JP2018185696A - Deterioration diagnostic system and deterioration diagnostic method of air conditioner - Google Patents
Deterioration diagnostic system and deterioration diagnostic method of air conditioner Download PDFInfo
- Publication number
- JP2018185696A JP2018185696A JP2017087720A JP2017087720A JP2018185696A JP 2018185696 A JP2018185696 A JP 2018185696A JP 2017087720 A JP2017087720 A JP 2017087720A JP 2017087720 A JP2017087720 A JP 2017087720A JP 2018185696 A JP2018185696 A JP 2018185696A
- Authority
- JP
- Japan
- Prior art keywords
- deterioration
- air conditioner
- temperature
- cumulative
- degree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Testing And Monitoring For Control Systems (AREA)
Abstract
Description
本発明は、空調装置の経年的な性能低下を検知判定する劣化診断システム及び診断方法に関するものであり、特に、鉄道車両等の移動体に搭載された空調装置に好適な劣化診断システム及び診断方法に関するものである。 The present invention relates to a deterioration diagnosis system and a diagnosis method for detecting and determining a deterioration in performance of an air conditioner over time, and in particular, a deterioration diagnosis system and a diagnosis method suitable for an air conditioner mounted on a moving body such as a railway vehicle. It is about.
従来、不特定多数の乗客が利用する鉄道車両等の移動体に搭載された空調装置に関しては、車両の定期的な保守点検時のみならず、当該定期点検時とは別個にその保守点検が随時行われている。これは、空調装置の性能低下等が車内環境の劣化に直結するためであり、近年の温暖化等と相俟って、特に、夏場等における空調装置の冷却性能の低下は、乗客に多大な不快感をもたらすためである。そこで、かかる空調装置の劣化診断をタイムリーに実現することが強く望まれており、種々の診断システム等が提案されている(例えば、特許文献1〜4参照)。
Conventionally, air conditioners mounted on moving bodies such as railway vehicles used by an unspecified number of passengers are not limited to regular maintenance inspections of vehicles, but maintenance inspections are performed separately from the periodic inspections. Has been done. This is because a decrease in the performance of the air conditioner is directly linked to a deterioration in the interior environment of the vehicle, and coupled with recent warming, the decrease in the cooling performance of the air conditioner particularly in the summertime is a great deal for passengers. This is to cause discomfort. Thus, it is strongly desired to implement timely degradation diagnosis of such an air conditioner, and various diagnostic systems have been proposed (see, for example,
ここで、特許文献1には、外気温度、車内湿度、乗車率等の種々の環境情報と実際の環境情報とから、車内温度の変化を把握し、空調装置の劣化状態を判定する空調管理システム及び空調管理方法が開示されている。
Here,
また、特許文献2には、空調装置ごとの積算稼働時間に基づいて空調装置の劣化を判定する方法が開示されている。特許文献3には、圧縮機の運転パターンと基準パターンとの比較から劣化を判定する方法が開示されている。特許文献4には、電力消費量の変化に基づいて劣化を判定する方法が開示されている。
しかしながら、上記特許文献1〜4に開示された先行技術ではいずれも、種々の環境情報を取得する手段(例えば、乗車率を取得するために車両の重量を検知する応荷重センサー、温湿度センサー等)や多様なデータの分析処理等が必要となると共に、情報を伝送する通信システムが必要となり、システムが複雑で大規模となって首都圏や都市部等の乗降客の多い路線にしか経済的に採用し難いといった問題が懸念されていた。
However, any of the prior arts disclosed in
また、特許文献1に開示された先行技術では、天候やドア開閉等の外乱に起因する一時的な温度変化を空調装置の劣化と誤判定してしまうといった問題が生じていた。
Moreover, in the prior art disclosed in
同様に、特許文献2,3に開示された先行技術では、運転稼働時間や積算稼働時間が同じでも機器ごとに劣化状態が異なる場合、正しく劣化判定ができないといった問題が生じ、特許文献4に開示された先行技術では、鉄道車両の走行場所や走行状態によって電力供給量が変化するため電力消費量も変化し、正しく劣化判定ができないといった問題が生じていた。
Similarly, in the prior arts disclosed in
そこで、本発明は、上述のような従来技術の問題点に鑑みてなされたものであり、車両に搭載された空調装置の劣化を判定可能とする劣化診断システム及び劣化診断方法を簡易な構成で安価に提供することを目的とする。 Accordingly, the present invention has been made in view of the above-described problems of the prior art, and a deterioration diagnosis system and a deterioration diagnosis method capable of determining deterioration of an air conditioner mounted on a vehicle with a simple configuration. The purpose is to provide it at low cost.
上記目的を達成するために、本発明に係る空調装置の劣化診断システムは、車両室内を調温する空調装置と、外気温度のデータと、車両の室内温度を測定する室内温度測定手段と、前記外気温度から前記室内温度を予測する室内温度予測手段と、前記室内温度と前記室内温度予測手段より得られた予測温度との差異に基づいて前記空調装置の劣化を判定する劣化判定手段とを備え、前記劣化判定手段は、前記室内温度から前記予測温度を減算して得られた予測誤差の確率分布に基づいて、前記空調装置の劣化判定を行うことを特徴とするものである。 In order to achieve the above object, a deterioration diagnosis system for an air conditioner according to the present invention includes an air conditioner that adjusts the temperature of a vehicle interior, outside air temperature data, an indoor temperature measuring means that measures an indoor temperature of the vehicle, Room temperature prediction means for predicting the room temperature from outside temperature, and deterioration determination means for judging deterioration of the air conditioner based on a difference between the room temperature and a predicted temperature obtained from the room temperature prediction means. The deterioration determination means performs the deterioration determination of the air conditioner based on a probability distribution of a prediction error obtained by subtracting the predicted temperature from the room temperature.
なお、本発明において、空調装置の劣化とは、経年的な性能低下(能力低下)をいうものとし、具体的には、ラジエーターやファンの汚損や詰まり等により空調装置の冷却性能が経年的に低下した状態をいうものとする。 In the present invention, the deterioration of the air conditioner means a deterioration of performance over time (decrease in capacity). Specifically, the cooling performance of the air conditioner is deteriorated over time due to contamination or clogging of the radiator or the fan. It shall mean the lowered state.
このように構成した場合には、必要最小限のデータに基づき、簡易なデータ処理にて車両に搭載した空調装置の劣化診断が可能となる。 When configured in this way, deterioration diagnosis of an air conditioner mounted on a vehicle can be performed by simple data processing based on the minimum necessary data.
また、前記劣化判定手段は、前記予測誤差の確率分布に基づいて劣化度を算出し、当該劣化度を経時的に蓄積した累積劣化度が所定の値を超えた場合に前記空調装置の劣化と判定してもよい。 Further, the deterioration determining means calculates a deterioration degree based on the probability distribution of the prediction error, and the deterioration degree of the air conditioner is determined when a cumulative deterioration degree obtained by accumulating the deterioration degree over time exceeds a predetermined value. You may judge.
このように構成した場合には、予測誤差を時系列的に蓄積した累積劣化度により劣化判定を行うことにより、突発的な異常値による誤判定を未然に防止することができる。 In the case of such a configuration, it is possible to prevent an erroneous determination due to a sudden abnormal value by performing the deterioration determination based on the cumulative deterioration degree in which the prediction errors are accumulated in time series.
また、前記劣化度をa、前記予測誤差をΔT、前記確率密度をP(ΔT)、Cを定数としたとき、前記劣化度aは式(1)で表すことができる。
a=−log(P(ΔT))+C・・・・・・・・式(1)
Further, when the degree of deterioration is a, the prediction error is ΔT, the probability density is P (ΔT), and C is a constant, the degree of deterioration a can be expressed by Equation (1).
a = −log (P (ΔT)) + C Expression (1)
このように構成した場合には、劣化判定の根拠となる劣化度aを具体的・定量的に簡易算出することができる。 When configured in this way, it is possible to simply and quantitatively calculate the deterioration degree a that is the basis for the deterioration determination.
また、前記劣化度をa、前記予測誤差をΔT、前記確率密度をP(ΔT)、Cを定数としたとき、前記劣化度aは式(2)で表すことができる。
a=−log(P(ΔT))+C(ΔT>0)
a=−log(P(0))+C(ΔT≦0)・・・・・・・・式(2)
Further, when the deterioration degree is a, the prediction error is ΔT, the probability density is P (ΔT), and C is a constant, the deterioration degree a can be expressed by Expression (2).
a = −log (P (ΔT)) + C (ΔT> 0)
a = −log (P (0)) + C (ΔT ≦ 0) (2)
このように構成した場合には、予測誤差ΔTの存在領域に応じて、より精度の高い劣化度aを具体的・定量的に簡易算出することができる。 In the case of such a configuration, it is possible to simply and specifically simply calculate the deterioration degree a with higher accuracy according to the region where the prediction error ΔT exists.
さらに、所定の測定期間内において、前記劣化度aの最小値は0以下であり、最大値は正となるように前記定数Cが設定されてもよい。 Further, the constant C may be set so that the minimum value of the deterioration degree a is 0 or less and the maximum value is positive within a predetermined measurement period.
このように構成した場合には、劣化度aを予測誤差ΔTの存在領域に基づいて正負に変化可能(累積劣化度を増減可能)とし、空調装置の状態に応じたさらに精度の高い劣化度を具体的・定量的に簡易算出することができる。 When configured in this way, the degree of deterioration a can be changed positively or negatively based on the region where the prediction error ΔT exists (the cumulative degree of deterioration can be increased or decreased), and the degree of deterioration with higher accuracy according to the state of the air conditioner It can be simply calculated specifically and quantitatively.
また、時刻tにおける累積劣化度をSt、時刻tにおける劣化度をat、時刻t−1における累積劣化度をSt−1としたとき、前記累積劣化度Stは、式(3)にて表すことができる。
St=St−1+at・・・・・・・・・・式(3)
Furthermore, when S t a cumulative deterioration degree at time t, the deterioration degree at time t a t, a cumulative deterioration degree at time t-1 and the S t-1, the accumulated deterioration degree S t has the formula (3) Can be expressed as
S t = S t−1 + a t (3)
このように構成した場合には、経時的に蓄積した劣化度(累積劣化度)を用いて空調装置の経年的な変化をより正確に把握可能とすると共に、当該累積劣化度を具体的・定量的に簡易算出することができる。 When configured in this way, the deterioration over time (cumulative deterioration) accumulated over time can be used to more accurately grasp the changes over time of the air conditioner, and the cumulative deterioration can be determined concretely and quantitatively. Simple calculation.
また、時刻tにおける累積劣化度をSt、時刻tにおける劣化度をat、時刻t−1における累積劣化度をSt−1としたとき、前記累積劣化度Stは、式(4)にて表すことができる。
St=max(St−1+at,0)・・・・・・・・・・式(4)
Furthermore, when S t a cumulative deterioration degree at time t, the deterioration degree at time t a t, a cumulative deterioration degree at time t-1 and the S t-1, the accumulated deterioration degree S t has the formula (4) Can be expressed as
S t = max (S t−1 + a t , 0) (4)
ここで、上記式(4)におけるmax(○,○)とは、()内の2つの値のうち、いずれか大きい方をとる意である。 Here, max (◯, ○) in the above formula (4) means the larger of the two values in ().
このように構成した場合には、経時的に蓄積した劣化度(累積劣化度)を用いて空調装置の経年的な変化をより正確に把握可能とすると共に、空調装置の正常状態が継続した場合(St-1+atが0以下になった場合)に、累積劣化度Stが減少し続けることを防止(累積劣化度Stをリセット)して、異常値(劣化度プラス)の検出感度を高めることができる。 When configured in this way, it is possible to more accurately grasp changes over time of the air conditioner using the deterioration degree accumulated over time (cumulative deterioration degree), and the normal state of the air conditioner continues. (when S t-1 + a t is 0 or less), to prevent the cumulative degradation degree S t continues to decrease (reset cumulative deterioration degree S t), the detection of outliers (deterioration degree plus) Sensitivity can be increased.
以上において、前記確率分布は、正規分布であってもよい。 In the above, the probability distribution may be a normal distribution.
このように構成した場合には、劣化判定の根拠となる確率分布モデルを容易に設定することができる。 When configured in this manner, a probability distribution model that is the basis for the deterioration determination can be easily set.
本発明に係る空調装置の劣化診断方法は、車両室内を調温する空調装置と、外気温度のデータと、予め求めた外気温度と室内温度との回帰式とを用い、室内温度を測定すると共に、前記回帰式を用いて前記外気温度のデータより予測温度を算出し、測定した室内温度と算出した予測温度との差異を正規分布に当てはめた確率密度に基づく劣化度を算出し、当該劣化度を時系列的に蓄積した累積劣化度が所定の閾値を超えた場合に、前記空調装置が劣化したと判定することを特徴とするものである。 The deterioration diagnosis method for an air conditioner according to the present invention measures an indoor temperature using an air conditioner that regulates the temperature of the vehicle interior, outside air temperature data, and a regression equation between the outside air temperature and the room temperature that are obtained in advance. , Using the regression equation to calculate the predicted temperature from the outside air temperature data, calculate the degree of deterioration based on the probability density obtained by applying the difference between the measured indoor temperature and the calculated predicted temperature to the normal distribution, When the cumulative deterioration level accumulated in time series exceeds a predetermined threshold value, it is determined that the air conditioner has deteriorated.
このように構成した場合には、必要最小限のデータに基づき、簡易なデータ処理にて時系列的に蓄積した劣化度により劣化判定を行うことにより、突発的な異常値による誤判定を未然に防止することができる。 In such a configuration, based on the minimum necessary data, by performing deterioration determination based on the deterioration degree accumulated in time series by simple data processing, erroneous determination due to sudden abnormal values can be made in advance. Can be prevented.
また、前記累積劣化度を所定の測定期間内において増減可能に設定すると共に、前記累積劣化度が正となる場合には当該累積劣化度を蓄積する一方、前記累積劣化度がゼロ又は負となる場合には、蓄積した前記累積劣化度をリセットしてもよい。 In addition, the cumulative deterioration degree is set to be adjustable within a predetermined measurement period, and when the cumulative deterioration degree is positive, the cumulative deterioration degree is accumulated, while the cumulative deterioration degree is zero or negative. In this case, the accumulated cumulative deterioration level may be reset.
このように構成した場合には、増減可能に設定した累積劣化度を用いて空調装置の経年的な変化をより正確に把握可能とすると共に、空調装置の正常状態が継続した場合(累積劣化度が0以下となった場合)には、累積劣化度を一旦リセット(0に設定)して当該累積劣化度が減少し続けることを防止し、以降の異常値(劣化度プラス)の検出感度を高めることができる。 When configured in this way, it is possible to more accurately grasp the change over time of the air conditioner using the cumulative deterioration degree set so as to be able to increase or decrease, and when the normal state of the air conditioner continues (cumulative deterioration degree) If the value is less than or equal to 0), the cumulative deterioration degree is temporarily reset (set to 0) to prevent the cumulative deterioration degree from continuing to decrease, and the detection sensitivity of subsequent abnormal values (deterioration degree plus) is increased. Can be increased.
本発明によれば、種々多様なデータの分析処理等を要せず、必要最小限のデータに基づき、簡易なデータ処理にて車両に搭載した空調装置の劣化診断が可能となる。 According to the present invention, it is possible to perform deterioration diagnosis of an air conditioner mounted on a vehicle by simple data processing based on the minimum necessary data without requiring analysis processing of various kinds of data.
以下に、本発明に係る空調装置の劣化診断システムの一実施形態について、図面を参照して説明する。ここで、図1は本発明の空調装置の劣化診断システムの構成を示す機能ブロック図であり、図2〜図4は本実施の形態における確率密度分布と劣化度との関係を説明するための模式図である。 An embodiment of a deterioration diagnosis system for an air conditioner according to the present invention will be described below with reference to the drawings. Here, FIG. 1 is a functional block diagram showing the configuration of the deterioration diagnosis system for an air conditioner according to the present invention, and FIGS. 2 to 4 are for explaining the relationship between the probability density distribution and the degree of deterioration in the present embodiment. It is a schematic diagram.
図1に模式的に示すように、本実施の形態に係る空調装置の劣化診断システム1は、例えば、鉄道車両の室内を空調する空調装置ACと、室内温度Tiを測定する室内温度測定手段である室内温度計とを有し、外気温度Teと室内温度Tiとの相関関係に基づき、室内温度Tiを回帰分析により予測する室内温度予測手段PMと、室内温度実測値Tiと室内温度予測値Tpとの差異ΔT(室内温度実測値Ti−室内温度予測値Tp)により、空調装置ACの劣化判定を行う劣化判定手段DMとを備えている。
As schematically shown in FIG. 1, the
本実施の形態において、外気温度Teとしては、気象庁等の外部公開データを流用することができる。なお当然に、車両や地上等に別途設けた外部温度計等の測定手段により外気温度Teを測定してもよい。 In the present embodiment, external public data such as the Japan Meteorological Agency can be used as the outside air temperature Te. Of course, the outside air temperature Te may be measured by a measuring means such as an external thermometer separately provided on the vehicle or the ground.
また、室内温度Tiとしては、例えば、空調装置ACのリターン口(室内の空気を吸い込む吸込口)に設けた室内温度計により測定したデータを用いることができる。 Further, as the room temperature Ti, for example, data measured by a room thermometer provided at a return port (suction port for sucking indoor air) of the air conditioner AC can be used.
次に、本実施の形態に係る劣化診断システム及び劣化診断方法を、鉄道車両に搭載された空調装置に適用した際の劣化診断の手順について説明する。 Next, the procedure of deterioration diagnosis when the deterioration diagnosis system and the deterioration diagnosis method according to the present embodiment are applied to an air conditioner mounted on a railway vehicle will be described.
(準備)
本実施の形態に係る劣化診断システム及び診断方法では、まず、同種の空調装置ACを備えた鉄道車両にて、予め室内温度Tiと外気温度Teのデータを収集しておく。
(Preparation)
In the deterioration diagnosis system and diagnosis method according to the present embodiment, first, data on the room temperature Ti and the outside air temperature Te are collected in advance in a railway vehicle equipped with the same type of air conditioner AC.
そして、収集した室内温度Tiと外気温度Teとのデータに基づいて、線形回帰分析を行い、室内温度Tiと外気温度Teとの相関関係を求める。具体的には、室内温度Tiから外気温度Teへの回帰式を作成しておく(例えば、室内温度Ti=β1×外気温度Te+β2等)。ここで、回帰式としては、外気温度Teと室内温度Tiとの相関関係を規定(外気温度Teから室内温度Tiを予測)し得るものであれば差し支えなく、非線形の多項式やガウス過程回帰などでもよいし、外気温度以外の説明変数を加えた重回帰分析でもよい。なお、上記相関関係式(回帰式)が本発明の室内温度予測手段PMに相当する。 Then, linear regression analysis is performed based on the collected data of the indoor temperature Ti and the outside air temperature Te, and a correlation between the room temperature Ti and the outside air temperature Te is obtained. Specifically, a regression equation from the room temperature Ti to the outside air temperature Te is created (for example, the room temperature Ti = β1 × the outside air temperature Te + β2). Here, any regression equation can be used as long as the correlation between the outside air temperature Te and the room temperature Ti can be defined (the room temperature Ti can be predicted from the outside air temperature Te). It is also possible to use a multiple regression analysis with explanatory variables other than the outside air temperature added. The correlation formula (regression formula) corresponds to the room temperature prediction means PM of the present invention.
次に、室内温度実測値Tiから室内温度予測値Tpを減算した残差(以下、予測誤差とも称する)ΔTの確率分布モデルP(ΔT)を作成しておく。当該確率分布モデルは、平均値μ=0の正規分布モデルN(0,σ2)と見做して近似し、標準偏差σを算出しておく。ただし、正規分布モデルの平均値μや標準偏差σは他の値でもよいし、混合ガウス分布モデルや任意の確率分布モデルを用いてもよい。 Next, a probability distribution model P (ΔT) of a residual (hereinafter also referred to as a prediction error) ΔT obtained by subtracting the predicted indoor temperature value Tp from the measured indoor temperature value Ti is created. The probability distribution model is approximated as a normal distribution model N (0, σ 2 ) having an average value μ = 0, and a standard deviation σ is calculated. However, the average value μ and the standard deviation σ of the normal distribution model may be other values, and a mixed Gaussian distribution model or an arbitrary probability distribution model may be used.
(判定)
本実施の形態に係る室内温度予測手段PMは、上記回帰式により、新たに取得した外気温度Teから室内温度予測値Tpを算出する。そして、室内温度実測値Tiから室内温度予測値Tpを減算した予測誤差ΔTを算出する。
(Judgment)
The indoor temperature prediction means PM according to the present embodiment calculates the predicted indoor temperature value Tp from the newly acquired outside air temperature Te using the regression equation. Then, a prediction error ΔT obtained by subtracting the predicted indoor temperature value Tp from the measured indoor temperature value Ti is calculated.
次に、本実施の形態に係る劣化判定手段DMは、算出した予測誤差ΔTを上記確率分布モデルに当てはめ、確率密度P(ΔT)を算出する。 Next, the degradation determination means DM according to the present embodiment applies the calculated prediction error ΔT to the probability distribution model, and calculates the probability density P (ΔT).
次に、上記確率密度P(ΔT)に基づき、劣化度aを以下の式にて算出する。 Next, based on the probability density P (ΔT), the deterioration degree a is calculated by the following equation.
a=−log(P(ΔT))+C・・・・・(ΔT>0の場合) a = −log (P (ΔT)) + C (when ΔT> 0)
a=−log(P(0))+C・・・・・・(ΔT≦0の場合) a = −log (P (0)) + C (when ΔT ≦ 0)
なお、定数Cは、上記確率分布モデルP(ΔT)と標準偏差σとを用いた以下の式とする。
C=log(P(σ))
The constant C is the following equation using the probability distribution model P (ΔT) and the standard deviation σ.
C = log (P (σ))
ここで、定数CをP(σ)の関数とした理由は、空調装置や車両のバラツキによらず、同一基準で統計的な処理を可能とするためである。 Here, the reason why the constant C is a function of P (σ) is to enable statistical processing based on the same standard regardless of variations in the air conditioner and the vehicle.
なお、本実施の形態では、上記のように定数Cを設定することにより、図2に模式的に示すように、+1σを基準値として劣化度aを算出している。すなわち、図3及び図4に模式的に示すように、予測誤差ΔT(室内温度実測値Ti−室内温度予測値Tp)が標準偏差+1σより大きいときは劣化度aがプラスとなり、予測誤差ΔTが標準偏差+1σ以下のときは劣化度aが0以下となるように設定されている。 In the present embodiment, by setting the constant C as described above, the deterioration degree a is calculated using + 1σ as a reference value as schematically shown in FIG. That is, as schematically shown in FIGS. 3 and 4, when the prediction error ΔT (the measured indoor temperature value Ti−the predicted indoor temperature value Tp) is larger than the standard deviation + 1σ, the degree of deterioration a is positive, and the prediction error ΔT is When the standard deviation is + 1σ or less, the deterioration degree a is set to be 0 or less.
本実施の形態において、+側の標準偏差1σを劣化度aの基準値として設定しているのは、正常ならば継続的に発生することがないと考えられる+1σを超えた予測誤差ΔT(略16%)を空調装置ACの経年劣化に伴う性能低下(冷却不足)として把握するためである。 In the present embodiment, the standard deviation 1σ on the + side is set as the reference value of the deterioration degree a because the prediction error ΔT (substantially greater than + 1σ, which is considered not to occur continuously if normal) 16%) is understood as a performance deterioration (insufficient cooling) due to aged deterioration of the air conditioner AC.
なお、定数Cは上式に限るものではないが、所定の測定期間MTにおける劣化度aの最小値が0以下であって、最大値がプラスとなるように設定することが好ましい。言い換えれば、所定の測定期間MT内において、累積劣化度Stが増減変化可能なように(劣化度aがプラスとマイナスの領域に渡って変化可能なように)、定数Cを設定することが好ましい。これにより、天候やドア開閉などの外乱により一時的に累積劣化度Stが上昇することがあっても、その後正常状態(劣化度aがマイナスの状態)が続けば累積劣化度Stは減少していくため、誤って劣化と判定してしまう事態を未然に防止することができる。 The constant C is not limited to the above formula, but it is preferable to set the minimum value of the deterioration degree a in the predetermined measurement period MT to be 0 or less and the maximum value to be positive. In other words, it is preferable to set the constant C so that the cumulative deterioration degree St can be increased or decreased within a predetermined measurement period MT (so that the deterioration degree a can be changed over the positive and negative regions). . As a result, even if the cumulative deterioration St increases temporarily due to disturbances such as weather or door opening / closing, if the normal state (deterioration a is negative) continues thereafter, the cumulative deterioration St decreases. Therefore, it is possible to prevent a situation where the deterioration is erroneously determined.
劣化度aの正負を反転させる(累積劣化度Stを増減させる)基準値としては、基本的には標準偏差σの整数倍に設定することが好ましい。ただし、例えば、基準値として+2σを採用すると感度が著しく鈍る(予測誤差ΔTの略98%に対応する劣化度aをマイナス値に設定してしまう)ので、ほとんどの場合、劣化度aがマイナスとなり、後述する累積劣化度Stのプラス値が蓄積されなくなってしまう。そこで、現実的には、図2、図4に模式的に示したように、基準値を+1σ程度に設定することがより好ましい。これにより、+1σ以下(略84%)の予測誤差ΔTを正常値(劣化度マイナス)として検出し、+1σを超えた予測誤差ΔT(略16%)を異常値(劣化度プラス)として検出することができる。 The reference value for reversing the sign of the deterioration degree a (increasing or decreasing the cumulative deterioration degree St) is basically preferably set to an integral multiple of the standard deviation σ. However, for example, when + 2σ is adopted as the reference value, the sensitivity is significantly dull (degradation degree a corresponding to approximately 98% of the prediction error ΔT is set to a negative value), and in most cases, the deterioration degree a is negative. The plus value of the cumulative deterioration degree St described later will not be accumulated. Therefore, in practice, it is more preferable to set the reference value to about + 1σ as schematically shown in FIGS. Thereby, a prediction error ΔT of + 1σ or less (approximately 84%) is detected as a normal value (deterioration degree minus), and a prediction error ΔT (approximately 16%) exceeding + 1σ is detected as an abnormal value (deterioration degree plus). Can do.
また、劣化度aは、図3に最も良く示されるように、予測誤差ΔTが0以下の領域において、一定の最小値(本例では、正規分布の平均値μ=0において最小)であることが好ましい。 Further, as best shown in FIG. 3, the deterioration degree a is a fixed minimum value (in this example, the minimum when the average value μ = 0 of the normal distribution) in a region where the prediction error ΔT is 0 or less. Is preferred.
このように、予測誤差ΔTのマイナス領域(室内が十分に冷却されている状態の領域)では劣化度aを一定値(最小値)とすることにより、突発的な異常値(例えば、手動操作による強制冷房運転時等における一時的過冷却など)の影響を排除して劣化診断の際の誤判定を未然に防止することができる。 In this way, in the negative region of the prediction error ΔT (region where the room is sufficiently cooled), the deterioration degree a is set to a constant value (minimum value), so that sudden abnormal values (for example, due to manual operation) It is possible to prevent an erroneous determination at the time of deterioration diagnosis by eliminating the influence of temporary supercooling during forced cooling operation or the like.
なお、正規分布に近似しうる温度データに基づいて劣化判定を行うという観点からは、上記測定期間MTとして、室内温度Tiのサンプリング周期を1分程度として、1〜2週間程度の測定期間を設ければ可能である。 From the viewpoint of determining deterioration based on temperature data that can approximate a normal distribution, the measurement period MT is provided with a measurement period of about 1 to 2 weeks with the sampling period of the room temperature Ti being about 1 minute. This is possible.
そして、本実施の形態に係る劣化判定手段DMは、上記確率分布に基づいて、時刻tにおける累積劣化度Stを時刻t−1における累積劣化度St−1、劣化度atを用いて以下の式により算出する。なお、以下の式において、max(○,○)とは、()内の2つの値のうち、いずれか大きい方をとる意である。 Then, deterioration determining unit DM according to the present embodiment, based on the probability distribution, the cumulative degree of deterioration S t-1 at time t-1 to cumulative degradation level S t at time t, using the degree of deterioration a t It is calculated by the following formula. In the following expression, max (◯, ○) means the larger of the two values in ().
St=max(St-1+at,0) S t = max (S t−1 + a t , 0)
すなわち、St-1+atが0より大きい場合には、累積劣化度Stの値を、St-1+atに設定する。一方、St-1+atが0以下の場合には、累積劣化度Stの値を0に設定する(リセットする)。 That is, when S t-1 + a t is larger than 0, the value of the cumulative degradation degree S t, is set to S t-1 + a t. On the other hand, if S t-1 + a t is 0 or less, (resets) the value of the cumulative degree of deterioration S t is set to 0.
このように、劣化度aを時系列的に蓄積した累積劣化度Stを用いることにより、空調装置の経年的な変化をより正確に把握することが可能となる。また、空調装置ACの正常状態が継続した場合(St-1+atが0以下になった場合)に、累積劣化度Stが減少し続けることを防止(累積劣化度Stをリセット)して、異常値(劣化度プラス)の検出感度を高めることができる。 In this way, by using the cumulative deterioration degree St obtained by accumulating the deterioration degree a in time series, it becomes possible to grasp the change over time of the air conditioner more accurately. Further, when a normal state of the air conditioner AC has been continued (if S t-1 + a t is 0 or less), to prevent the cumulative degradation degree S t continues to decrease (reset cumulative deterioration degree S t) Thus, the detection sensitivity of abnormal values (deterioration degree plus) can be increased.
そして、累積劣化度Stが所定の閾値を超えた場合に、空調装置のメンテナンスを実施する。なお、上述した空調装置の正常/異常の劣化判定は、各鉄道車両内で行ってもよいし、駅や車庫等の施設にて通信回線を用いて集中管理してもよい。また、リアルタイムで判定しても良いし、一定期間のデータを収集してから一括判定するバッチ方式でも良い。 When the cumulative degradation level S t exceeds a predetermined threshold value, to perform maintenance of the air conditioner. Note that the above-described normal / abnormal deterioration determination of the air conditioner may be performed in each railway vehicle, or may be centrally managed using a communication line in a facility such as a station or a garage. Further, the determination may be made in real time, or the batch method may be used in which data is collected at a certain period and then collectively determined.
また、閾値に関しては、例えば、1.5σ程度の劣化度aの状態が数日間(例えば、3日)連続したときの累積劣化度Stの値を閾値として設定する等、空調装置の耐久性や使い方等に応じて、適宜設定することができる。 Further, regarding the threshold value, for example, the durability of the air conditioner such as setting the value of the cumulative deterioration degree St when the state of the deterioration degree a of about 1.5σ continues for several days (for example, 3 days) is set as the threshold value. It can be set as appropriate according to usage.
また、閾値を段階的に設定(例えば、予測誤差ΔTが1.3σ、1.5σ、2σ等の値で3日間連続したときの累積劣化度Stの値に設定)して、各段階に応じて、その後のメンテナンス処理を段階的に設定してもよい。具体的には、例えば、閾値レベル1として予測誤差1.3σで連続3日間に相当する累積劣化度の値を要注意の緊急度低と設定し、閾値レベル2として予測誤差1.5σで連続3日間に相当する累積劣化度の値を数週間以内にメンテナンスを要する緊急度中と設定し、閾値レベル3として予測誤差2σで連続3日間に相当する累積劣化度の値を緊急メンテナンスを要する緊急度高等と段階的に設定することができる。
Also, the threshold value is set stepwise (for example, set to the value of the cumulative deterioration St when the prediction error ΔT is a value of 1.3σ, 1.5σ, 2σ, etc. for three consecutive days), and according to each step Then, subsequent maintenance processing may be set in stages. Specifically, for example, the
以上説明したように、本発明に係る空調装置の劣化診断システム及び劣化診断方法によれば、外気温度Teに関しては一般公開データを流用可能とし、計測するデータは車両内の室内温度Tiのみで空調装置ACの劣化診断が可能となるので、非常に簡素な構成とすることができ、ソフトウェアプログラムとして容易に実現可能であると共に、大幅なコストダウンに寄与することができる。また、大規模な通信システムも要しないので、例えば、劣化診断システムの構成要素(室内温度予測手段PM、劣化判定手段DM等)をソフトウェアとして搭載したパーソナルコンピュータ等、各車両に個別に搭載可能な簡易な制御装置として容易に構成することができる。 As described above, according to the deterioration diagnosis system and deterioration diagnosis method for an air conditioner according to the present invention, publicly available data can be used for the outside air temperature Te, and the measured data is air-conditioning only with the room temperature Ti in the vehicle. Since the deterioration diagnosis of the apparatus AC can be performed, a very simple configuration can be achieved, which can be easily realized as a software program and can contribute to a significant cost reduction. Further, since a large-scale communication system is not required, for example, it can be individually installed in each vehicle such as a personal computer in which the components of the deterioration diagnosis system (indoor temperature prediction means PM, deterioration determination means DM, etc.) are installed as software. It can be easily configured as a simple control device.
なお、本発明の技術的範囲は上述した各実施の形態に限定されるものではなく、本発明の要旨に逸脱しない範囲において多様な変更もしくは改良を加え得るものである。例えば、本発明に係る空調装置の劣化診断システムは、鉄道車両のみならず、自動車や航空機等他の移動体に搭載された空調装置の劣化診断システムとしても容易に適用可能である。 The technical scope of the present invention is not limited to the above-described embodiments, and various changes or improvements can be added without departing from the scope of the present invention. For example, the deterioration diagnosis system for an air conditioner according to the present invention can be easily applied not only as a railway vehicle but also as a deterioration diagnosis system for an air conditioner mounted on another moving body such as an automobile or an aircraft.
1:劣化診断システム
a:劣化度
AC:空調装置
C:定数
DM:劣化判定手段
MT:測定期間
PM:室内温度予測手段
St:累積劣化度
Te:外気温度
Ti:室内温度実測値
Tp:室内温度予測値
ΔT:予測誤差
μ:平均値
σ:標準偏差
1: Deterioration diagnosis system a: Deterioration degree AC: Air conditioner C: Constant DM: Degradation determination means MT: Measurement period PM: Indoor temperature prediction means St : Cumulative deterioration degree Te: Outdoor air temperature Ti: Indoor temperature measurement value Tp: Indoor Predicted temperature ΔT: Prediction error μ: Average value σ: Standard deviation
Claims (10)
外気温度のデータと、
車両の室内温度を測定する室内温度測定手段と、
前記外気温度から前記室内温度を予測する室内温度予測手段と、
前記室内温度と前記室内温度予測手段より得られた予測温度との差異に基づいて前記空調装置の劣化を判定する劣化判定手段と
を備え、
前記劣化判定手段は、前記室内温度から前記予測温度を減算して得られた予測誤差の確率分布に基づいて、前記空調装置の劣化判定を行うことを特徴とする空調装置の劣化診断システム。 An air conditioner for controlling the temperature of the vehicle interior;
Outside temperature data,
Indoor temperature measuring means for measuring the indoor temperature of the vehicle;
Indoor temperature predicting means for predicting the indoor temperature from the outside air temperature;
Deterioration determining means for determining deterioration of the air conditioner based on the difference between the indoor temperature and the predicted temperature obtained by the indoor temperature predicting means;
The deterioration diagnosis unit for an air conditioner, wherein the deterioration determination unit performs the deterioration determination of the air conditioner based on a probability distribution of a prediction error obtained by subtracting the predicted temperature from the room temperature.
a=−log(P(ΔT))+C・・・・・・・・式(1) 3. The deterioration degree a can be expressed by Equation (1), where a is the deterioration degree, ΔT is the prediction error, P (ΔT) is the probability density, and C is a constant. Air conditioner deterioration diagnosis system.
a = −log (P (ΔT)) + C Expression (1)
a=−log(P(ΔT))+C(ΔT>0)
a=−log(P(0))+C(ΔT≦0)・・・・・・・・式(2) 3. The deterioration degree a can be expressed by equation (2), where a is the deterioration degree, ΔT is the prediction error, P (ΔT) is the probability density, and C is a constant. Air conditioner deterioration diagnosis system.
a = −log (P (ΔT)) + C (ΔT> 0)
a = −log (P (0)) + C (ΔT ≦ 0) (2)
前記累積劣化度Stは、式(3)にて表されることを特徴とする請求項2ないし5のいずれかに記載の空調装置の劣化診断システム。
St=St−1+at・・・・・・・・・・式(3) When the cumulative degradation level at time t is S t , the degradation level at time t is a t , and the cumulative degradation level at time t−1 is S t−1 ,
6. The deterioration diagnosis system for an air conditioner according to claim 2, wherein the cumulative deterioration degree St is expressed by an expression (3).
S t = S t−1 + a t (3)
前記累積劣化度Stは、式(4)にて表されることを特徴とする請求項2ないし5のいずれかに記載の空調装置の劣化診断システム。
St=max(St−1+at,0)・・・・・・・・・・式(4) When the cumulative degradation level at time t is S t , the degradation level at time t is a t , and the cumulative degradation level at time t−1 is S t−1 ,
6. The deterioration diagnosis system for an air conditioner according to claim 2, wherein the cumulative deterioration degree St is expressed by an expression (4).
S t = max (S t−1 + a t , 0) (4)
室内温度を測定すると共に、前記回帰式を用いて前記外気温度のデータより室内温度を算出し、測定した室内温度と算出した予測温度との差異を正規分布に当てはめた確率密度に基づく劣化度を算出し、
当該劣化度を時系列的に蓄積した累積劣化度が所定の閾値を超えた場合に、前記空調装置が劣化したと判定することを特徴とする空調装置の劣化診断方法。 Using an air conditioner that regulates the temperature of the vehicle interior, outside air temperature data, and a regression equation between the outside air temperature and the room temperature determined in advance,
The indoor temperature is measured, the indoor temperature is calculated from the outside air temperature data using the regression equation, and the degree of deterioration based on the probability density obtained by applying the difference between the measured indoor temperature and the calculated predicted temperature to the normal distribution is calculated. Calculate
A deterioration diagnosis method for an air conditioner, wherein the air conditioner is determined to have deteriorated when an accumulated deterioration degree in which the deterioration degree is accumulated in a time series exceeds a predetermined threshold.
When the cumulative deterioration degree is set to be adjustable within a predetermined measurement period, and when the cumulative deterioration degree is positive, the cumulative deterioration degree is accumulated, while when the cumulative deterioration degree is zero or negative. 10. The method for diagnosing deterioration of an air conditioner according to claim 9, wherein the accumulated deterioration degree is reset.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017087720A JP2018185696A (en) | 2017-04-26 | 2017-04-26 | Deterioration diagnostic system and deterioration diagnostic method of air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017087720A JP2018185696A (en) | 2017-04-26 | 2017-04-26 | Deterioration diagnostic system and deterioration diagnostic method of air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018185696A true JP2018185696A (en) | 2018-11-22 |
Family
ID=64355954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017087720A Pending JP2018185696A (en) | 2017-04-26 | 2017-04-26 | Deterioration diagnostic system and deterioration diagnostic method of air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018185696A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020261522A1 (en) * | 2019-06-27 | 2020-12-30 | 三菱電機株式会社 | Deterioration diagnosis apparatus, deterioration diagnosis system, and deterioration diagnosis method |
-
2017
- 2017-04-26 JP JP2017087720A patent/JP2018185696A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020261522A1 (en) * | 2019-06-27 | 2020-12-30 | 三菱電機株式会社 | Deterioration diagnosis apparatus, deterioration diagnosis system, and deterioration diagnosis method |
JPWO2020261522A1 (en) * | 2019-06-27 | 2021-11-25 | 三菱電機株式会社 | Deterioration diagnosis device, deterioration diagnosis system and deterioration diagnosis method |
JP7076643B2 (en) | 2019-06-27 | 2022-05-27 | 三菱電機株式会社 | Deterioration diagnosis device, deterioration diagnosis system and deterioration diagnosis method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101598979B1 (en) | Method and apparatus for estimating power consumption based on temperature | |
US9376118B2 (en) | Assessment of tire condition based on a tire health parameter | |
US10620616B2 (en) | Systems and methods for damper performance diagnostics | |
EP2199697B1 (en) | Motor current based air circuit obstruction detection | |
EP3436878B1 (en) | Method of optimizing filter life cycle between replacements and system for monitoring a ventilation system | |
US10114721B2 (en) | Power consumption assesment of an HVAC system | |
CN107532987B (en) | Device for estimating the mass concentration of fine particles contained in the air of a housing | |
JP5274555B2 (en) | Vehicle air conditioner, vehicle air conditioning management system, and vehicle air conditioning management method | |
WO2015025317A1 (en) | Power consumption assesment of an hvac system | |
CN102853602B (en) | The detection method of low charging amount air-conditioning refrigerant | |
US9999953B2 (en) | Mist removal system and mist removal method | |
JP2015162032A (en) | Diagnostic device for traveling object | |
CN110235185B (en) | Alarm system | |
JP6760834B2 (en) | Condition evaluation method for vehicle air conditioners | |
KR20190083029A (en) | System and method of diagnosing defect of components of railway vehicle | |
JP2010025475A (en) | Failure diagnostic device used for refrigerating cycle equipment | |
JP2018185696A (en) | Deterioration diagnostic system and deterioration diagnostic method of air conditioner | |
KR20130065844A (en) | System and method for managing energy equipments efficiency in intelligent building | |
CN117485388A (en) | Control method and control device for air conditioning unit in rail train | |
WO2020105454A1 (en) | Failure analysis system and failure analysis device | |
KR102334220B1 (en) | Method and system of diagnosing defect and calculating remaining life of components of railway vehicle | |
CN110595537B (en) | Cold water circulation monitoring method applied to rail transit | |
KR102336873B1 (en) | Method and system of diagnosing heat, air ventilation and cooling system for railway vehicle | |
US20240092143A1 (en) | Detection of external leaks utilizing cabin humidity model | |
JP2024064557A (en) | Abnormality diagnosis device, abnormality diagnosis method and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170519 |