及び(4)で表される構造が好ましく、これらの構造はいずれか一方が含まれていても両方が含まれていてもよい。   Further, the mesoporous organic silica having the structure represented by the formula (1a) may include a structure other than the structure represented by the formula (1a) (hereinafter referred to as “other structure”). As such other structures, the structures represented by the formulas (3) and (4) are preferable, and either one or both of these structures may be included.

前記式(1a)で表される構造を備えるメソポーラス有機シリカにおいて、このようなその他の構造の割合としては、前記式(1a)で表される構造との合計量に対して、99.5mol%以下であれば特に制限はないが、触媒活性が向上するという観点から、0〜90mol%が好ましく、0〜70mol%がより好ましく、0〜50mol%がさらに好ましく、0〜30mol%が特に好ましい。   In the mesoporous organic silica having the structure represented by the formula (1a), the ratio of such other structures is 99.5 mol% with respect to the total amount with the structure represented by the formula (1a). Although it will not be restrict | limited especially if it is below, from a viewpoint that catalyst activity improves, 0-90 mol% is preferable, 0-70 mol% is more preferable, 0-50 mol% is further more preferable, 0-30 mol% is especially preferable.

なお、このような前記式(1a)で表される構造を備えるメソポーラス有機シリカは、例えば、J.Am.Chem.Soc.、2014年、第136巻、第10号、4003〜4011頁、特開2014−193457号公報、特開2017−029926号公報等に記載の方法により製造することができる。   In addition, the mesoporous organic silica provided with such a structure represented by the formula (1a) is, for example, J.P. Am. Chem. Soc. 2014, Vol. 136, No. 10, pages 4003 to 4011, JP-A-2014-193457, JP-A-2017-029926 and the like.

<還元反応>
本発明の還元反応用固体触媒は、タンパク質の存在下での還元反応に使用される。前記タンパク質としては、本発明の還元反応用固体触媒による効果(すなわち、タンパク質による遷移金属原子の触媒活性の失活を抑制するという効果)が十分に発揮されるという観点から、生理活性タンパク質が好ましく、血漿タンパク質(例えば、アルブミン、グロブリン、フィブリノゲン)、酵素(例えば、エステラーゼ、グリコシダーゼ、ペプチダーゼ、リパーゼ等の加水分解酵素、アルコールデヒドロゲナーゼ、アルデヒドデヒドロゲナーゼ、グルタミン酸デヒドロゲナーゼ等の脱水素酵素)がより好ましい。これらのタンパク質は、1種が単独で存在していても2種以上が存在していてもよい。
<Reduction reaction>
The solid catalyst for reduction reaction of the present invention is used for a reduction reaction in the presence of protein. As the protein, a physiologically active protein is preferable from the viewpoint that the effect of the solid catalyst for reduction reaction of the present invention (that is, the effect of suppressing the deactivation of the catalytic activity of the transition metal atom by the protein) is sufficiently exerted. More preferred are plasma proteins (eg, albumin, globulin, fibrinogen) and enzymes (eg, hydrolases such as esterase, glycosidase, peptidase, lipase, dehydrogenases such as alcohol dehydrogenase, aldehyde dehydrogenase, glutamate dehydrogenase). These proteins may exist alone or in combination of two or more.

前記還元反応としては特に制限はないが、水素転移反応、水素移動反応、炭素−炭素不飽和結合の水素化反応、カルボニルの水素化反応、イミンの水素化反応等が挙げられる。   The reduction reaction is not particularly limited, and examples thereof include a hydrogen transfer reaction, a hydrogen transfer reaction, a carbon-carbon unsaturated bond hydrogenation reaction, a carbonyl hydrogenation reaction, and an imine hydrogenation reaction.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(調製例1)
<ビピリジン基含有メソポーラス有機シリカの調製>
オクタデシルトリメチルアンモニウムクロリド(C18TMACl、3.78g(10.8mmol))、蒸留水(202ml)及び6N水酸化ナトリウム水溶液(0.59ml(3.54mmol))を混合して50℃に加熱し、得られた混合物に、激しく撹拌しながら、5,5’−ビス(トリイソプロポキシシリル)−2,2’−ビピリジン(Si−BPy−Si、4.59g(8.12mmol))のエタノール溶液(9.17ml)を90分間かけて滴下した。得られた溶液を50℃で加熱しながら3日間激しく撹拌し、さらに50℃で加熱しながら3日間静置して、下記反応式(P1):
(Preparation Example 1)
<Preparation of bipyridine group-containing mesoporous organic silica>
Octadecyltrimethylammonium chloride (C 18 TMACl, 3.78 g (10.8 mmol)), distilled water (202 ml) and 6N aqueous sodium hydroxide solution (0.59 ml (3.54 mmol)) were mixed and heated to 50 ° C., An ethanol solution of 5,5′-bis (triisopropoxysilyl) -2,2′-bipyridine (Si-BPy-Si, 4.59 g (8.12 mmol)) was added to the resulting mixture with vigorous stirring. 9.17 ml) was added dropwise over 90 minutes. The resulting solution was stirred vigorously for 3 days while being heated at 50 ° C., and was further allowed to stand for 3 days while being heated at 50 ° C., and the following reaction formula (P1):

で表される反応を行なった。生成した沈殿物を加圧ろ過により回収し、鋳型界面活性剤(C18TMACl)を含むビピリジン基含有有機シリカメソ構造体を得た。この有機シリカメソ構造体を酸性エタノール(エタノール346mlと2M塩酸10.2mlの混合溶液)に添加し、一晩懸濁させて前記鋳型界面活性剤を除去し、薄黄色〜灰色の固体であるビピリジン基含有メソポーラス有機シリカ(BPy−PMO)を得た。このBPy−PMOのビピリジン基含有量は3.18mmol−BPy/gであった。 The reaction represented by The generated precipitate was recovered by pressure filtration to obtain a bipyridine group-containing organic silica mesostructure containing a template surfactant (C 18 TMACl). The organosilica mesostructure is added to acidic ethanol (mixed solution of ethanol 346 ml and 2M hydrochloric acid 10.2 ml) and suspended overnight to remove the template surfactant, and the bipyridine group which is a light yellow to gray solid Containing mesoporous organic silica (BPy-PMO) was obtained. The bipyridine group content of this BPy-PMO was 3.18 mmol-BPy / g.

(比較調製例1)
<ビピリジン基担持ノンポーラスシリカの調製>
アルゴン雰囲気下、非晶質シリカゲル(silica、関東化学株式会社製「球状シリカゲル60N」、比表面積680m/g、細孔径5.4nm)(1.00g)をトルエン(30ml)中に分散させ、この分散液に5−(4−トリエトキシシリルブチル)−5’−メチル−2,2’−ビピリジン(250mg(643μmol))を添加した。得られた懸濁液にトリフルオロ酢酸(20μl)を滴下した後、還流しながら1日間撹拌して、下記反応式(P2):
(Comparative Preparation Example 1)
<Preparation of bipyridine group-supported nonporous silica>
Under an argon atmosphere, amorphous silica gel (silica, “spherical silica gel 60N” manufactured by Kanto Chemical Co., Inc., specific surface area 680 m 2 / g, pore diameter 5.4 nm) (1.00 g) was dispersed in toluene (30 ml), To this dispersion was added 5- (4-triethoxysilylbutyl) -5′-methyl-2,2′-bipyridine (250 mg (643 μmol)). Trifluoroacetic acid (20 μl) was added dropwise to the resulting suspension, followed by stirring for 1 day while refluxing, and the following reaction formula (P2):

で表される反応を行なった。得られた懸濁液を、メンブレンフィルター(孔径0.5μm)を用いて減圧ろ過し、ろ滓をトルエンおよびメタノールで洗浄した後、減圧乾燥して、ピリジン基担持ノンポーラスシリカ(BPy−silica)を得た。このBPy−silicaのビピリジン基含有量は0.514mmol−BPy/gであった。 The reaction represented by The obtained suspension was filtered under reduced pressure using a membrane filter (pore size: 0.5 μm), and the filter cake was washed with toluene and methanol, and then dried under reduced pressure to give a pyridine group-supported nonporous silica (BPy-silica). Got. The bipyridine group content of this BPy-silica was 0.514 mmol-BPy / g.

(比較調製例2)
<ビピリジン基担持メソポーラスシリカの調製>
アルゴン雰囲気下、メソポーラスシリカ(FSM−16、太陽化学株式会社製「TMPS−4R」、比表面積897m/g、細孔径3.9nm)(200mg)をトルエン(10ml)中に分散させ、この分散液に5−(4−トリエトキシシリルブチル)−5’−メチル−2,2’−ビピリジン(BPy−C4−Si、50mg(129μmol))を添加した。得られた懸濁液にトリフルオロ酢酸(20μl)を滴下した後、還流しながら1日間撹拌して、下記反応式(P3):
(Comparative Preparation Example 2)
<Preparation of bipyridine group-supported mesoporous silica>
Under an argon atmosphere, mesoporous silica (FSM-16, “TMPS-4R” manufactured by Taiyo Kagaku Co., Ltd., specific surface area 897 m 2 / g, pore diameter 3.9 nm) (200 mg) was dispersed in toluene (10 ml). To the solution, 5- (4-triethoxysilylbutyl) -5′-methyl-2,2′-bipyridine (BPy-C4-Si, 50 mg (129 μmol)) was added. Trifluoroacetic acid (20 μl) was added dropwise to the resulting suspension, followed by stirring for 1 day while refluxing, and the following reaction formula (P3):

で表される反応を行なった。得られた懸濁液を、メンブレンフィルター(孔径0.5μm)を用いて減圧ろ過し、ろ滓をトルエンおよびメタノールで洗浄した後、減圧乾燥して、ビピリジン基担持メソポーラスシリカ(BPy−FSM)を得た。このBPy−FSMのビピリジン基含有量は0.515mmol−BPy/gであった。 The reaction represented by The resulting suspension was filtered under reduced pressure using a membrane filter (pore size: 0.5 μm), and the filter cake was washed with toluene and methanol and then dried under reduced pressure to obtain bipyridine group-supported mesoporous silica (BPy-FSM). Obtained. The bipyridine group content of this BPy-FSM was 0.515 mmol-BPy / g.

(合成例1)
<Rh含有メソポーラス有機シリカの合成>
アルゴン雰囲気下、調製例1で得られたBPy−PMO(50mg、0.159mmol−BPy)及び(ペンタメチルシクロペンタジエニル)ロジウム(III)ジクロリドダイマー([RhCpCl、2mg(3.2μmol))を量り取り、さらに、N,N’−ジメチルホルムアミド(50ml)を添加し、60℃で加熱しながら16時間撹拌して、下記反応式(S1):
(Synthesis Example 1)
<Synthesis of Rh-containing mesoporous organic silica>
Under an argon atmosphere, BPy-PMO (50 mg, 0.159 mmol-BPy) and (pentamethylcyclopentadienyl) rhodium (III) dichloride dimer ([RhCp * Cl 2 ] 2 , 2 mg (3 2 μmol)), N, N′-dimethylformamide (50 ml) was added, and the mixture was stirred for 16 hours while heating at 60 ° C. The following reaction formula (S1):

で表される反応を行なった。得られた分散液をメンブレンフィルター(孔径0.45μm)に通して固体成分を回収した。得られた固体成分をN,N’−ジメチルホルムアミド及びエタノールで洗浄した後、真空乾燥して、Rh原子に配位したビピリジン基を含有するメソポーラス有機シリカ(Rh−BPy−PMO、Rh/BPy−PMO=2/50)を得た。 The reaction represented by The obtained dispersion was passed through a membrane filter (pore size 0.45 μm) to recover the solid component. The obtained solid component was washed with N, N′-dimethylformamide and ethanol, and then vacuum-dried, and mesoporous organic silica containing a bipyridine group coordinated to Rh atoms (Rh-BPy-PMO, Rh / BPy— PMO = 2/50) was obtained.

(合成例2)
<Rh含有メソポーラス有機シリカの合成>
BPy−PMOの量を100mg(0.318mmol−BPy)に、[RhCpClの量を5mg(8.1μmol)に変更した以外は合成例1と同様にして、Rh原子に配位したビピリジン基を含有するメソポーラス有機シリカ(Rh−BPy−PMO、Rh/BPy−PMO=5/100)を得た。
(Synthesis Example 2)
<Synthesis of Rh-containing mesoporous organic silica>
Coordinated to Rh atoms in the same manner as in Synthesis Example 1 except that the amount of BPy-PMO was changed to 100 mg (0.318 mmol-BPy) and the amount of [RhCp * Cl 2 ] 2 was changed to 5 mg (8.1 μmol). The mesoporous organic silica (Rh-BPy-PMO, Rh / BPy-PMO = 5/100) containing a bipyridine group was obtained.

(合成例3)
<Rh含有メソポーラス有機シリカの合成>
BPy−PMOの量を100mg(0.318mmol−BPy)に、[RhCpClの量を10mg(16μm)に変更した以外は合成例1と同様にして、Rh原子に配位したビピリジン基を含有するメソポーラス有機シリカ(Rh−BPy−PMO、Rh/BPy−PMO=10/100)を得た。
(Synthesis Example 3)
<Synthesis of Rh-containing mesoporous organic silica>
Bipyridine coordinated to Rh atoms in the same manner as in Synthesis Example 1 except that the amount of BPy-PMO was changed to 100 mg (0.318 mmol-BPy) and the amount of [RhCp * Cl 2 ] 2 was changed to 10 mg (16 μm). A mesoporous organic silica containing a group (Rh-BPy-PMO, Rh / BPy-PMO = 10/100) was obtained.

(比較合成例1)
<Rh含有ビピリジンの合成>
[RhCpCl(50mg(80.9μmol))をN,N’−ジメチルホルムアミド(2.0ml)に溶解した。得られた溶液に2,2’−ビピリジン(31mg(198μmol))を添加し、室温で2時間撹拌して、下記反応式(S2):
(Comparative Synthesis Example 1)
<Synthesis of Rh-containing bipyridine>
[RhCp * Cl 2] 2 a (50mg (80.9μmol)) was dissolved in N, N'- dimethylformamide (2.0 ml). 2,2′-Bipyridine (31 mg (198 μmol)) was added to the resulting solution, and the mixture was stirred at room temperature for 2 hours. The following reaction formula (S2):

で表される反応を行なった。得られた反応液にジエチルエーテル(5ml)を添加し、生成した沈殿物を、メンブレンフィルター(孔径0.20μm)を用いて吸引ろ過により回収し、ジエチルエーテルで洗浄した後、真空乾燥して、RhCpClのRh原子にビピリジン基が配位した均一系Rh錯体(Rh−BPy、Rh/BPy=1/1)を得た。このRh−BPyにおけるRh含有量は2.15mmol−Rh/gであった。 The reaction represented by Diethyl ether (5 ml) was added to the resulting reaction solution, and the resulting precipitate was collected by suction filtration using a membrane filter (pore size 0.20 μm), washed with diethyl ether, and then vacuum dried. A homogeneous Rh complex (Rh-BPy, Rh / BPy = 1/1) in which a bipyridine group was coordinated to the Rh atom of RhCp * Cl was obtained. The Rh content in this Rh-BPy was 2.15 mmol-Rh / g.

(比較合成例2)
<Rh含有ノンポーラスシリカの合成>
アルゴン雰囲気下、比較調製例1で得られたBPy−silica(200mg、0.103mmol−BPy)及び(ペンタメチルシクロペンタジエニル)ロジウム(III)ジクロリドダイマー([RhCpCl、20mg(32.4μmol))を量り取り、さらに、脱水メタノール(50ml)を添加し、65℃で加熱しながら16時間撹拌して、下記反応式(S3):
(Comparative Synthesis Example 2)
<Synthesis of Rh-containing nonporous silica>
Under an argon atmosphere, BPy-silica (200 mg, 0.103 mmol-BPy) and (pentamethylcyclopentadienyl) rhodium (III) dichloride dimer ([RhCp * Cl 2 ] 2 , 20 mg obtained in Comparative Preparation Example 1 32.4 μmol)) was further weighed, dehydrated methanol (50 ml) was further added, and the mixture was stirred for 16 hours while being heated at 65 ° C. The following reaction formula (S3):

で表される反応を行なった。得られた分散液をメンブレンフィルター(孔径0.45μm)に通して固体成分を回収した。得られた固体成分をメタノールで洗浄した後、真空乾燥して、Rh原子に配位したビピリジン基を含有するノンポーラスシリカ(Rh−BPy−silica、Rh/BPy−silica=10/100)を得た。このRh−BPy−silicaにおけるRh含有量は0.136mmol−Rh/gであった。 The reaction represented by The obtained dispersion was passed through a membrane filter (pore size 0.45 μm) to recover the solid component. The obtained solid component was washed with methanol and then vacuum-dried to obtain nonporous silica (Rh-BPy-silica, Rh / BPy-silica = 10/100) containing a bipyridine group coordinated to Rh atoms. It was. The Rh content in this Rh-BPy-silica was 0.136 mmol-Rh / g.

(比較合成例3)
<Rh含有メソポーラスシリカの合成>
比較調製例1で得られたBPy−silicaの代わりに比較調製例2で得られたBPy−FSM(200mg、0.103mmol−BPy)を用いた以外は、比較合成例2と同様にして、下記反応式(S4):
(Comparative Synthesis Example 3)
<Synthesis of Rh-containing mesoporous silica>
In the same manner as in Comparative Synthesis Example 2, except that BPy-FSM (200 mg, 0.103 mmol-BPy) obtained in Comparative Preparation Example 2 was used instead of BPy-silica obtained in Comparative Preparation Example 1, Reaction formula (S4):

で表される反応を行い、Rh原子に配位したビピリジン基を含有するメソポーラスシリカ(Rh−BPy−FSM、Rh/BPy−FSM=10/100)を得た。このRh−BPy−FSMにおけるRh含有量は0.292mmol−Rh/gであった。 The mesoporous silica (Rh-BPy-FSM, Rh / BPy-FSM = 10/100) containing the bipyridine group coordinated to the Rh atom was obtained. The Rh content in this Rh-BPy-FSM was 0.292 mmol-Rh / g.

〔X線回折パターン及び窒素吸着等温線〕
調製例1で得られたBPy−PMO及び合成例1〜3で得られたRh−BPy−PMOのX線回折パターンを、粉末X線回折装置(株式会社リガク製「RINT−TTR」)を用いて測定したところ、2θ=1.82°(d=4.85nm)に規則的なメソ構造に由来する回折ピークが観察された。また、2θ=7.60°(d=1.16nm)、2θ=15.6°(d=0.568nm)及び2θ=23.0°(d=0.387nm)にビピリジン基の層状配列構造に由来する回折ピークが観察された。なお、図1には、一例として、調製例1で得られたBPy−PMO及び合成例1で得られたRh−BPy−PMOのX線回折パターンを示す。
[X-ray diffraction pattern and nitrogen adsorption isotherm]
Using the X-ray diffraction pattern of BPy-PMO obtained in Preparation Example 1 and Rh-BPy-PMO obtained in Synthesis Examples 1 to 3, using a powder X-ray diffractometer (“RINT-TTR” manufactured by Rigaku Corporation) As a result, a diffraction peak derived from a regular mesostructure was observed at 2θ = 1.82 ° (d = 4.85 nm). In addition, a layered arrangement structure of bipyridine groups at 2θ = 7.60 ° (d = 1.16 nm), 2θ = 15.6 ° (d = 0.568 nm) and 2θ = 23.0 ° (d = 0.387 nm) A diffraction peak derived from was observed. In addition, in FIG. 1, the X-ray-diffraction pattern of BPy-PMO obtained by the preparation example 1 and Rh-BPy-PMO obtained by the synthesis example 1 is shown as an example.

また、調製例1で得られたBPy−PMO及び合成例1〜3で得られたRh−BPy−PMOの窒素吸着等温線を、自動比表面積/細孔分布測定装置(カンタクローム社製「Autosorb−1 system」)を用い、液体窒素温度(−196℃)条件で定容量式ガス吸着法により求めたところ、いずれもIV型であった。なお、図2には、合成例1で得られたRh−BPy−PMOの窒素吸脱着等温線を示す。   In addition, the nitrogen adsorption isotherm of BPy-PMO obtained in Preparation Example 1 and Rh-BPy-PMO obtained in Synthesis Examples 1 to 3 was measured using an automatic specific surface area / pore distribution measuring device (“Autosorb, manufactured by Cantachrome). −1 system ”) and liquid nitrogen temperature (−196 ° C.) by a constant capacity gas adsorption method, all were IV type. FIG. 2 shows the nitrogen adsorption / desorption isotherm of Rh-BPy-PMO obtained in Synthesis Example 1.

したがって、X線回折パターン及び窒素吸脱着等温線から、調製例1で得られたBPy−PMO及び合成例1〜3で得られたRh−BPy−PMOはいずれも規則的なメソ細孔を有するものであり、調製例1で得られたBPy−PMOにRhを固定化しても、規則的なメソ細孔構造が維持されていることが確認された。   Therefore, from the X-ray diffraction pattern and the nitrogen adsorption / desorption isotherm, both BPy-PMO obtained in Preparation Example 1 and Rh-BPy-PMO obtained in Synthesis Examples 1 to 3 have regular mesopores. It was confirmed that even when Rh was immobilized on BPy-PMO obtained in Preparation Example 1, a regular mesopore structure was maintained.

また、窒素吸着等温線に基づいて、調製例1で得られたBPy−PMO及び合成例1〜3で得られたRh−BPy−PMOの中心細孔直径をDFT法により算出し、比表面積をBET法により算出した。それらの結果を表1に示す。   Further, based on the nitrogen adsorption isotherm, the central pore diameters of BPy-PMO obtained in Preparation Example 1 and Rh-BPy-PMO obtained in Synthesis Examples 1 to 3 were calculated by the DFT method, and the specific surface area was calculated. It was calculated by the BET method. The results are shown in Table 1.

〔紫外可視拡散反射スペクトル〕
合成例1〜3で得られたRh−BPy−PMOの紫外可視拡散反射スペクトルを、紫外可視分光光度計(日本分光株式会社製「V−670」)を用いて測定したところ、いずれのRh−BPy−PMOにおいても、ビピリジン基のπ−π遷移に由来する300nmを極大波長とする吸収ピークに加えて、Rh原子にビピリジン基が錯配位していることを示す380nm付近の吸収ピークが観測された。また、この380nm付近の吸収ピークの強度は、[RhCpClの添加量が増加するにつれて大きくなった。これは、Rhの固定化量が増加したことによるものと考えられる。
(UV-visible diffuse reflection spectrum)
When the ultraviolet visible diffuse reflection spectrum of Rh-BPy-PMO obtained in Synthesis Examples 1 to 3 was measured using an ultraviolet visible spectrophotometer ("V-670" manufactured by JASCO Corporation), any Rh- In BPy-PMO, in addition to the absorption peak having a maximum wavelength of 300 nm derived from the π-π * transition of the bipyridine group, an absorption peak near 380 nm indicating that the bipyridine group is complex-coordinated to the Rh atom is also present. Observed. Further, the intensity of the absorption peak around 380 nm increased as the amount of [RhCp * Cl 2 ] 2 increased. This is considered to be due to an increase in the amount of immobilized Rh.

〔エネルギー分散型X線分光分析(EDX分析)〕
合成例1〜3で得られたRh−BPy−PMOについて、エネルギー分散型X線分光分析装置を備えた走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製「3600−N」)を用いてEDX分析を行なったところ、いずれのRh−BPy−PMOにおいても、EDXマッピング像から、ケイ素原子(SiK線)とロジウム原子(RhL線)は均一に分布していることが確認された。また、EDX分析結果に基づいて、合成例1〜3で得られたRh−BPy−PMOにおけるケイ素、ロジウム及び塩素の原子組成含有率を算出し、ビピリジン基に対するロジウムのモル比を求めた。さらに、このモル比から、Rh−BPy−PMO(1g)に対するロジウム含有量を算出した。それらの結果を表1に示す。
[Energy dispersive X-ray spectroscopy (EDX analysis)]
For Rh-BPy-PMO obtained in Synthesis Examples 1 to 3, EDX analysis was performed using a scanning electron microscope (“3600-N” manufactured by Hitachi High-Technologies Corporation) equipped with an energy dispersive X-ray spectrometer. As a result, in any Rh-BPy-PMO, it was confirmed from the EDX mapping image that silicon atoms (SiK lines) and rhodium atoms (RhL lines) were uniformly distributed. Moreover, based on the EDX analysis result, the atomic composition content rate of silicon, rhodium and chlorine in Rh-BPy-PMO obtained in Synthesis Examples 1 to 3 was calculated, and the molar ratio of rhodium to the bipyridine group was obtained. Furthermore, the rhodium content with respect to Rh-BPy-PMO (1 g) was calculated from this molar ratio. The results are shown in Table 1.

表1に示した結果から明らかなように、[RhCpClの添加量が増加するにつれて、Rhの固定化量が増加することが確認された。 As is clear from the results shown in Table 1, it was confirmed that the amount of Rh immobilized increased as the amount of [RhCp * Cl 2 ] 2 increased.

〔X線吸収微細構造(XAFS)解析〕
合成例1〜3で得られたRh−BPy−PMO及び比較合成例1で得られたRh−BPyのX線吸収微細構造(XAFS)解析を、SPring−8(BL14B2)を利用して透過法により行なった。すなわち、Si(311)二結晶分光器により単色化されたX線を用いて、室温でRhのK吸収端付近のXAFSスペクトルを測定した。得られたX線広域微細構造(EXAFS)スペクトルについて、Athenaを用いてデータ処理を行なった。すなわち、EXAFS振動χ(k)にkの重みをかけて2Å−1<k<12Å−1の領域においてフーリエ変換を行い、動径分布関数を得た。その結果、合成例1〜3で得られたRh−BPy−PMOは、XANESスペクトル及び動径分布関数が均一系Rh錯体(RhCp(BPy)Cl)と同様の形状を有しており、比較合成例1で得られた均一系Rh錯体(Rh−BPy)と同様の配位構造を有していることが確認された。
[X-ray absorption fine structure (XAFS) analysis]
The X-ray absorption fine structure (XAFS) analysis of Rh-BPy-PMO obtained in Synthesis Examples 1 to 3 and Rh-BPy obtained in Comparative Synthesis Example 1 was conducted using SPring-8 (BL14B2). Performed. That is, the XAFS spectrum near the K absorption edge of Rh was measured at room temperature using X-rays monochromatized by a Si (311) double crystal spectrometer. The obtained X-ray broad-area fine structure (EXAFS) spectrum was subjected to data processing using Athens. That is, the EXAFS vibration χ (k) was weighted by k 3 and Fourier-transformed in the region of 2Å −1 <k <12Å −1 to obtain a radial distribution function. As a result, the Rh-BPy-PMO obtained in Synthesis Examples 1 to 3 has the same shape as the homogeneous Rh complex (RhCp * (BPy) Cl 2 ) in XANES spectrum and radial distribution function, It was confirmed to have the same coordination structure as the homogeneous Rh complex (Rh-BPy) obtained in Comparative Synthesis Example 1.

(参考例1)
固体触媒として合成例2で得られたRh−BPy−PMO(Rh/BPy−PMO=5/100、3.23mg、0.4μmol−Rh)と、反応基質として2−シクロヘキセ−1−オン(40μmol)とを量り取り、これに0.1Mリン酸ナトリウム緩衝液(2ml、pH7)、0.5Mギ酸ナトリウム(68mg)、及び内部標準物質としてフェノール(1μl/ml)を添加して40℃で加熱しながら6時間攪拌して、下記反応式(E1):
(Reference Example 1)
Rh-BPy-PMO (Rh / BPy-PMO = 5/100, 3.23 mg, 0.4 μmol-Rh) obtained in Synthesis Example 2 as a solid catalyst, and 2-cyclohex-1-one (40 μmol) as a reaction substrate. ), 0.1M sodium phosphate buffer (2 ml, pH 7), 0.5 M sodium formate (68 mg), and phenol (1 μl / ml) as an internal standard substance were added and heated at 40 ° C. While stirring for 6 hours, the following reaction formula (E1):

で表される反応を行なった。反応終了後、得られた反応液を0.1ml採取し、酢酸エチル(0.5ml)で抽出操作を3回行い、得られた有機層を無水硫酸ナトリウムで乾燥した後、ガスクロマトグラフィで分析し、基質転化率を求めた。その結果を図3及び図4に示す。 The reaction represented by After completion of the reaction, 0.1 ml of the resulting reaction solution was collected, extracted three times with ethyl acetate (0.5 ml), and the resulting organic layer was dried over anhydrous sodium sulfate and analyzed by gas chromatography. The substrate conversion rate was determined. The results are shown in FIGS.

(実施例1)
ウシ血清アルブミン(BSA)を、濃度が2mg/ml、5mg/ml、10mg/ml、又は20mg/mlとなるように更に添加した以外は参考例1と同様にして、前記反応式(E1)で表される反応を行い、基質転化率を求めた。その結果を図3に示す。
Example 1
In the same manner as in Reference Example 1, except that bovine serum albumin (BSA) was further added to a concentration of 2 mg / ml, 5 mg / ml, 10 mg / ml, or 20 mg / ml, the reaction formula (E1) The reaction indicated was performed to determine the substrate conversion. The result is shown in FIG.

(参考例2)
固体触媒として合成例3で得られたRh−BPy−PMO(Rh/BPy−PMO=10/100、1.79mg、0.4μmol−Rh)を用いた以外は参考例1と同様にして、前記反応式(E1)で表される反応を行い、基質転化率を求めた。その結果を図3に示す。
(Reference Example 2)
In the same manner as in Reference Example 1, except that Rh-BPy-PMO (Rh / BPy-PMO = 10/100, 1.79 mg, 0.4 μmol-Rh) obtained in Synthesis Example 3 was used as the solid catalyst, The reaction represented by the reaction formula (E1) was performed to determine the substrate conversion rate. The result is shown in FIG.

(実施例2)
ウシ血清アルブミン(BSA)を、濃度が2mg/ml、5mg/ml、10mg/ml、又は20mg/mlとなるように更に添加した以外は参考例2と同様にして、前記反応式(E1)で表される反応を行い、基質転化率を求めた。その結果を図3に示す。
(Example 2)
In the same manner as in Reference Example 2, except that bovine serum albumin (BSA) was further added to a concentration of 2 mg / ml, 5 mg / ml, 10 mg / ml, or 20 mg / ml, the reaction formula (E1) The reaction indicated was performed to determine the substrate conversion. The result is shown in FIG.

(比較参考例1)
触媒として比較合成例1で得られた均一系Rh錯体(Rh−BPy、Rh/BPy=1/1、0.186mg、0.4μmol−Rh)を用いた以外は参考例1と同様にして、下記反応式(C1):
(Comparative Reference Example 1)
As in Reference Example 1, except that the homogeneous Rh complex (Rh-BPy, Rh / BPy = 1/1, 0.186 mg, 0.4 μmol-Rh) obtained in Comparative Synthesis Example 1 was used as a catalyst. The following reaction formula (C1):

で表される反応を行い、基質転化率を求めた。その結果を図3に示す。 The substrate conversion rate was determined. The result is shown in FIG.

(比較例1)
ウシ血清アルブミン(BSA)を、濃度が2mg/ml、5mg/ml、10mg/ml、又は20mg/mlとなるように更に添加した以外は比較参考例1と同様にして、前記反応式(C1)で表される反応を行い、基質転化率を求めた。その結果を図3に示す。
(Comparative Example 1)
Bovine serum albumin (BSA) was added in the same manner as in Comparative Reference Example 1 except that bovine serum albumin (BSA) was further added to a concentration of 2 mg / ml, 5 mg / ml, 10 mg / ml, or 20 mg / ml. The substrate conversion rate was determined. The result is shown in FIG.

(比較参考例2)
固体触媒として比較合成例2で得られたRh−BPy−silica(Rh/BPy−silica=10/100、2.94mg、0.4μmol−Rh)を用いた以外は参考例1と同様にして、下記反応式(C2):
(Comparative Reference Example 2)
As in Reference Example 1, except that Rh-BPy-silica (Rh / BPy-silica = 10/100, 2.94 mg, 0.4 μmol-Rh) obtained in Comparative Synthesis Example 2 was used as the solid catalyst. The following reaction formula (C2):

で表される反応を行い、基質転化率を求めた。その結果を図4に示す。 The substrate conversion rate was determined. The result is shown in FIG.

(比較参考例3)
固体触媒として比較合成例3で得られたRh−BPy−FSM(Rh/BPy−FSM=10/100、1.34mg、0.4μmol−Rh)を用いた以外は参考例1と同様にして、下記反応式(C3):
(Comparative Reference Example 3)
As in Reference Example 1, except that Rh-BPy-FSM obtained in Comparative Synthesis Example 3 (Rh / BPy-FSM = 10/100, 1.34 mg, 0.4 μmol-Rh) was used as the solid catalyst, The following reaction formula (C3):

で表される反応を行い、基質転化率を求めた。その結果を図4に示す。 The substrate conversion rate was determined. The result is shown in FIG.

図3に示した結果から明らかなように、触媒としてRh原子に配位したビピリジン基を含有するメソポーラス有機シリカ(Rh−BPy−PMO)を用いた場合(実施例1、2)には、タンパク質であるウシ血清アルブミン(BSA)の存在下においても、高い触媒活性(基質転化率70%以上)が維持されることがわかった。一方、触媒として均一系Rh錯体(Rh−BPy)を用いた場合(比較例1)には、BSA濃度が増加するにつれて、触媒活性が大幅に低下することがわかった(BSA:20mg/mlの場合、基質転化率:17%)。   As is apparent from the results shown in FIG. 3, when mesoporous organic silica (Rh-BPy-PMO) containing a bipyridine group coordinated to an Rh atom was used as a catalyst (Examples 1 and 2), protein It was found that even in the presence of bovine serum albumin (BSA), high catalytic activity (substrate conversion rate of 70% or more) was maintained. On the other hand, when the homogeneous Rh complex (Rh-BPy) was used as the catalyst (Comparative Example 1), it was found that the catalytic activity decreased significantly as the BSA concentration increased (BSA: 20 mg / ml). In case of substrate conversion: 17%).

また、図4に示した結果から明らかなように、固体触媒として、Rh原子に配位したビピリジン基を含有するノンポーラスシリカ(Rh−BPy−silica、比較参考例2)及びRh原子に配位したビピリジン基を含有するメソポーラスシリカ(Rh−BPy−FSM、比較参考例3)を用いた場合には、Rh原子に配位したビピリジン基を含有するメソポーラス有機シリカ(Rh−BPy−PMO、参考例1)を用いた場合に比べて、触媒活性が低くなった。これは、Rh−BPy−silicaやRh−BPy−FSMにおいては、非晶質シリカゲルやメソポーラスシリカの表面にビピリジン基が担持されているため、このビピリジン基によって細孔内での反応基質の拡散性が阻害されたこと、また、非晶質シリカゲルやメソポーラスシリカの表面が不均質であることが原因であると推察される。一方、Rh−BPy−PMOにおいては、ビピリジン基がメソポーラス有機シリカの骨格中に含まれているため、反応基質の拡散性が阻害されず、高い触媒活性が得られたと考えられる。   Further, as is apparent from the results shown in FIG. 4, as the solid catalyst, the non-porous silica containing a bipyridine group coordinated to the Rh atom (Rh-BPy-silica, Comparative Reference Example 2) and the Rh atom are coordinated. When mesoporous silica containing a bipyridine group (Rh-BPy-FSM, Comparative Reference Example 3) is used, a mesoporous organic silica containing a bipyridine group coordinated to an Rh atom (Rh-BPy-PMO, Reference Example) Compared with the case of using 1), the catalytic activity was low. In Rh-BPy-silica and Rh-BPy-FSM, the bipyridine group is supported on the surface of amorphous silica gel or mesoporous silica. This is presumed to be caused by the fact that the surface of amorphous silica gel and mesoporous silica was inhomogeneous. On the other hand, in Rh-BPy-PMO, since the bipyridine group is contained in the skeleton of the mesoporous organic silica, it is considered that the diffusibility of the reaction substrate is not inhibited and high catalytic activity is obtained.

(参考例3)
固体触媒として合成例1で得られたRh−BPy−PMO(Rh/BPy−PMO=2/50、11.6mg、1.0μmol−Rh)と、反応基質として酸化型ニコチンアミドアデニンジヌクレオチド(NAD、1.0mM)とを量り取り、これに0.1Mリン酸ナトリウム緩衝液(10ml、pH7)及び10Mギ酸ナトリウム水溶液(100μl)を添加して25℃で180分間攪拌して、下記反応式(E2):
(Reference Example 3)
Rh-BPy-PMO (Rh / BPy-PMO = 2/50, 11.6 mg, 1.0 μmol-Rh) obtained in Synthesis Example 1 as a solid catalyst, and oxidized nicotinamide adenine dinucleotide (NAD) as a reaction substrate + , 1.0 mM) and 0.1 M sodium phosphate buffer (10 ml, pH 7) and 10 M sodium formate aqueous solution (100 μl) were added thereto and stirred at 25 ° C. for 180 minutes. (E2):

〔前記式(E2)中、Rはアデニンジヌクレオチドを示す。〕
で表される反応を行なった。反応終了後、得られた反応液中の還元型ニコチンアミドアデニンジヌクレオチド(NADH)の生成量を測定し、反応収率を求めた。その結果を表2に示す。
[In the formula (E2), R represents an adenine dinucleotide. ]
The reaction represented by After completion of the reaction, the amount of reduced nicotinamide adenine dinucleotide (NADH) produced in the resulting reaction solution was measured to determine the reaction yield. The results are shown in Table 2.

(実施例3)
ウシ血清アルブミン(BSA)を、濃度が10mg/mlとなるように更に添加した以外は参考例3と同様にして、前記反応式(E2)で表される反応を行い、反応収率を求めた。その結果を表2に示す。
Example 3
The reaction represented by the reaction formula (E2) was performed in the same manner as in Reference Example 3 except that bovine serum albumin (BSA) was further added so that the concentration was 10 mg / ml, and the reaction yield was determined. . The results are shown in Table 2.

(比較参考例4)
触媒として比較合成例1で得られた均一系Rh錯体(Rh−BPy、Rh/BPy=1/1、0.465mg(1.0μmol)、1.0μmol−Rh)を用いた以外は参考例3と同様にして、下記反応式(C4):
(Comparative Reference Example 4)
Reference Example 3 except that the homogeneous Rh complex (Rh-BPy, Rh / BPy = 1/1, 0.465 mg (1.0 μmol), 1.0 μmol-Rh) obtained in Comparative Synthesis Example 1 was used as the catalyst. In the same manner as in the following reaction formula (C4):

〔前記式(C4)中、Rはアデニンジヌクレオチドを示す。〕
で表される反応を行い、反応収率を求めた。その結果を表2に示す。
[In the formula (C4), R represents adenine dinucleotide. ]
The reaction yield was determined. The results are shown in Table 2.

(比較例2)
ウシ血清アルブミン(BSA)を、濃度が10mg/mlとなるように更に添加した以外は比較参考例4と同様にして、前記反応式(C4)で表される反応を行い、反応収率を求めた。その結果を表2に示す。
(Comparative Example 2)
The reaction represented by the above reaction formula (C4) was carried out in the same manner as in Comparative Reference Example 4 except that bovine serum albumin (BSA) was further added to a concentration of 10 mg / ml to obtain the reaction yield. It was. The results are shown in Table 2.

表2に示した結果から明らかなように、触媒として、Rh原子に配位したビピリジン基を含有するメソポーラス有機シリカ(Rh−BPy−PMO)を用いた場合(実施例3)には、均一系Rh錯体(Rh−BPy)を用いた場合(比較例2)に比べて、タンパク質であるウシ血清アルブミン(BSA)の存在下における触媒活性の維持率が高くなることがわかった。   As is clear from the results shown in Table 2, when mesoporous organic silica (Rh-BPy-PMO) containing a bipyridine group coordinated to Rh atoms was used as the catalyst (Example 3), a homogeneous system was used. It was found that the maintenance rate of catalytic activity in the presence of bovine serum albumin (BSA), which is a protein, was higher than when Rh complex (Rh-BPy) was used (Comparative Example 2).

以上説明したように、本発明によれば、タンパク質の存在下での還元反応において高い触媒活性を示す還元反応用固体触媒を得ることが可能となる。したがって、本発明の還元反応用固体触媒は、医薬品、生理活性物質、農薬、機能性材料等の製造過程における還元反応(特に、水素転移反応、水素移動反応、炭素−炭素不飽和結合の水素化反応、カルボニルの水素化反応、イミンの水素化反応)に使用される固体触媒などとして有用である。   As described above, according to the present invention, it is possible to obtain a solid catalyst for reduction reaction that exhibits high catalytic activity in a reduction reaction in the presence of protein. Therefore, the solid catalyst for reduction reaction of the present invention is a reduction reaction (especially hydrogen transfer reaction, hydrogen transfer reaction, hydrogenation of carbon-carbon unsaturated bond) in the production process of pharmaceuticals, bioactive substances, agricultural chemicals, functional materials and the like. It is useful as a solid catalyst used in the reaction, hydrogenation reaction of carbonyl, hydrogenation reaction of imine).

Claims (7)

下記式(1):
〔前記式(1)中、Mは、配位子Lが結合していてもよい遷移金属原子を表し、R〜Rのうちの少なくとも1つの基は、下記式(2):
(前記式(2)中、Yは、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、エーテル基、カルボニル基、アミノ基、アミド基及びイミド基からなる群から選択される2価又は3価の有機基或いは単結合であり、Rは炭素数1〜8のアルキル基又は置換若しくは無置換のアリル基を表し、Rは水素原子又はシリル基を表し、kは1又は2であり、iは1〜3の整数であり、jは0〜2の整数であり、1≦i+j≦3であり、iとjとの組み合わせは、複数存在する前記式(2)で表される基においてそれぞれ独立であり、*は隣接する構造との結合部位である。)
で表される基であり、R〜Rのうちの残りの基はそれぞれ独立に水素原子、ハロゲン原子、或いはアルキル基、アリール基、ヒドロキシ基、アルコキシ基、フェノキシ基、カルボキシ基、カルボン酸エステル基、アセチル基、ベンゾイル基、アミノ基、アミド基、イミド基、ニトロ基及びシアノ基からなる群から選択される1価又は2価の有機基である。〕
で表される構造を備える遷移金属含有メソポーラス有機シリカからなり、タンパク質存在下での還元反応に使用することを特徴とする還元反応用固体触媒。
Following formula (1):
[In the formula (1), M represents a transition metal atom to which a ligand L may be bonded, and at least one group of R 1 to R 8 is represented by the following formula (2):
(In the formula (2), Y is a divalent or trivalent group selected from the group consisting of an alkylene group, an alkenylene group, an alkynylene group, an arylene group, an ether group, a carbonyl group, an amino group, an amide group, and an imide group. An organic group or a single bond, R a represents an alkyl group having 1 to 8 carbon atoms or a substituted or unsubstituted allyl group, R b represents a hydrogen atom or a silyl group, k is 1 or 2, and i Is an integer of 1 to 3, j is an integer of 0 to 2, 1 ≦ i + j ≦ 3, and a plurality of combinations of i and j are present in the group represented by the formula (2). Independent, * is a binding site with an adjacent structure.)
The remaining groups of R 1 to R 8 are each independently a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a hydroxy group, an alkoxy group, a phenoxy group, a carboxy group, or a carboxylic acid. It is a monovalent or divalent organic group selected from the group consisting of an ester group, acetyl group, benzoyl group, amino group, amide group, imide group, nitro group and cyano group. ]
A solid catalyst for reduction reaction, which comprises a transition metal-containing mesoporous organic silica having a structure represented by the formula (1) and is used for a reduction reaction in the presence of protein.
前記遷移金属含有メソポーラス有機シリカの中心細孔直径が2〜10nmであることを特徴とする請求項1に記載の還元反応用固体触媒。   The solid catalyst for reduction reaction according to claim 1, wherein the transition metal-containing mesoporous organic silica has a central pore diameter of 2 to 10 nm. 前記タンパク質が生理活性タンパク質であることを特徴とする請求項1又は2に記載の還元反応用固体触媒。   The solid catalyst for reduction reaction according to claim 1 or 2, wherein the protein is a physiologically active protein. 前記生理活性タンパク質が、血漿タンパク質、酵素、輸送タンパク質、貯蔵タンパク質、抗体からなる群から選択される少なくとも1種であることを特徴とする請求項3に記載の還元反応用固体触媒。   The solid catalyst for reduction reaction according to claim 3, wherein the physiologically active protein is at least one selected from the group consisting of plasma protein, enzyme, transport protein, storage protein, and antibody. 前記遷移金属原子がロジウム原子であることを特徴とする請求項1〜4のうちのいずれか一項に記載の還元反応用固体触媒。   The solid catalyst for reduction reaction according to any one of claims 1 to 4, wherein the transition metal atom is a rhodium atom. 前記遷移金属原子にペンタメチルシクロペンタジエニルが配位していることを特徴とする請求項1〜5のうちのいずれか一項に記載の還元反応用固体触媒。   The solid catalyst for reduction reaction according to any one of claims 1 to 5, wherein pentamethylcyclopentadienyl is coordinated to the transition metal atom. 前記還元反応が水素移動反応であることを特徴とする請求項1〜6のうちのいずれか一項に記載の還元反応用固体触媒。   The solid catalyst for reduction reaction according to any one of claims 1 to 6, wherein the reduction reaction is a hydrogen transfer reaction.
JP2017097044A 2017-05-16 2017-05-16 Solid catalyst for reduction reaction Active JP6883257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017097044A JP6883257B2 (en) 2017-05-16 2017-05-16 Solid catalyst for reduction reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017097044A JP6883257B2 (en) 2017-05-16 2017-05-16 Solid catalyst for reduction reaction

Publications (2)

Publication Number Publication Date
JP2018192409A true JP2018192409A (en) 2018-12-06
JP6883257B2 JP6883257B2 (en) 2021-06-09

Family

ID=64570939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017097044A Active JP6883257B2 (en) 2017-05-16 2017-05-16 Solid catalyst for reduction reaction

Country Status (1)

Country Link
JP (1) JP6883257B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021235326A1 (en) * 2020-05-21 2021-11-25 国立研究開発法人科学技術振興機構 Light-driven fuel cell, cathode catalyst for same, anode catalyst for same, and methanol production method comprising converting methane into methanol

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078200A (en) * 2007-09-25 2009-04-16 Japan Science & Technology Agency Catalyst and method for decomposing formic acid, method for producing hydrogen, apparatus for producing and decomposing formic acid and method for absorbing and generating hydrogen
JP2010006797A (en) * 2008-05-29 2010-01-14 Shin-Etsu Chemical Co Ltd 2,2'-bipyridine derivative having reactive silyl group, method for producing the same, and transition metal complex
JP2010527890A (en) * 2007-05-21 2010-08-19 財団法人韓国化学研究院 Preparation of surface-functionalized porous organic-inorganic hybrid materials or mesoporous materials with coordinately unsaturated metal sites and their catalytic application
JP2012516224A (en) * 2009-01-29 2012-07-19 フォーサイト・ビジョン フォー・インコーポレーテッド Posterior drug delivery
JP2014193457A (en) * 2013-02-28 2014-10-09 Toyota Central R&D Labs Inc Solid catalyst
JP2016121173A (en) * 2010-11-01 2016-07-07 シヴィダ・ユーエス・インコーポレイテッドPsivida Us, Inc. Bioerodible silicon-based devices for delivery of therapeutic agents
JP2017029926A (en) * 2015-07-31 2017-02-09 株式会社豊田中央研究所 Solid catalyst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527890A (en) * 2007-05-21 2010-08-19 財団法人韓国化学研究院 Preparation of surface-functionalized porous organic-inorganic hybrid materials or mesoporous materials with coordinately unsaturated metal sites and their catalytic application
JP2009078200A (en) * 2007-09-25 2009-04-16 Japan Science & Technology Agency Catalyst and method for decomposing formic acid, method for producing hydrogen, apparatus for producing and decomposing formic acid and method for absorbing and generating hydrogen
JP2010006797A (en) * 2008-05-29 2010-01-14 Shin-Etsu Chemical Co Ltd 2,2'-bipyridine derivative having reactive silyl group, method for producing the same, and transition metal complex
JP2012516224A (en) * 2009-01-29 2012-07-19 フォーサイト・ビジョン フォー・インコーポレーテッド Posterior drug delivery
JP2016121173A (en) * 2010-11-01 2016-07-07 シヴィダ・ユーエス・インコーポレイテッドPsivida Us, Inc. Bioerodible silicon-based devices for delivery of therapeutic agents
JP2014193457A (en) * 2013-02-28 2014-10-09 Toyota Central R&D Labs Inc Solid catalyst
JP2017029926A (en) * 2015-07-31 2017-02-09 株式会社豊田中央研究所 Solid catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021235326A1 (en) * 2020-05-21 2021-11-25 国立研究開発法人科学技術振興機構 Light-driven fuel cell, cathode catalyst for same, anode catalyst for same, and methanol production method comprising converting methane into methanol

Also Published As

Publication number Publication date
JP6883257B2 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
KR101667222B1 (en) Rh-C3N4 Heterogeneous catalyst for acetic acid synthesis by carbonylation reaction
EP1856113B1 (en) Chiral bisoxazoline catalysts
Tabe et al. Porous protein crystals as catalytic vessels for organometallic complexes
JP2008239495A (en) Method for producing optically active epoxy compound, complex to be used in the method and method for producing the same
Yu et al. Effect of pore size on the performance of mesoporous material supported chiral Mn (III) salen complex for the epoxidation of unfunctionalized olefins
CN113201526B (en) Difunctional photo-enzyme synergistic catalyst and preparation method and application thereof
Peng et al. Immobilization of rhodium complexes ligated with triphenyphosphine analogs on amino-functionalized MCM-41 and MCM-48 for 1-hexene hydroformylation
JP5639199B2 (en) Chiral heterogeneous catalysts for asymmetric nitroaldol reactions
JP4627141B2 (en) Bonding method of organic modification group to inorganic solid
US7579294B2 (en) Synthesis of supported transition metal catalysts
Jin et al. Immobilization of tungsten chelate complexes on functionalized mesoporous silica SBA-15 as heterogeneous catalysts for oxidation of cyclopentene
Roy et al. Immobilized dimeric chiral Mn (III) salen complex on short channel ordered mesoporous silica as an effective catalyst for the epoxidation of non-functionalized alkenes
Shimizu et al. Iridium Complex Immobilized on Custom-Designed Periodic Mesoporous Organosilica as Reusable Catalyst for the Dehydrogenative Oxidation of Alcohols
JP6883257B2 (en) Solid catalyst for reduction reaction
Dallmann et al. Sol–gel derived hybrid materials as heterogeneous catalysts for the epoxidation of olefins
Pathak et al. Enantioselective addition of diethylzinc to aldehydes using immobilized chiral BINOL–Ti complex on ordered mesoporous silicas
CN1136206C (en) Catalysts based on organic-inorganic hybrid materials containing titanium, for selective oxidation of hydrocarbons
Guo et al. Nanofibers of polyethylene produced by SBA-15 supported zirconium catalyst [N-(3-tert-butylsalicylidene)-4′-allyloxylanilinato] 2Zr (IV) Cl2
Mangala et al. Palladium (II) supported on polycarbosilane: application as reusable catalyst for Heck reaction
CN108568316B (en) High-stability zirconium-based chiral catalyst, preparation method and application thereof
Chen et al. Organosoluble zirconium phosphonate nanocomposites and their supported chiral ruthenium catalysts: The first example of homogenization of inorganic-supported catalyst in asymmetric hydrogenation
JP6536262B2 (en) Solid catalyst
Pathak et al. The synthesis of silica-supported chiral BINOL: Application in Ti-catalyzed asymmetric addition of diethylzinc to aldehydes
JP2006198491A (en) Polymer immobilized platinum catalyst and its use
JP2009022862A (en) Solid catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210421

R150 Certificate of patent or registration of utility model

Ref document number: 6883257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150