JP2018182811A - Power converter and control device therefor - Google Patents

Power converter and control device therefor Download PDF

Info

Publication number
JP2018182811A
JP2018182811A JP2017074877A JP2017074877A JP2018182811A JP 2018182811 A JP2018182811 A JP 2018182811A JP 2017074877 A JP2017074877 A JP 2017074877A JP 2017074877 A JP2017074877 A JP 2017074877A JP 2018182811 A JP2018182811 A JP 2018182811A
Authority
JP
Japan
Prior art keywords
harmonic
phase
axis
power converter
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017074877A
Other languages
Japanese (ja)
Other versions
JP6848622B2 (en
Inventor
晃裕 日野
Akihiro Hino
晃裕 日野
博 篠原
Hiroshi Shinohara
博 篠原
稔久 田重田
Toshihisa Tashigeta
稔久 田重田
まど華 八尾
Madoka Yao
まど華 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2017074877A priority Critical patent/JP6848622B2/en
Publication of JP2018182811A publication Critical patent/JP2018182811A/en
Application granted granted Critical
Publication of JP6848622B2 publication Critical patent/JP6848622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power converter which reduces a harmonic wave component of a system by compensating for phase delay caused by a dead time such as delay of a control operation, and a control device therefor.SOLUTION: A power converter comprises: a dq transformer 1 which performs coordinate transformation on an AC signal of a system, thereby separating the AC signal into a fundamental wave component and a harmonic wave component; a harmonic wave extractor 2 which removes the fundamental wave component from the output, thereby extracting the harmonic wave component; harmonic wave axis coordinate transformation means B which performs coordinate transformation on the harmonic wave component on a γδ orthogonal rotation coordinate, thereby removing an initial phase of the harmonic wave component; a dead time compensator 6 which delays a reference phase during forward rotation of a dq orthogonal rotation coordinate just for a phase corresponding to a first correction amount in relative to during backward rotation; a dead time compensator 7 which delays a reference phase during forward rotation of the γδ orthogonal rotation coordinate just for a phase corresponding to a second correction amount in relative to during backward rotation; and an inverse dq transformer 5 which performs inverse transformation on output of the harmonic wave axis coordinate transformation means B on the dq orthogonal rotation coordinate, thereby generating a harmonic wave compensation signal. The first and second correction amounts are made equal.SELECTED DRAWING: Figure 1

Description

本発明は、電力変換器及びその制御装置に係り、特に、交流電源系統に接続された負荷によって発生する高調波電流を電力変換器の動作により低減するための技術に関するものである。   The present invention relates to a power converter and its control device, and more particularly to a technology for reducing harmonic current generated by a load connected to an AC power supply system by the operation of the power converter.

整流回路等を含む負荷を交流電源系統に接続した場合、負荷電流には高調波電流が含まれる。この高調波電流は、交流電源系統に接続された電力変換器等、各種の電気機器の誤動作やノイズの発生原因となる。
この高調波電流を低減する一つの手段として、いわゆるアクティブフィルタが知られている。
When a load including a rectifier circuit or the like is connected to an AC power supply system, the load current includes harmonic current. This harmonic current causes malfunction and noise of various electric devices such as a power converter connected to an AC power supply system.
A so-called active filter is known as one means for reducing this harmonic current.

図4は、従来の並列型アクティブフィルタの適用例を示している。
図4において、101は交流電源、102は連系リアクトル、103は電圧検出器、104は系統電圧の位相θを検出するPLL(Phase Locked Loop)回路、105は負荷電流iを検出する電流検出器、106は整流器等を含む高調波負荷、107は補償するべき高調波成分を含む負荷電流isensを抽出する負荷電流検出フィルタ、108はLCLフィルタ、110は並列型アクティブフィルタである。
FIG. 4 shows an application example of a conventional parallel active filter.
In FIG. 4, 101 is an AC power supply, 102 is an interconnection reactor, 103 is a voltage detector, 104 is a PLL (Phase Locked Loop) circuit for detecting the phase θ 1 of the grid voltage, and 105 is a current for detecting a load current i S A detector 106 is a harmonic load including a rectifier etc. 107 is a load current detection filter for extracting a load current i sens including a harmonic component to be compensated, 108 is an LCL filter, and 110 is a parallel active filter.

並列型アクティブフィルタ110は、前記位相θ及び負荷電流検出値isensに基づいて高調波電流指令iを生成する高調波検出回路111と、高調波電流指令iに従って電圧指令を生成する電流制御器112と、上記電圧指令に基づいてPWM(パルス幅変調)パルスを生成するPWM回路113と、高調波負荷106に対して並列に接続され、かつ、PWMパルスに従ってオン・オフされる半導体スイッチング素子を備えたインバータ等の電力変換器114と、により構成されている。
この並列型アクティブフィルタ110は、負荷電流iに含まれる高調波成分を打ち消す電流iを流すように電力変換器114を制御することで、交流電源101側に流れる高調波電流を抑制している。
The parallel active filter 110 generates a harmonic current command i * based on the phase θ 1 and the load current detection value i sens , and generates a voltage command according to the harmonic current command i *. Semiconductor switching which is connected in parallel to the controller 112, the PWM circuit 113 which generates a PWM (pulse width modulation) pulse based on the voltage command, and the harmonic load 106, and which is turned on / off according to the PWM pulse It is comprised by power converters 114, such as an inverter provided with an element.
The parallel active filter 110 controls the power converter 114 to flow the current i C that cancels the harmonic component contained in the load current i S , thereby suppressing the harmonic current flowing to the AC power supply 101 side. There is.

しかし、図4の回路では、負荷電流iの検出遅れ時間や高調波検出回路111における制御演算の遅れ時間からなるむだ時間により、高調波電流指令iは負荷電流iの高調波成分に対して位相遅れが生じ、両者の間に誤差が発生する。このため、高調波電流指令iに従ってインバータ114が系統に電流iを注入しても、高調波電流に対する十分な抑制効果が得られないという問題があった。 However, in the circuit of FIG. 4, the harmonic current command i * is converted to a harmonic component of the load current i S due to the dead time consisting of the detection delay time of the load current i S and the delay time of the control calculation in the harmonic detection circuit 111. On the other hand, a phase delay occurs and an error occurs between the two. Therefore, even if the inverter 114 injects the current i C into the system according to the harmonic current command i * , there is a problem that a sufficient suppression effect on the harmonic current can not be obtained.

これに対し、上記のむだ時間による位相遅れを補償する従来技術として、例えば特許文献1に開示されているように、座標変換手段の基準位相を補正する技術が公知となっている。
図5は、この特許文献1に記載された半導体電力変換装置の全体的なブロック図であり、その動作の概要を以下に説明する。
On the other hand, as a conventional technique for compensating for the phase delay due to the above-mentioned dead time, a technique for correcting the reference phase of the coordinate conversion means is known as disclosed in, for example, Patent Document 1.
FIG. 5 is an overall block diagram of the semiconductor power conversion device described in Patent Document 1, and an outline of its operation will be described below.

まず、交流電源系統201には整流器等を含む負荷203が接続されている。電流検出器202により検出された三相の負荷電流は、dq制御部210内のdq変換手段214により、基準位相(ωt+φ)を用いて回転座標変換され、d軸電流成分、q軸電流成分に分離される。なお、基準位相(ωt+φ)は、電圧検出器204に接続された位相検出手段211により検出されている。   First, a load 203 including a rectifier and the like is connected to the AC power supply system 201. The three-phase load current detected by the current detector 202 is subjected to rotational coordinate conversion using the reference phase (ωt + φ) by the dq conversion unit 214 in the dq control unit 210, and is converted to the d axis current component and the q axis current component. It is separated. The reference phase (ωt + φ) is detected by the phase detection unit 211 connected to the voltage detector 204.

dq変換手段214から出力されたd軸電流成分、q軸電流成分は、高調波成分を除去するフィルタ215,216を介して逆dq変換手段217に入力され、基準位相(ωt+φ+δ)を用いて三相の電流指令値に変換される。この電流指令値は電流制御器221により電圧指令値に変換され、後続のPWM回路223から出力されるゲートパターン(PWMパルス)により電力変換器224の半導体スイッチング素子がオン・オフされる。なお、225は連系用の変圧器、222は電流検出器である。   The d-axis current component and the q-axis current component output from the dq conversion unit 214 are input to the inverse dq conversion unit 217 via the filters 215 and 216 that remove harmonic components, and are used three times using the reference phase (ωt + φ + δ). It is converted to the current command value of the phase. The current command value is converted into a voltage command value by the current controller 221, and the semiconductor switching element of the power converter 224 is turned on / off by the gate pattern (PWM pulse) output from the subsequent PWM circuit 223. In addition, 225 is a transformer for interconnection and 222 is a current detector.

上記構成において、逆dq変換手段217に入力される基準位相(ωt+φ+δ)は、位相検出手段211が検出した位相(ωt+φ)と補正位相設定器212により設定された補正位相δとを加算器213により加算して求められる。上記の補正位相δを、電流検出器202による検出遅れやdq制御部210における制御演算の遅れに起因するむだ時間を考慮して設定することにより、dq制御部210が生成する電流指令値はむだ時間による位相遅れを補償したものとなり、制御誤差なく電力変換器224を運転することができる。   In the above configuration, the reference phase (ωt + φ + δ) input to the inverse dq conversion means 217 is the phase (ωt + φ) detected by the phase detection means 211 and the correction phase δ set by the correction phase setting device 212 by the adder 213. It is calculated by adding up. The current command value generated by the dq control unit 210 is wasted by setting the correction phase δ in consideration of the dead time due to the detection delay by the current detector 202 and the delay in the control calculation by the dq control unit 210. The phase delay due to time is compensated, and the power converter 224 can be operated without a control error.

特開2008−234298号公報(段落[0010]〜[0033]、図1等)JP 2008-234298 A (paragraphs [0010] to [0033], FIG. 1, etc.)

しかし、特許文献1に記載された技術により、不特定次数の高調波成分に対して位相遅れを補償するには、補正位相δが高調波成分の次数に応じて変化するため、この次数を求めるための演算装置が必要である。一般的に、高調波成分の次数を求める演算手段としてはFFT(高速フーリエ変換)が知られているが、FFTの演算には高速の演算装置や大容量のメモリが必要になるため、制御装置のコストが上昇するという問題がある。   However, in order to compensate for the phase delay with respect to the harmonic components of the unspecified order by the technique described in Patent Document 1, since the correction phase δ changes according to the order of the harmonic components, this order is determined A computing device is required. Generally, FFT (Fast Fourier Transform) is known as an operation means for obtaining the order of harmonic components, but a high-speed operation device and a large capacity memory are required for the FFT operation. There is a problem that the cost of

そこで、本発明の解決課題は、FFT等の演算手段を用いずにむだ時間による位相遅れを補償して交流電源系統の高調波成分を低減可能とした電力変換器及びその制御装置を提供することにある。   Therefore, the problem to be solved by the present invention is to provide a power converter capable of reducing harmonic components of an AC power supply system by compensating for phase delay due to dead time without using arithmetic means such as FFT and a control device therefor. It is in.

上記課題を解決するため、請求項1に係る電力変換器の制御装置は、交流電源系統に接続された電力変換器を制御する制御装置であって、前記交流電源系統の交流信号に含まれる任意次数の高調波成分を検出し、検出された高調波成分を抑制するための高調波補償信号を生成して前記電力変換器に指令値として与えるようにした制御装置において、
前記制御装置内部に、前記交流電源系統と同期した位相を持つd軸とこのd軸に直交するq軸とからなるdq直交回転座標を定義し、前記交流信号を前記dq直交回転座標上で座標変換して基本波成分と高調波成分とに分離するdq変換手段と、
前記dq変換手段の出力から前記基本波成分を除去して前記高調波成分を抽出する高調波抽出手段と、
前記制御装置内部に、前記高調波成分と同期した位相を持つγ軸とこのγ軸に直交するδ軸とからなるγδ直交回転座標を定義し、前記高調波成分を前記γδ直交回転座標上で座標変換することにより、前記高調波成分の初期位相を除去する高調波軸座標変換手段と、
前記dq直交回転座標の正回転時の基準位相を逆回転時の基準位相に対して第1の補正量に応じた位相だけ遅らせる第1の位相補正手段と、
前記γδ直交回転座標の正回転時の基準位相を逆回転時の基準位相に対して第2の補正量に応じた位相だけ遅らせる第2の位相補正手段と、
前記高調波軸座標変換手段の出力を前記dq直交回転座標上で逆変換して前記高調波補償信号を生成する手段と、を備え、
前記第1の補正量と前記第2の補正量とを等しくすることにより、むだ時間に起因して前記交流信号の検出値と前記高調波補償信号との間に生じる位相遅れを補償することを特徴とする。
In order to solve the above-mentioned subject, a control device of a power converter concerning Claim 1 is a control device which controls a power converter connected to an alternating current power supply system, and any of the alternating current signals of the alternating current power supply system is included. In a control device that detects a harmonic component of an order, generates a harmonic compensation signal for suppressing the detected harmonic component, and gives the signal as a command value to the power converter,
Inside the control device, dq orthogonal rotation coordinates consisting of a d axis having a phase synchronized with the AC power supply system and a q axis orthogonal to this d axis are defined, and the AC signal is coordinated on the dq orthogonal rotation coordinates Dq conversion means for converting and separating into a fundamental wave component and a harmonic wave component;
Harmonic extraction means for removing the fundamental wave component from the output of the dq conversion means to extract the harmonic component;
Within the control device, a γδ orthogonal rotation coordinate is defined which comprises a γ axis having a phase synchronized with the harmonic component and a δ axis orthogonal to the γ axis, and the harmonic component is defined on the γδ orthogonal rotation coordinate. Harmonic axis coordinate conversion means for removing the initial phase of the harmonic component by coordinate conversion;
First phase correction means for delaying the reference phase during forward rotation of the dq orthogonal rotation coordinates by a phase according to a first correction amount with respect to the reference phase during reverse rotation;
Second phase correction means for delaying the reference phase during positive rotation of the γδ orthogonal rotation coordinate by a phase according to a second correction amount with respect to the reference phase during reverse rotation;
Means for inversely converting the output of the harmonic axis coordinate conversion means on the dq orthogonal rotation coordinates to generate the harmonic compensation signal;
By equalizing the first correction amount and the second correction amount, it is possible to compensate for the phase delay that occurs between the detected value of the AC signal and the harmonic compensation signal due to dead time. It features.

請求項2に係る電力変換器の制御装置は、請求項1に記載した電力変換器の制御装置において、前記むだ時間は、前記dq変換手段以降の制御演算による遅れ時間を含むことを特徴とする。   A control device for a power converter according to claim 2 is characterized in that, in the control device for a power converter according to claim 1, the dead time includes a delay time due to a control operation after the dq conversion means. .

請求項3に係る電力変換器の制御装置は、請求項1または2に記載した電力変換器の制御装置において、前記むだ時間は、前記交流信号の検出処理の遅れ時間を含むことを特徴とする。   A control device for a power converter according to claim 3 is the control device for a power converter according to claim 1 or 2, characterized in that the dead time includes a delay time of the detection process of the alternating current signal. .

請求項4に係る電力変換器の制御装置は、請求項1〜3の何れか1項に記載した電力変換器の制御装置において、前記高調波軸座標変換手段の入力信号の振幅と出力信号の振幅との誤差を補正する手段を備えたことを特徴とする。   A control device for a power converter according to claim 4 is the control device for a power converter according to any one of claims 1 to 3, wherein the amplitude of the input signal and the output signal of the harmonic axis coordinate conversion means are It is characterized in that it comprises means for correcting an error with the amplitude.

請求項5に係る電力変換器は、請求項1〜4の何れか1項に記載の制御装置により生成される高調波補償信号を指令値として半導体スイッチング素子をオン・オフし、前記交流信号に含まれる高調波成分を低減するように動作することを特徴とする。   The power converter according to claim 5 turns on / off the semiconductor switching element with the harmonic compensation signal generated by the control device according to any one of claims 1 to 4 as a command value, and generates the alternating current signal. It is characterized in that it operates to reduce contained harmonic components.

本発明によれば、高速の演算装置や大容量のメモリを用いることなく、負荷電流に含まれる高調波成分を低コストかつ高精度に低減することができる。
これにより、交流電源系統に接続された各種電気機器の誤動作やノイズの発生を防止することができる。
According to the present invention, harmonic components included in the load current can be reduced at low cost and with high accuracy without using a high-speed arithmetic device or a large-capacity memory.
As a result, it is possible to prevent the occurrence of malfunction or noise of various electric devices connected to the AC power supply system.

本発明の第1実施形態に係る制御装置の主要部を示すブロック図である。It is a block diagram showing the principal part of the control device concerning a 1st embodiment of the present invention. 図2(A)はdq変換器及び逆dq変換器の基準位相信号の相互関係を示す図、図2(B)はγδ変換器及び逆γδ変換器の基準位相信号の相互関係を示す図である。FIG. 2 (A) is a diagram showing the interrelation of the reference phase signals of the dq converter and the inverse dq converter, and FIG. 2 (B) is a diagram showing the interrelation of the reference phase signals of the γδ converter and the inverse γδ converter. is there. 本発明の第2実施形態に係る制御装置の主要部を示すブロック図である。It is a block diagram which shows the principal part of the control apparatus which concerns on 2nd Embodiment of this invention. 従来の並列型アクティブフィルタの適用例を示す図である。It is a figure which shows the application example of the conventional parallel type | mold active filter. 特許文献1に記載された半導体電力変換装置の全体的なブロック図である。FIG. 1 is an overall block diagram of a semiconductor power conversion device described in Patent Document 1.

以下、図に沿って本発明の実施形態を説明する。
まず、図1は、本発明の第1実施形態に係る制御装置の主要部を示すブロック図である。この制御装置は、例えば、図5におけるdq制御部210に代えて設けられるものであり、交流電源系統から取得した三相の負荷電流検出値isensに基づいて負荷電流の高調波成分を低減するための高調波補償電流icmpを生成し、この高調波補償電流icmpを電流指令値として、図示されていない電流制御器等を介して電力変換器に与える機能を有している。
なお、負荷電流検出値isensには系統電圧の基本波成分とN次の高調波成分とが含まれているものとする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 is a block diagram showing a main part of a control device according to a first embodiment of the present invention. This control device is provided, for example, in place of the dq control unit 210 in FIG. 5, and reduces harmonic components of the load current based on the three-phase load current detection value isens acquired from the AC power supply system. generates a harmonic compensation current i cmp for, as a current command value of this harmonic compensation current i cmp, it has a function of giving to the power converter through a current controller (not shown) or the like.
The load current detection value i sens includes the fundamental wave component of the system voltage and the Nth harmonic component.

図1において、dq変換器1は、むだ時間補償器6(第1の位相補正手段)から入力される基準位相信号aを用いて、三相の負荷電流検出値isensをd軸,q軸の負荷電流ISd,ISqに座標変換する。ここで、d軸,q軸は直交回転座標を構成しており、d軸の位相は、系統電圧位相ωtからαだけ遅れた(ωt−α)とし、q軸はd軸から90°進み方向の軸とする。
なお、11は系統電圧位相ωtからsinωt,cosωtを演算してむだ時間補償器6に出力するsin/cos演算器である。
ωは系統電圧の基本波角周波数であり、d軸の初期位相αについては後述する。dq直交回転座標では、基本波成分が直流、高調波成分が(N−1)次の交流となる。
In FIG. 1, the dq converter 1 uses the reference phase signal a input from the dead time compensator 6 (first phase correction means) to detect the three-phase load current detection value isens as the d axis and the q axis. Coordinate conversion into the load current I Sd , I Sq of Here, the d-axis and q-axis constitute orthogonal rotation coordinates, and the phase of the d-axis is (ω 1 t-α 1 ) delayed by α 1 from the system voltage phase ω 1 t, and the q-axis is d The axis leads 90 ° from the axis.
Incidentally, 11 is a sin / cos calculator for output from the system voltage phase ω 1 t sinω 1 t, the dead time compensator 6 calculates a cos .omega 1 t.
ω 1 is a fundamental wave angular frequency of the system voltage, and an initial phase α 1 of the d axis will be described later. In dq orthogonal rotation coordinates, the fundamental wave component is a direct current, and the harmonic component is an (N-1) -order alternating current.

高調波抽出器2は、d軸,q軸の負荷電流ISd,ISqに含まれる直流成分を除去し、d軸,q軸の高調波電流ISh1d,ISh1qを抽出する。
γδ変換器3は、むだ時間補償器7(第2の位相補正手段)から入力される基準位相信号cを用いて、d軸高調波電流ISh1d(高調波電流ベクトルISh1dqのcos成分),q軸高調波電流ISh1q(同じくISh1dqのsin成分)をγ軸,δ軸の高調波電流ISh1γ,ISh1δに座標変換する。
なお、γ,δ軸は直交回転座標を構成しており、γ軸の位相は(ω−ω)t−αとし、δ軸はγ軸から90°進み方向の軸とする。ここで、ωは系統電圧の高調波角周波数であり、γ軸の初期位相αについては後述する。
The harmonic extractor 2 removes DC components included in the load currents I Sd and I Sq on the d and q axes, and extracts harmonic currents I Sh1 d and I Sh1 q on the d and q axes.
The γδ converter 3 uses the reference phase signal c input from the dead time compensator 7 (second phase correction means) to generate the d-axis harmonic current I Sh1d (the cos component of the harmonic current vector I Sh1 dq ), Coordinate conversion of the q-axis harmonic current I Sh1q ( also the sin component of I Sh1 dq ) into the γ-axis and δ-axis harmonic currents I Sh1γ and I Sh1δ .
The γ and δ axes constitute orthogonal rotation coordinates, the phase of the γ axis is (ω 2 −ω 1 ) t−α 2 , and the δ axis is an axis advancing 90 ° from the γ axis. Here, omega 2 is a harmonic angular frequency of the system voltage will be described later initial phase alpha 2 of γ-axis.

逆γδ変換器4は、基準位相信号d(ISh1d,ISh1q)を用いて、γ軸,δ軸の高調波電流ISh1γ,ISh1δをd軸,q軸の補償電流Iβ1d,Iβ1qに座標変換する。γ軸の位相はωtとし、δ軸はγ軸から90°進み方向の軸とする。 The inverse γδ converter 4 uses the reference phase signal d (I Sh1d , I Sh1q ) to set the harmonic currents I Sh1 γ and I Sh1 δ of the γ and δ axes to the compensation currents I β1 d and I β1 q of the d and q axes, respectively. Coordinate conversion to The phase of the γ axis is ω 2 t, and the δ axis is an axis leading in a 90 ° direction from the γ axis.

逆dq変換器5は、sin/cos演算器12から出力される基準位相信号bを用いて、d軸,q軸の補償電流Iβ1d,Iβ1qを三相の補償電流icmpに座標変換する。d軸の位相は系統電圧位相ωtと等しく、q軸はd軸から90°進み方向の軸とする。 The inverse dq converter 5 coordinates-converts the d-axis and q-axis compensation currents I β1 d and I β1 q into three-phase compensation current i cmp using the reference phase signal b output from the sin / cos calculator 12 . The phase of the d axis is equal to the system voltage phase ω 1 t, and the q axis is an axis leading in a 90 ° direction from the d axis.

上記構成において、dq変換器1及び逆dq変換器5を基本波軸座標変換手段Aと呼び、γδ変換器3及び逆γδ変換器4を高調波軸座標変換手段Bと呼ぶものとする。   In the above configuration, the dq converter 1 and the inverse dq converter 5 are referred to as a fundamental wave axis coordinate conversion means A, and the γδ converter 3 and the inverse γδ converter 4 are referred to as a harmonic axis coordinate conversion means B.

次に、前述したd軸の初期位相α及びγ軸の初期位相αの求め方を、図2を用いて説明する。
図2(A)は、dq変換器1の基準位相信号aのcos成分(以下、単に基準位相信号aという)と逆dq変換器5の基準位相信号bのcos成分(以下、単に基準位相信号bという)との関係を示す図である。図示するように、基準位相信号aは基準位相信号bに対して時間(言い換えれば位相)σだけ遅れているものとする。
Next, how to obtain the initial phase α 1 of the d axis and the initial phase α 2 of the γ axis described above will be described with reference to FIG.
2A shows the cos component of the reference phase signal a of the dq converter 1 (hereinafter simply referred to as the reference phase signal a) and the cos component of the reference phase signal b of the inverse dq converter 5 (hereinafter simply referred to as the reference phase signal b) is a diagram showing the relationship. As shown, it is assumed that the reference phase signal a lags the reference phase signal b by time (in other words, phase) σ.

dq変換器1の基準位相信号aは、系統電圧位相ωtに同期しているので、d軸の初期位相αは数式1のようになる。
[数1]
α=ω×σ
数式1によれば、α/ω=σであり、このα/ωは請求項における第1の補正量に相当する。
Since the reference phase signal a of the dq converter 1 is synchronized with the grid voltage phase ω 1 t, the initial phase α 1 of the d axis is expressed by Equation 1.
[Equation 1]
α 1 = ω 1 × σ
According to Equation 1, α 1 / ω 1 = σ, and this α 1 / ω 1 corresponds to the first correction amount in the claims.

図2(B)は、γδ変換器3の基準位相信号cのcos成分(以下、単に基準位相信号cという)と逆γδ変換器4の基準位相信号dのcos成分(以下、単に基準位相信号dという)との関係を示す図である。図示するように、γδ変換器3の基準位相信号cは、逆γδ変換器4の基準位相信号dに対して時間σだけ遅れているものとする。
ここで、図2(B)は図2(A)に対して時間軸を拡大して表示してあり、実際の時間σは図2(A),(B)で等しい。
2B shows the cos component of the reference phase signal c of the γδ converter 3 (hereinafter simply referred to as the reference phase signal c) and the cos component of the reference phase signal d of the inverse γδ converter 4 (hereinafter simply referred to as the reference phase signal d) is a diagram showing the relationship. As shown, the reference phase signal c of the γδ converter 3 is delayed from the reference phase signal d of the inverse γδ converter 4 by time σ.
Here, FIG. 2 (B) is an enlarged view of the time axis with respect to FIG. 2 (A), and the actual time σ is equal in FIGS. 2 (A) and 2 (B).

γδ変換器3の基準位相信号cは、高調波成分(N−1次(ω−ω))に同期しているので、γ軸の初期位相αは数式2のようになる。
[数2]
α=(ω−ω)×σ
数式2によれば、α/(ω−ω)=σであり、このα/(ω−ω)は請求項における第2の補正量に相当する。
Since the reference phase signal c of the γδ converter 3 is synchronized with the harmonic component (N−1 order (ω 2 −ω 1 )), the initial phase α 2 of the γ axis is expressed by Equation 2.
[Equation 2]
α 2 = (ω 2 −ω 1 ) × σ
According to Equation 2, α 2 / (ω 2 −ω 1 ) = σ, and this α 2 / (ω 2 −ω 1 ) corresponds to the second correction amount in the claims.

上述したようにこの実施形態では、dq変換及びγδ変換における正回転時の基準位相信号a,cを、逆回転時の基準位相信号b,dに対して、それぞれ時間σだけ遅らせている。これにより、任意次数の高調波成分の、むだ時間による位相遅れを補償できることを以下に説明する。   As described above, in this embodiment, the reference phase signals a and c during forward rotation in the dq conversion and the γδ conversion are each delayed by time σ with respect to the reference phase signals b and d during reverse rotation. It will be described below that the phase delay due to the dead time of the harmonic component of an arbitrary order can be compensated by this.

まず、三相の系統電圧をv,v,vとすると、これらは数式3のように表される。

Figure 2018182811
数式3において、Vは系統電圧の実効値、ωは基本波角周波数である。 First, assuming that the three-phase grid voltage is v u , v v , v w , these are expressed as Formula 3.
Figure 2018182811
In Equation 3, V is the effective value of the grid voltage, and ω 1 is the fundamental wave angular frequency.

次に、負荷電流は基本波成分と高調波成分との和であるから、基本波成分の位相をωt+φ、高調波成分の位相をωt+φとすると、三相の負荷電流検出値isens(R相:i,S相:i,T相:iとする)は、数式4によって表される。

Figure 2018182811
数式4において、Iは負荷電流の基本波成分の実効値、Iは負荷電流の高調波成分の実効値、ωは高調波角周波数、φは基本波成分の初期位相、φは高調波成分の初期位相である。 Next, since the load current is the sum of the fundamental wave component and the harmonic wave component, assuming that the phase of the fundamental wave component is ω 1 t + φ 1 and the phase of the harmonic wave component is ω 2 t + φ 2 , three-phase load current detection The value i sens (R phase: i a , S phase: i b , T phase: i c ) is expressed by Equation 4.
Figure 2018182811
In Equation 4, I 1 is the effective value of the fundamental wave component of the load current, I 2 is the effective value of the harmonic component of the load current, ω 2 is the harmonic angular frequency, φ 1 is the initial phase of the fundamental wave component, φ 2 Is the initial phase of the harmonic component.

また、三相の負荷電流を、αβ軸直交固定座標上のα軸負荷電流iα,β軸負荷電流iβにより表現すると、数式5のようになる。

Figure 2018182811
Further, the three-phase load current can be expressed by Equation 5 when it is expressed by the α-axis load current i α and the β-axis load current i β on the αβ-axis orthogonal fixed coordinates.
Figure 2018182811

次に、数式5に示したα軸,β軸の負荷電流iα,iβをd軸,q軸により座標変換したd軸,q軸の負荷電流iSd,iSqは、数式6のようになる。ここで、dq変換の基準位相は、前述したように系統電圧位相ωtからαだけ遅れたものとする。

Figure 2018182811
図1に示したdq変換器1は、上述した数式4〜数式6の処理を行う。 Next, d-axis and q-axis load currents i Sd and i Sq obtained by performing coordinate conversion of the α-axis and β-axis load currents i α and i β shown in Equation 5 with d-axis and q-axis are as shown in Equation 6. become. Here, it is assumed that the reference phase of the dq conversion is delayed by α 1 from the system voltage phase ω 1 t as described above.
Figure 2018182811
The dq converter 1 shown in FIG. 1 performs the processing of Equations 4 to 6 described above.

次に、図1の高調波抽出器2により、iSd,iSqから直流成分を取り除いて抽出されるd軸,q軸の高調波電流iSh1d,iSh1qは、数式7のようになる。

Figure 2018182811
Next, the d axis and q axis harmonic currents i Sh1d and i Sh1q extracted by removing the DC component from i Sd and i Sq by the harmonic wave extractor 2 of FIG.
Figure 2018182811

また、d軸,q軸の高調波電流iSh1d,iSh1qをγδ変換器3により座標変換したγ軸,δ軸の高調波電流iSh1γ,iSh1δは、数式8のようになる。ここで、γδ変換の基準位相は、iSh1d,iSh1qの位相からαだけ遅れたものとする。

Figure 2018182811
この数式8を数式7と比較すると、座標変換後のγ軸、δ軸の高調波電流ish1γ,ish1δでは高調波成分の初期位相φが除去されていることが分かる。 Further , the γ-axis and δ-axis harmonic currents i Sh1γ and i Sh1δ obtained by coordinate-converting the d-axis and q-axis harmonic currents i Sh1d and i Sh1 q by the γδ converter 3 are as shown in Formula 8. Here, the reference phase of γδ conversion, i Sh1d, to the i Sh1q phase as delayed by alpha 2.
Figure 2018182811
Comparing Eq. 8 with Eq. 7, it can be seen that in the γ-axis and δ-axis harmonic currents i sh1γ and i sh1δ after coordinate conversion, the initial phase φ 2 of the harmonic component is removed.

そして、γ軸,δ軸の高調波電流iSh1γ,iSh1δを逆γδ変換器4により座標変換したd軸,q軸の補償電流iβ1d,iβ1qは、数式9のようになる。ここで、逆γδ変換の基準位相は、iSh1d,iSh1qの位相と等しくする。このため、数式9における逆γδ変換の変換行列には、数式7に示したiSh1d,iSh1qをそのまま代入する。

Figure 2018182811
Then, the d-axis and q-axis compensation currents i β1d and i β1q obtained by coordinate conversion of the harmonic currents i Sh1γ and i Sh1δ of the γ and δ axes by the inverse γδ converter 4 are as shown in Formula 9. Here, the reference phase of the inverse γδ conversion is made equal to the phases of i Sh1 d and i Sh1 q . Therefore, i Sh1d and i Sh1q shown in Formula 7 are substituted as they are into the conversion matrix of the inverse γδ conversion in Formula 9.
Figure 2018182811

最後に、d軸,q軸の補償電流iβ1d,iβ1qを逆dq変換器5に入力して逆dq変換を行い、N次の高調波成分を低減するための三相の高調波補償電流icmpを演算する。
逆dq変換器5において、d軸,q軸の補償電流iβ1d,iβ1qをαβ軸で逆座標変換して得られるα軸,β軸の高調波負荷電流iS2α,iS2βは、数式10のようになる。なお、α軸の基準位相は系統電圧位相ωtと同じとする。

Figure 2018182811
Finally, three-phase harmonic compensation currents for reducing the Nth harmonic component by performing inverse dq conversion by inputting the compensation currents i β1d and i β1q of the d axis and q axis to the inverse dq converter 5 Calculate i cmp .
The harmonic load currents i S2α and i S2β of the α and β axes obtained by performing inverse coordinate transformation of the compensation currents i β1 d and i β1 q of the d axis and the q axis in the inverse dq converter 5 are become that way. The reference phase of the α axis is the same as the system voltage phase ω 1 t.
Figure 2018182811

上記の高調波負荷電流iS2α,iS2βは、数式10に数式1,数式2を代入することにより、数式11となる。

Figure 2018182811
The above harmonic load currents i S2α and i S2β become Equation 11 by substituting Equations 1 and 2 into Equation 10.
Figure 2018182811

逆dq変換器5は数式10,数式11の演算により得たα軸,β軸の高調波負荷電流iS2α,iS2βを二相/三相変換し、三相の高調波補償電流icmpを出力する。この補償電流icmpは、例えば図5に示すごとく電流指令値として電流制御器に送られ、PWM回路を介して電力変換器の半導体スイッチング素子を駆動することにより、負荷電流の高調波成分を低減させるような電流を交流電源系統に流すことができる。 The inverse dq converter 5 performs two-phase / three-phase conversion on the harmonic load currents i S2α and i S2β of the α and β axes obtained by the calculations of Equations 10 and 11, and the three-phase harmonic compensation current i cmp Output. For example, as shown in FIG. 5, the compensation current i cmp is sent to the current controller as a current command value, and the harmonic component of the load current is reduced by driving the semiconductor switching element of the power converter through the PWM circuit. Current can be supplied to the AC power supply system.

上述した数式11によれば、α軸,β軸の高調波負荷電流iS2α,iS2βを、数式5に示したα軸,β軸の負荷電流iα,iβの高調波成分に対して時間σだけ進めることができる。
すなわち、本実施形態では、dq変換及びγδ変換における正回転時の基準位相信号を逆回転時の基準位相信号に対して時間σだけ遅らせることで、むだ時間による位相遅れを抑制する高調波補償電流icmpを生成し、この補償電流icmpを電流指令値として電力変換器を運転することで、交流電源系統に流れる電流の高調波成分を低減させることが可能である。
According to Equation 11 described above, the harmonic load currents i S2α and i S2β of the α and β axes are compared with the harmonic components of the load currents i α and i β of the α and β axes shown in Equation 5. It can advance by time σ.
That is, in the present embodiment, the harmonic compensation current that suppresses the phase delay due to the dead time by delaying the reference phase signal during forward rotation by dq conversion and γδ conversion with respect to the reference phase signal during reverse rotation by time σ. By generating i cmp and operating the power converter with this compensation current i cmp as a current command value, it is possible to reduce harmonic components of the current flowing through the AC power supply system.

なお、本実施形態では、制御演算の遅れに起因したむだ時間による位相遅れを補償しているが、前述したように、電流の検出遅れやケーブルによる信号遅延のむだ時間による位相遅れをまとめて補償することができる。   In the present embodiment, the phase delay due to the delay time due to the delay in the control calculation is compensated, but as described above, the phase delay due to the current detection delay or the signal delay due to the cable is collectively compensated. can do.

次に、本発明の第2実施形態を図3に基づいて説明する。図3において、図1と同一の部分には同一の番号を付して説明を省略する。
図3に示すように、第2実施形態では、逆γδ変換器4と逆dq変換器5との間に振幅補正器8が設けられている。この振幅補正器8は、補償電流Iβ1d,Iβ1qの振幅を高調波電流ISh1d,ISh1qに基づいて補正し、補償電流Iβ2d,Iβ2qとして出力する。
Next, a second embodiment of the present invention will be described based on FIG. In FIG. 3, the same parts as those in FIG.
As shown in FIG. 3, in the second embodiment, an amplitude corrector 8 is provided between the inverse γδ converter 4 and the inverse dq converter 5. The amplitude corrector 8, the compensation current I Beta1d, harmonic current I Sh1d the amplitude of the I Beta1q, corrected based on the I Sh1q, compensation current I Beta2d, and outputs it as I β2q.

すなわち、高調波軸座標変換手段B(γδ変換器3及び逆γδ変換器4)による処理では、数式11から判るように、γδ変換器3に入力される高調波電流ISh1d,ISh1qからなる電流ベクトルISh1dqの振幅と、逆γδ変換器4から出力される補償電流Iβ1d,Iβ1qからなる電流ベクトルIβ1dqの振幅との間に誤差が生じ、電流ベクトルIβ1dqの振幅は電流ベクトルISh1dqの振幅より大きくなる。この場合の振幅の増加率は、数式12によって求めることができる。
[数12]
増加率=ISh1d +ISh1q
That is, in the processing by the harmonic axis coordinate conversion means B (γδ converter 3 and inverse γδ converter 4), as is understood from Equation 11, the harmonic current I Sh1d and I Sh1q input to the γδ converter 3 and amplitude of the current vector I Sh1dq, compensation current I Beta1d outputted from the inverse γδ converter 4, an error occurs between the amplitude of the current vector I Beta1dq consisting I Beta1q, current vector I amplitude of Beta1dq current vector I It becomes larger than the amplitude of Sh1 dq . The rate of increase of the amplitude in this case can be determined by Equation 12.
[Equation 12]
Increase rate = I Sh1d 2 + I Sh1q 2

よって、図3の振幅補正器8では、この増加率の逆数を電流ベクトルIβ1dqに乗算することにより振幅を補正したIβ2dqを生成し、その後にIβ1d,Iβ1qに分離して逆dq変換器5に出力することで、高調波軸座標変換手段Bの入力信号の振幅と出力信号の振幅との誤差を補正することができる。 Therefore, in the amplitude correction unit 8 shown in FIG. 3, the current vector I β1dq is multiplied by the reciprocal of the rate of increase to generate I β2 dq whose amplitude is corrected, and then divided into I β1 d and I β1 q for inverse dq conversion. By outputting to the unit 5, the error between the amplitude of the input signal of the harmonic axis coordinate conversion means B and the amplitude of the output signal can be corrected.

以上のように、第1実施形態及び第2実施形態では、高調波成分の次数に関係なく高調波成分のむだ時間による位相遅れを補償することができるため、高調波成分の次数を検出するためにFFT等の演算を行う必要がなく、高速の演算装置や大容量のメモリ等を不要にしてコストの低減に寄与することが可能である。   As described above, in the first and second embodiments, since the phase delay due to the dead time of the harmonic component can be compensated regardless of the order of the harmonic component, the order of the harmonic component is detected. It is possible to contribute to cost reduction by eliminating the need for performing calculations such as FFT, eliminating the need for high-speed arithmetic devices, large-capacity memories, and the like.

また、本発明は、負荷電流検出値isensに基づいて高調波補償電流icmpを生成する機能を備えた制御装置だけでなく、上記の高調波補償電流icmpを電流指令値として半導体スイッチング素子をオン・オフさせ、交流電源系統に高調波補償電流を注入するインバータ等の電力変換器も含むものである。 Further, the present invention not only has a control device having a function of generating harmonic compensation current i cmp based on load current detection value i sens , but also a semiconductor switching element using the above harmonic compensation current i cmp as a current command value And a power converter such as an inverter which injects a harmonic compensation current into the AC power supply system.

1:dq変換器
2:高調波抽出器(高調波抽出手段)
3:γδ変換器
4:逆γδ変換器
5:逆dq変換器
6:むだ時間補償器(第1の位相補正手段)
7:むだ時間補償器(第2の位相補正手段)
8:振幅補正器(振幅補正手段)
11,12:sin/cos演算器
A:基本波軸座標変換手段
B:高調波軸座標変換手段
1: dq converter 2: harmonics extractor (harmonics extraction means)
3: γδ converter 4: inverse γδ converter 5: inverse dq converter 6: dead time compensator (first phase correction means)
7: Dead time compensator (second phase correction means)
8: Amplitude corrector (amplitude correction means)
11, 12: sin / cos operator A: fundamental axis coordinate conversion means B: harmonic axis coordinate conversion means

Claims (5)

交流電源系統に接続された電力変換器を制御する制御装置であって、前記交流電源系統の交流信号に含まれる任意次数の高調波成分を検出し、検出された高調波成分を抑制するための高調波補償信号を生成して前記電力変換器に指令値として与えるようにした制御装置において、
前記制御装置内部に、前記交流電源系統と同期した位相を持つd軸とこのd軸に直交するq軸とからなるdq直交回転座標を定義し、前記交流信号を前記dq直交回転座標上で座標変換して基本波成分と高調波成分とに分離するdq変換手段と、
前記dq変換手段の出力から前記基本波成分を除去して前記高調波成分を抽出する高調波抽出手段と、
前記制御装置内部に、前記高調波成分と同期した位相を持つγ軸とこのγ軸に直交するδ軸とからなるγδ直交回転座標を定義し、前記高調波成分を前記γδ直交回転座標上で座標変換することにより、前記高調波成分の初期位相を除去する高調波軸座標変換手段と、
前記dq直交回転座標の正回転時の基準位相を逆回転時の基準位相に対して第1の補正量に応じた位相だけ遅らせる第1の位相補正手段と、
前記γδ直交回転座標の正回転時の基準位相を逆回転時の基準位相に対して第2の補正量に応じた位相だけ遅らせる第2の位相補正手段と、
前記高調波軸座標変換手段の出力を前記dq直交回転座標上で逆変換して前記高調波補償信号を生成する手段と、
を備え、
前記第1の補正量と前記第2の補正量とを等しくすることにより、むだ時間に起因して記交流信号の検出値と前記高調波補償信号との間に生じる位相遅れを補償することを特徴とする電力変換器の制御装置。
A control device for controlling a power converter connected to an AC power supply system, for detecting a harmonic component of an arbitrary order included in an AC signal of the AC power supply system and suppressing a detected harmonic component. In a control device that generates a harmonic compensation signal and supplies it to the power converter as a command value,
Inside the control device, dq orthogonal rotation coordinates consisting of a d axis having a phase synchronized with the AC power supply system and a q axis orthogonal to this d axis are defined, and the AC signal is coordinated on the dq orthogonal rotation coordinates Dq conversion means for converting and separating into a fundamental wave component and a harmonic wave component;
Harmonic extraction means for removing the fundamental wave component from the output of the dq conversion means to extract the harmonic component;
Within the control device, a γδ orthogonal rotation coordinate is defined which comprises a γ axis having a phase synchronized with the harmonic component and a δ axis orthogonal to the γ axis, and the harmonic component is defined on the γδ orthogonal rotation coordinate. Harmonic axis coordinate conversion means for removing the initial phase of the harmonic component by coordinate conversion;
First phase correction means for delaying the reference phase during forward rotation of the dq orthogonal rotation coordinates by a phase according to a first correction amount with respect to the reference phase during reverse rotation;
Second phase correction means for delaying the reference phase during positive rotation of the γδ orthogonal rotation coordinate by a phase according to a second correction amount with respect to the reference phase during reverse rotation;
Means for inversely converting the output of the harmonic axis coordinate conversion means on the dq orthogonal rotation coordinates to generate the harmonic compensation signal;
Equipped with
By equalizing the first correction amount and the second correction amount, it is possible to compensate for the phase delay that occurs between the detected value of the alternating current signal and the harmonic compensation signal due to the dead time. Control device of power converter characterized by the above.
請求項1に記載した電力変換器の制御装置において、
前記むだ時間は、前記dq変換手段以降の制御演算の遅れ時間を含むことを特徴とする電力変換器の制御装置。
In the controller for a power converter according to claim 1,
The controller for a power converter, wherein the dead time includes a delay time of control calculation after the dq conversion means.
請求項1または2に記載した電力変換器の制御装置において、
前記むだ時間は、前記交流信号の検出処理の遅れ時間を含むことを特徴とする電力変換器の制御装置。
The control device of the power converter according to claim 1 or 2
The controller of a power converter, wherein the dead time includes a delay time of detection processing of the alternating current signal.
請求項1〜3の何れか1項に記載した電力変換器の制御装置において、
前記高調波軸座標変換手段の入力信号の振幅と出力信号の振幅との誤差を補正する手段を備えたことを特徴とする電力変換器の制御装置。
In a control device of a power converter according to any one of claims 1 to 3.
A control device for a power converter, comprising means for correcting an error between the amplitude of an input signal of the harmonic axis coordinate conversion means and the amplitude of an output signal.
請求項1〜4の何れか1項に記載の制御装置により生成される高調波補償信号を指令値として半導体スイッチング素子をオン・オフし、前記交流信号に含まれる高調波成分を低減するように動作することを特徴とする電力変換器。   The semiconductor switching element is turned on and off with a harmonic compensation signal generated by the control device according to any one of claims 1 to 4 as a command value to reduce harmonic components included in the AC signal. A power converter characterized by operating.
JP2017074877A 2017-04-05 2017-04-05 Power converter and its control device Active JP6848622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017074877A JP6848622B2 (en) 2017-04-05 2017-04-05 Power converter and its control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017074877A JP6848622B2 (en) 2017-04-05 2017-04-05 Power converter and its control device

Publications (2)

Publication Number Publication Date
JP2018182811A true JP2018182811A (en) 2018-11-15
JP6848622B2 JP6848622B2 (en) 2021-03-24

Family

ID=64276203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017074877A Active JP6848622B2 (en) 2017-04-05 2017-04-05 Power converter and its control device

Country Status (1)

Country Link
JP (1) JP6848622B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742759A (en) * 2019-01-08 2019-05-10 南京理工大学 A kind of PR harmonic compensation method based on fundamental wave dq coordinate system
CN110098774A (en) * 2019-05-21 2019-08-06 上海大郡动力控制技术有限公司 Electric machine controller dead-time compensation method based on current forecasting
CN112271912A (en) * 2020-11-10 2021-01-26 青岛鼎信通讯股份有限公司 Active damping method for inhibiting dead zone harmonic waves on low-voltage side of power electronic transformer
CN112798846A (en) * 2020-12-29 2021-05-14 联合汽车电子有限公司 Harmonic current detection system and method for vehicle motor controller

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088160A (en) * 2001-09-10 2003-03-20 Nissan Motor Co Ltd Motor controller
JP2004312864A (en) * 2003-04-07 2004-11-04 Nissan Motor Co Ltd Motor controller
US20050029982A1 (en) * 2003-08-05 2005-02-10 Stancu Constantin C. Methods and apparatus for current control of a three-phase voltage source inverter in the overmodulation region
JP2008234298A (en) * 2007-03-20 2008-10-02 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor power conversion device
JP2010063221A (en) * 2008-09-02 2010-03-18 Toyota Industries Corp Motor controller
JP2011211875A (en) * 2010-03-30 2011-10-20 Daihen Corp System interconnection inverter device
CN103683288A (en) * 2013-12-11 2014-03-26 哈尔滨工业大学 Parallel active filter based on modularization multi-level converter and control method of parallel active filter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088160A (en) * 2001-09-10 2003-03-20 Nissan Motor Co Ltd Motor controller
JP2004312864A (en) * 2003-04-07 2004-11-04 Nissan Motor Co Ltd Motor controller
US20050029982A1 (en) * 2003-08-05 2005-02-10 Stancu Constantin C. Methods and apparatus for current control of a three-phase voltage source inverter in the overmodulation region
JP2008234298A (en) * 2007-03-20 2008-10-02 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor power conversion device
JP2010063221A (en) * 2008-09-02 2010-03-18 Toyota Industries Corp Motor controller
JP2011211875A (en) * 2010-03-30 2011-10-20 Daihen Corp System interconnection inverter device
CN103683288A (en) * 2013-12-11 2014-03-26 哈尔滨工业大学 Parallel active filter based on modularization multi-level converter and control method of parallel active filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742759A (en) * 2019-01-08 2019-05-10 南京理工大学 A kind of PR harmonic compensation method based on fundamental wave dq coordinate system
CN110098774A (en) * 2019-05-21 2019-08-06 上海大郡动力控制技术有限公司 Electric machine controller dead-time compensation method based on current forecasting
CN112271912A (en) * 2020-11-10 2021-01-26 青岛鼎信通讯股份有限公司 Active damping method for inhibiting dead zone harmonic waves on low-voltage side of power electronic transformer
CN112798846A (en) * 2020-12-29 2021-05-14 联合汽车电子有限公司 Harmonic current detection system and method for vehicle motor controller
CN112798846B (en) * 2020-12-29 2024-03-19 联合汽车电子有限公司 Harmonic current detection system and method for vehicle motor controller

Also Published As

Publication number Publication date
JP6848622B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
JP6295782B2 (en) Power conversion device, power generation system, control device, and power conversion method
JP4766005B2 (en) Harmonic current compensator
JP6848622B2 (en) Power converter and its control device
JP4905777B2 (en) AC / AC direct converter controller
EP3109993A1 (en) Power conversion device control method
JP6060928B2 (en) Power conversion device, power conversion device control device, and power conversion device control method
JP5968564B2 (en) Power converter
JP2015201996A (en) Power conversion device, control device for power conversion device, and control method for power conversion device
JP5025295B2 (en) Semiconductor power converter
JP5888074B2 (en) Power converter
JP2006271075A (en) Control system for reactive power compensation device
JP6593843B2 (en) Parallel operation control method and parallel operation control device for three-phase inverter
KR101639825B1 (en) Apparatus for controlling current of inverter
JP5178670B2 (en) Power converter
KR20140041100A (en) Method for minimizing non-characteristic harmonics using observer pll of hvdc system
JP6226833B2 (en) Power converter
JP6776695B2 (en) Power converter
JP2013162543A (en) Power supply regeneration device, electric power conversion system, and power supply regeneration method
JP6392708B2 (en) Self-excited power converter
JP6180696B2 (en) Power converter
JP6756975B2 (en) Power converter controller
JP5637310B2 (en) Inverter device
JP6041250B2 (en) Grid interconnection device
JP2005086973A (en) Control unit for ac/ac direct conversion device
JP2009195059A (en) Power conversion method and power conversion apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200313

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6848622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250