JP2018183527A - Hydrogen aspirator - Google Patents

Hydrogen aspirator Download PDF

Info

Publication number
JP2018183527A
JP2018183527A JP2017088574A JP2017088574A JP2018183527A JP 2018183527 A JP2018183527 A JP 2018183527A JP 2017088574 A JP2017088574 A JP 2017088574A JP 2017088574 A JP2017088574 A JP 2017088574A JP 2018183527 A JP2018183527 A JP 2018183527A
Authority
JP
Japan
Prior art keywords
hydrogen
chamber
oxygen
water
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017088574A
Other languages
Japanese (ja)
Other versions
JP6662809B2 (en
Inventor
健三 平久井
Kenzo Hirakui
健三 平久井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissho Eng Kk
NISSHO ENGINEERING KK
Original Assignee
Nissho Eng Kk
NISSHO ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissho Eng Kk, NISSHO ENGINEERING KK filed Critical Nissho Eng Kk
Priority to JP2017088574A priority Critical patent/JP6662809B2/en
Publication of JP2018183527A publication Critical patent/JP2018183527A/en
Application granted granted Critical
Publication of JP6662809B2 publication Critical patent/JP6662809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen aspirator which can aspirate hydrogen from a nasal cavity together with respiration.SOLUTION: In a main body vessel 3 in which a water electrolytic unit 5 having a polymer membrane 24 sandwiched between an upper-side negative electrode 22 and a lower-side positive electrode 23 is arranged so as to be shifted to a bottom part, a hydrogen chamber A is formed on the negative electrode 22, an oxygen chamber B is formed toward the outside of the hydrogen chamber A from a lower side of the positive electrode 23, and a pump chamber C is formed toward the outside of the oxygen chamber B from the outside of the hydrogen chamber A independently, a nasal cavity cannula 21 is connected to the hydrogen chamber A, an oxygen discharge pipe 11 opened to the outside of the main body vessel 3 is connected to the oxygen chamber B via a contact material 10 for converting a gas to an oxygen gas from an ozone gas, an air vent pipe 7 whose tip 7a is opened at an upper part rather than a water level in the hydrogen chamber A is connected to an air pump 8 in the pump chamber C, a check valve 6 which opens in only a direction of the pump chamber C is arranged between the hydrogen chamber A and the pump chamber C, and hydrogen generated in the hydrogen chamber A can be forcibly discharged from the nasal cannula 21 by the air pump 8.SELECTED DRAWING: Figure 1

Description

本発明は水素吸引装置に関する。   The present invention relates to a hydrogen suction device.

近年、スポーツ分野において、水素の肺への吸引が、激しい運動によって生じる筋肉内の乳酸の発生を押えて持久力を高める効果があるとされ、注目を受けている。
水素は、水道等の水を使用することで電気分解により何処でも得ることが可能となるが、本発明者が先に提案した下記特許文献1のポータブル型の水素水生成装置は、持ち運びし易いものの水素の発生量が少なく、このため鼻を押えて鼻腔に差し込んだチューブから強く吸い込まないと水素を十分に吸引することができなかった。
In recent years, in the sports field, the suction of hydrogen into the lungs has been attracting attention because it has the effect of increasing the endurance by suppressing the generation of lactic acid in the muscle caused by intense exercise.
Hydrogen can be obtained anywhere by electrolysis by using water such as tap water. However, the portable hydrogen water generating device of Patent Document 1 previously proposed by the present inventor is easy to carry. However, the amount of hydrogen generated was small, so hydrogen could not be sucked in enough unless it was sucked in from the tube inserted into the nasal cavity by pressing the nose.

実用新案登録第3198704号公報Utility Model Registration No. 3198704

本発明者は当初、電解ユニットの数を増やして水素の発生量を増加させれば、呼吸しつつ鼻腔カニューレで容易に水素が吸引できるのではないかと単純に考えたが、試作してみると、電解ユニットの数を増やしても水素の流出量を大きく増やすことができず、結果的には呼吸と同時に鼻腔カニューレによる肺への十分な量の水素の吸引が困難であった。
そこで本発明は、単に何処へでも自由に持運びして水素を吸引できるだけではなく、呼吸と同時に十分な量の水素を鼻腔カニューレで自然に吸引することが可能となる卓上型の水素吸引装置を提供することを目的とする。
At first, the inventor simply thought that if the number of electrolysis units was increased to increase the amount of hydrogen generated, the nasal cannula could easily absorb hydrogen while breathing. However, even when the number of electrolysis units was increased, the outflow of hydrogen could not be greatly increased, and as a result, it was difficult to suck a sufficient amount of hydrogen into the lungs with the nasal cannula simultaneously with breathing.
Accordingly, the present invention provides a desktop type hydrogen suction device that not only can be carried around anywhere and sucked hydrogen, but also a sufficient amount of hydrogen can be naturally sucked with a nasal cannula simultaneously with breathing. The purpose is to provide.

上記目的を達成するために、本発明の水素吸引装置は、上側のマイナス電極と下側のプラス電極とに挟まれた高分子膜を備えた水を電解する電解ユニットを底部寄りに配した本体容器を備えた吸引装置において、前記マイナス電極の上には上部に鼻腔カニューレのチューブを接続すると共に電解用の水と水中に浮上する水素を受け入れる水素室を、前記プラス電極の下から前記水素室の外側にかけては水中に浮上する酸素を受け入れる酸素室を、前記水素室の外側から前記酸素室の外側にかけてはエアーポンプと該エアーポンプで圧送するための気体を収納可能なポンプ室を、夫々形成し、前記酸素室の上部に、オゾンガスから酸素ガスへ変換させる接触材を介して前記本体容器外に先端部を開口させた酸素排出管を接続し、前記ポンプ室内に収納した前記エアーポンプに、前記水素室内に注入した水の水位より上方に先端部を開口させた送気管を直接接続し、前記水素室とポンプ室との間に、前記鼻腔カニューレを通過する水素の管内流出抵抗力より強い圧力で該ポンプ室の方向に開く逆止弁を配設し、前記エアーポンプから前記送気管を通して送り出される気体の圧力で前記水素室内の気圧を高めて前記電解ユニットで発生させた水素を前記鼻腔カニューレから強制的に吐出できるようにしたことを特徴とする。   In order to achieve the above object, the hydrogen suction device of the present invention is a main body in which an electrolysis unit for electrolyzing water having a polymer film sandwiched between an upper negative electrode and a lower positive electrode is disposed near the bottom. In the suction device including a container, a hydrogen chamber is connected to the top of the negative electrode and a nasal cannula tube and accepts water for electrolysis and hydrogen floating in the water from below the positive electrode. An oxygen chamber for receiving oxygen floating in the water is formed on the outside of the chamber, and an air pump and a pump chamber capable of storing gas for pumping with the air pump are formed from the outside of the hydrogen chamber to the outside of the oxygen chamber, respectively. And an oxygen discharge pipe having a tip opened to the outside of the main body container via a contact material that converts ozone gas into oxygen gas at the upper part of the oxygen chamber, An air supply pipe having a tip opened above the water level of the water injected into the hydrogen chamber is directly connected to the stored air pump, and hydrogen passing through the nasal cannula is between the hydrogen chamber and the pump chamber. A check valve that opens in the direction of the pump chamber at a pressure stronger than the pipe outflow resistance force, and increases the atmospheric pressure in the hydrogen chamber by the pressure of the gas sent from the air pump through the air supply pipe. The generated hydrogen can be forcibly discharged from the nasal cannula.

請求項2に記載の発明は、上記発明において、前記本体容器の外壁面に、電源用のDCジャックを固設し、該DCジャックに、電解ユニットの両電極へ電流を送る電線と、エアーポンプへ電流を送る電線とを、直接又は電流制御部を介して接続したことを特徴とする。   According to a second aspect of the present invention, in the above invention, a DC jack for power supply is fixed to the outer wall surface of the main body container, an electric wire for sending current to both electrodes of the electrolysis unit, and an air pump The electric wire which sends an electric current to is connected directly or via the current control part.

請求項3に記載の発明は、上記発明において、前記オゾンを酸素に変換させる接触材に、シリカゲル、活性炭及びオリーブオイルのうちのいずれかを用いたことを特徴とする。   The invention according to claim 3 is characterized in that, in the above invention, any one of silica gel, activated carbon and olive oil is used as the contact material for converting ozone into oxygen.

請求項4に記載の発明は、上記発明において、前記酸素排出管の先端部を本体容器の外壁面下部に開口させたことを特徴とする。   The invention according to claim 4 is characterized in that, in the above-mentioned invention, the tip of the oxygen discharge pipe is opened at the lower part of the outer wall surface of the main body container.

請求項5に記載の発明は、上記発明において、前記送気管の先端部に水素室の方向に開く逆止弁を配設したことを特徴とする。   According to a fifth aspect of the present invention, in the above invention, a check valve that opens in a direction of the hydrogen chamber is disposed at a tip portion of the air supply pipe.

請求項6に記載の発明は、上記発明において、前記酸素室内の側壁に、上限とする位置に水位上限センサーを設けると共に下限とする位置に水位下限センサーを設け、該水位上限センサーと水位下限センサーとを水位警告回路を介してブザー、ランプ等で警告を発するポンプ室内に設けた警告部に接続したことを特徴とする。   According to a sixth aspect of the present invention, in the above invention, on the side wall of the oxygen chamber, a water level upper limit sensor is provided at a position as an upper limit and a water level lower limit sensor is provided at a position as a lower limit, and the water level upper limit sensor and the water level lower limit sensor are provided. Is connected to a warning unit provided in a pump chamber that issues a warning with a buzzer, a lamp, or the like via a water level warning circuit.

本発明は、何処へでも自由に持運びができ、水素の吸引に際し、電解ユニットで発生されて水素室に収容された水素が、前記エアーポンプの圧力で水素室に接続した鼻腔カニューレから鼻腔に向かって強制的に吐出されるため、吸引者は呼吸する際に自然に水素を肺へ吸引することが可能となる。
そして、稼働初期にはポンプ室内の空気が、前記エアーポンプによって水素室に混入して水素濃度が一時的に低下するが、水素室とポンプ室との間に設けた逆止弁によって、使用時間の経過と共に水素室の水素の一部がポンプ室に流入し続けてやがて充満し、この結果、高い水素濃度の水素が鼻腔カニューレから吐出さるようになり、必要とした量の水素を効果的に体内に取り込むことが可能となる。
また、電解ユニットで発生された酸素がオゾンとして酸素室に溜まるが、オゾンを酸素に変換させる接触材の間を通過させることでオゾンは無臭の酸素となって外部に排出されるため、オゾンの悪臭の装置周囲への拡散が解消される。
The present invention can be carried anywhere, and when hydrogen is sucked, the hydrogen generated in the electrolysis unit and stored in the hydrogen chamber is transferred from the nasal cannula connected to the hydrogen chamber by the pressure of the air pump to the nasal cavity. Since it is forcibly discharged toward the head, the aspirator can naturally suck hydrogen into the lung when breathing.
In the initial stage of operation, the air in the pump chamber is mixed into the hydrogen chamber by the air pump and the hydrogen concentration is temporarily reduced. However, the check valve provided between the hydrogen chamber and the pump chamber allows the usage time to be reduced. Over time, part of the hydrogen in the hydrogen chamber continues to flow into the pump chamber and eventually fills up. As a result, hydrogen with a high hydrogen concentration is discharged from the nasal cannula, effectively removing the required amount of hydrogen. It can be taken into the body.
In addition, oxygen generated in the electrolysis unit accumulates in the oxygen chamber as ozone, but ozone passes through the contact material that converts ozone into oxygen and is discharged to the outside as odorless oxygen. The spread of malodors around the device is eliminated.

請求項2に記載の発明においては、外部の家庭用の電源に接続した直流アダプターを、前記本体容器に設けたDCジャックを介して、電解ユニットの両電極とエアーポンプへ確実に給電可能となる。
そして、電解ユニットではその給電された電気による電解によって確実に水素が得られ、又、エアーポンプの稼働でポンプ室内の気体を水素室へ圧送することが可能となる。
なお、別にバッテリを携帯すれば、そのバッテリをDCジャックに接続して、電気のない山奥などの場所でも本装置の使用が可能となる。
In the second aspect of the present invention, the DC adapter connected to an external household power supply can be reliably supplied to both electrodes of the electrolysis unit and the air pump via the DC jack provided in the main body container. .
In the electrolysis unit, hydrogen is reliably obtained by electrolysis with the supplied electricity, and the gas in the pump chamber can be pumped to the hydrogen chamber by the operation of the air pump.
In addition, if a battery is carried separately, the battery can be connected to a DC jack, and the apparatus can be used even in places such as mountains without electricity.

請求項3に記載の発明においては、オゾンを酸素に変換させる接触材としてシリカゲルを用いることで、オゾンが外部に排出される際に確実に酸素に変換され、この結果、オゾンの悪臭の装置周囲へ拡散が確実に防止可能となる。
又、接触材として活性炭又はオリーブオイルを用いる場合でも同じくオゾンの悪臭を取り除くことができる。
In the invention according to claim 3, by using silica gel as a contact material for converting ozone into oxygen, when ozone is discharged to the outside, the ozone is surely converted into oxygen, and as a result, ozone has a bad smell around the device. It is possible to reliably prevent diffusion.
Further, even when activated carbon or olive oil is used as the contact material, the malodor of ozone can be removed.

請求項4に記載の発明においては、前記酸素排出管の先端部を本体容器の外壁面下部に開口させたことで、オゾンが漏れても、漏れる場所が鼻からより遠い位置となるので、臭いが鼻に届き難くなる。   In the invention according to claim 4, since the tip of the oxygen discharge pipe is opened at the lower part of the outer wall surface of the main body container, even if ozone leaks, the leaking place is located farther from the nose. Is difficult to reach the nose.

請求項5に記載の発明においては、前記送気管の先端部に逆止弁を設けるたことで、前記エアーポンプに接続させた送気管の先端部が、容器本体が傾いたり揺れたりして仮令水素室内に注入した水の水位より下方となって沈んだとしても、水素室内の水が送気管から浸入するのが防止でき、水がエアーポンプを故障の原因となることはない。   In the invention according to claim 5, by providing a check valve at the tip of the air supply pipe, the tip of the air supply pipe connected to the air pump may tilt or shake the container body, Even if it sinks below the level of the water injected into the hydrogen chamber, the water in the hydrogen chamber can be prevented from entering from the air pipe, and the water does not cause a failure of the air pump.

請求項6に記載の発明においては、水素室と酸素室の水位は容器本体の外部からが見えないので、どの水位まで水が注入できたか不安になるが、前記酸素室内の側壁に水位上限センサーと水位下限センサーによって、過不足時にはブザー、ランプ等による警告が発せられるので、安心して注水することができる。   In the invention described in claim 6, since the water levels of the hydrogen chamber and the oxygen chamber are not visible from the outside of the container body, it becomes uncertain to what water level the water level could be injected. The water level lower limit sensor alerts you with a buzzer, lamp, etc. when there is excess or deficiency, so you can pour water with peace of mind.

本発明の内部構造を示す縦断側面図である。It is a vertical side view which shows the internal structure of this invention. 本発明の内部構造を示す水平平面図である。It is a horizontal top view which shows the internal structure of this invention. 本発明の外観を示す斜視図である。It is a perspective view which shows the external appearance of this invention. 電解ユニット部分の要部を示す縦断側面図である。It is a vertical side view which shows the principal part of an electrolysis unit part.

本発明の水素吸引装置を、以下図面を参照して説明する。
本発明の水素吸引装置は、図3に示すように、本体容器3内で水を電気分解して、発生させた水素を外部に送り出す構造を有する本体部分と、その本体部分に接続して水素を使用者の鼻腔まで導いて呼吸と同時に吸引させる鼻腔カニューレ21とからなる。
本体部分は大人1人が楽に持ち運び可能な重量とし、卓上で使用できる程度の大きさとするが、その重量や大きさを特に限定するものではない。
本体部分を構成する本体容器3及びその内部に使用する材料は、電解用の水を使用し、酸素発生側にはオゾンが発生するのでプラスチック等の耐腐食性の素材を使用する。
The hydrogen suction device of the present invention will be described below with reference to the drawings.
As shown in FIG. 3, the hydrogen suction device of the present invention has a structure having a structure in which water is electrolyzed in the main body container 3 and the generated hydrogen is sent out to the outside, and the main body is connected to the main body. And a nasal cannula 21 which is guided to the user's nasal cavity and sucked simultaneously with breathing.
The main body portion has a weight that can be easily carried by one adult and is large enough to be used on a table. However, the weight and size are not particularly limited.
As the main body container 3 constituting the main body portion and the material used in the main body container, water for electrolysis is used. Since ozone is generated on the oxygen generation side, a corrosion-resistant material such as plastic is used.

本発明の本体部分は、図1及び図2に示すように、上側のマイナス電極22と下側のプラス電極23で上下両側から挟まれた高分子膜24を備えた水を電解する電解ユニット5を本体容器3内の底部寄りに配する。
そして、該電解ユニット5の上には、電解用の水と水中に浮上する水素を受け入れる水素室Aを、該電解ユニット5の下から水素室Aの外側にかけては、水中に浮上する酸素を受け入れる酸素室Bを、前記水素室Aの外側から酸素室Bの外側にかけては、エアーポンプ8と該エアーポンプ8で圧送するための気体を収納可能なポンプ室Cを、夫々独立させて形成する。
As shown in FIGS. 1 and 2, the main body portion of the present invention is an electrolysis unit 5 that electrolyzes water having a polymer film 24 sandwiched between an upper minus electrode 22 and a lower plus electrode 23 from above and below. Is arranged near the bottom in the main body container 3.
A hydrogen chamber A that receives electrolyzing water and hydrogen floating in the water is received above the electrolysis unit 5, and oxygen that floats in water is received from the bottom of the electrolysis unit 5 to the outside of the hydrogen chamber A. When the oxygen chamber B is extended from the outside of the hydrogen chamber A to the outside of the oxygen chamber B, an air pump 8 and a pump chamber C capable of storing a gas to be pumped by the air pump 8 are formed independently.

即ち、前記本体容器3内には、図1及び図2に示すように、壁面で仕切たれた水素室A、酸素室B及びポンプ室Cの三つの独立した空間を形成する。
各空間を仕切る壁面は、内部に水を貯蔵するので外側の本体容器3の底面3bの材質と同じプラスチック等の耐腐食性の材料を使用する。
なお、図2の水平断面図では、外側の本体容器3及び内側の各仕切り壁を同心円の円筒形とした例を示しているが、円筒形を同心円に配置を限定するものではなく、又形状を円筒形に限定するものではない。各仕切り壁で三つの独立した空間ができれば良いので、形状は楕円形や四角形等であっても良い。
That is, in the main body container 3, as shown in FIGS. 1 and 2, three independent spaces of a hydrogen chamber A, an oxygen chamber B, and a pump chamber C partitioned by wall surfaces are formed.
The wall surfaces that partition each space store water therein, and therefore use the same corrosion-resistant material such as plastic as the material of the bottom surface 3b of the outer main body container 3.
The horizontal sectional view of FIG. 2 shows an example in which the outer main body container 3 and the inner partition walls are concentric cylindrical shapes, but the arrangement of the cylindrical shapes is not limited to concentric circles, and the shape Is not limited to a cylindrical shape. Since each partition wall only needs to have three independent spaces, the shape may be an ellipse or a rectangle.

そして、前記電解ユニット5は、水中の高分子膜24の表面に対して両電極22、23に電圧が加わると水の電気分解により、該高分子膜24の表面の上側のマイナス電極22側には水素が発生し、高分子膜24の表面の下側のプラス電極23側には酸素が発生するものを使用する。
例えば、電解ユニット5は、図2及び図3に示すように、上面と底面とが開放された平面視四角形の枠型を成すケーシング27内に、直流電源に接続可能な上側と下側の網状のマイナス電極22とプラス電極23で挟まれた薄い高分子膜24を備えた電解ユニット5を使用することができる。
When the voltage is applied to both the electrodes 22 and 23 with respect to the surface of the polymer film 24 in water, the electrolysis unit 5 is electrolyzed with water to the negative electrode 22 side above the surface of the polymer film 24. In this case, hydrogen is generated and oxygen is generated on the positive electrode 23 side below the surface of the polymer film 24.
For example, as shown in FIGS. 2 and 3, the electrolysis unit 5 has an upper and lower mesh that can be connected to a DC power source in a casing 27 that forms a rectangular frame shape with a top surface and a bottom surface open. The electrolysis unit 5 having a thin polymer film 24 sandwiched between the negative electrode 22 and the positive electrode 23 can be used.

図2は、平面視が四角形を成すケーシング27を4個繋げたものを使用し、該ケーシング27内の夫々に電解ユニット5を備えた態様を示すもので、図1に示すように、各ケーシング27内には高分子膜24を上下で挟んだ上側のマイナス電極22と、下側のプラス電極23を重なり合わせて収納する。
電解ユニット5の高分子膜24は、イオンの通過を規制するイオン交換機能を有する薄高分子膜24からなるもの(例えば、デュポン社製の「ナフィオンNafion」が選択される)で、四角形枠状のケーシング27を閉塞する大きさの四角形のものを使用する。
該高分子膜24については、例えば、前記デュポン社製の「ナフィオンNafion」を選択すると、厚さが127〜183μm程度の薄い膜体が使用できる。
FIG. 2 shows an embodiment in which four casings 27 each having a square shape in plan view are connected, and each of the casings 27 is provided with an electrolysis unit 5. As shown in FIG. In 27, the upper minus electrode 22 sandwiching the polymer film 24 between the upper and lower sides and the lower plus electrode 23 are accommodated in an overlapping manner.
The polymer membrane 24 of the electrolysis unit 5 is composed of a thin polymer membrane 24 having an ion exchange function for restricting the passage of ions (for example, “Nafion Nafion” manufactured by DuPont is selected), and has a rectangular frame shape. The rectangular thing of the magnitude | size which obstruct | occludes the casing 27 is used.
For the polymer film 24, for example, when “Nafion Nafion” manufactured by DuPont is selected, a thin film body having a thickness of about 127 to 183 μm can be used.

前記電解ユニット5のプラスとマイナスの電極23、22は、チタンを基材として白金メッキを施した線材を菱形の網状に組んだものが使用でき、高分子膜24の両表面の全面に渡って接触させて高分子膜24の上と下に積層する。
該電解ユニット5は上側のマイナスの電極22と下側のプラスの電極23に挟まれた高分子膜24に電流を流せば水を電気分解して高分子膜24の表面の上側からは水素を、下側からは酸素を上下別々に発生させることができる。
The positive and negative electrodes 23 and 22 of the electrolysis unit 5 can be made by assembling a platinum-plated wire rod made of titanium as a base material into a rhombus-like net shape, covering the entire surface of both surfaces of the polymer film 24. The polymer film 24 is laminated on and under the contact.
The electrolysis unit 5 electrolyzes water when a current is passed through the polymer film 24 sandwiched between the upper negative electrode 22 and the lower positive electrode 23, and hydrogen is supplied from the upper surface of the polymer film 24. From the lower side, oxygen can be generated separately up and down.

該電解ユニット5を使用すれば、例えば、図4に示す電解ユニット5部分は、ケーシング27内の上部にコイルスプリング28を配し、マイナスの電極22の上から圧縮状態に通電性のコイルスプリング28で挟まれた高分子膜24に対して圧接させ、更に、該コイルスプリング28の上側と前記プラス電極23の下側とを通電性の棒状挟持体25、26で挟んで上下で押えるように固定したものが使用できる。なお、前記通電性のコイルスプリング28をケーシング27内のプラスの電極23の下側に配する態様も可能である。
そして、前記通電性の棒状挟持体25、26は、夫々電線12、13を介して電源に接続させる。図4中の符号30はケーシング27を水素室Aの底部に固定するための固定ネジ30であり、該固定ネジ30に固定した棒状挟持体25、26に電線12、13を接続する。
なお、本発明では、電解ユニット5の数や形状は上記実施例に限定されるものではない。
If the electrolysis unit 5 is used, for example, the electrolysis unit 5 portion shown in FIG. 4 has a coil spring 28 disposed in the upper part of the casing 27 and is electrically conductive in a compressed state from above the negative electrode 22. The polymer film 24 sandwiched between the two is pressed against the polymer film 24, and the upper side of the coil spring 28 and the lower side of the plus electrode 23 are sandwiched between the conductive rod-shaped sandwiching bodies 25 and 26 and fixed up and down. Can be used. It is also possible to arrange the conductive coil spring 28 below the positive electrode 23 in the casing 27.
And the said electroconductive rod-shaped clamping bodies 25 and 26 are connected to a power supply via the electric wires 12 and 13, respectively. Reference numeral 30 in FIG. 4 denotes a fixing screw 30 for fixing the casing 27 to the bottom of the hydrogen chamber A, and the electric wires 12 and 13 are connected to the rod-like holding bodies 25 and 26 fixed to the fixing screw 30.
In the present invention, the number and shape of the electrolytic units 5 are not limited to the above-described embodiments.

次に、前記水素室A、酸素室B及びポンプ室Cの各室の構造を更に詳しく説明する。
前記水素室Aは、図1及び図2に示すように、外周面1cが円筒形の直立させた縦筒体1内に形成する。
該縦筒体1は前記本体容器3の底面3bから底面1bを上に離して浮かせると共に上部の中央から上面1aを上に突出させた状態で、前記本体容器3の中央上部に形成した縦筒体固定部3dに前記外周面1cの上部を固定する。
そして、該縦筒体1の底面1bには円形の開口部29を4個設け、各開口部にマイナス電極22を上側にした前記電解ユニット5を夫々開口部29を塞ぐように装着する。
Next, the structure of each of the hydrogen chamber A, oxygen chamber B, and pump chamber C will be described in more detail.
As shown in FIGS. 1 and 2, the hydrogen chamber A is formed in a vertical cylinder 1 whose outer peripheral surface 1 c is cylindrical and upright.
The vertical cylinder 1 is formed at the center upper portion of the main body container 3 with the bottom surface 1b floating away from the bottom surface 3b of the main body container 3 and with the upper surface 1a protruding upward from the center of the upper portion. The upper part of the outer peripheral surface 1c is fixed to the body fixing part 3d.
The bottom surface 1b of the vertical cylindrical body 1 is provided with four circular openings 29, and the electrolytic units 5 with the negative electrodes 22 on the respective openings are mounted so as to close the openings 29, respectively.

又、前記縦筒体1の上面1aには水素吐出孔4及び注水口18を設ける。
そして、前記注水口18には、密閉が可能な蓋19を被着する。該注水口18は、電気分解や蒸発で減少した水Wを所定の水位L1になるように補充するための孔である。
又、前記水素吐出孔4には、上に接続用の管を前記縦筒体1の上面1aに一体的に突出形成し、この管に鼻腔カニューレ21のチューブ21cの基端部のコネクタ21dを接続する。
該鼻腔カニューレ21は鼻腔装着部21aのノズル21bを使用者の鼻腔に向けて装着して使用されることとなる。
Further, a hydrogen discharge hole 4 and a water injection port 18 are provided on the upper surface 1a of the vertical cylinder 1.
A lid 19 that can be sealed is attached to the water injection port 18. The water inlet 18 is a hole for replenishing the water W reduced by electrolysis or evaporation so as to reach a predetermined water level L1.
In addition, a connecting tube is formed on the hydrogen discharge hole 4 so as to project integrally with the upper surface 1a of the vertical cylinder 1, and a connector 21d at the base end of the tube 21c of the nasal cannula 21 is formed on this tube. Connecting.
The nasal cannula 21 is used with the nozzle 21b of the nasal cavity mounting part 21a facing the nasal cavity of the user.

次に前記酸素室Bについて説明する。
前記酸素室Bは、図1及び図2に示すように、前記縦筒体1の外側の前記本体容器3内の空間を前記本体容器3の底面3bから下部2bを立ち上げた円筒形の隔壁2で仕切って、前記縦筒体1の下側及び外側の外壁面と該隔壁2及び前記本体容器3の底面3bとの間に前記縦筒体1の下側から該縦筒体1の外側にかけて連続した一体の空間に形成する。
なお、縦筒体1の底面1bからは電解ユニット5の隙間を通して前記水素室Aと前記酸素室Bとが通水可能となり、前記水素室Aの水Wは前記酸素室Bへ流入するが、縦筒体1の底面1bに通水可能な隙間がない場合には、前記酸素室Bへ繋がる注水口設けて水Wが一定水位L2まで満たされるように注入することもできる。
Next, the oxygen chamber B will be described.
As shown in FIGS. 1 and 2, the oxygen chamber B has a cylindrical partition wall in which the lower part 2 b is raised from the bottom surface 3 b of the main body container 3 in the space inside the main body container 3 outside the vertical cylinder 1. 2, and the outer side of the vertical cylinder 1 from the lower side of the vertical cylinder 1 between the lower and outer outer wall surfaces of the vertical cylinder 1 and the bottom wall 3 b of the partition wall 2 and the main body container 3. To form a continuous and integral space.
Note that the hydrogen chamber A and the oxygen chamber B can be passed through the gap between the electrolysis units 5 from the bottom surface 1b of the vertical cylinder 1, and the water W in the hydrogen chamber A flows into the oxygen chamber B. When there is no gap through which water can flow on the bottom surface 1b of the vertical cylinder 1, a water injection port connected to the oxygen chamber B can be provided so that the water W is filled up to a certain water level L2.

又、前記隔壁2の上部2aには、下部に前記酸素室Bに向けて下側が開いた酸素排出孔9を設けたオゾン反応室20を前記縦筒体1の外周面1cを取り巻くように設けて前記酸素室Bの上面を閉鎖する。
そして、該オゾン反応室20の上部を本体容器3外に先端部11bを開口させた酸素排出管11の基端部11aに接続する。
又、該オゾン反応室20内にはオゾンガスから酸素ガスへ変換させる接触材10を充填する。
The upper part 2a of the partition wall 2 is provided with an ozone reaction chamber 20 provided with an oxygen discharge hole 9 opened at the lower side toward the oxygen chamber B so as to surround the outer peripheral surface 1c of the vertical cylinder 1. Then, the upper surface of the oxygen chamber B is closed.
And the upper part of this ozone reaction chamber 20 is connected to the base end part 11a of the oxygen exhaust pipe 11 which opened the front-end | tip part 11b out of the main body container 3. FIG.
The ozone reaction chamber 20 is filled with a contact material 10 that converts ozone gas into oxygen gas.

即ち、電気分解で電解ユニット5の下側に発生した酸素及びオゾンは酸素室Bに溜まって増加し、前記酸素室B内の圧力が高まるとオゾンは酸素排出孔9を通ってオゾン反応室20内へ移動し、オゾン反応室20に充填された接触材10の隙間を通過する間に酸素となり、無臭化されて酸素排出管11内へ移動し、酸素排出管11の先端部11bの開口部から本体容器3の外へと排出される。
このため、装置周囲にはオゾン特有の悪臭が発生しない。
前記オゾンガスから酸素ガスへ変換させる接触材10は各素材があるが、そのうちでもシリカゲル、活性炭及びオリーブオイルのうちのいずれかを使用すると効果的である。
なお、オリーブオイルを使用する場合には液体が酸素室Bに流れ出さないように、オゾン反応室20へ入る通路に逆止弁を設ける。
That is, oxygen and ozone generated below the electrolysis unit 5 by electrolysis accumulate and increase in the oxygen chamber B, and when the pressure in the oxygen chamber B increases, the ozone passes through the oxygen discharge hole 9 and the ozone reaction chamber 20. It moves into the inside and passes through the gap between the contact materials 10 filled in the ozone reaction chamber 20, becomes oxygen, and is brominated, moves into the oxygen exhaust pipe 11, and opens at the tip 11 b of the oxygen exhaust pipe 11. To the outside of the main body container 3.
For this reason, the odor peculiar to ozone does not generate | occur | produce around an apparatus.
The contact material 10 for converting the ozone gas into the oxygen gas includes various materials. Among them, it is effective to use any one of silica gel, activated carbon and olive oil.
When olive oil is used, a check valve is provided in the passage into the ozone reaction chamber 20 so that the liquid does not flow into the oxygen chamber B.

次にポンプ室Cについて説明する。
前記ポンプ室Cは、図1及び図2に示すように、前記酸素室Bを形成する隔壁2と前記縦筒体1の外側にかけた壁面と前記本体容器3の外周側面3a及び前記本体容器3の底面3bとの間に、エアーポンプ8と該エアーポンプ8で圧送するための気体を収納可能とし、該ポンプ室Cの上部は上面3cを覆う板面で塞いで、ポンプ室Cの周囲は気密状態に密閉し、該ポンプ室Cを独立した空間に形成する。
Next, the pump chamber C will be described.
As shown in FIGS. 1 and 2, the pump chamber C includes a partition wall 2 that forms the oxygen chamber B, a wall surface that extends outside the vertical cylindrical body 1, an outer peripheral side surface 3 a of the main body container 3, and the main body container 3. The air pump 8 and the gas to be pumped by the air pump 8 can be stored between the bottom surface 3b of the air pump 8 and the upper part of the pump chamber C is closed with a plate surface covering the upper surface 3c. The pump chamber C is formed in an independent space, hermetically sealed.

該ポンプ室C内にはエアーポンプ8を配設し、該エアーポンプ8には、水素室Aの水位L1より上に先端部7aを開口させた送気管7の基端部7bを接続する。
先端部7aを水素室Aの水位L1より上に開口させたのは送気管7内に水が浸入しないようにしてエアーポンプ8が水で濡れるのを防ぎ、水濡れによるエアーポンプ8の故障の原因をなくすためである。
又、送気管の先端部に水素室の方向に開く逆止弁33を設けることでも、水素室Aの水が送気管7内に浸入しないようにすることが可能となる。
An air pump 8 is disposed in the pump chamber C, and a base end portion 7b of an air supply pipe 7 having a distal end portion 7a opened above the water level L1 of the hydrogen chamber A is connected to the air pump 8.
Opening the tip 7a above the water level L1 of the hydrogen chamber A prevents water from entering the air supply pipe 7 to prevent the air pump 8 from getting wet with water, This is to eliminate the cause.
Further, it is possible to prevent water in the hydrogen chamber A from entering the air supply pipe 7 by providing a check valve 33 that opens in the direction of the hydrogen chamber at the tip of the air supply pipe.

又、前記水素室Aとポンプ室Cとの間に、鼻腔カニューレ21を通過する水素の管内流出抵抗力よりも強い圧力で該ポンプ室Cの方向のみに開く逆止弁6を配設する。
なお、送気管7は、図1に示すように、水素室Aの底部に設けた送気管支持部31を貫通して水素室Aの上部に達するように前記酸素室B内を貫通させて設けることができるが、水素室Aの底ではなく前記縦筒体1の外周面1cを直接貫通させて前記酸素室Bに係わることなく設置することも可能である。
In addition, a check valve 6 is disposed between the hydrogen chamber A and the pump chamber C and opens only in the direction of the pump chamber C at a pressure stronger than the resistance of hydrogen passing through the nasal cannula 21 in the pipe.
As shown in FIG. 1, the air supply tube 7 is provided so as to penetrate the oxygen chamber B so as to penetrate the bronchus holding portion 31 provided at the bottom of the hydrogen chamber A and reach the upper portion of the hydrogen chamber A. However, it is possible to directly install the outer peripheral surface 1c of the vertical cylindrical body 1 instead of the bottom of the hydrogen chamber A, and to install the vertical chamber 1 without involving the oxygen chamber B.

又、前記水素室Aと酸素室B内の水位L1、L2は容器本体3が不透明であると外部からが見えないので、注水した水の量を確認するのが難い。
このため、酸素室B内の側壁に水位の上限とする位置に水位上限センサー34を設けると共に水位の下限とする位置に水位下限センサー35を設け、該水位上限センサー34と水位下限センサー35とを水位警告回路37を介してブザー、ランプ等で警告を発するポンプ室C内に設けた警告部36に接続した形態が可能である。
この形態では、警告を頼りに水素室Aへ水Wを安心して注水することができる。
又、使用中に蒸発や電気分解で水が水位下限を下まわった場合にも警告が発せられるので、その時に適宜注水することができる。
なお、水位L1の上限の限界は、水位L1が送気管7の開口した先端部7aに水位L1が届かない位置となる限界水位であり、水位L1の下限の限界は、前記電解ユニット5の全てが水没にはならない位置となる限界水位であるが、その限界数位に届かないように余裕を持って水位上限及び水位下限を任意に設定する。
In addition, since the water levels L1 and L2 in the hydrogen chamber A and the oxygen chamber B are not visible from the outside if the container body 3 is opaque, it is difficult to check the amount of injected water.
For this reason, a water level upper limit sensor 34 is provided at a position where the upper limit of the water level is provided on the side wall in the oxygen chamber B, and a water level lower limit sensor 35 is provided at a position where the lower limit of the water level is provided, and the water level upper limit sensor 34 and the water level lower limit sensor 35 are provided. A form connected to a warning unit 36 provided in the pump chamber C that issues a warning by a buzzer, a lamp or the like via a water level warning circuit 37 is possible.
In this form, the water W can be poured into the hydrogen chamber A with a sense of security with confidence.
Also, when water falls below the lower limit of the water level due to evaporation or electrolysis during use, a warning is issued, so that water can be appropriately poured at that time.
The upper limit of the water level L1 is a limit water level at which the water level L1 does not reach the leading end 7a of the air supply pipe 7, and the lower limit of the water level L1 is all of the electrolysis unit 5. The water level upper limit and the water level lower limit are set arbitrarily with a margin so as not to reach the limit number.

以上で前記水素室A、酸素室B及びポンプ室Cの各室の構造を説明したが、次に電気の供給で稼働する電解ユニット5及びエアーポンプ8への給電について説明する。
図4に示すように、前記電解ユニット5のマイナス電極22とプラス電極23が前記通電性の棒状挟持体25、26を介して電線12、13に接続し、図3に示すように、該電線12、13は本体容器3の外に向けて装着したDCジャック15を介して直流電源の電源線32に接続する。
又、図2に示すように、直流モーター内蔵のエアーポンプ8は電線16、17に接続し、該電線16、17は前記DCジャック15を介して直流電源の電源線32に接続する。
なお、各電線12、13、16、17には、コントロール回路基板14a、スイッチ等を備えた制御部14を備えた態様が可能である。
なお、図1中、前記水位上限センサー34及び水位下限センサー35に接続する警告部36及び水位警告回路37は省略した。
The structure of each of the hydrogen chamber A, the oxygen chamber B, and the pump chamber C has been described above. Next, power supply to the electrolysis unit 5 and the air pump 8 that are operated by supplying electricity will be described.
As shown in FIG. 4, the negative electrode 22 and the positive electrode 23 of the electrolysis unit 5 are connected to the electric wires 12 and 13 through the conductive rod-like sandwiching bodies 25 and 26, and as shown in FIG. 12 and 13 are connected to a power line 32 of a DC power source via a DC jack 15 mounted to the outside of the main body container 3.
As shown in FIG. 2, the air pump 8 with a built-in DC motor is connected to electric wires 16 and 17, and the electric wires 16 and 17 are connected to a power source line 32 of a DC power source via the DC jack 15.
In addition, the aspect provided with the control part 14 provided with the control circuit board 14a, a switch, etc. in each electric wire 12, 13, 16, 17 is possible.
In FIG. 1, the warning unit 36 and the water level warning circuit 37 connected to the water level upper limit sensor 34 and the water level lower limit sensor 35 are omitted.

上記の如き構造の本発明は、前記水素室A内に水を一定の水位L1に注入し、前記電解ユニット5及びエアーポンプ8に電源を接続して使用するが、使用に際して、直流に通電させた電解ユニット5の高分子膜24の上側のマイナス電極22側に発生した水素は、気泡状態で水素室Aの水中を浮上し、水素室Aの上部に溜まる。
そして、水素室Aにはエアーポンプ8から送気管7を通して送り出される気体の圧力が加わって水素ガスが加圧され、水素室Aの上部に接続した鼻腔カニューレ21から水素が強制的に吐き出される。
その際、エアーポンプ8のあるポンプ室Cの気体はエアーポンプ8で減圧されるがポンプ室Cの方向のみに開く逆止弁6を通って水素室A内の水素の一部が流入する。
そして、逆止弁6からの水素の流入により、稼働初期を除いて水素室A内の水素は空気との混合で薄められることはなく、水素室A内の水素とポンプ室C内の水素とが混合されて濃度の高い水素が鼻腔カニューレ21から吐出されることとなる。
この濃度の高い水素ガスは呼吸に伴い、顔面に装着した鼻腔カニューレ21から自然に肺へ吸入されることとなる。
The present invention having the above-described structure is used by injecting water into the hydrogen chamber A at a certain water level L1 and connecting the power source to the electrolysis unit 5 and the air pump 8. Hydrogen generated on the negative electrode 22 side above the polymer film 24 of the electrolytic unit 5 floats in the water of the hydrogen chamber A in the form of bubbles and accumulates in the upper portion of the hydrogen chamber A.
The hydrogen chamber A is pressurized by the pressure of the gas sent from the air pump 8 through the air supply pipe 7 and pressurized, and hydrogen is forcibly discharged from the nasal cannula 21 connected to the upper part of the hydrogen chamber A.
At that time, the gas in the pump chamber C with the air pump 8 is decompressed by the air pump 8, but a part of the hydrogen in the hydrogen chamber A flows through the check valve 6 that opens only in the direction of the pump chamber C.
Then, due to the inflow of hydrogen from the check valve 6, the hydrogen in the hydrogen chamber A is not diluted by mixing with air except in the initial operation, and the hydrogen in the hydrogen chamber A and the hydrogen in the pump chamber C Are mixed and hydrogen having a high concentration is discharged from the nasal cannula 21.
This high-concentration hydrogen gas is naturally inhaled into the lungs from the nasal cannula 21 attached to the face with breathing.

(実験例)
エアーポンプ8を稼働させることによって 濃度の高い水素が鼻腔カニューレ21から吐出されることを確認するため試験を行った。
前記鼻腔カニューレ21はチューブ21cの長さが1.8mの通常使用されている一般的な医療用鼻腔カニューレ21を使用した。
そして、鼻腔カニューレ21にある2つのノズル21bのうち一つはクリップで閉鎖し、開いている一方のノズル21bの先端から該ノズルの先端方向へ5mm離れた位置にガス検知器の吸引タッチメントを置いて測定した。
その結果、下記表1に示す数値が得られた。
(Experimental example)
A test was performed to confirm that high concentration hydrogen was discharged from the nasal cannula 21 by operating the air pump 8.
As the nasal cannula 21, a commonly used medical nasal cannula 21 having a tube 21c length of 1.8 m was used.
Then, one of the two nozzles 21b in the nasal cannula 21 is closed with a clip, and the suction attachment of the gas detector is placed at a position 5 mm away from the tip of one of the open nozzles 21b toward the tip of the nozzle. I measured it.
As a result, the numerical values shown in Table 1 below were obtained.

Figure 2018183527
Figure 2018183527

この実験では、上記表1に示すように、4個の電解ユニット5を使用した場合には13Vの電圧で3.3vol/%の濃いガス濃度の水素がエアーポンプ8で毎分400mmlの量で吐出させることができた。
しかし、エアーポンプ8を稼働させないで測定した結果は、水素濃度が0.1vol/%とエアーポンプ8を稼働させたときの20分の1程度の極めて低い値となり、この量では鼻腔カニューレ21を用いた呼吸に伴う肺への充分な量の水素を吸引することができないことが確認された。
In this experiment, as shown in Table 1 above, when four electrolysis units 5 are used, hydrogen having a high gas concentration of 3.3 vol /% at a voltage of 13 V is supplied by the air pump 8 at a rate of 400 ml / min. It was possible to discharge.
However, the measurement result without operating the air pump 8 shows that the hydrogen concentration is 0.1 vol /%, which is about 20 times lower than when the air pump 8 is operated. It was confirmed that a sufficient amount of hydrogen into the lungs associated with the breathing used could not be aspirated.

又、電解ユニット5の使用個数を2個から4個に倍増させた場合、エアーポンプ8を稼働させないで測定した結果は、水素濃度が0.12vol/%と2個の場合より0.02vol/%しか増えず、エアーポンプ8を稼働させたときの数値3.3vol/%よりも30分の1程度の極めて低い値となっており、この少ない量では鼻腔カニューレ21を用いた呼吸に伴う肺への充分な量の水素が吸引はできないことが確認できた。
このことは、単に電解ユニット5の使用個数を増加させただけでは、発生した水素はノズルの先端から5mmの至近距離であっても、水素は鼻腔カニューレ21のノズル21bの先端方向へ向かわずに鼻腔外に漏れ出すように拡散して殆どが失われてしまい、充分な量の水素を鼻腔方向へ吐出させることができないことを意味している。
When the number of electrolytic units 5 used was doubled from two to four, the measurement result without operating the air pump 8 showed that the hydrogen concentration was 0.12 vol /%, 0.02 vol / %, Which is an extremely low value of about 1/30 of the value 3.3 vol /% when the air pump 8 is operated. With this small amount, the lungs associated with breathing using the nasal cannula 21 It was confirmed that a sufficient amount of hydrogen could not be sucked.
This means that by simply increasing the number of electrolysis units 5 used, hydrogen does not move toward the tip of the nozzle 21b of the nasal cannula 21 even if the generated hydrogen is a close distance of 5 mm from the tip of the nozzle. It diffuses so as to leak out of the nasal cavity and is almost lost, meaning that a sufficient amount of hydrogen cannot be discharged toward the nasal cavity.

次に、本発明の使用方法について説明する。
本発明は、使用に当っては、先ず、蓋19を外して注水口18から水素室A内に水を注入しておく。水の量は、水が管内に浸入しないように送気管7の先端部7aが水没しない水位L1までとする。
その際、縦筒体1の底面1bからは電解ユニット5の隙間を通して水素室Aと酸素室Bとが通水され、水素室Aの水が酸素室Bへと流入するので、酸素室Bも水が一定の水位L2に保たれる。
なお、不透明な容器本体3では、内部の水位L1、L2は外部からが見えないので、酸素室B内の側壁に上限とする位置に水位上限センサー34を設けると共に下限とする位置に水位下限センサー35を設けた形態を使用すれば、水位が上限と下限に到るとブザー、ランプ等で警告を出すようにするこができるので、安心して注水が行えるようになる。
Next, the usage method of this invention is demonstrated.
In the present invention, first, the lid 19 is removed and water is poured into the hydrogen chamber A from the water injection port 18 before use. The amount of water is set to a water level L1 at which the tip 7a of the air supply pipe 7 is not submerged so that water does not enter the pipe.
At that time, the hydrogen chamber A and the oxygen chamber B are passed through the gap between the electrolysis units 5 from the bottom surface 1b of the vertical cylinder 1, and the water in the hydrogen chamber A flows into the oxygen chamber B. Water is kept at a constant water level L2.
In the opaque container body 3, since the internal water levels L1 and L2 are not visible from the outside, the water level upper limit sensor 34 is provided at the upper limit position on the side wall in the oxygen chamber B, and the water level lower limit sensor is set at the lower limit position. If the form provided with 35 is used, a warning can be issued with a buzzer, a lamp or the like when the water level reaches the upper limit and the lower limit, so that water can be poured in peace.

そして、DCジャック15に接続した直流アダプターを家庭用交流電源に接続すると、前記電解ユニット5及びエアーポンプ8に電流が流れる、
この結果、水の電気分解が起こり、電解ユニット5の上側のマイナス電極22側には高分子膜24の上側表面から水素が発生し、下側のプラス電極23側には高分子膜24の下側表面から酸素が発生する。
そして、高分子膜32の上側に発生した水素は水中で気泡となって上昇し、水素室Aの空間に溜まる。
一方、高分子膜32の下側に発生した酸素は高分子膜32に妨げられて高分子膜32の上側へは通過できないので水素室Aに入ることなく、ケーシング27の下側にオゾンなって溜まり、増えるに従ってオゾンは水中で気泡となって上昇し、酸素室Bの上部の空間に溜まる。
When the DC adapter connected to the DC jack 15 is connected to a household AC power source, a current flows through the electrolysis unit 5 and the air pump 8.
As a result, water is electrolyzed, and hydrogen is generated from the upper surface of the polymer film 24 on the upper negative electrode 22 side of the electrolysis unit 5, and below the polymer film 24 on the lower positive electrode 23 side. Oxygen is generated from the side surface.
The hydrogen generated on the upper side of the polymer film 32 rises as bubbles in the water and accumulates in the hydrogen chamber A space.
On the other hand, oxygen generated below the polymer film 32 is blocked by the polymer film 32 and cannot pass above the polymer film 32, so that it does not enter the hydrogen chamber A and becomes ozone below the casing 27. As it accumulates and increases, ozone rises as bubbles in the water and accumulates in the space above the oxygen chamber B.

その後このオゾンは、オゾンを酸素に変換させる接触材10と接触して無臭化された酸素の状態で外部に排出される。
その際、酸素排出管11の先端部11bを本体容器3の外壁面の下部に開口させれば、接触材10が劣化して機能が低下したとしても使用する場所から離れるのでオゾン臭が緩和される。
Thereafter, the ozone is discharged to the outside in the state of oxygen that has not been brominated in contact with the contact material 10 that converts ozone into oxygen.
At that time, if the distal end portion 11b of the oxygen discharge pipe 11 is opened at the lower part of the outer wall surface of the main body container 3, even if the contact material 10 deteriorates and its function is lowered, the ozone odor is mitigated because the contact material 10 is separated from the place where it is used. The

又、水素室Aの空間に溜まった水素はエアーポンプ8の稼働で、稼働当初は前記ポンプ室C内にある空気が送気管7から前記水素室A内に送り出され、その空気が水素室Aの水素と混合されて鼻腔カニューレ21へ送り出され鼻腔カニューレ21のノズル21bから排出される。   The hydrogen accumulated in the space of the hydrogen chamber A is the operation of the air pump 8. At the beginning of operation, the air in the pump chamber C is sent out from the air supply pipe 7 into the hydrogen chamber A, and the air is supplied to the hydrogen chamber A. The nasal cannula 21 is mixed with hydrogen and discharged from the nozzle 21 b of the nasal cannula 21.

そして、しばらくエアーポンプ8が稼働すると、前記水素室Aとポンプ室Cとの間に設けた逆止弁6から前記水素室Aに溜まった水素が流入し、その水素が前記水素室Aに還流し、その水素と前記水素室Aの水素と混合されて濃度の高い水素が鼻腔カニューレ21のノズル21bから排出される。
その際、前記逆止弁6は管内流出抵抗力よりも強い圧力で該ポンプ室Cの方向のみに開くので、前記逆止弁6からポンプ室Cへ入る量よりも鼻腔カニューレ21から出る量の方がより多くなって発生した水素の殆どは鼻腔カニューレ21から排出されることとなる。
この結果、鼻腔カニューレ21のノズル21bを鼻腔に向けて固定しておくと、濃度の高い水素が呼吸するたびに肺に吸入されることとなる。
When the air pump 8 is operated for a while, the hydrogen accumulated in the hydrogen chamber A flows from the check valve 6 provided between the hydrogen chamber A and the pump chamber C, and the hydrogen flows back to the hydrogen chamber A. Then, the hydrogen and the hydrogen in the hydrogen chamber A are mixed and high concentration hydrogen is discharged from the nozzle 21 b of the nasal cannula 21.
At that time, since the check valve 6 opens only in the direction of the pump chamber C at a pressure stronger than the outflow resistance force in the tube, the amount of the check valve 6 that exits the nasal cannula 21 is larger than the amount that enters the pump chamber C from the check valve 6. Most of the hydrogen generated by the increase is discharged from the nasal cannula 21.
As a result, if the nozzle 21b of the nasal cannula 21 is fixed toward the nasal cavity, hydrogen with a high concentration is inhaled into the lung every time it breathes.

なお、エアーポンプ8で前記水素室Aの気圧が高められるので、水素吐出孔4を複数設けて鼻腔カニューレ21を複数接続し、複数の鼻腔カニューレ21を複数の人に装着して各人が同時に水素を吸入することが可能となる。   Since the air pressure in the hydrogen chamber A is increased by the air pump 8, a plurality of hydrogen discharge holes 4 are provided to connect a plurality of nasal cannulas 21, and a plurality of nasal cannulas 21 are attached to a plurality of people so that each person can simultaneously It becomes possible to inhale hydrogen.

本発明は 持ち運んで卓上で使用することを想定した小型軽量の卓上型の水素吸引装置であるが、持ち運びは行わずに多数の人への供給を同時に行えるように室内に設置する水素吸引装置として大型化して利用することもできる。   The present invention is a small and lightweight desktop hydrogen suction device that is supposed to be carried and used on a desktop, but as a hydrogen suction device installed indoors so that it can be supplied to a large number of people at the same time without being carried. It can also be used in a larger size.

1 縦筒体
1a 上面
1b 底面
1c 外周面
2 隔壁
2a 隔壁の上部
2b 隔壁の下部
3 本体容器
3a 外周側面
3b 底面
3c 上面
3d 縦筒体固定部
4 水素吐出孔
5 電解ユニット
6 逆止弁
7 送気管
7a 先端部
7b 基端部
8 エアーポンプ
9 酸素排出孔
10 オゾンを酸素に変換させる接触材
11 酸素排出管
11a 基端部
11b 先端部
12、13 電線
14 制御部
14a コントロール回路基板
15 DCジャック
16、17 電線
18 注水口
19 蓋
20 オゾン反応室
21 鼻腔カニューレ
21a 鼻腔装着部
21b ノズル
21c チューブ
21d コネクタ
22 マイナス電極
23 プラス電極
24 高分子膜
25 棒状挟持体
26 棒状挟持体
27 ケーシング
28 コイルスプリング
29 開口部
30 固定ネジ
31 送気管支持部
32 電源線
33 逆止弁
34 水位上限センサー
35 水位下限センサー
36 警告部
37 水位警告回路
A 水素室
B 酸素室
C ポンプ室
W 水
L1 水素室の水位
L2 酸素室の水位


DESCRIPTION OF SYMBOLS 1 Vertical cylinder 1a Upper surface 1b Bottom surface 1c Peripheral surface 2 Partition 2a Upper part 2b of partition 3 Lower part 3 Main body container 3a Outer peripheral side 3b Bottom 3c Upper surface 3d Vertical cylinder fixing | fixed part 4 Hydrogen discharge hole 5 Electrolytic unit 6 Check valve 7 Trachea 7a Tip portion 7b Base end portion 8 Air pump 9 Oxygen discharge hole 10 Contact material 11 for converting ozone into oxygen 11 Oxygen discharge tube 11a Base end portion 11b Tip portions 12 and 13 Electric wire 14 Control portion 14a Control circuit board 15 DC jack 16 , 17 Electric wire 18 Water inlet 19 Lid 20 Ozone reaction chamber 21 Nasal cannula 21a Nasal cavity mounting part 21b Nozzle 21c Tube 21d Connector 22 Negative electrode 23 Positive electrode 24 Polymer film 25 Bar-shaped pinching body 26 Bar-shaped pinching body 27 Casing 28 Coil spring 29 Opening Part 30 Fixing screw 31 Bronchial holding part 32 Power line 33 Check valve 34 Water level upper limit sensor 35 Water level lower limit sensor 36 Warning section 37 Water level warning circuit A Hydrogen chamber B Oxygen chamber C Pump chamber W Water L1 Hydrogen chamber water level L2 Oxygen chamber water level


Claims (6)

上側のマイナス電極と下側のプラス電極とに挟まれた高分子膜を備えた水を電解する電解ユニットを底部寄りに配した本体容器を備えた吸引装置において、
前記マイナス電極の上には上部に鼻腔カニューレのチューブを接続すると共に電解用の水と水中に浮上する水素を受け入れる水素室を、前記プラス電極の下から前記水素室の外側にかけては水中に浮上する酸素を受け入れる酸素室を、前記水素室の外側から前記酸素室の外側にかけてはエアーポンプと該エアーポンプで圧送するための気体を収納可能なポンプ室を、夫々形成し、
前記酸素室の上部に、オゾンガスから酸素ガスへ変換させる接触材を介して前記本体容器外に先端部を開口させた酸素排出管を接続し、
前記ポンプ室内に収納した前記エアーポンプに、前記水素室内に注入した水の水位より上方に先端部を開口させた送気管を直接接続し、
前記水素室とポンプ室との間に、前記鼻腔カニューレを通過する水素の管内流出抵抗力より強い圧力で該ポンプ室の方向に開く逆止弁を配設し、
前記エアーポンプから前記送気管を通して送り出される気体の圧力で前記水素室内の気圧を高めて前記電解ユニットで発生させた水素を前記鼻腔カニューレから強制的に吐出できるようにしたことを特徴とする水素吸引装置。
In a suction device including a main body container disposed near the bottom of an electrolysis unit for electrolyzing water having a polymer film sandwiched between an upper negative electrode and a lower positive electrode,
A nasal cannula tube is connected to the upper part of the negative electrode, and a hydrogen chamber for receiving electrolyzed water and hydrogen floating in the water floats in the water from under the positive electrode to the outside of the hydrogen chamber. An oxygen chamber for receiving oxygen is formed from the outside of the hydrogen chamber to the outside of the oxygen chamber to form an air pump and a pump chamber capable of storing gas for pumping with the air pump,
Connected to the upper part of the oxygen chamber is an oxygen discharge pipe having a tip opened outside the main body container through a contact material that converts ozone gas into oxygen gas,
The air pump housed in the pump chamber is directly connected to an air pipe having a tip opened above the water level injected into the hydrogen chamber,
Between the hydrogen chamber and the pump chamber, a check valve is disposed that opens in the direction of the pump chamber with a pressure stronger than the resistance to outflow of hydrogen through the nasal cannula,
Hydrogen suction, wherein the hydrogen pressure generated in the electrolysis unit can be forcibly discharged from the nasal cannula by increasing the pressure in the hydrogen chamber with the pressure of the gas delivered from the air pump through the air supply pipe apparatus.
本体容器の外壁面に、電源用のDCジャックを固設し、該DCジャックに、電解ユニットの両電極へ電流を送る電線と、エアーポンプへ電流を送る電線とを、直接又は電流制御部を介して接続したことを特徴とする請求項1に記載の水素吸引装置。   A DC jack for power supply is fixed on the outer wall surface of the main body container, and an electric wire for sending current to both electrodes of the electrolysis unit and an electric wire for sending current to the air pump are directly or directly connected to the DC jack. The hydrogen suction device according to claim 1, which is connected via オゾンを酸素に変換させる接触材に、シリカゲル、活性炭及びオリーブオイルのうちのいずれかを用いたことを特徴とする請求項1又は2に記載の水素吸引装置。   The hydrogen suction device according to claim 1 or 2, wherein any one of silica gel, activated carbon, and olive oil is used as a contact material that converts ozone into oxygen. 酸素排出管の先端部を本体容器の外壁面下部に開口させたことを特徴とする請求項1から3のうちのいずれかに記載の水素吸引装置。   The hydrogen suction device according to any one of claims 1 to 3, wherein a distal end portion of the oxygen discharge pipe is opened at a lower portion of the outer wall surface of the main body container. 送気管の先端部に水素室の方向に開く逆止弁を配設したことを特徴とする請求項1から4のうちのいずれかに記載の水素吸引装置。   The hydrogen suction device according to any one of claims 1 to 4, wherein a check valve that opens in a direction of the hydrogen chamber is disposed at a tip portion of the air supply pipe. 酸素室内の側壁に上限とする位置に水位上限センサーを設けると共に下限とする位置に水位下限センサーを設け、該水位上限センサーと水位下限センサーとを水位警告回路を介してブザー、ランプ等で警告を発するポンプ室内に設けた警告部に接続したことを特徴とする請求項1から5のうちのいずれかに記載の水素吸引装置。


A water level upper limit sensor is provided at the upper limit position on the side wall of the oxygen chamber and a water level lower limit sensor is provided at the lower limit position. The water level upper limit sensor and the water level lower limit sensor are warned by a buzzer, a lamp, etc. via a water level warning circuit. The hydrogen suction device according to claim 1, wherein the hydrogen suction device is connected to a warning unit provided in the pumping chamber.


JP2017088574A 2017-04-27 2017-04-27 Hydrogen suction device Active JP6662809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017088574A JP6662809B2 (en) 2017-04-27 2017-04-27 Hydrogen suction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017088574A JP6662809B2 (en) 2017-04-27 2017-04-27 Hydrogen suction device

Publications (2)

Publication Number Publication Date
JP2018183527A true JP2018183527A (en) 2018-11-22
JP6662809B2 JP6662809B2 (en) 2020-03-11

Family

ID=64356687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017088574A Active JP6662809B2 (en) 2017-04-27 2017-04-27 Hydrogen suction device

Country Status (1)

Country Link
JP (1) JP6662809B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020090694A (en) * 2018-12-04 2020-06-11 株式会社日省エンジニアリング Portable electrolytic apparatus
KR102292719B1 (en) * 2020-05-25 2021-08-23 김정운 Portable type humidifiable oxygen gas generator
CN114349244A (en) * 2021-12-07 2022-04-15 国网湖南省电力有限公司 Ozone oil removing device for oily wastewater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347261A (en) * 1989-07-14 1991-02-28 Takeda Chem Ind Ltd Treating apparatus with ozone
JP3175997U (en) * 2012-03-23 2012-06-07 株式会社日省エンジニアリング Portable beverage hydrogen water generator
JP2013146373A (en) * 2012-01-19 2013-08-01 Tatsunori Yamaji Hydrogen generator
KR101907858B1 (en) * 2017-04-14 2018-10-15 주식회사 파이노 Hydrogen generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347261A (en) * 1989-07-14 1991-02-28 Takeda Chem Ind Ltd Treating apparatus with ozone
JP2013146373A (en) * 2012-01-19 2013-08-01 Tatsunori Yamaji Hydrogen generator
JP3175997U (en) * 2012-03-23 2012-06-07 株式会社日省エンジニアリング Portable beverage hydrogen water generator
KR101907858B1 (en) * 2017-04-14 2018-10-15 주식회사 파이노 Hydrogen generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020090694A (en) * 2018-12-04 2020-06-11 株式会社日省エンジニアリング Portable electrolytic apparatus
KR102292719B1 (en) * 2020-05-25 2021-08-23 김정운 Portable type humidifiable oxygen gas generator
CN114349244A (en) * 2021-12-07 2022-04-15 国网湖南省电力有限公司 Ozone oil removing device for oily wastewater

Also Published As

Publication number Publication date
JP6662809B2 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
JP6665975B2 (en) Gas generator
US11180858B2 (en) Gas generator
TWI592518B (en) Hydrogen generating device
US6632336B2 (en) Acidic liquid atomizer
JP5900688B1 (en) Hydrogen gas generator
JP2009005881A (en) Inhalation device of hydrogen gas into body
JP2018183527A (en) Hydrogen aspirator
CN205626644U (en) Gas generator
TW201332656A (en) Health oxy-hydrogen gas supply facility
US10525224B2 (en) Systems and methods for therapeutic gas delivery for personal medical consumption
JP3198704U (en) Portable electrolyzer
JP3228244U (en) Gas mask set
JP2015217116A (en) Hydrogen gas sucking method and device
JPH0678592B2 (en) Ozone water production equipment
JP2018165396A (en) Hydrogen gas generation device, and hydrogen gas suction apparatus including the same
JP6338648B2 (en) Portable electrolyzer
CN106587279A (en) Direct drinking hydrogen-enriched water hydrogen breathing machine
CN104941084A (en) Multifunctional air purification device
KR102466230B1 (en) portable gas supply
JP6964238B2 (en) Portable electrolyzer
CN208234999U (en) A kind of hydrogen ventilator
US20200297963A1 (en) Systems and Methods for Therapeutic Gas Delivery for Personal Medical Consumption Having Safety Features
JP2017179556A (en) Hydrogen gas generator
CN204891001U (en) Multifunction air purifier
CN213076838U (en) Portable intracavity hydrops drainage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200213

R150 Certificate of patent or registration of utility model

Ref document number: 6662809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250