JP2018187915A - Three-dimensional object printing system and three-dimensional object printing method - Google Patents

Three-dimensional object printing system and three-dimensional object printing method Download PDF

Info

Publication number
JP2018187915A
JP2018187915A JP2018014928A JP2018014928A JP2018187915A JP 2018187915 A JP2018187915 A JP 2018187915A JP 2018014928 A JP2018014928 A JP 2018014928A JP 2018014928 A JP2018014928 A JP 2018014928A JP 2018187915 A JP2018187915 A JP 2018187915A
Authority
JP
Japan
Prior art keywords
printing
dimensional object
dimensional
print data
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018014928A
Other languages
Japanese (ja)
Other versions
JP6440877B2 (en
Inventor
眞 太田
Makoto Ota
眞 太田
晴彦 森口
Haruhiko Moriguchi
晴彦 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Willbee Co Ltd
Original Assignee
Willbee Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Willbee Co Ltd filed Critical Willbee Co Ltd
Priority to PCT/JP2018/015572 priority Critical patent/WO2018198832A1/en
Priority to KR1020197031780A priority patent/KR102269950B1/en
Priority to CN201880027160.1A priority patent/CN110582746B/en
Priority to TW107138023A priority patent/TWI770301B/en
Publication of JP2018187915A publication Critical patent/JP2018187915A/en
Application granted granted Critical
Publication of JP6440877B2 publication Critical patent/JP6440877B2/en
Priority to US16/662,456 priority patent/US11292203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/40Printing on bodies of particular shapes, e.g. golf balls, candles, wine corks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling

Abstract

PROBLEM TO BE SOLVED: To provide a three-dimensional object printing system and a three-dimensional object printing method, which dispense with control of rotation of a three-dimensional object and which enable high-definition printing to be performed without use of a fixture.SOLUTION: A three-dimensional object printing system includes: a printing table T for being loaded with a plurality of three-dimensional objects 10 serving as printing objects; detection means 101 for detecting the position and direction of each three-dimensional object loaded on the printing table; printing data generation means 102 for generating printing data corresponding to each three-dimensional object on the basis of the result of detection by the detection means; printing means 103 for performing printing on each three-dimensional object by the printing data generated by the printing data generation means; and control means 104 for controlling operations of the detection means, the printing data generation means and the printing means.SELECTED DRAWING: Figure 1

Description

本発明は、立体物印刷システムおよび立体物印刷方法に関するものである。   The present invention relates to a three-dimensional object printing system and a three-dimensional object printing method.

従来、立体物上に画像を印刷する立体物印刷装置として、インクジェット式の記録ヘッドと、立体物の側面を記録ヘッドのノズル面に対向させた状態でその立体物を回転可能に支持する立体物支持部とを備え、立体物支持部によって立体物を回転させながら記録ヘッドによって立体物の側面に画像を印刷するプリンタが知られている(特許文献1参照)。   Conventionally, as a three-dimensional object printing apparatus that prints an image on a three-dimensional object, an ink jet recording head and a three-dimensional object that rotatably supports the three-dimensional object in a state where the side surface of the three-dimensional object is opposed to the nozzle surface of the recording head. There is known a printer that includes a support unit and prints an image on a side surface of a three-dimensional object by a recording head while the three-dimensional object is rotated by the three-dimensional object support unit (see Patent Document 1).

特開2006−335019号公報JP 2006-335019 A

ところが、従来技術に係る立体物印刷装置では、立体物支持部で回転できる立体物は単一であるため、複数の立体物への印刷を行う場合の生産効率が低いという不都合があった。   However, the three-dimensional object printing apparatus according to the related art has a disadvantage that the production efficiency when printing on a plurality of three-dimensional objects is low because the three-dimensional object that can be rotated by the three-dimensional object support unit is single.

また、従来技術では、印刷品質を向上させるためには、印刷対象として立体物の回転を適切に制御する必要であった。そのため、複雑で精密な制御技術を要し、コストが嵩むという難点もあった。   In the prior art, in order to improve the print quality, it is necessary to appropriately control the rotation of the three-dimensional object as a print target. For this reason, complicated and precise control technology is required, and the cost is increased.

さらに、立体物印刷方法として、印刷用治具を用いる方法も提案されている。しかしながら、このような印刷方法では、異なる形状の立体物毎に印刷用治具を必要とし、また印刷用治具に立体物を固定する手間が必要であった。そのため、印刷に要する費用が嵩むなどの問題があった。   Furthermore, a method using a printing jig has been proposed as a three-dimensional object printing method. However, such a printing method requires a printing jig for each three-dimensional object having a different shape, and requires a labor for fixing the three-dimensional object to the printing jig. Therefore, there is a problem that the cost required for printing increases.

本発明は上記の事情に鑑み、立体物の回転制御が不要で、また固定治具を用いることなく高精細な印刷を行うことができる立体物印刷システムおよび立体物印刷方法を提供することを目的としている。   SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a three-dimensional object printing system and a three-dimensional object printing method that do not require rotation control of a three-dimensional object and can perform high-definition printing without using a fixing jig. It is said.

前記課題を解決するため、本発明に係る立体物印刷システムは、印刷対象としての複数の立体物を載置する印刷テーブルと、該印刷テーブル上に載置した各立体物の位置および向きを検出する検出手段と、該検出手段による検出結果に基づいて前記各立体物に対応させた印刷データを生成する印刷データ生成手段と、該印刷データ生成手段で生成された印刷データにより、前記各立体物への印刷を実行する印刷手段と、前記検出手段、前記印刷データ生成手段および前記印刷手段の動作を制御する制御手段と、を備えることを要旨とする。   In order to solve the above problems, a three-dimensional object printing system according to the present invention detects a print table on which a plurality of three-dimensional objects as print targets are placed, and the position and orientation of each three-dimensional object placed on the print table. Detection means, print data generation means for generating print data corresponding to each solid object based on a detection result by the detection means, and each solid object by the print data generated by the print data generation means The gist of the invention includes a printing unit that executes printing on the printer, and a control unit that controls operations of the detection unit, the print data generation unit, and the printing unit.

他の発明に係る立体物印刷方法は、印刷テーブル上に載置した各立体物の位置および向きを検出する検出過程と、検出結果に基づいて前記各立体物に対応させた印刷データを生成する印刷データ生成過程と、生成された印刷データにより、前記各立体物への印刷を実行する印刷過程と、を有することを要旨とする。   A three-dimensional object printing method according to another invention generates a print process corresponding to each three-dimensional object based on a detection process for detecting the position and orientation of each three-dimensional object placed on a print table and the detection result. The gist of the invention is to include a print data generation process and a print process for executing printing on each of the three-dimensional objects by the generated print data.

本発明によれば、立体物の回転制御が不要で、また固定治具を用いることなく高精細な印刷を行うことができる立体物印刷システムおよび立体物印刷方法を提供することができる。   According to the present invention, it is possible to provide a three-dimensional object printing system and a three-dimensional object printing method that do not require rotation control of a three-dimensional object and can perform high-definition printing without using a fixing jig.

第1の実施形態に係る立体物印刷システムの全体構成を示す機能ブロック図である。It is a functional block diagram which shows the whole structure of the solid thing printing system which concerns on 1st Embodiment. 第1の実施形態に係る立体物印刷システムの構成例を示す説明図である。It is explanatory drawing which shows the structural example of the solid thing printing system which concerns on 1st Embodiment. 印刷レンダリングデータの生成手順を示す説明図である。It is explanatory drawing which shows the production | generation procedure of print rendering data. 印刷レンダリングデータの生成手順の続きを示す説明図である。It is explanatory drawing which shows the continuation of the production | generation procedure of print rendering data. 印刷レンダリングデータの生成手順の続きを示す説明図である。It is explanatory drawing which shows the continuation of the production | generation procedure of print rendering data. パターンマッチングで検出基準点を発見する手順を示す説明図である。It is explanatory drawing which shows the procedure which discovers a detection reference point by pattern matching. 印刷データの生成手順の例を示す説明図(a)〜(c)である。It is explanatory drawing (a)-(c) which shows the example of the production | generation procedure of print data. 検出基準マークの実施例を示す撮像図である。It is an imaging figure which shows the Example of a detection reference mark. 立体物への印刷例を示す説明図(a)、(b)である。It is explanatory drawing (a) and (b) which show the example of printing to a solid object. 立体物への印刷例を示す一部拡大図(a)、(b)である。It is a partially enlarged view (a) and (b) showing an example of printing on a three-dimensional object. 第1の実施形態に係る立体物印刷システムに適用されるベルトコンベア式の印刷テーブルを示す概略構成図である。It is a schematic block diagram which shows the belt conveyor type printing table applied to the solid thing printing system which concerns on 1st Embodiment. 第2の実施形態に係る立体物印刷システムの全体構成を示す機能ブロック図である。It is a functional block diagram which shows the whole structure of the solid thing printing system which concerns on 2nd Embodiment. 第2の実施形態に係る立体物印刷システムの要部の構成を示すブロック図である。It is a block diagram which shows the structure of the principal part of the solid thing printing system which concerns on 2nd Embodiment. 第2の実施形態に係る立体物印刷システムの構成例を示す説明図である。It is explanatory drawing which shows the structural example of the solid thing printing system which concerns on 2nd Embodiment. 第2の実施形態に係る立体物印刷システムの要部の構成例を示す概略構成図(a)、(b)である。It is a schematic block diagram (a) and (b) which shows the structural example of the principal part of the solid thing printing system which concerns on 2nd Embodiment. 立体姿勢の検出原理を示す説明図である。It is explanatory drawing which shows the detection principle of a solid attitude | position. 立体姿勢の検出における照明角と姿勢角の例を示す説明図である。It is explanatory drawing which shows the example of the illumination angle and attitude | position angle in the detection of a three-dimensional attitude | position. 立体姿勢の検出における照明角と姿勢角の他の例を示す説明図である。It is explanatory drawing which shows the other example of the illumination angle and attitude | position angle in the detection of a three-dimensional attitude | position. 第2の実施形態に係る立体物印刷システムで実行される補正処理の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the correction | amendment process performed with the solid object printing system which concerns on 2nd Embodiment. 補正処理における補正データの生成手順を示す説明図である。It is explanatory drawing which shows the production | generation procedure of the correction data in a correction process. 補正処理における補正データの生成手順を示す説明図である。It is explanatory drawing which shows the production | generation procedure of the correction data in a correction process. 補正処理における補正データの生成手順を示す説明図である。It is explanatory drawing which shows the production | generation procedure of the correction data in a correction process. 印刷データ群の格納例を示す説明図である。It is explanatory drawing which shows the example of storage of a print data group. 走査印刷ヘッドの走査方向とインクドロップレットの飛翔角等の関係を示す説明図である。It is explanatory drawing which shows the relationship between the scanning direction of a scanning print head, the flying angle of an ink droplet, etc. FIG. 走査印刷ヘッドの走査方向と印刷例を示す説明図である。It is explanatory drawing which shows the scanning direction and scanning example of a scanning print head.

以下、本発明の一例としての実施の形態を図面に基づいて詳細に説明する。ここで、添付図面において同一の部材には同一の符号を付しており、また、重複した説明は省略されている。なお、ここでの説明は本発明が実施される最良の形態であることから、本発明は当該形態に限定されるものではない。   Hereinafter, an embodiment as an example of the present invention will be described in detail with reference to the drawings. Here, in the accompanying drawings, the same reference numerals are given to the same members, and duplicate descriptions are omitted. In addition, since description here is the best form by which this invention is implemented, this invention is not limited to the said form.

(第1の実施の形態)
図1および図2を参照して、第1の実施形態に係る立体物印刷システムS1の構成例について説明する。
(First embodiment)
A configuration example of the three-dimensional object printing system S1 according to the first embodiment will be described with reference to FIGS.

ここで、図1は、第1の実施形態に係る立体物印刷システムS1の全体構成を示す機能ブロック図、図2は、第1の実施形態に係る立体物印刷システムS1の構成例を示す説明図である。   Here, FIG. 1 is a functional block diagram showing the overall configuration of the three-dimensional object printing system S1 according to the first embodiment, and FIG. 2 is an explanation showing an example of the configuration of the three-dimensional object printing system S1 according to the first embodiment. FIG.

図1に示すように、立体物印刷システムS1は、印刷対象としての複数の立体物10を載置する印刷テーブルTと、この印刷テーブルT上に載置した各立体物10、10…の位置および向きを検出する検出手段101と、この検出手段101による検出結果に基づいて各立体物10に対応させた印刷データを生成する印刷データ生成手段102と、この印刷データ生成手段102で生成された印刷データにより、各立体物10への印刷を実行する印刷手段103と、検出手段101、印刷データ生成手段102および印刷手段(例えば、フラットベッド型のUVインクジェットプリンタ等)103の動作を制御する制御手段104とを備えている。   As illustrated in FIG. 1, the three-dimensional object printing system S <b> 1 includes a print table T on which a plurality of three-dimensional objects 10 to be printed are placed, and the positions of the three-dimensional objects 10, 10... Placed on the print table T. And a detection unit 101 that detects the orientation, a print data generation unit 102 that generates print data corresponding to each three-dimensional object 10 based on a detection result by the detection unit 101, and a print data generation unit 102 that generates the print data. Control for controlling the operation of the printing means 103 that executes printing on each three-dimensional object 10, the detection means 101, the print data generation means 102, and the printing means (for example, a flatbed UV inkjet printer) 103 according to the print data. Means 104.

検出手段101は、所定の光学センサや印刷テーブルTに載置された各立体物10の3次元の姿勢情報を取得する3次元センサ200で構成することができる。   The detection unit 101 can be configured by a predetermined optical sensor or a three-dimensional sensor 200 that acquires three-dimensional posture information of each three-dimensional object 10 placed on the print table T.

印刷テーブルTには、光学センサ(3次元センサ)200で検出可能な検出基準15が四隅に印刷して形成されている。   On the print table T, detection standards 15 that can be detected by the optical sensor (three-dimensional sensor) 200 are formed by printing at four corners.

検出手段101は、立体物10の表面について予め複数の検出ポイントを指示するXYスライダ301等で構成される指示手段105を備える。なお、図2おいて符号Bは、光線を示し、符号300はプリンタの筐体を示す。   The detection unit 101 includes an instruction unit 105 configured by an XY slider 301 or the like that instructs a plurality of detection points on the surface of the three-dimensional object 10 in advance. In FIG. 2, the symbol B indicates a light beam, and the symbol 300 indicates a printer casing.

また、検出手段101は、各立体物10について指示手段で指示された検出ポイントの位置および検出基準の位置を検出し、ワークステーション104A、104B等で構成される制御手段104は、検出された検出ポイントの位置および検出基準の位置に基づいて、印刷テーブルT上における各立体物10の位置および回転角を算出する。   The detection means 101 detects the position of the detection point indicated by the instruction means and the position of the detection reference for each three-dimensional object 10, and the control means 104 constituted by the workstations 104A, 104B, etc. Based on the position of the point and the position of the detection reference, the position and rotation angle of each three-dimensional object 10 on the print table T are calculated.

また、制御手段101は、算出された各立体物10の位置および回転角に関するデータと、予め取得した立体物10の姿勢に関するデータとに基づくパターンマッチングによって、各立体物10の姿勢を判定するようにできる。   In addition, the control unit 101 determines the posture of each solid object 10 by pattern matching based on the calculated data regarding the position and rotation angle of each solid object 10 and data regarding the posture of the solid object 10 acquired in advance. Can be.

印刷データ生成手段102は、ハードウェアとしてのワークステーション104Bおよび所定のデータ処理ソフトウェア等で構成することができる。   The print data generation unit 102 can be configured by a workstation 104B as hardware and predetermined data processing software.

印刷データ生成手段102は、制御手段104で判定された各立体物10の姿勢と、各立体物10の表面に印刷する描画情報とに基づいて、第1の印刷データ(描画データ)を生成する第1生成手段102Aと、検出手段101で検出された各立体物10の位置と回転角に応じて第1の印刷データに回転処理を施して適正化した第2の印刷データを生成する第2生成手段102Bとを有する。   The print data generation unit 102 generates first print data (drawing data) based on the posture of each solid object 10 determined by the control unit 104 and the drawing information to be printed on the surface of each solid object 10. 102 A of the 1st production | generation means and the 2nd which produces | generates the 2nd printing data optimized by performing a rotation process to 1st printing data according to the position and rotation angle of each solid object 10 which were detected by the detection means 101 Generating means 102B.

なお、印刷テーブルTに載置された各立体物10について高さを検出する高さ検出手段をさらに備えるようにしてもよい。   In addition, you may make it further provide the height detection means which detects height about each solid object 10 mounted in the printing table T. FIG.

この場合には、印刷データ生成手段は、高さ検出手段で検出された各立体物10の高さ情報に基づいて、第2の印刷データを補正するようにできる。   In this case, the print data generation unit can correct the second print data based on the height information of each three-dimensional object 10 detected by the height detection unit.

また、光学センサが、印刷テーブルTに載置された各立体物10の3次元の姿勢情報を取得する3次元センサで構成される場合には、第1生成手段102Aは、3次元センサによる検出結果に基づいて第1の印刷データを生成し、第2生成手段102Bは、3次元センサ或いは他の検出手段で取得される各立体物10の位置と回転角に応じて第1の印刷データに回転処理を施して適正化した第2の印刷データを生成するようにしてもよい。   When the optical sensor is configured with a three-dimensional sensor that acquires three-dimensional posture information of each three-dimensional object 10 placed on the print table T, the first generation unit 102A detects the three-dimensional sensor. Based on the result, the first print data is generated, and the second generation unit 102B generates the first print data according to the position and rotation angle of each three-dimensional object 10 acquired by the three-dimensional sensor or other detection unit. You may make it produce | generate the 2nd print data optimized by performing a rotation process.

また、光学センサ200は、各立体物10の表面への印刷状態を検出し、制御手段104は、印刷状態の検出結果に基づいて印刷の良否を判定するようにしてもよい。   Further, the optical sensor 200 may detect the printing state on the surface of each three-dimensional object 10, and the control unit 104 may determine whether printing is good or not based on the detection result of the printing state.

(第1生成手段の処理について)
ここで、第1生成手段102Aの処理の詳細について説明する。
(Regarding the processing of the first generation means)
Here, details of the processing of the first generation unit 102A will be described.

まず、立体物10についての3次元形状情報を有する3DCADデータと、立体物10の表面に施す彩色および描画に関する情報を有するデザインデータとを第1生成手段102Aに入力する。   First, 3D CAD data having three-dimensional shape information about the three-dimensional object 10 and design data having information related to coloring and drawing applied to the surface of the three-dimensional object 10 are input to the first generation unit 102A.

第1生成手段102Aには、3DCADデータに印刷テーブルT上の姿勢情報を含めて入力する。   The first generation unit 102A receives 3D CAD data including posture information on the print table T.

なお、第1生成手段102Aを構成するワークステーション104Bの操作画面上で、3DCADデータから印刷テーブルT上で最も安定する姿勢を指示決定するようにできる。   Note that the most stable posture on the print table T can be instructed and determined from the 3D CAD data on the operation screen of the workstation 104B constituting the first generation unit 102A.

次いで、印刷テーブルT上の立体物姿勢情報に対応した3DCADデータと描画情報を合成し、平行光透視像の条件で2次元レンダリングデータを抽出する。   Next, 3D CAD data corresponding to the three-dimensional object posture information on the print table T and the drawing information are synthesized, and two-dimensional rendering data is extracted under the condition of the parallel fluoroscopic image.

次に、抽出した2次元レンダリングデータと、レンダリングデータに対応する奥行情報から第1の印刷データ(描画データ)を生成する。   Next, first print data (drawing data) is generated from the extracted two-dimensional rendering data and depth information corresponding to the rendering data.

より具体的には、一般的に印刷装置は平面に2次元データを印刷するので、平面から離れた奥行に対する印刷特性は平面上への印刷特性とは異なっている。この平面とは異なる奥行印刷特性を予め保存しておき、保存した特性を参照して、レンダリングデータに対応する奥行情報からの最適な描画データを生成する。   More specifically, since a printing apparatus generally prints two-dimensional data on a plane, the printing characteristics for the depth away from the plane are different from the printing characteristics on the plane. Depth printing characteristics different from the plane are stored in advance, and optimum drawing data is generated from the depth information corresponding to the rendering data with reference to the stored characteristics.

例えば、インクジェット印刷装置の場合には、インクドロップレットの飛翔特性に応じて奥行に対する印刷特性に依存する。そこで、比較的遠くの位置へのインクドロップレットの着弾精度は悪くなることによる印刷特性の乱れを補うために、奥行のある輪郭部はレンダリングデータを拡張して最適な描画データとする。   For example, in the case of an inkjet printing apparatus, it depends on the printing characteristics for the depth depending on the flying characteristics of the ink droplets. Therefore, in order to compensate for the disturbance of the printing characteristics due to the deterioration of the ink droplet landing accuracy at a relatively far position, the contour data with the depth is extended to the optimum drawing data.

(印刷レンダリングデータの生成手順)
図3から図5を参照して、第1の実施形態に係る立体物印刷システムS1における印刷レンダリングデータの生成手順について説明する。
(Procedure for generating print rendering data)
With reference to FIGS. 3 to 5, a print rendering data generation procedure in the three-dimensional object printing system S <b> 1 according to the first embodiment will be described.

なお、本実施形態では、印刷対象としての立体物10として、マスコット人形D1を例示する。   In the present embodiment, a mascot doll D1 is exemplified as the three-dimensional object 10 to be printed.

図3に示す生成手順では、第1生成手段102Aを構成するワークステーション104Bの操作画面400上で、マウス等のポインティングデバイスなどを用いて、マスコット人形D1a〜D1dの向き等を操作して、マスコット人形D1の姿勢を決定する。   In the generation procedure shown in FIG. 3, the direction of the mascot dolls D1a to D1d is operated on the operation screen 400 of the workstation 104B constituting the first generation means 102A by using a pointing device such as a mouse. The posture of the doll D1 is determined.

次いで、図4に示す生成手順では、決定した姿勢におけるマスコット人形D1の3DCADデータとデザインデータ(図4等に示す例では、服のデザインデータ)W1を操作画面400上で合成する。   Next, in the generation procedure shown in FIG. 4, 3D CAD data and design data (cloth design data in the example shown in FIG. 4 and the like) W1 of the mascot doll D1 in the determined posture are synthesized on the operation screen 400.

図5に示す生成手順では、平行光透視像の条件で2次元レンダリングデータを抽出し、この2次元レンダリングデータと、このレンダリングデータに対応する奥行情報から描画データW1aを生成する。   In the generation procedure shown in FIG. 5, two-dimensional rendering data is extracted under the condition of a parallel light fluoroscopic image, and drawing data W1a is generated from the two-dimensional rendering data and depth information corresponding to the rendering data.

(検出手段の具体例について)
次に、図2等を参照して、検出手段101としての読取り装置の実施例について説明する。
(Specific examples of detection means)
Next, with reference to FIG. 2 etc., the Example of the reader as the detection means 101 is described.

図2に示す実施例では、読取り装置(検出手段)101は、フラットベッド型のUVインクジェットプリンタ103等を収容する筐体300の上面側に配置されるXYスライダ301と、このXYスライダ301によってXY方向に移動可能なデジタルカメラから成る3次元センサ200とから構成されている。   In the embodiment shown in FIG. 2, the reading device (detection means) 101 includes an XY slider 301 disposed on the upper surface side of a housing 300 that accommodates a flatbed UV inkjet printer 103 and the like, and the XY slider 301 causes XY The three-dimensional sensor 200 is a digital camera that can move in the direction.

ここで、UVインクジェットプリンタ103の印刷データは、立体物10の印刷テーブルT上の位置に合致した位置に生成される必要がある。   Here, the print data of the UV inkjet printer 103 needs to be generated at a position that matches the position on the print table T of the three-dimensional object 10.

描画位置精度は、事前の調査結果に基づく目標値として200μとし、UVインクジェットプリンタ103の印刷テーブルT上の立体物10の位置を100μの精度、回転角度を1度で検出可能としている。   The drawing position accuracy is set to 200 μ as a target value based on a preliminary investigation result, and the position of the three-dimensional object 10 on the print table T of the UV inkjet printer 103 can be detected with an accuracy of 100 μ and a rotation angle of 1 degree.

また、3次元センサ200は、画素数2478万のデジタルカメラで構成され、XYスライダ301は印刷テーブルT上を8分割した検出エリアA1〜A8(図7等参照)で撮影するように前記デジタルカメラを移動させる。   The three-dimensional sensor 200 is composed of a digital camera having 24.78 million pixels, and the XY slider 301 captures the detection area A1 to A8 (see FIG. 7 etc.) divided into eight on the print table T. Move.

そして、ワークステーション104Bにインストールされている読取用ソフトウェアの処理により、デジタルカメラによる立体物10の基準点(具体例は後述する)の指定と、読み取り結果から印刷テーブル上の位置と回転角度を演算する。   Then, by the processing of the reading software installed in the workstation 104B, the reference point (a specific example will be described later) of the three-dimensional object 10 is specified by the digital camera, and the position and rotation angle on the print table are calculated from the reading result. To do.

なお、撮影時の振動等の影響で読み取り画像に誤差が発生しないようにXYスライダ301の加速減速制御を行い、検出時間短縮と、読取り精度とを両立するために各検出エリア間の移動時間は1〜4秒とすることが望ましい。   It should be noted that the acceleration / deceleration control of the XY slider 301 is performed so that an error does not occur in the read image due to the influence of vibration at the time of photographing, and the movement time between the detection areas is set to achieve both detection time reduction and reading accuracy. It is desirable to be 1 to 4 seconds.

また、上述のように画素数2478万のデジタルカメラを用いた場合において、印刷テーブルTの大きさは、30cm×42cmとした。   In addition, when the digital camera having 24.78 million pixels is used as described above, the size of the printing table T is 30 cm × 42 cm.

このような条件において、読み取り領域に相当する印刷テーブルTの大きさと読み取り解像度の関係から、1回の撮影における検出エリアA1〜A8の大きさは、15cm×10.5cmとした。   Under such conditions, from the relationship between the size of the print table T corresponding to the reading area and the reading resolution, the size of the detection areas A1 to A8 in one shooting is set to 15 cm × 10.5 cm.

そして、デジタルカメラを印刷テーブルTの平面と平行な平面を移動させるXYスライダ301を印刷テーブルTから約80cmの高さに配置した。   Then, an XY slider 301 for moving the digital camera in a plane parallel to the plane of the print table T is disposed at a height of about 80 cm from the print table T.

なお、印刷テーブルT上に配置される立体物10の高さ寸法が撮影視野角により印刷テーブルT上の位置と一致しないことによる誤差を小さくすることが印刷精度上、重要である。   Note that it is important in terms of printing accuracy to reduce an error caused by the height dimension of the three-dimensional object 10 arranged on the print table T not matching the position on the print table T due to the photographing viewing angle.

予め把握できる高さについては補正演算が可能であるが、立体物10の寸法誤差や立体姿勢誤差等の影響を排除するには原理的に視野角を小さくする必要がある。   Although the correction calculation can be performed on the height that can be grasped in advance, in principle, it is necessary to reduce the viewing angle in order to eliminate the influence of the dimensional error or the solid posture error of the solid object 10.

即ち、高さ誤差0.5mmの影響が読み取り誤差0.05mmの範囲となるよう視野角5.7度以下を満たすように設計することが好ましい。   That is, it is preferable to design so as to satisfy the viewing angle of 5.7 degrees or less so that the influence of the height error of 0.5 mm is within the range of the reading error of 0.05 mm.

(印刷基準に基づく読み取り基準マークおよびパターンマッチングについて)
デジタルカメラで読み取る立体物10の印刷テーブルT上の位置情報の基準点は印刷基準と高精度に一致させる必要がある。
(About reading reference marks and pattern matching based on printing standards)
The reference point of the position information on the print table T of the three-dimensional object 10 read by the digital camera needs to coincide with the print reference with high accuracy.

そのため、印刷テーブルT上に印刷用シートを固定し、その印刷用シート上に図8に例示するような基準マーク(検出基準)15を印刷した。   Therefore, a printing sheet is fixed on the printing table T, and a reference mark (detection reference) 15 as illustrated in FIG. 8 is printed on the printing sheet.

この基準マーク15との位置関係を撮影情報から決定し、印刷データを生成し、印刷を行うようにしている。   The positional relationship with the reference mark 15 is determined from the photographing information, print data is generated, and printing is performed.

より具体的には、例えばA3(297mm×420mm)サイズの印刷テーブルT上にテーブルと同等サイズのPETフイルムを固定し、検出マークをエリアA1〜A8毎に印刷した(図7〜図10参照)。   More specifically, for example, a PET film of the same size as the table is fixed on a printing table T of A3 (297 mm × 420 mm) size, and detection marks are printed for each of the areas A1 to A8 (see FIGS. 7 to 10). .

図8、図10等に示す例では、各エリアA1〜A8の基準点を交点とする十字線上に等距離で4つの円を印刷した。   In the example shown in FIG. 8, FIG. 10, etc., four circles are printed at equal distances on a cross line with the reference points of the areas A1 to A8 as intersections.

そして、検出手段101で、この4つの円をパターンマッチングで検出し、4つの円の中心点を求め、対向する中心点を直線で結びその交点を基準点として決定する。   The detecting means 101 detects these four circles by pattern matching, finds the center points of the four circles, connects the opposing center points with straight lines, and determines the intersection as a reference point.

これにより、高精度に印刷手段103の印刷基準と検出基準を一致させることができる。   Thereby, the printing standard and the detection standard of the printing unit 103 can be matched with high accuracy.

また、デジタルカメラによる撮影情報から各立体物10の位置と回転角(印刷テーブルT平面内での回転角)を高精度で、且つ短時間で決定するために、立体物10の輪郭情報の2か所以上の特徴点を読み取り参照点として指示し、パターンマッチング処理を行う。   Further, in order to determine the position and rotation angle (rotation angle in the plane of the printing table T) of each three-dimensional object 10 with high accuracy and in a short time from the photographing information by the digital camera, 2 of the contour information of the three-dimensional object 10 is obtained. Pattern matching processing is performed by designating feature points at or above the location as reading reference points.

即ち、例えば図6(a)に示すように、予め立体物10の輪郭情報を取得し、2か所の輪郭の特徴点P1、P2を読み取り基準点として指示する。   That is, for example, as shown in FIG. 6A, the contour information of the three-dimensional object 10 is acquired in advance, and the feature points P1 and P2 of the two contours are designated as reading reference points.

次いで、デジタルカメラの読み取り画像情報からパターンマッチングによって読み取り基準点Q1、Q2を抽出する(図6(b)参照)。   Next, reading reference points Q1 and Q2 are extracted from the read image information of the digital camera by pattern matching (see FIG. 6B).

そして、2点の読み取り基準点Q1、Q2を抽出した後に、その立体物の重心位置Cと回転角θ1を決定する。   Then, after extracting the two reading reference points Q1 and Q2, the center-of-gravity position C and the rotation angle θ1 of the three-dimensional object are determined.

この輪郭データを用いて、図6(b)、図7で示すように、立体物10の印刷テーブルT上の位置と姿勢(印刷テーブルTの平面内での回転角θ1)を検出するように、読み取り基準点を2点以上指示する。   As shown in FIGS. 6B and 7, the contour data is used to detect the position and orientation of the three-dimensional object 10 on the print table T (the rotation angle θ1 in the plane of the print table T). Instruct two or more reading reference points.

図7(a)に示す例では、印刷テーブルTのエリアA1〜A8に、2〜3個の立体物10がランダムな方向で載置されている。   In the example shown in FIG. 7A, two to three three-dimensional objects 10 are placed in areas A1 to A8 of the print table T in random directions.

ここで、エリアA4を例にすると、各立体物10a〜10cについて、図7(a)の脇に示す手法で、読み取り基準点に基づいて、位置(x1,y1)および回転角(θ1)を決定する(図7(b)参照)。   Here, taking the area A4 as an example, the position (x1, y1) and the rotation angle (θ1) of the three-dimensional objects 10a to 10c are determined based on the reading reference point by the method shown on the side of FIG. Determine (see FIG. 7B).

そして、上述のようにして取得した印刷テーブルT上に配置した全ての立体物10の各々の位置と回転角θ1の情報を、第1の印刷データ(描画データ)を生成する第1生成手段102Aに転送する。   Then, the first generation unit 102A that generates the first print data (drawing data) based on the information of the positions and the rotation angles θ1 of all the three-dimensional objects 10 arranged on the print table T acquired as described above. Forward to.

次いで、第2生成手段102Bにより、各立体物10の位置(x1,y1)および回転角(θ1)に応じて第1の印刷データに回転処理を施して適正化した第2の印刷データを生成する。   Next, the second generation unit 102B generates second print data that is optimized by performing rotation processing on the first print data in accordance with the position (x1, y1) and the rotation angle (θ1) of each three-dimensional object 10. To do.

なお、第2の印刷データを生成は、前記読み取り基準点を印刷した際のデータ基準点との位置関係を一致あるいは規定の値とするようにできる。これにより、読み取り判定位置と印刷位置との高精度な一致を行うことができる。   Note that the second print data can be generated such that the positional relationship with the data reference point when the reading reference point is printed matches or is a prescribed value. As a result, the reading determination position and the printing position can be matched with high accuracy.

また、図7(a)に示す例では各立体物は印刷テーブルTのエリアA1〜A8の各エリア内に載置されているが、エリアA1〜A8を跨った位置であっても各処理をエリア結合させることで可能となる。   In the example shown in FIG. 7A, each three-dimensional object is placed in each of the areas A1 to A8 of the print table T, but each process is performed even at a position across the areas A1 to A8. This is possible by combining areas.

さらに、立体物もしくは描画データが複数有る場合であっても、本発明の適用により同様に高精度の印刷を行うことが可能である。   Furthermore, even when there are a plurality of three-dimensional objects or drawing data, high-precision printing can be similarly performed by applying the present invention.

(印刷の実行例)
まず、図9(a)および図10(a)に示すように、複数の立体物10を印刷テーブルT上に配置する。
(Print execution example)
First, as shown in FIG. 9A and FIG. 10A, a plurality of three-dimensional objects 10 are arranged on the print table T.

この際に、各立体物10の配置は事前に決めた印刷テーブルT上での姿勢を維持していれば印刷テーブルTの平面内での回転角や位置は自由である。また、立体物10の数量も印刷テーブルT上に配置できる範囲内であれば制限はない。   At this time, as long as the arrangement of the three-dimensional objects 10 maintains a predetermined posture on the print table T, the rotation angle and position of the print table T in the plane are free. Further, there is no limitation as long as the quantity of the three-dimensional object 10 is within a range that can be arranged on the print table T.

そして、各立体物10について、上述の手法により、位置と回転角を検出し、その検出結果に基づいて生成した印刷データにより印刷手段103を駆動して、各立体物10への印刷を実行する。これにより、図9(b)、図10(b)に示すような印刷物10Aを得ることができる。   Then, the position and rotation angle of each three-dimensional object 10 are detected by the above-described method, and the printing unit 103 is driven by the print data generated based on the detection result to execute printing on each three-dimensional object 10. . As a result, a printed product 10A as shown in FIGS. 9B and 10B can be obtained.

また、第1の実施形態に係る立体物印刷システムS1において、図11に示すように、印刷テーブルTを、立体物10を載置して上流側から下流側に移動可能なベルト(例えば、無限軌道状のベルト)Bを備えるベルトコンベア700で構成することができる。   Further, in the three-dimensional object printing system S1 according to the first embodiment, as shown in FIG. 11, the print table T is placed on a belt (for example, infinite) on which the three-dimensional object 10 is placed and can be moved from the upstream side to the downstream side. A belt conveyor 700 provided with a track belt B) can be used.

ベルトBは、図示しない駆動装置によって、D10方向(図上は、右方向)に移動される。   The belt B is moved in the D10 direction (right direction in the drawing) by a driving device (not shown).

ベルトBの表面には、検出手段200で検出可能な検出基準(読取り基準マーク)15が複数にわたって印刷されている。   A plurality of detection references (reading reference marks) 15 that can be detected by the detection means 200 are printed on the surface of the belt B.

ここで、検出手段200は、印刷手段としてのインクジェット式の印刷装置130よりも上流側に配置されている。なお、図11において、符号10Aは、印刷手段130によって所定の印刷が施された立体物を示す。   Here, the detection means 200 is disposed upstream of the ink jet printing apparatus 130 as the printing means. In FIG. 11, reference numeral 10 </ b> A indicates a three-dimensional object that has been subjected to predetermined printing by the printing unit 130.

(第2の実施の形態)
図12〜図25を参照して、第2の実施形態に係る立体物印刷システムS2の構成例について説明する。
(Second Embodiment)
A configuration example of the three-dimensional object printing system S2 according to the second embodiment will be described with reference to FIGS.

なお、第1の実施形態に係る立体物印刷システムS1と同様の構成については、同一符号を付して重複した説明は省略する。   In addition, about the structure similar to the solid thing printing system S1 which concerns on 1st Embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

ここで、図12は、第2の実施形態に係る立体物印刷システムS2の全体構成を示す機能ブロック図、図13は、立体物印刷システムS2の要部の構成を示すブロック図である。   Here, FIG. 12 is a functional block diagram illustrating an overall configuration of the three-dimensional object printing system S2 according to the second embodiment, and FIG. 13 is a block diagram illustrating a configuration of a main part of the three-dimensional object printing system S2.

図12に示すように、第2の実施形態に係る立体物印刷システムS2は、印刷データ生成手段102が、第1生成手段102A、第2生成手段102Bに加えて第3生成手段102Cを備え。印刷手段103が走査印刷ヘッド130を備える点が、第1の実施形態に係る立体物印刷システムS1と異なっている。   As shown in FIG. 12, in the three-dimensional object printing system S2 according to the second embodiment, the print data generation unit 102 includes a third generation unit 102C in addition to the first generation unit 102A and the second generation unit 102B. The point that the printing unit 103 includes the scanning print head 130 is different from the three-dimensional object printing system S1 according to the first embodiment.

この走査印刷ヘッド130は、印刷テーブル上を順次高速に走査して移動を行うことによって印刷テーブル上の全面を高速に印刷することを可能としている。   The scanning print head 130 can perform high-speed printing on the entire surface of the print table by sequentially scanning and moving on the print table.

ここで、図24に示すように、走査印刷ヘッド130が高速に走査(例えば、走査方向D20)する印刷手段である場合には、吐出されたインクドロップレット300Aは斜めに飛翔する。   Here, as shown in FIG. 24, when the scanning print head 130 is a printing unit that scans at high speed (for example, the scanning direction D20), the ejected ink droplets 300A fly obliquely.

なお、インク粒子の飛翔角の概算(想定値)は、例えば突出速度:5m/sec、ヘッド走査速度:0.5m/sec、atan0.1=5.7degなどである。   Note that the approximate (assumed value) of the flying angle of the ink particles is, for example, a protrusion speed: 5 m / sec, a head scanning speed: 0.5 m / sec, and antan 0.1 = 5.7 deg.

また、インクドロップレット200Aは、走査印刷ヘッド130の走査に伴う気流の影響により、インクドロップレット300Bのように、飛翔軌道が曲線状となる場合もある。   In addition, the ink droplet 200A may have a curved flight trajectory like the ink droplet 300B due to the influence of an air flow accompanying scanning of the scanning print head 130.

このように、インク飛翔角の影響により立体表面が曲面である場合に、インクドロップレット300Bの着弾位置が平面上とは異なることとなり、直線性や寸法精度に影響を及ぼしてしまう。   Thus, when the three-dimensional surface is a curved surface due to the influence of the ink flying angle, the landing position of the ink droplet 300B is different from that on the plane, which affects the linearity and dimensional accuracy.

図25に示す例では、走査印刷ヘッド130の走査方向がD20の場合に、90度ごとに向きを変えた立体物10a〜10dに対して、線状の印刷P20a〜P20dを施した。   In the example shown in FIG. 25, when the scanning direction of the scanning print head 130 is D20, linear printing P20a to P20d is performed on the three-dimensional objects 10a to 10d whose directions are changed every 90 degrees.

その結果、走査方向がD20と略平行な線状の印刷P20a、P20cでは直線性が維持されている。   As a result, linearity is maintained in linear prints P20a and P20c whose scanning direction is substantially parallel to D20.

一方、走査方向がD20と略直交する線状の印刷P20b、P20dでは直線性が失われていることが分かる。   On the other hand, it can be seen that linearity is lost in the linear prints P20b and P20d whose scanning direction is substantially orthogonal to D20.

そこで、第2の実施形態に係る立体物印刷システムS2では、印刷手段103は、インクジェット式の走査印刷ヘッド130を備えた印刷装置で構成され、印刷データ生成手段102は、走査印刷ヘッド130から射出されるインク粒子(インクドロップレット)の飛翔角と、各立体物の描画面の形状とに基いて、最適化した印刷データを生成する第3生成手段102Cを設けた。   Therefore, in the three-dimensional object printing system S2 according to the second embodiment, the printing unit 103 is configured by a printing apparatus including the ink jet scanning print head 130, and the print data generation unit 102 is ejected from the scanning print head 130. Based on the flying angle of the ink particles (ink droplets) to be formed and the shape of the drawing surface of each three-dimensional object, the third generation means 102C for generating optimized print data is provided.

そして、ワークステーション等で構成される制御手段104は、第3生成手段102Cで最適化した印刷データに基いて印刷装置(印刷手段103)を制御するようになっている。   The control unit 104 configured by a workstation or the like controls the printing apparatus (printing unit 103) based on the print data optimized by the third generation unit 102C.

これにより、走査印刷ヘッド130から吐出されるインクドロップレットを所望の位置に着弾させて、印刷精度を向上させることができる。   Thereby, the ink droplet discharged from the scanning print head 130 can be landed on a desired position, and the printing accuracy can be improved.

なお、第3生成手段102Cは、図13のブロック図に示すように、描画面の立体形状データの記憶手段(例えば、フラッシュメモリ等)501と、印刷データ最適化手段502とを備えている。第3生成手段102Cは、例えばCPU、RAM等のハードウェアと、後述の補正処理等を実行するソフトウェアとの協働によって実現される。また、補正処理の詳細については、後述する。   As shown in the block diagram of FIG. 13, the third generation unit 102 </ b> C includes a storage unit (for example, a flash memory) 501 for drawing surface solid shape data and a print data optimization unit 502. The third generation unit 102C is realized by, for example, cooperation between hardware such as a CPU and a RAM and software that executes correction processing described later. Details of the correction process will be described later.

また、第2の実施形態に係る立体物印刷システムS2において、前出の図11に示すように、印刷テーブルTを、立体物10を載置して上流側から下流側に移動可能なベルト(例えば、無限軌道状のベルト)Bを備えるベルトコンベア700で構成するようにしてもよい。   Further, in the three-dimensional object printing system S2 according to the second embodiment, as shown in FIG. 11 described above, the print table T is placed on a belt that can move from the upstream side to the downstream side on which the three-dimensional object 10 is placed. For example, you may make it comprise with the belt conveyor 700 provided with an endless track-like belt) B.

第2の実施形態に係る立体物印刷システムS2において、検出手段としての3次元センサ200は、デジタルカメラ等で構成される2次元センサ200Aと、立体物10を照らすLEDライト等で構成される照明手段250とから構成されている。   In the three-dimensional object printing system S <b> 2 according to the second embodiment, the three-dimensional sensor 200 as a detection unit includes a two-dimensional sensor 200 </ b> A configured with a digital camera or the like, and an illumination configured with an LED light or the like that illuminates the three-dimensional object 10. And means 250.

図14および図15(a)に示す構成例では、照明手段250としてのLEDライトは、2次元センサ200Aの周囲に、アーム部材251によって90度毎に4つ設けられている。   In the configuration example shown in FIG. 14 and FIG. 15A, four LED lights as the illumination unit 250 are provided every 90 degrees by the arm member 251 around the two-dimensional sensor 200A.

なお、照明手段250としてのLEDライトは、立体物の姿勢を把握するために所定の陰影をつける観点から複数個であることが好ましく、例えば5個以上設けるようにしてもよい。   In addition, it is preferable that there are a plurality of LED lights as the illumination unit 250 from the viewpoint of applying a predetermined shadow in order to grasp the posture of the three-dimensional object. For example, five or more LED lights may be provided.

また、図15(b)に示すように、複数のLED等をリング状に配置した照明手段260をアーム部材251によって2次元センサ200Aの周囲に取り付けるようにしてもよい。   Further, as shown in FIG. 15B, an illumination unit 260 in which a plurality of LEDs and the like are arranged in a ring shape may be attached around the two-dimensional sensor 200A by an arm member 251.

そして、2次元センサ200Aは、照明手段250(260)によって形成される立体物10の描画面の陰影を検出して立体物10の3次元姿勢を取得する。   Then, the two-dimensional sensor 200A detects the shadow of the drawing surface of the three-dimensional object 10 formed by the illumination unit 250 (260), and acquires the three-dimensional posture of the three-dimensional object 10.

ここで、図16は、立体姿勢の検出原理を示す説明図、図17は、立体姿勢の検出における照明角と姿勢角の例を示す説明図、図18は、立体姿勢の検出における照明角と姿勢角の他の例を示す説明図である。   Here, FIG. 16 is an explanatory diagram illustrating the principle of detection of a three-dimensional posture, FIG. 17 is an explanatory diagram illustrating examples of illumination angles and posture angles in detecting a three-dimensional posture, and FIG. 18 is a diagram illustrating illumination angles in detecting a three-dimensional posture. It is explanatory drawing which shows the other example of a posture angle.

図16に示すように、照明手段250のライトの位置が図上右側(LZ+方向)に有る場合の立体物10への照射角を−θ、照明手段250のライトの位置が図上左側(LZ−方向)に有る場合の立体物(例えば、人形の顔部)10への照射角を+θとする。   As shown in FIG. 16, when the light position of the illumination means 250 is on the right side (LZ + direction) in the figure, the irradiation angle to the three-dimensional object 10 is −θ, and the light position of the illumination means 250 is the left side (LZ in the figure). The irradiation angle to the three-dimensional object (for example, the doll's face) 10 in the − direction is + θ.

そして、所定の照明角度(例えば、−45度、0度、+45度)による立体物10の凹凸陰影パターン(照明角と姿勢角の組み合わせによる)を図17のように取得してデータベース化してフラッシュメモリ等に格納する。   Then, the uneven shadow pattern (depending on the combination of the illumination angle and the attitude angle) of the three-dimensional object 10 at a predetermined illumination angle (for example, −45 degrees, 0 degrees, +45 degrees) is acquired as shown in FIG. Store in memory etc.

これにより、例えば図11に示すベルトコンベア700のベルトB上に載置された立体物10の凹凸陰影を検出手段200で取得し、データベース化されたパターンと照合することにより、各立体物10の立体角(立体姿勢)を検出することができる。   Accordingly, for example, the unevenness shadow of the three-dimensional object 10 placed on the belt B of the belt conveyor 700 shown in FIG. 11 is obtained by the detecting means 200 and collated with the database pattern, whereby each three-dimensional object 10 is checked. A solid angle (solid posture) can be detected.

なお、図示は省略するが、立体物10の上下方向および横方向(いわゆるXYZ方向)の陰影変化のパターンを取得してデータベース化して格納するようにしてもよい。これにより、各立体物の立体角(立体姿勢)をより高精度に検出することができる。   In addition, although illustration is abbreviate | omitted, the pattern of the shadow change of the up-down direction and the horizontal direction (what is called XYZ direction) of the solid object 10 may be acquired, and it may make it database and store. Thereby, the solid angle (three-dimensional posture) of each three-dimensional object can be detected with higher accuracy.

また、図18(a)、(b)に示すように、所定の明暗パターン801を立体物10に照射し、その立体物10の明暗パターンの変化によって各立体物10の立体角(立体姿勢)を検出するようにしてよい。   Further, as shown in FIGS. 18A and 18B, a solid object 10 is irradiated with a predetermined light and dark pattern 801, and the solid angle (three-dimensional posture) of each three-dimensional object 10 is changed by the change in the light-dark pattern of the three-dimensional object 10. May be detected.

(印刷データの最適化について)
ここで、補正処理の詳細について説明する前に、第2の実施形態に係る立体物印刷システムS2における印刷データの補正(最適化)の仕組みについて説明する。
(About optimization of print data)
Here, before explaining the details of the correction process, a mechanism of print data correction (optimization) in the three-dimensional object printing system S2 according to the second embodiment will be described.

第2の実施形態に係る立体物印刷システムS2では、印刷手段103としてインクジェット式の印刷ヘッド130を備えた印刷装置を用いている。   In the three-dimensional object printing system S <b> 2 according to the second embodiment, a printing apparatus including an inkjet print head 130 is used as the printing unit 103.

そのため、印刷ヘッド130の走査方向への移動および気流の影響により、印刷ヘッド130から射出されるインク粒子が飛翔する軌道は垂直直下への軌道とは異なる。   Therefore, due to the movement of the print head 130 in the scanning direction and the influence of the airflow, the trajectory on which the ink particles ejected from the print head 130 fly differs from the trajectory directly below the vertical.

なお、インク粒子の飛翔角の概算(想定値)は、例えば突出速度:5m/sec、ヘッド走査速度:0.5m/sec、atan0.1=5.7degなどである。   Note that the approximate (assumed value) of the flying angle of the ink particles is, for example, a protrusion speed: 5 m / sec, a head scanning speed: 0.5 m / sec, and antan 0.1 = 5.7 deg.

また、立体物10への印刷では、高さの異なる位置(即ち、凹凸を有する立体物の表面)にインク粒子を正確に着弾させる必要がある。   Further, in printing on the three-dimensional object 10, it is necessary to accurately land the ink particles on positions having different heights (that is, the surface of the three-dimensional object having unevenness).

即ち、2次元の印刷対象(例えば、印刷用紙等)用に生成された印刷データを立体物にそのまま投影して印刷を実行してしまうと、インク粒子の着弾位置が当初の目標位置とズレてしまい、所望の印刷結果を得られないという問題を生じる。   In other words, if printing data generated for a two-dimensional printing target (for example, printing paper) is projected onto a three-dimensional object as it is and printing is performed, the landing position of the ink particles deviates from the initial target position. Therefore, there arises a problem that a desired printing result cannot be obtained.

したがって、立体物10に対して所望の印刷結果を得るためには、インク粒子の軌道および高さの異なる位置への着弾位置のズレ等を考慮した補正を行って最適化した印刷データを生成する必要がある。   Therefore, in order to obtain a desired print result for the three-dimensional object 10, optimized print data is generated by performing corrections that take into account the deviation of the landing positions of the ink particle trajectories and heights, and the like. There is a need.

そこで、第3生成手段102C等において、印刷ヘッド130から射出されるインク粒子の飛翔角と、各立体物10の描画面の形状とに基いて、最適化した印刷データを生成する補正処理を行う。   Therefore, the third generation unit 102C or the like performs a correction process for generating optimized print data based on the flying angle of the ink particles ejected from the print head 130 and the shape of the drawing surface of each three-dimensional object 10. .

(補正処理について)
次に、図19のフローチャートおよび図20〜図23の説明図を参照して、第2の実施形態に係る立体物印刷システムS2で実行される補正処理の処理手順について説明する。
(About correction processing)
Next, with reference to the flowchart of FIG. 19 and the explanatory diagrams of FIGS. 20 to 23, the processing procedure of the correction process executed in the three-dimensional object printing system S2 according to the second embodiment will be described.

補正処理が開始されると、まず、検出手段101によって立体物10の平面回転角を取得してステップS11に移行する。   When the correction process is started, first, the plane rotation angle of the three-dimensional object 10 is acquired by the detection unit 101, and the process proceeds to step S11.

ステップS11では、画素単位の3次元データと対になった元デザインデータを制御手段104の記憶装置等から読み出す。   In step S11, original design data paired with three-dimensional data in pixel units is read from the storage device of the control means 104 or the like.

ここで、元デザインデータは、立体物10の標準姿勢における平面投影法で得た基本印刷データに相当する。図20に例示する座標では、ハッチを付した画素(領域)PD1が基本印刷データに該当する。   Here, the original design data corresponds to basic print data obtained by the planar projection method in the standard posture of the three-dimensional object 10. In the coordinates illustrated in FIG. 20, a hatched pixel (area) PD1 corresponds to the basic print data.

基本印刷データは、1画素毎(図20に示す例では、画素(x7,y9))に、高さ情報Hと、隣接画素を含む曲面情報(図20に示す例では、画素(x7,y9)のy9切片における曲面情報)とを紐付けしたデータであり、制御手段104の記憶装置等に格納されている。   The basic print data includes height information H and curved surface information including adjacent pixels (pixel (x7, y9 in the example shown in FIG. 20)) for each pixel (pixel (x7, y9 in the example shown in FIG. 20)). ), And is stored in the storage device of the control means 104 or the like.

ステップS12では、立体物10の立体姿勢を標準姿勢の変位角から検出してステップS13に移行する。   In step S12, the three-dimensional posture of the three-dimensional object 10 is detected from the displacement angle of the standard posture, and the process proceeds to step S13.

ステップS13では、画素毎に、インク飛翔角によるインク着弾位置を予測する。   In step S13, the ink landing position based on the ink flying angle is predicted for each pixel.

図21(a)、(b)に示す例は、立体物10の平面回転角180度、立体姿勢の変位角(x軸上で5度)の変位を検出した場合のインク着弾位置の予測例である。   The example shown in FIGS. 21A and 21B is an example of predicting the ink landing position when the displacement of the three-dimensional object 10 is detected as the plane rotation angle 180 degrees and the displacement angle of the solid posture (5 degrees on the x-axis). It is.

この予測例に示すように、平面回転角が180°で立体姿勢が5°である場合には、インクの飛翔距離が長くなり着弾位置が基準位置よりも遠くまで及んでいることが分かる。   As shown in this prediction example, it can be seen that when the plane rotation angle is 180 ° and the three-dimensional posture is 5 °, the flying distance of the ink becomes longer and the landing position extends farther than the reference position.

図21(a)、(b)に示す例では、立体物10の印刷面の形状が、図示するように凸面の形状になっていることと、高さ(インク吐出面400からの距離)が異なることによって、インクの飛翔軌道300C、300Dおよび着弾位置に違いが生じる。   In the example shown in FIGS. 21A and 21B, the shape of the printing surface of the three-dimensional object 10 is a convex shape as shown, and the height (distance from the ink ejection surface 400) is as shown. Due to the difference, a difference occurs in the ink flight trajectories 300C and 300D and the landing positions.

このようなインク着弾位置の予測を各画素について実行して、インク着弾位置の予測データを生成する。   Such ink landing position prediction is executed for each pixel to generate ink landing position prediction data.

次いで、ステップS14では、各画素毎にインク着弾位置のインク着弾位置の予測データと目標着弾位置とのズレを算出する。   Next, in step S14, a deviation between the ink landing position prediction data of the ink landing position and the target landing position is calculated for each pixel.

図22に示す例では、図22(a)に示す元デザインデータPD1について、図22(b)に示すようにインク着弾位置はD11方向にズレる予測となっている。   In the example shown in FIG. 22, with respect to the original design data PD1 shown in FIG. 22A, the ink landing position is predicted to shift in the direction D11 as shown in FIG. 22B.

次に、ステップS15では、目標着弾位置となるようにインク着弾位置を補正した補正印刷データ(例えば、図22(c)に示す補正印刷データPD2)を生成して処理を終了する。   Next, in step S15, corrected print data (for example, corrected print data PD2 shown in FIG. 22C) in which the ink landing position is corrected so as to be the target landing position is generated, and the process ends.

なお、インク着弾位置のズレの予測や、インク着弾位置を補正の演算に関し処理時間を高速に行うために、予め演算結果をフラッシュメモリ等に格納するようにしてもよい。   It should be noted that the calculation result may be stored in advance in a flash memory or the like in order to perform a high-speed processing time for prediction of deviation of the ink landing position and calculation of correcting the ink landing position.

即ち、例えば図23に示すように、立体姿勢角ごとに平面回転角と印刷データを関連付けした演算結果を印刷データ群(補正印刷データ)としてテーブル形式等でフラッシュメモリ等の不揮発性メモリやハードディスク装置等に格納できる。   That is, for example, as shown in FIG. 23, a non-volatile memory such as a flash memory or a hard disk device in a table format or the like as a print data group (corrected print data) obtained by associating a plane rotation angle with print data for each solid attitude angle Etc. can be stored.

また、格納した演算結果の量を実用的な規模で十分な演算精度を得るために、複数の格納された演算結果に補完処理を加えるようにしてもよい。   Further, in order to obtain a sufficient calculation accuracy on a practical scale for the amount of stored calculation results, a complementary process may be added to a plurality of stored calculation results.

このようにして生成した補正印刷データを用いて、各立体物10への印刷を実行することにより、ベルトコンベア700で順次搬送されて来るランダムな方向や傾きで載置された複数の立体物10に対して、所望の印刷を正確に施すことが可能となる。   By executing printing on each three-dimensional object 10 using the corrected print data generated in this way, a plurality of three-dimensional objects 10 placed in a random direction and tilt are sequentially conveyed by the belt conveyor 700. On the other hand, desired printing can be accurately performed.

ここで、インク飛翔角と立体物10の描画面形状との関係に応じた最適な印刷データは、予め準備された各姿勢に対応する最適印刷データ群を生成して記憶装置等に格納するようにしてもよい。   Here, the optimum print data corresponding to the relationship between the ink flying angle and the drawing surface shape of the three-dimensional object 10 is generated and stored in a storage device or the like by generating an optimum print data group corresponding to each posture prepared in advance. It may be.

また、準備された各姿勢に対応する最適印刷データ群に、検出された立体姿勢と平面回転角に対応するデータが欠落している場合は、その立体物に限って白紙印刷データ(例えば、立体物に何も印刷しない状態)とするようにしてもよい。   In addition, when the optimum print data group corresponding to each prepared posture is missing data corresponding to the detected three-dimensional posture and the plane rotation angle, blank print data (for example, three-dimensional print data only) You may make it be in a state where nothing is printed on the object).

また、欠落データが生じたジョブの履歴に応じて、欠落データの演算と格納を並行して行うようにしてもよい。この場合には、最適印刷データ群の成長を自己学習によって進めて、生産性の向上を図ることができる。   Further, the calculation and storage of the missing data may be performed in parallel according to the history of the job in which the missing data has occurred. In this case, the optimum print data group can be grown by self-learning to improve productivity.

以上述べたように、本実施の形態に係る立体物印刷システムおよび立体物印刷方法によれば、従来のように印刷物を得るまでの試行錯誤を不要とすることができ、生産効率を高めることができる。   As described above, according to the three-dimensional object printing system and the three-dimensional object printing method according to the present embodiment, it is possible to eliminate the need for trial and error until a printed material is obtained as in the past, and to increase production efficiency. it can.

また、印刷用治具を用いることなく、複数の立体物に高精度で高精細な印刷を施すことができ、印刷コストを低廉化することができる。   In addition, high-precision and high-definition printing can be performed on a plurality of three-dimensional objects without using a printing jig, and the printing cost can be reduced.

以上本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本明細書で開示された実施の形態はすべての点で例示であって開示された技術に限定されるものではないと考えるべきである。すなわち、本発明の技術的な範囲は、前記の実施の形態における説明に基づいて制限的に解釈されるものでなく、あくまでも特許請求の範囲の記載に従って解釈すべきであり、特許請求の範囲の記載技術と均等な技術および特許請求の範囲内でのすべての変更が含まれる。   Although the invention made by the present inventor has been specifically described based on the embodiments, the embodiments disclosed herein are illustrative in all respects and are not limited to the disclosed technology. Should not be considered. That is, the technical scope of the present invention should not be construed restrictively based on the description in the above embodiment, but should be construed according to the description of the scope of claims. All modifications that fall within the scope of the claims and the equivalent technology are included.

例えば、印刷手段103は、UVインクジェットプリンタに限定されず、種々の印刷方式のプリンタを適用することができる。   For example, the printing unit 103 is not limited to a UV inkjet printer, and printers of various printing methods can be applied.

また、制御手段104もワークステーションに限定されず、パーソナルコンピュータ等を用いるようにしてもよい。   Further, the control means 104 is not limited to a workstation, and a personal computer or the like may be used.

また、3次元センサを、照明手段と2次元カメラで構成する場合に、立体物10の3次元姿勢の決定は、描画面の陰影データと予め記憶してある立体物の3次元姿勢に対応した陰影データとの比較演算によって行うようにしてもよい。   Further, when the three-dimensional sensor is composed of illumination means and a two-dimensional camera, the determination of the three-dimensional posture of the three-dimensional object 10 corresponds to the shadow data of the drawing surface and the three-dimensional posture of the three-dimensional object stored in advance. You may make it perform by the comparison calculation with shadow data.

また、立体物に対する照射角が異なる複数の照明手段(LEDライト250、260等)を設け、順次、照明工程と2次元カメラによる撮影工程を繰り返して行い、得られた複数の撮影結果から立体物の立体姿勢を検出するようにしてもよい。   In addition, a plurality of illumination means (LED lights 250, 260, etc.) having different irradiation angles with respect to the three-dimensional object are provided, and the three-dimensional object is obtained from a plurality of photographing results obtained by sequentially repeating the illumination process and the two-dimensional camera. The three-dimensional posture may be detected.

S1、S2…立体物印刷システム
10…立体物
15…基準マーク(検出基準)
101…検出手段
102…印刷データ生成手段
102A…第1生成手段
102B…第2生成手段
102C…第3生成手段
103…印刷手段
104…制御手段
105…指示手段
130…走査印刷ヘッド
200…光学センサ(3次元センサ)
700…ベルトコンベア
T…印刷テーブル
S1, S2 ... Solid object printing system 10 ... Solid object 15 ... Reference mark (detection standard)
DESCRIPTION OF SYMBOLS 101 ... Detection means 102 ... Print data generation means 102A ... First generation means 102B ... Second generation means 102C ... Third generation means 103 ... Printing means 104 ... Control means 105 ... Instruction means 130 ... Scanning print head 200 ... Optical sensor ( 3D sensor)
700 ... belt conveyor T ... printing table

Claims (14)

印刷対象としての複数の立体物を載置する印刷テーブルと、
該印刷テーブル上に載置した各立体物の位置および向きを検出する検出手段と、
該検出手段による検出結果に基づいて前記各立体物に対応させた印刷データを生成する印刷データ生成手段と、
該印刷データ生成手段で生成された印刷データにより、前記各立体物への印刷を実行する印刷手段と、
前記検出手段、前記印刷データ生成手段および前記印刷手段の動作を制御する制御手段と、
を備えることを特徴とする立体物印刷システム。
A printing table on which a plurality of three-dimensional objects as print targets are placed;
Detecting means for detecting the position and orientation of each three-dimensional object placed on the printing table;
Print data generation means for generating print data corresponding to each of the three-dimensional objects based on the detection result by the detection means;
Printing means for executing printing on each three-dimensional object using the print data generated by the print data generation means;
Control means for controlling operations of the detection means, the print data generation means and the printing means;
A three-dimensional object printing system comprising:
前記検出手段は、光学センサで構成されることを特徴とする請求項1に記載の立体物印刷システム。   The three-dimensional object printing system according to claim 1, wherein the detection unit includes an optical sensor. 前記印刷テーブルには、前記光学センサで検出可能な検出基準が形成されていることを特徴とする請求項2に記載の立体物印刷システム。   The three-dimensional object printing system according to claim 2, wherein a detection reference that can be detected by the optical sensor is formed on the printing table. 前記検出手段は、前記立体物の表面について予め複数の検出ポイントを指示する指示手段を備え、
前記検出手段は、前記各立体物について前記指示手段で指示された前記検出ポイントの位置および前記検出基準の位置を検出し、
前記制御手段は、検出された前記検出ポイントの位置および前記検出基準の位置に基づいて、前記印刷テーブル上における前記各立体物の位置および回転角を算出することを特徴とする請求項3に記載の立体物印刷システム。
The detection means includes instruction means for instructing a plurality of detection points in advance on the surface of the three-dimensional object,
The detection means detects the position of the detection point and the position of the detection reference indicated by the instruction means for each solid object,
The said control means calculates the position and rotation angle of each said solid object on the said print table based on the position of the said detected point detected, and the position of the said detection reference | standard. Three-dimensional printing system.
前記制御手段は、算出された前記各立体物の位置および回転角に関するデータと、予め取得した前記立体物の姿勢に関するデータとに基づくパターンマッチングによって、前記各立体物の姿勢を判定することを特徴とする請求項4に記載の立体物印刷システム。   The control means determines the posture of each solid object by pattern matching based on the calculated data on the position and rotation angle of each solid object and data on the posture of the solid object acquired in advance. The three-dimensional object printing system according to claim 4. 前記印刷データ生成手段は、
前記制御手段で判定された前記各立体物の姿勢と、前記各立体物の表面に印刷する描画情報とに基づいて、第1の印刷データを生成する第1生成手段と、
前記検出手段で検出された前記各立体物の位置と回転角に応じて前記第1の印刷データに回転処理を施して適正化した第2の印刷データを生成する第2生成手段と、
を有することを特徴とする請求項5に記載の立体物印刷システム。
The print data generation means includes
First generation means for generating first print data based on the posture of each solid object determined by the control means and the drawing information to be printed on the surface of each solid object;
Second generation means for generating second print data that has been optimized by subjecting the first print data to rotation processing according to the position and rotation angle of each three-dimensional object detected by the detection means;
The three-dimensional object printing system according to claim 5, further comprising:
前記印刷テーブルに載置された前記各立体物について高さを検出する高さ検出手段をさらに備え、
前記印刷データ生成手段は、前記高さ検出手段で検出された前記各立体物の高さ情報に基づいて、前記第2の印刷データを補正することを特徴とする請求項6に記載の立体物印刷システム。
Further comprising a height detecting means for detecting the height of each three-dimensional object placed on the printing table;
The three-dimensional object according to claim 6, wherein the print data generation unit corrects the second print data based on height information of the three-dimensional object detected by the height detection unit. Printing system.
前記光学センサは、印刷テーブルに載置された前記各立体物の3次元の姿勢情報を取得する3次元センサで構成され、
前記第1生成手段は、前記3次元センサによる検出結果に基づいて前記第1の印刷データを生成し、
前記第2生成手段は、前記3次元センサ或いは他の検出手段で取得される前記各立体物の位置と回転角に応じて前記第1の印刷データに回転処理を施して適正化した第2の印刷データを生成することを特徴とする請求項6に記載の立体物印刷システム。
The optical sensor is a three-dimensional sensor that acquires three-dimensional posture information of each three-dimensional object placed on a printing table,
The first generation unit generates the first print data based on a detection result by the three-dimensional sensor,
The second generation unit performs a rotation process on the first print data in accordance with the position and rotation angle of each three-dimensional object acquired by the three-dimensional sensor or other detection unit, and optimizes the second print data. The three-dimensional object printing system according to claim 6, wherein print data is generated.
前記光学センサは、前記各立体物の表面への印刷状態を検出し、
前記制御手段は、前記印刷状態の検出結果に基づいて印刷の良否を判定することを特徴とする請求項2から請求項8の何れか1項に記載の立体物印刷システム。
The optical sensor detects a printing state on the surface of each three-dimensional object,
The three-dimensional object printing system according to any one of claims 2 to 8, wherein the control unit determines whether or not the printing is good based on a detection result of the printing state.
前記印刷テーブルは、前記立体物を載置して上流側から下流側に移動可能なベルトを備えるベルトコンベアで構成されることを特徴とする請求項1から請求項9の何れか1項に記載の立体物印刷システム。   The said printing table is comprised by the belt conveyor provided with the belt which mounts the said solid object and can move to the downstream from an upstream side, It is any one of Claims 1-9 characterized by the above-mentioned. Three-dimensional printing system. 前記検出手段は、前記印刷手段よりも上流側に配置されていることを特徴とする請求項10に記載の立体物印刷システム。   The three-dimensional object printing system according to claim 10, wherein the detection unit is disposed upstream of the printing unit. 前記印刷手段は、インクジェット式の印刷ヘッドを備えた印刷装置で構成され、
前記印刷データ生成手段は、
前記印刷ヘッドから射出されるインク粒子の飛翔角と、前記各立体物の描画面の形状とに基いて、最適化した印刷データを生成する第3生成手段をさらに有し、
前記制御手段は、前記第3生成手段で最適化した印刷データに基いて前記印刷装置を制御することを特徴とする請求項1から請求項11の何れか1項に記載の立体物印刷システム。
The printing means includes a printing apparatus including an ink jet print head,
The print data generation means includes
Further comprising third generation means for generating optimized print data based on the flying angle of the ink particles ejected from the print head and the shape of the drawing surface of each three-dimensional object;
12. The three-dimensional object printing system according to claim 1, wherein the control unit controls the printing apparatus based on print data optimized by the third generation unit. 13.
前記3次元センサは、2次元センサと、前記立体物を照らす照明手段とから構成され、
前記2次元センサは、前記照明手段によって形成される前記立体物の描画面の陰影を検出して該立体物の3次元姿勢を取得することを特徴とする請求項8から請求項12の何れか1項に記載の立体物印刷システム。
The three-dimensional sensor includes a two-dimensional sensor and illumination means for illuminating the three-dimensional object.
The said two-dimensional sensor acquires the three-dimensional attitude | position of this solid object by detecting the shadow of the drawing surface of the said solid object formed by the said illumination means. The three-dimensional object printing system according to item 1.
印刷テーブル上に載置した各立体物の位置および向きを検出する検出過程と、
検出結果に基づいて前記各立体物に対応させた印刷データを生成する印刷データ生成過程と、
生成された印刷データにより、前記各立体物への印刷を実行する印刷過程と、
を有することを特徴とする立体物印刷方法。
A detection process for detecting the position and orientation of each three-dimensional object placed on the printing table;
A print data generation process for generating print data corresponding to each three-dimensional object based on a detection result;
A printing process for executing printing on each of the three-dimensional objects according to the generated print data;
A three-dimensional object printing method characterized by comprising:
JP2018014928A 2017-04-28 2018-01-31 Three-dimensional object printing system and three-dimensional object printing method Active JP6440877B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2018/015572 WO2018198832A1 (en) 2017-04-28 2018-04-13 Solid object printing system and solid object printing method
KR1020197031780A KR102269950B1 (en) 2017-04-28 2018-04-13 Three-dimensional object printing system and three-dimensional object printing method
CN201880027160.1A CN110582746B (en) 2017-04-28 2018-04-13 Three-dimensional object printing system and three-dimensional object printing method
TW107138023A TWI770301B (en) 2017-04-28 2018-10-26 Three-dimensional object printing system and three-dimensional object printing method
US16/662,456 US11292203B2 (en) 2017-04-28 2019-10-24 Solid object printing system and solid object printing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017090061 2017-04-28
JP2017090061 2017-04-28

Publications (2)

Publication Number Publication Date
JP2018187915A true JP2018187915A (en) 2018-11-29
JP6440877B2 JP6440877B2 (en) 2018-12-19

Family

ID=64479388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018014928A Active JP6440877B2 (en) 2017-04-28 2018-01-31 Three-dimensional object printing system and three-dimensional object printing method

Country Status (4)

Country Link
JP (1) JP6440877B2 (en)
KR (1) KR102269950B1 (en)
CN (1) CN110582746B (en)
TW (1) TWI770301B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039024A1 (en) * 2019-08-29 2021-03-04 株式会社ウィルビイ Three-dimensional object printing system and three-dimensional object printing method
JP7474799B2 (en) 2018-02-16 2024-04-25 株式会社バンダイ Holding device and control device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3925786T3 (en) 2020-06-18 2024-03-25 Heraeus Electronics Gmbh & Co. Kg Additive printing method for printing a functional print pattern on a surface of a three-dimensional object, associated computer program and computer-readable medium
CN114851707B (en) * 2022-03-17 2023-09-19 福耀玻璃工业集团股份有限公司 Curved glass printing method and system
CN115179667B (en) * 2022-06-14 2023-10-31 深圳达捷科技有限公司 Automatic control method and system for spray printing of multi-product production line

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07137398A (en) * 1993-11-17 1995-05-30 Toray Ind Inc Ink jet printing method and its device
JP2006335019A (en) * 2005-06-06 2006-12-14 Mimaki Engineering Co Ltd Inkjet printer for solid medium printing, and printing method using the same
JP2015134410A (en) * 2013-12-20 2015-07-27 ローランドディー.ジー.株式会社 Printer and printing method
JP2017071173A (en) * 2015-10-09 2017-04-13 紀州技研工業株式会社 Printing method and printing device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4168748B2 (en) 2002-12-20 2008-10-22 富士ゼロックス株式会社 Image processing apparatus, image processing program, and image processing method
JP2005161838A (en) * 2003-11-10 2005-06-23 Seiko Epson Corp Liquid droplet ejection method, liquid droplet ejection device, nozzle abnormality determination method, display device, and electronic apparatus
DE602007003849D1 (en) 2007-10-11 2010-01-28 Mvtec Software Gmbh System and method for 3D object recognition
JP2010102527A (en) * 2008-10-24 2010-05-06 Seiko Epson Corp Printing control device, printing control method, and printing control program
JP5445674B2 (en) * 2010-04-21 2014-03-19 株式会社ミマキエンジニアリング Print coordinate generation device, print coordinate generation method, print coordinate generation program, three-dimensional inkjet printer, and three-dimensional inkjet printer printing method
JP2013208845A (en) * 2012-03-30 2013-10-10 Japan Science & Technology Agency Three-dimensional surface printing method
US10855971B2 (en) 2015-09-16 2020-12-01 HashD, Inc. Systems and methods of creating a three-dimensional virtual image
WO2017141483A1 (en) * 2016-02-17 2017-08-24 株式会社日立製作所 Three-dimensional-coloring system and method for manufacturing three-dimensional structure
CN109922965B (en) * 2017-01-27 2021-03-12 惠普发展公司,有限责任合伙企业 Method and system for printing
JP7183604B2 (en) * 2018-07-23 2022-12-06 カシオ計算機株式会社 PRINTING DEVICE, CONTROL METHOD, AND PROGRAM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07137398A (en) * 1993-11-17 1995-05-30 Toray Ind Inc Ink jet printing method and its device
JP2006335019A (en) * 2005-06-06 2006-12-14 Mimaki Engineering Co Ltd Inkjet printer for solid medium printing, and printing method using the same
JP2015134410A (en) * 2013-12-20 2015-07-27 ローランドディー.ジー.株式会社 Printer and printing method
JP2017071173A (en) * 2015-10-09 2017-04-13 紀州技研工業株式会社 Printing method and printing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474799B2 (en) 2018-02-16 2024-04-25 株式会社バンダイ Holding device and control device
WO2021039024A1 (en) * 2019-08-29 2021-03-04 株式会社ウィルビイ Three-dimensional object printing system and three-dimensional object printing method
JP7455132B2 (en) 2019-08-29 2024-03-25 株式会社ウィルビイ Three-dimensional object printing system and three-dimensional object printing method

Also Published As

Publication number Publication date
CN110582746B (en) 2023-03-24
CN110582746A (en) 2019-12-17
KR20190133223A (en) 2019-12-02
JP6440877B2 (en) 2018-12-19
KR102269950B1 (en) 2021-06-29
TWI770301B (en) 2022-07-11
TW201934352A (en) 2019-09-01

Similar Documents

Publication Publication Date Title
JP6440877B2 (en) Three-dimensional object printing system and three-dimensional object printing method
WO2018198832A1 (en) Solid object printing system and solid object printing method
US9327537B2 (en) System for adjusting operation of a printer during three-dimensional object printing using an optical sensor
JP6834765B2 (en) Inkjet printer and 3D printing method
US9908289B2 (en) System and method for correcting object defects formed by a three-dimensional object printing system
JP6999873B2 (en) Printing device and control method
US10845218B2 (en) Encoder, robot, and printer
JP2017177578A (en) Printer and printing jig
JP6848663B2 (en) Printing device and control method
CN101450556A (en) Recording apparatus and transport amount correcting method
CN102439962A (en) Calibration of a recording apparatus
JP2007106048A (en) Curved surface printing method
JP5116289B2 (en) Method and apparatus for printing on uneven printing surface
JP5656312B2 (en) Three-dimensional printer and control method thereof
US10703099B1 (en) Method and device for enabling a pattern to be marked on a substrate
JP2021183389A (en) Printer and printing method
CN112140741A (en) System and method for analyzing the surface of a three-dimensional object to be printed by a printhead mounted to an articulated arm
JP2010060365A (en) Method of detecting motion of object, and printer
TW202039135A (en) Characterization method and system for a laser processing machine with a moving sheet or web
WO2021039024A1 (en) Three-dimensional object printing system and three-dimensional object printing method
JP2008044325A (en) Conveying amount correcting device, conveying amount correcting method, and program
CN102422625A (en) Calibration of a recording apparatus
JP5098858B2 (en) Liquid ejecting apparatus and liquid ejecting method
JP6613888B2 (en) Image forming apparatus
JP2017149117A (en) Recording device, recording method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180807

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180807

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181120

R150 Certificate of patent or registration of utility model

Ref document number: 6440877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250