JP2018190362A - Landing device for drone - Google Patents

Landing device for drone Download PDF

Info

Publication number
JP2018190362A
JP2018190362A JP2017105996A JP2017105996A JP2018190362A JP 2018190362 A JP2018190362 A JP 2018190362A JP 2017105996 A JP2017105996 A JP 2017105996A JP 2017105996 A JP2017105996 A JP 2017105996A JP 2018190362 A JP2018190362 A JP 2018190362A
Authority
JP
Japan
Prior art keywords
landing
drone
gps
gps receiver
position information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017105996A
Other languages
Japanese (ja)
Other versions
JP7083099B2 (en
Inventor
佐藤 守男
Morio Sato
守男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohira Electronics Co Ltd
Original Assignee
Ohira Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohira Electronics Co Ltd filed Critical Ohira Electronics Co Ltd
Priority to JP2017105996A priority Critical patent/JP7083099B2/en
Publication of JP2018190362A publication Critical patent/JP2018190362A/en
Application granted granted Critical
Publication of JP7083099B2 publication Critical patent/JP7083099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Traffic Control Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an automatic takeoff/landing device by means of a GPS receiver.SOLUTION: In the automatic takeoff/landing device, a processing device for transmitting positional information of a second GPS receiver 4 attached to a takeoff/landing base 3 to a drone 2 on which a first GPS receiver 1 is mounted, comparing the positional information of the two GPS receivers on the drone side, and landing at an agreed spot. If two GPS receivers having the same specification are located at the same position, a change in the difference between the two is small even if the value of each of the two changes, so that the landing accuracy can be increased.SELECTED DRAWING: Figure 1

Description

本発明は小型無人航空機の自動着陸装置に関する。  The present invention relates to an automatic landing device for a small unmanned aerial vehicle.

従来の自動着陸装置の1例として、特許公開2012−71645が提供した方法がある。その方法は無人飛行機に搭載されているGPSにより着陸点近くまで飛行させたのちに着陸点に置かれたターゲットマークを撮像装置でとらえ、それを目指して着陸させる。
ターゲットが自動車のような移動体の場合は移動体にもGPSを取り付けておき、2つのGPSの情報を処理して無人飛行機を移動体近くまで飛行させたのちにターゲットマークを撮像装置でとらえ、それを目指して着陸させる。
図5にターゲットマークの例として同文献に載っていた図柄を示す。
As an example of a conventional automatic landing device, there is a method provided by Patent Publication 2012-71645. In the method, the target mark placed at the landing point is captured by the imaging device after flying to the vicinity of the landing point by the GPS mounted on the unmanned airplane, and landing is made aiming at the target mark.
If the target is a mobile object such as an automobile, GPS is also attached to the mobile object, and after processing two GPS information and flying an unmanned airplane to the vicinity of the mobile object, the target mark is captured by the imaging device, Land for that.
FIG. 5 shows a pattern described in the document as an example of the target mark.

従来の1例として示した上述の自動着陸装置はGPSの位置情報により着陸地点近くまで飛行させた後に視覚センサーの情報を処理して位置を正確にとらえている。しかし、ターゲットマークが枯葉や紙切れで部分的に隠された場合は認識できないトラブルが発生する恐れがある。
そこで本発明は、GPSの位置情報を無人飛行機を着陸点の近くまで飛行させるだけに用いるのではなく着陸点を正確に判定する手段として用いるシステムを提供する。
The above-mentioned automatic landing apparatus shown as an example of the prior art accurately captures the position by processing the information of the visual sensor after flying near the landing point based on the position information of GPS. However, if the target mark is partially hidden due to dead leaves or a piece of paper, there is a possibility that trouble that cannot be recognized may occur.
Therefore, the present invention provides a system that uses GPS position information not only for flying an unmanned airplane close to the landing point, but also as a means for accurately determining the landing point.

請求項1記載の発明において、第1のGPS受信機と、この第1のGPS受信機を搭載したドローンと、このドローンの離着陸に用いる離着陸台を備えた自動離着陸システムにおいて、離着陸台に第2のGPS受信機と、この第2のGPS受信機が得る位置情報をドローンに送る送信機を取り付け、ドローンにその送信機が送ってくる位置情報を受信する受信機と、この受信機が得る位置情報と第1のGPS受信機が得る位置情報を比較して一致する点に着陸するための処理装置を搭載した。  In the invention according to claim 1, in the automatic take-off and landing system including the first GPS receiver, the drone equipped with the first GPS receiver, and the take-off and landing platform used for take-off and landing of the drone, A GPS receiver, a transmitter that sends the position information obtained by the second GPS receiver to the drone, a receiver that receives the position information sent by the transmitter to the drone, and a position obtained by the receiver A processing device for landing at a point that matches the position information obtained by comparing the information with the position information obtained by the first GPS receiver is mounted.

GPS受信機は複数の人工衛星から送られてくる電波の到着時刻の差を処理して位置を割出している。電波は電離層を通過するときに光のスピードより遅くなるが、電離層の深さや濃さが時間と共に刻々と変化するため、到着時刻も変化する。これがGPSの精度を落とす最大の原因になっている。  The GPS receiver processes the difference in arrival times of radio waves transmitted from a plurality of artificial satellites to determine the position. Radio waves are slower than the speed of light as they pass through the ionosphere, but the arrival time also changes because the depth and density of the ionosphere change over time. This is the biggest cause of the loss of GPS accuracy.

2つの同じ仕様のGPS受信機が同じ位置にあれば、2つの各々の値が変化しても2つの差の変化は小さい。ここに着眼し、着陸点にGPS受信機を置いて、その位置情報をドローンに送信し、ドローンのGPS受信機が得る位置情報と比較させて差がゼロになるように着陸させることで着陸精度を上げることを考案した。  If two GPS receivers with the same specifications are at the same position, even if each of the two values changes, the change in the two differences is small. Pay attention here, place a GPS receiver at the landing point, send the position information to the drone, compare it with the position information obtained by the GPS receiver of the drone, and land it so that the difference is zero, landing accuracy Devised to raise.

本発明を実施するための最良の形態を図面を参照して説明する。  The best mode for carrying out the present invention will be described with reference to the drawings.

図1は本発明の実施例の説明図である。
図において、1はGPS受信機、2はドローン、3は離着陸台、4はGPS受信機、5は送信機、6は受信機、11〜14はプロペラである。
FIG. 1 is an explanatory diagram of an embodiment of the present invention.
In the figure, 1 is a GPS receiver, 2 is a drone, 3 is a take-off and landing platform, 4 is a GPS receiver, 5 is a transmitter, 6 is a receiver, and 11 to 14 are propellers.

図2は図1のドローン2と離着陸台3の各々の構成図である。
図2において、処理装置7はGPS受信機1から入力する位置情報と送信機5及び受信機6を介して入力するGPS受信機4の位置情報の差を計算し、ゼロになるようにフライトコントローラ8に信号を送る。フライトコントローラ8は処理装置7から送られてくる信号に基づいて、プロペラ11〜14の各々の回転数を変えて位置と動くスピードを制御している。
FIG. 2 is a configuration diagram of each of the drone 2 and the take-off / landing platform 3 of FIG.
In FIG. 2, the processing device 7 calculates the difference between the position information input from the GPS receiver 1 and the position information of the GPS receiver 4 input via the transmitter 5 and the receiver 6, so that it becomes zero. Send a signal to 8. The flight controller 8 controls the position and speed of movement by changing the number of revolutions of each of the propellers 11 to 14 based on a signal sent from the processing device 7.

ドローンはプロペラの回転数を変えることにより向きを変えることと前後左右上下の方向に移動することができる。例えば図1において、プロペラ11と12の回転数を下げれば、それらのプロペラがある側に傾くので、その後傾きを所定の値に維持して、回転数を上げれば傾いた方向に進む。  The drone can change its direction by changing the number of revolutions of the propeller and can move in the forward / backward, left / right and up / down directions. For example, in FIG. 1, if the rotation speeds of the propellers 11 and 12 are lowered, the propellers are inclined to the side where they are, so that the inclination is maintained at a predetermined value thereafter, and the rotation speed is increased to advance in the inclined direction.

離着陸台3の位置情報とドローン2の位置情報の差をゼロにする制御は差がプラスであればプラスを減らすようにドローンを移動させるが、この制御には応答スピードがかかわってくるので、位置情報の数値の差をデジタルフィルタを介してフライトコントローラ8に伝える必要がある。  If the difference between the position information of the take-off and landing platform 3 and the position information of the drone 2 is zero, the drone is moved so as to reduce the plus if the difference is positive, but the response speed is involved in this control. It is necessary to transmit the difference in the numerical value of information to the flight controller 8 through a digital filter.

図3は処理装置7のデジタルフィルタに関るフロートチャートの1例を示す図である。
図のフロートチャートは左右の位置の差をゼロにする処理を行っている。図中のXは位置の差を表し、Rはフライトコントローラに送る値を表しているが、左右の位置情報を周期的に入力してXを計算し、1つの前の周期で得たXzとRzと共に計算式に代入して新しいRを求め、フライトコントローラに送る。フライトコントローラに送られる信号は一般的にPWM信号が用いられることが多いが、その場合は、Rはデューティ値になる。
FIG. 3 is a diagram illustrating an example of a float chart relating to the digital filter of the processing device 7.
The float chart in the figure performs processing to make the difference between the left and right positions zero. In the figure, X represents a position difference, and R represents a value to be sent to the flight controller. However, X is calculated by periodically inputting left and right position information, and Xz obtained in one previous period A new R is obtained by substituting it into the calculation formula together with Rz and sent to the flight controller. In general, a PWM signal is often used as a signal sent to the flight controller. In this case, R is a duty value.

フライトコントローラには他にY方向(前後)、Z方向(上下)、向き(ヨー)を制御する信号も送られる。  In addition, signals for controlling the Y direction (front and back), the Z direction (up and down), and the direction (yaw) are also sent to the flight controller.

図4はGPS受信機の位置情報が変化する要因の1つを説明する図である。
図において、15〜18は人工衛星で、地上に電波を送っている。地上のGPS受信機は4つの衛星からの電波を受信し位置情報を計算している。各々の人工衛星は時間とともにその仰角が変化するので電離層通過距離も変わる。その結果位置情報の計算結果も変わるが、2つのGPS受信機が着陸点で重なれば位置情報の差は十分小さくなるので、自動的に着陸させる目的に使うことができる。
FIG. 4 is a diagram for explaining one of the factors that change the position information of the GPS receiver.
In the figure, reference numerals 15 to 18 denote artificial satellites that send radio waves to the ground. A terrestrial GPS receiver receives radio waves from four satellites and calculates position information. Since each satellite changes its elevation angle with time, the ionosphere passage distance also changes. As a result, the calculation result of the position information also changes, but if the two GPS receivers overlap at the landing point, the difference in the position information becomes sufficiently small, and can be used for the purpose of landing automatically.

ドローンのフライトコントローラを位置情報の差がゼロになるように制御しながら、ゆっくり下降させることによって正確な着陸ができる。  Accurate landing can be achieved by slowly lowering the drone's flight controller while controlling the position information difference to be zero.

産業上の利用の可能性Industrial applicability

GPS受信機が量産されて安価で入手できるので従来の視覚による位置合わせより経済性があり、市場で応用される可能性は高い。  Since GPS receivers are mass-produced and can be obtained at a low cost, they are more economical than conventional visual alignment and are likely to be applied in the market.

本発明の実施例の説明図である。It is explanatory drawing of the Example of this invention. 図1を構成図に書きなおしたものである。FIG. 1 is a rewrite of the configuration diagram. 図2の処理装置のフロートチャートの1例を示す図である。It is a figure which shows one example of the float chart of the processing apparatus of FIG. GPSの説明図である。It is explanatory drawing of GPS. 従来方式の撮像装置がとらえる対象のマークである。This is a mark to be captured by a conventional imaging apparatus.

符号の簡単な説明Brief description of symbols

1、4 GPS受信機
2 ドローン
3 離着陸台
5 送信機
6 受信機
7 処理装置
8 フライトコントローラ
9、10 アンテナ
11〜14 プロペラ
15〜18 人工衛星
1, 4 GPS receiver 2 Drone 3 Takeoff / landing platform 5 Transmitter 6 Receiver 7 Processing device 8 Flight controller 9, 10 Antenna 11-14 Propeller 15-18 Artificial satellite

Claims (1)

第1のGPS受信機と前記第1のGPS受信機を搭載したドローンと前記ドローンの離着陸に用いる離着陸台を備えた自動離着陸システムにおいて、前記離着陸台に第2のGPS受信機と前記第2のGPS受信機が得る位置情報を前記ドローンに送る送信機を取り付け、前記ドローンに前記送信機から送られてくる位置情報を受信する受信機と前記受信機が得る位置情報と前記第1のGPS受信機が得る位置情報を比較して一致する点に着陸するための処理装置を搭載したことを特徴とする自動離着陸システム。  In an automatic take-off and landing system including a first GPS receiver, a drone equipped with the first GPS receiver, and a take-off and landing platform used for take-off and landing of the drone, the second GPS receiver and the second GPS on the take-off and landing platform A transmitter for sending position information obtained by a GPS receiver to the drone is attached, a receiver for receiving position information sent from the transmitter to the drone, position information obtained by the receiver, and the first GPS reception An automatic take-off and landing system equipped with a processing device for landing at a point that matches the position information obtained by the aircraft.
JP2017105996A 2017-05-11 2017-05-11 Drone landing gear Active JP7083099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017105996A JP7083099B2 (en) 2017-05-11 2017-05-11 Drone landing gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017105996A JP7083099B2 (en) 2017-05-11 2017-05-11 Drone landing gear

Publications (2)

Publication Number Publication Date
JP2018190362A true JP2018190362A (en) 2018-11-29
JP7083099B2 JP7083099B2 (en) 2022-06-10

Family

ID=64478843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017105996A Active JP7083099B2 (en) 2017-05-11 2017-05-11 Drone landing gear

Country Status (1)

Country Link
JP (1) JP7083099B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020181719A1 (en) * 2019-03-13 2020-09-17 歌尔股份有限公司 Unmanned aerial vehicle control method, unmanned aerial vehicle, and system
WO2021029233A1 (en) 2019-08-09 2021-02-18 国立大学法人東北大学 Aerial vehicle takeoff and landing system, takeoff and landing apparatus for aerial vehicle, and aerial vehicle
WO2021176914A1 (en) 2020-03-05 2021-09-10 国立大学法人東北大学 Passive guidance mechanism and flying object landing system
CN115743664A (en) * 2022-11-24 2023-03-07 中科蓝光科技(广州)有限公司 Portable unmanned aerial vehicle air park

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071645A (en) * 2010-09-28 2012-04-12 Topcon Corp Automatic taking-off and landing system
JP2012232654A (en) * 2011-04-28 2012-11-29 Topcon Corp Taking-off and landing target device, and automatic taking-off and landing system
JP2017037369A (en) * 2015-08-06 2017-02-16 Simplex Quantum株式会社 Small size aviation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071645A (en) * 2010-09-28 2012-04-12 Topcon Corp Automatic taking-off and landing system
JP2012232654A (en) * 2011-04-28 2012-11-29 Topcon Corp Taking-off and landing target device, and automatic taking-off and landing system
JP2017037369A (en) * 2015-08-06 2017-02-16 Simplex Quantum株式会社 Small size aviation system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020181719A1 (en) * 2019-03-13 2020-09-17 歌尔股份有限公司 Unmanned aerial vehicle control method, unmanned aerial vehicle, and system
US11573576B2 (en) 2019-03-13 2023-02-07 Goertek Inc. Method for controlling a drone, drone and system
WO2021029233A1 (en) 2019-08-09 2021-02-18 国立大学法人東北大学 Aerial vehicle takeoff and landing system, takeoff and landing apparatus for aerial vehicle, and aerial vehicle
US11905037B2 (en) 2019-08-09 2024-02-20 Tohoku University Aerial vehicle takeoff and landing system, aerial vehicle takeoff and landing apparatus, and aerial vehicle
WO2021176914A1 (en) 2020-03-05 2021-09-10 国立大学法人東北大学 Passive guidance mechanism and flying object landing system
CN115743664A (en) * 2022-11-24 2023-03-07 中科蓝光科技(广州)有限公司 Portable unmanned aerial vehicle air park

Also Published As

Publication number Publication date
JP7083099B2 (en) 2022-06-10

Similar Documents

Publication Publication Date Title
KR101732357B1 (en) System and method for controlling landing and takeoff of dron
RU2666479C1 (en) Method of providing the automatic landing of the flying apparatus
EP2338793B1 (en) System and method of automatic piloting for in-flight refuelling of aircraft, and aircraft comprising said system
EP2177966B1 (en) Systems and methods for unmanned aerial vehicle navigation
KR101494654B1 (en) Method and Apparatus for Guiding Unmanned Aerial Vehicle and Method and Apparatus for Controlling Unmanned Aerial Vehicle
JP2018190362A (en) Landing device for drone
US20180090016A1 (en) Methods and apparatus to navigate drones based on weather data
WO2017065103A1 (en) Small unmanned aircraft control method
KR101700182B1 (en) Charging apparatus for unmanned aerial vehicles and method thereof
KR101872609B1 (en) Apparatus and method for precision landing guidance
EP2835708A2 (en) Method and system for remotely controlling a vehicle
RU2015135373A (en) Tracking system for unmanned aircraft
CN105121999A (en) Control of image triggering for aerial image capturing in nadir alignment for an unmanned aircraft
EP3077760B1 (en) Payload delivery
JP2005115623A (en) Navigation system using image recognition
CN105352495A (en) Unmanned-plane horizontal-speed control method based on fusion of data of acceleration sensor and optical-flow sensor
RU2562890C2 (en) Method of control over drone
CN106094876A (en) A kind of unmanned plane target locking system and method thereof
JP2018046426A (en) Abnormality detection method of unmanned machine control system
WO2018059295A1 (en) Control method, device, and system for multirotor aerial vehicle
WO2016122744A2 (en) Trajectory-based sensor planning
JP2020149640A (en) Flight system and landing control method
CN104539906A (en) Image/laser ranging/ABS-B monitoring integrated system
RU155323U1 (en) UNMANNED AIRCRAFT CONTROL SYSTEM
GB2522327A (en) Determining routes for aircraft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220517

R150 Certificate of patent or registration of utility model

Ref document number: 7083099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150