JP2018180344A - Imaging optical system and video display device - Google Patents

Imaging optical system and video display device Download PDF

Info

Publication number
JP2018180344A
JP2018180344A JP2017080953A JP2017080953A JP2018180344A JP 2018180344 A JP2018180344 A JP 2018180344A JP 2017080953 A JP2017080953 A JP 2017080953A JP 2017080953 A JP2017080953 A JP 2017080953A JP 2018180344 A JP2018180344 A JP 2018180344A
Authority
JP
Japan
Prior art keywords
optical member
imaging optical
imaging
optical system
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017080953A
Other languages
Japanese (ja)
Other versions
JP7058382B2 (en
Inventor
前川 聡
Satoshi Maekawa
聡 前川
裕紹 山本
Hirotsugu Yamamoto
裕紹 山本
陶山 史朗
Shiro Suyama
史朗 陶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Parity Innovations Co Ltd
Original Assignee
Parity Innovations Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Parity Innovations Co Ltd filed Critical Parity Innovations Co Ltd
Priority to JP2017080953A priority Critical patent/JP7058382B2/en
Publication of JP2018180344A publication Critical patent/JP2018180344A/en
Application granted granted Critical
Publication of JP7058382B2 publication Critical patent/JP7058382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an imaging optical system in which a real mirror video is properly imaged and a degree of freedom in apparent design is enhanced.SOLUTION: An imaging optical system 1 includes an imaging optical member 2 which has an element flat surface 2S for partitioning one space from the other space and allows the light emitted from a projected object to penetrate for imaging an unmagnified video of the projected object, and a first optical member 3a and a second optical member 3b provided on both sides of the element flat surface 2S respectively. Incident light to the first optical member 3a and an outgoing light from the second optical member 3b are arranged for parity symmetry relationship except for advancing direction of beam. With this configuration, since a projected object (point light source o) focuses on a position p which is opposite to the element flat surface 2S, a real mirror video P can be imaged on the position. A physical interface that is viewed by an observer is a light outgoing surface of the globular second optical member 3b, and which can employ an arbitrary shape, for enhanced freedom degree in apparent design.SELECTED DRAWING: Figure 2

Description

本発明は、一方の空間に配置された被投影物の実鏡映像を他方の空間に結像する結像光学系及びそれを用いた映像表示装置に関する。   The present invention relates to an imaging optical system that images a real mirror image of a projection object disposed in one space in the other space, and an image display apparatus using the same.

ある空間を仕切る平面体の一方の面側に被投影物を配置し、他方の一面側の空間において面対称となる位置に、被投影物の鏡映像を結像させる光学素子が発案されている。この種のものとして、各々が互いに直交する2つの微小な鏡面(反射面)から成る2面コーナーリフレクタを複数、平面的に集合させた構造を有する光学素子が知られている(例えば、特許文献1参照)。   An optical element is proposed which arranges a projection object on one surface side of a flat body that divides a certain space, and forms a mirror image of the projection object at a position that is plane symmetric in the space on the other surface side. . As this type of optical element, there is known an optical element having a structure in which a plurality of two-surface corner reflectors each consisting of two minute mirror surfaces (reflecting surfaces) orthogonal to each other are collected in plan (for example, Patent Document 1).

上記特許文献1は、複数の2面コーナーリフレクタが一平面上に格子状に整列配置されて成る2面コーナーリフレクタアレイを有する光学素子を開示している。この光学素子では、2面コーナーリフレクタを成す各鏡面が、光学素子の素子平面に対して垂直に配置されている。そのため、素子平面の一方の面側に配置した被投影物から発せられた光は、光学素子を通過する際に2面コーナーリフレクタで2回反射されて屈曲し、被投影物がない他方の一面側の空間に実像として結像する。これにより、被投影物が、光学素子の素子平面に対して対称位置に存在するように、その実像が結像される。   The patent document 1 discloses an optical element having a dihedral corner reflector array in which a plurality of dihedral corner reflectors are arranged in a grid on one plane. In this optical element, each mirror surface which forms a biplanar corner reflector is disposed perpendicularly to the element plane of the optical element. Therefore, the light emitted from the projection object disposed on one side of the element plane is reflected twice by the two-surface corner reflector when passing through the optical element and is bent, and the other surface without the projection object Image as a real image in the space on the side. As a result, the real image is imaged such that the object to be projected exists at a symmetrical position with respect to the element plane of the optical element.

特開2011−191404号公報JP, 2011-191404, A

しかしながら、上記のような光学素子を用いた結像光学系では、物理的に存在する平坦な対称面を通して被投影物の面対称位置に実鏡映像が結像される。そのため、この実鏡映像が空中映像として観察されるとき、観察者から視認される物理的境界面は平坦面となり、結像光学系を用いた装置の外観設計の自由度が制限されている。ところが、物理的境界面を、例えば、曲面や球面といった非平坦面にすると、屈折の影響によって収差が発生し、実鏡映像を適切に結像させることが困難となる。   However, in an imaging optical system using an optical element as described above, a real mirror image is formed at a plane symmetrical position of a projection object through a flat plane of symmetry which physically exists. Therefore, when this real mirror image is observed as an aerial image, the physical boundary surface viewed by the observer is a flat surface, and the degree of freedom in the appearance design of the apparatus using the imaging optical system is limited. However, when the physical boundary surface is a non-flat surface such as a curved surface or a spherical surface, for example, aberration occurs due to the influence of refraction, and it becomes difficult to appropriately form a real mirror image.

本発明は、上記課題を解決するものであり、実鏡映像が適切に結像され、且つ観察者から視認される物理的境界面を非平坦面とすることができ、外観設計上の自由度を高くすることができる結像光学系及びそれを用いた映像表示装置を提供することを目的とする。   The present invention solves the above-mentioned problems, and a physical boundary surface in which a real mirror image is appropriately imaged and viewed from an observer can be a non-flat surface, and the degree of freedom in appearance design It is an object of the present invention to provide an imaging optical system that can make the image height high and an image display apparatus using the same.

上記課題を解決するため、本発明は、一方の空間に配置された被投影物の実鏡映像を他方の空間に結像する結像光学系であって、前記一方の空間と他方の空間とを仕切る素子平面を有し、被投影物から発せられた光を透過させて被投影物の等倍映像を結像させる結像光学部材と、前記素子平面の両側に夫々設けられた第1光学部材及び第2光学部材と、を備え、前記第1光学部材への入射光と前記第2光学部材からの出射光とが、光線の進行方向を除いてパリティ対称の関係となることを特徴とする。   In order to solve the above problems, the present invention is an imaging optical system which forms an image of a real mirror image of a projection object disposed in one space in the other space, and the one space and the other space An imaging optical member having an element plane for partitioning light and transmitting light emitted from the object to form an equal-magnification image of the object, and first optical elements respectively provided on both sides of the element plane A member and a second optical member, and the incident light to the first optical member and the outgoing light from the second optical member have a parity symmetry relationship except for the traveling direction of the light beam. Do.

上記結像光学系において、前記第1光学部材及び前記第2光学部材は、前記素子平面に対して物理的に面対称に配置されていることが好ましい。   In the image forming optical system, it is preferable that the first optical member and the second optical member are physically and symmetrically arranged with respect to the element plane.

上記結像光学系において、前記第2光学部材のうち観察者から視認される物理的境界面が非平坦面であることが好ましい。   In the above-mentioned image forming optical system, it is preferable that a physical boundary surface visually recognized by an observer among the second optical members is a non-flat surface.

上記結像光学系において、前記結像光学部材は、屈折、反射又は回折光学系のいずれか又はそれらの組み合わせにより被投影物の実鏡映像を結像させる一又は複数の光学素子の組み合わせから構成されることが好ましい。   In the above imaging optical system, the imaging optical member is formed of a combination of one or more optical elements for forming a real mirror image of an object to be projected by any one or a combination of refractive, reflective or diffractive optical systems. Preferably.

上記結像光学系において、前記結像光学部材は、互いに略垂直に配置された2つの反射面から成る2面コーナーリフレクタを複数並べた2面コーナーリフレクタアレイであることが好ましい。   In the image forming optical system, the image forming optical member is preferably a two-surface corner reflector array in which a plurality of two-surface corner reflectors composed of two reflecting surfaces disposed substantially perpendicular to each other are arranged.

上記結像光学系において、前記結像光学部材は、前記素子面に対して垂直に配置されたスリットミラーを複数平行に並べて形成した2以上のスリットミラーアレイを、前記スリットミラーの並びが互いに直交するように向かい合わせて構成された積層スリットミラーアレイであってもよい。   In the image forming optical system, the image forming optical member has two or more slit mirror arrays formed by arranging in parallel a plurality of slit mirrors arranged perpendicularly to the element surface, and the array of the slit mirrors is orthogonal to each other It may be a laminated slit mirror array configured to face each other.

上記結像光学系において、前記結像光学部材は、入射光を透過及び反射させるビームスプリッタと、前記ビームスプリッタで反射された光を再帰反射させるレトロリフレクタと、を有するものであってもよい。   In the imaging optical system, the imaging optical member may include a beam splitter that transmits and reflects incident light, and a retroreflector that retroreflects light reflected by the beam splitter.

上記結像光学系において、前記結像光学部材は、前記素子平面に垂直な光軸を有するアフォーカルレンズを複数並べたアフォーカルレンズアレイであってもよい。   In the imaging optical system, the imaging optical member may be an afocal lens array in which a plurality of afocal lenses having an optical axis perpendicular to the element plane are arranged.

上記結像光学系は、映像表示装置に用いられることが好ましい。   The imaging optical system is preferably used for an image display device.

本発明によれば、被投影物は、素子平面とは反対側の位置に集光するので、この位置で実鏡映像を結像させることができる。また、観察者から視認される物理的境界面は、球形状の第2光学部材の光出射面であり、これには任意の形状を採用できるので、外観設計上の自由度を高くすることができる。   According to the present invention, the object to be projected is condensed at a position opposite to the element plane, so that a real mirror image can be formed at this position. In addition, the physical boundary surface visually recognized by the observer is the light exit surface of the spherical second optical member, and any shape can be adopted for this, so the degree of freedom in appearance design can be increased. it can.

本発明の第1の実施形態に係る結像光学系を用いた映像表示装置の構成例を示す概略斜視図。FIG. 1 is a schematic perspective view showing a configuration example of an image display apparatus using an image forming optical system according to a first embodiment of the present invention. 上記映像表示装置の側断面図。The side sectional view of the above-mentioned picture display device. 上記結像光学系に用いられる結像光学部材の構成例を示す概略斜視図。FIG. 5 is a schematic perspective view showing a configuration example of an imaging optical member used in the imaging optical system. (a)(b)は結像光学部材による結像様式を模式的に示す図。(A) and (b) are figures which show the imaging mode by an imaging optical member typically. (a)(b)は上記結像光学部材として2面コーナーリフレクタアレイの構成例を示す斜視図。(A) and (b) are perspective views which show the structural example of a 2 surface corner reflector array as said imaging optical member. 上記結像光学部材として用いられる積層スリットミラーアレイの構成例を示す斜視図。FIG. 7 is a perspective view showing a configuration example of a laminated slit mirror array used as the imaging optical member. (a)(b)は上記結像光学系の結像原理を説明するための側面図。(A) and (b) are side views for demonstrating the imaging principle of the said imaging optical system. 上記実施形態の変形例に係る結像光学系の構成例を概念的に示す側面図。The side view which shows notionally the structural example of the imaging optical system which concerns on the modification of the said embodiment. 上記実施形態の変形例に係る結像光学系の構成例を概念的に示す側面図。The side view which shows notionally the structural example of the imaging optical system which concerns on the modification of the said embodiment. (a)乃至(c)は上記実施形態の別の変形例に係る結像光学系の構成例及び表示原理を概念的に示す側面図。(A) thru | or (c) is a side view which shows notionally the structural example and display principle of the imaging optical system which concern on another modification of the said embodiment. (a)は本発明の第3の実施形態に係る結像光学系の構成例を概念的に示す側面図、(b)は上記結像光学系に用いられる結像光学部材としてアフォーカルレンズアレイの構成例を概略的に示す側面図。(A) is a side view which shows notionally the structural example of the imaging optical system which concerns on the 3rd Embodiment of this invention, (b) is an afocal lens array as an imaging optical member used for the said imaging optical system The side view showing roughly the example of composition of a.

本発明の第1の実施形態に係る結像光学系及びそれを用いた映像表示装置について、図1乃至図7を参照して説明する。図1及び図2に示すように、本実施形態の映像表示装置10は、上面に開口部11を有する箱体12と、開口部11に取り付けられた結像光学部材2と、箱体12の内部空間に設けられた映像表示部13と、を備える。結像光学部材2は、一方の空間(箱体12の内部空間)と他方の空間(箱体12の外部空間)とを仕切る素子平面2Sを有し、被投影物から発せられた光を透過させて被投影物の等倍映像を結像させる。また、映像表示装置10は、結像光学部材2の素子平面2Sの両側に夫々設けられた第1光学部材3a及び第2光学部材3bを備える。本実施形態の映像表示装置10に適用される結像光学系1は、主として結像光学部材2、第1光学部材3a及び第2光学部材3bにより構成される。   An imaging optical system and an image display apparatus using the same according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 7. As shown in FIGS. 1 and 2, the image display apparatus 10 according to the present embodiment includes a box 12 having an opening 11 on the upper surface, an imaging optical member 2 attached to the opening 11, and a box 12. And a video display unit 13 provided in the internal space. The imaging optical member 2 has an element plane 2S that divides one space (the inner space of the box 12) and the other space (the outer space of the box 12), and transmits light emitted from the object to be projected To form an equal-magnification image of the object to be projected. The image display apparatus 10 further includes a first optical member 3 a and a second optical member 3 b provided on both sides of the element plane 2 S of the imaging optical member 2. The imaging optical system 1 applied to the image display apparatus 10 of the present embodiment is mainly configured by the imaging optical member 2, the first optical member 3a and the second optical member 3b.

結像光学部材2は、透光性を有する平面板であり、箱体12の内部空間にある被投影物から発せられた光を透過させる際に、屈折、反射又は回折光学系のいずれか又はそれらの組み合わせにより、他方の空間に被投影物の等倍実像を結像させる。   The imaging optical member 2 is a flat plate having translucency, and when transmitting light emitted from an object to be projected in the internal space of the box 12, any one of a refraction, reflection, and diffraction optical system or By combining them, an equal-magnification real image of the object to be projected is formed in the other space.

本実施形態では、第1光学部材3a及び第2光学部材3bとして、2つの透明球体が、一素子平面2Sに対して面対称に設けられている。図例の第1光学部材3a及び第2光学部材3b、互いに同じ屈折率の材料から形成され、いずれも同形状且つ同サイズであるものとする。また、一方の第1光学部材3aが、箱体12内において映像表示部13と正対する位置に設けられ、他方の第2光学部材3bが、第1光学部材3aと素子平面2Sに対して物理的に面対称に配置されている。   In the present embodiment, two transparent spheres are provided as the first optical member 3a and the second optical member 3b in plane symmetry with respect to the one-element plane 2S. The first optical member 3a and the second optical member 3b in the illustrated example are formed of materials having the same refractive index, and all have the same shape and the same size. In addition, one first optical member 3a is provided at a position facing the image display unit 13 in the box 12, and the other second optical member 3b is physically present with respect to the first optical member 3a and the element plane 2S. Are arranged in plane symmetry.

映像表示部13は、例えば、液晶ディスプレイ装置が用いられ、箱体12内において所定の傾斜姿勢で保持されている。また、映像表示部13には、図示したように、所定の映像(ここでは、文字「A」)が上下反転した倒立姿勢で表示されている(図2では点光源oに相当)。箱体12は、結像光学部材2、映像表示部13、第1光学部材3a及び第2光学部材3bの位置関係を保持できれば、図示した構成例に限られず、また、箱形状に限らず、任意の形状が採用され得る。   The image display unit 13 uses, for example, a liquid crystal display device, and is held in a predetermined inclined posture in the box 12. Further, as shown in the figure, on the image display unit 13, a predetermined image (here, the letter "A") is displayed in an inverted posture upside down (corresponding to the point light source o in FIG. 2). The box 12 is not limited to the illustrated configuration example as long as the box 12 can maintain the positional relationship between the imaging optical member 2, the image display unit 13, the first optical member 3a, and the second optical member 3b. Any shape may be employed.

図1及び図2で示した構成例では、映像表示部13から出射された光は、第1光学部材3aを屈折透過した後、結像光学部材2により屈曲反射され、更に第2光学部材3bを屈折透過して、実鏡映像を結像させる。観察者は、第2光学部材3bの斜め上方位置(図2では位置pに相当)に視点を置いて第2光学部材3bを覗き込んだ際に、文字「A」の実鏡映像を空中映像として視認することができる。   In the configuration example shown in FIGS. 1 and 2, the light emitted from the image display unit 13 is refracted and transmitted by the first optical member 3a, and then bent and reflected by the imaging optical member 2, and further the second optical member 3b. Through the lens to form a real mirror image. When the observer looks into the second optical member 3b with the viewpoint set at the obliquely upper position of the second optical member 3b (corresponding to the position p in FIG. 2), the viewer sees a real mirror image of the letter "A" It can be viewed as

本実施形態の結像光学系1で用いられる結像光学部材2には、図3に示すように、基盤21に対して垂直で且つ互いに略直交した反射面(垂直面22、23)から成る2面コーナーリフレクタ20を複数並べた2面コーナーリフレクタアレイ20Sが好適に用いられる。2面コーナーリフレクタアレイ20Sは、複数の2面コーナーリフレクタ20が基盤21の一平面上に格子状に整列配置されて構成されている。   The imaging optical member 2 used in the imaging optical system 1 of the present embodiment, as shown in FIG. 3, comprises reflecting surfaces (vertical surfaces 22 and 23) perpendicular to the base 21 and substantially orthogonal to each other. A two-surface corner reflector array 20S in which a plurality of two-surface corner reflectors 20 are arranged is preferably used. The two-surface corner reflector array 20S is configured by arranging a plurality of two-surface corner reflectors 20 in a grid shape on one plane of the base 21.

2面コーナーリフレクタアレイ20Sを用いた結像光学部材2は、その一方の面側に被投影物Oが配置されたとき、被投影物Oの実像(実鏡映像P)を結像光学部材2の素子平面2Sの他方の面側の空間に結像させる。すなわち、結像光学部材2は、その素子平面2Sを対称面とする面対称位置に、被投影物Oの実鏡映像Pを結像させる。素子平面2Sは、2面コーナーリフレクタ20を構成する2つの垂直面22、23と直交する仮想的な平面である。なお、結像光学部材2の全体の大きさがcm又はmオーダーであるのに比べて、2面コーナーリフレクタ20はμmオーダーと微細であり、図3では、2面コーナーリフレクタ20の集合体を、V字形状で概念的に示している。   When the projection object O is disposed on one surface side of the imaging optical member 2 using the dihedral corner reflector array 20S, the imaging optical member 2 is a real image (real mirror image P) of the projection object O. The image is formed in the space on the other surface side of the element plane 2S. That is, the imaging optical member 2 forms an image of the real mirror image P of the projection object O at a plane symmetrical position where the element plane 2S is a plane of symmetry. The element plane 2S is a virtual plane orthogonal to the two vertical planes 22 and 23 constituting the two-face corner reflector 20. Note that the two-surface corner reflector 20 is finer than the overall size of the imaging optical member 2 in the cm or m order, and in the μm order, and in FIG. It has shown notionally with V shape.

2面コーナーリフレクタアレイ20Sによる結像様式について、図4(a)(b)を参照して説明する。なお、図4(a)では、被投影物として点光源oから発せられた光は、3次元的には紙面奥側から紙面手前側へ進行するものとする。点光源oから発せられた光(実線矢印)は、結像光学部材2(図4(a)では省略)を通過する際に、2面コーナーリフレクタ20を構成する一方の鏡面(垂直面22)で反射して、他方の鏡面(垂直面23)で反射した後、素子平面2S(図4(b)参照)を透過する。このようにして結像光学部材2から出射された光(一点鎖線矢印)は、素子平面2Sに対して点光源oの面対称位置p広がりながら通過する。すなわち、点光源oの素子平面2Sに対する面対称位置pに、結像光学部材2の透過光が集束し、実鏡映像P(図3参照)として結像する。   The imaging mode by the two-surface corner reflector array 20S will be described with reference to FIGS. 4 (a) and 4 (b). In FIG. 4A, light emitted from the point light source o as an object to be projected travels three-dimensionally from the back side to the front side of the paper surface. The light (solid arrow) emitted from the point light source o passes through the imaging optical member 2 (not shown in FIG. 4A), and one mirror surface (vertical surface 22) that constitutes the two-faced corner reflector 20 , And is reflected by the other mirror surface (vertical surface 23), and then passes through the element plane 2S (see FIG. 4B). The light emitted from the imaging optical member 2 in this manner (one-dot and dash line arrow) passes through the element plane 2S while expanding the plane symmetrical position p of the point light source o. That is, the transmitted light of the imaging optical member 2 is focused at a plane symmetrical position p of the point light source o with respect to the element plane 2S, and forms an image as a real mirror image P (see FIG. 3).

2面コーナーリフレクタアレイ20Sを用いた結像光学部材2としては、例えば、図5(a)に示すように、透明材料により形成されて一平面を成す基盤21上に、複数の透明四角柱形状の突状部2Aを格子状に並べて、この突状部2Aの隣接する2つの外側面を鏡面(垂直面22、23)としたものが挙げられる。なお、突状部2Aは、図例の四角柱に限られず、例えば、角錐台形形状等であってもよい。また、図5(b)に示すように、基盤21に四角い穴2Bを複数格子状に形成し、この穴2Bの隣接する2つの内側面を反射面(垂直面22、23)としたものであってもよい。   For example, as shown in FIG. 5A, as the imaging optical member 2 using the dihedral corner reflector array 20S, a plurality of transparent quadrangular prism shapes are formed on a substrate 21 formed of a transparent material and forming a plane. The protrusions 2A are arranged in a lattice, and two adjacent outer surfaces of the protrusions 2A are mirror surfaces (vertical surfaces 22 and 23). The protruding portion 2A is not limited to the quadrangular prism in the illustrated example, and may have, for example, a truncated pyramid shape or the like. Further, as shown in FIG. 5B, a plurality of square holes 2B are formed in the base 21 in a lattice shape, and the two inner side surfaces adjacent to the holes 2B are used as reflection surfaces (vertical surfaces 22 and 23). It may be.

また、図6に示すように、結像光学部材2は、素子平面2Sに対して垂直に配置されたスリットミラー24、25を複数平行に並べて形成した2以上のスリットミラーアレイ24S、25Sを、スリットミラー24、25の並びが互いに直交するように向かい合わせて構成された積層スリットミラーアレイ26であってもよい。   Further, as shown in FIG. 6, the imaging optical member 2 includes two or more slit mirror arrays 24S, 25S formed by arranging in parallel a plurality of slit mirrors 24, 25 arranged perpendicularly to the element plane 2S, It may be a laminated slit mirror array 26 in which the slit mirrors 24 and 25 are arranged to face each other so that the alignments thereof are orthogonal to each other.

結像光学系1が、結像光学部材2のみである場合、上記図4(b)で説明した場合と同様に、点光源oから発せられた光(実線矢印)は、結像光学部材2を通過する際に、2面コーナーリフレクタ20で反射した後、素子平面2Sを透過し、結像光学部材2から出射された光は、素子平面2Sに対して点光源oの面対称位置pを広がりながら通過する。そして、点光源oの素子平面2Sに対する面対称位置pで集束した光によって、実鏡映像P(図3参照)が結像される。   When the imaging optical system 1 is only the imaging optical member 2, the light (solid arrow) emitted from the point light source o is the same as the case described in FIG. After being reflected by the two-surface corner reflector 20, the light transmitted through the element plane 2S and emitted from the imaging optical member 2 has a plane symmetrical position p of the point light source o with respect to the element plane 2S. Pass while spreading. Then, a real mirror image P (see FIG. 3) is formed by the light focused at the plane symmetrical position p with respect to the element plane 2S of the point light source o.

ここで、図7(a)に示すように、点光源oの光線の進行方向に第1光学部材3aのみを配置すると、点光源oから発せられた光は、第1光学部材3aを通過する際に屈折する。図例の第1光学部材3aの外面形状は凸状なので、第1光学部材3aから出射される光は集光的に屈折されて結像光学部材2に入射し、結像光学部材2で反射される際には分散するので、面対称の位置p’では集束しない。従って、この場合、実鏡映像は結像されない。   Here, as shown in FIG. 7A, when only the first optical member 3a is disposed in the traveling direction of the ray of the point light source o, the light emitted from the point light source o passes through the first optical member 3a. Refraction when. Since the outer surface shape of the first optical member 3 a in the illustrated example is convex, the light emitted from the first optical member 3 a is refractively refracted and enters the imaging optical member 2 and is reflected by the imaging optical member 2. Because they are dispersed when being focused, they do not converge at the plane-symmetrical position p '. Therefore, in this case, a real mirror image is not formed.

一方、図7(b)に示すように、第2光学部材3bを、結像光学部材2の素子平面2Sを挟む第1光学部材3aの面対称位置に設けると、第2光学部材3bから出射される光は集光的に屈折される。第1光学部材3a及び第2光学部材3bは、同じ屈折率の材料から形成されており、いずれも同形状且つ同サイズなので、第1光学部材3aへ入射する光と、第2光学部材3bから出射する光とは、光線の進行方向を除いてパリティ対称の関係となる。そのため、第2光学部材3bから出射される光は、面対称位置pでは集束する。その結果、点光源oの素子平面2Sに対する面対称位置pに実鏡映像P(図3参照)が結像される。なお、「パリティ対称」とは、いわゆる「鏡映対称」を意味するが、対称面となる鏡面を必ずしも必要としないので、ここでは鏡映対称と明示的に区別してパリティ対称と呼ぶものとする。   On the other hand, as shown in FIG. 7B, when the second optical member 3b is provided at the plane symmetrical position of the first optical member 3a sandwiching the element plane 2S of the imaging optical member 2, the light is emitted from the second optical member 3b. The light being collected is refractively condensed. The first optical member 3a and the second optical member 3b are formed of materials having the same refractive index, and since both have the same shape and the same size, the light incident on the first optical member 3a and the second optical member 3b The outgoing light has a parity symmetry relationship except for the traveling direction of the light beam. Therefore, the light emitted from the second optical member 3b is focused at the plane symmetrical position p. As a result, a real mirror image P (see FIG. 3) is formed at the plane symmetrical position p of the point light source o with respect to the element plane 2S. Note that "parity symmetry" means so-called "mirror symmetry", but does not necessarily require a mirror surface to be a symmetry plane, so it is referred to as parity symmetry here by explicitly distinguishing it from mirror symmetry. .

本実施形態の結像光学系1によれば、観察者から視認される物理的境界面は、球形状の第2光学部材3bの光出射面であり、これを非平坦面を含む任意の形状とすることができる。従って、従来の物理的境界面が平坦面であるものに限らず、外観設計上の自由度を高くすることができ、且つ実鏡映像を適切に結像させることができる。   According to the imaging optical system 1 of the present embodiment, the physical boundary surface visually recognized by the observer is the light emission surface of the spherical second optical member 3b, and any shape including the non-flat surface is used. It can be done. Therefore, the conventional physical boundary surface is not limited to a flat surface, and the degree of freedom in appearance design can be increased, and a real mirror image can be appropriately imaged.

実鏡映像が結像される条件は、被投影物から発せられ第1光学部材3aへ入射する光と、結像光学部材2の透過を経て、第2光学部材3bから出射する光とが、光線の進行方向を除いてパリティ対称の関係となることである。上記実施形態では、第1光学部材3a及び第2光学部材3bとして、球状体の構成例を挙げたが、図7(a)(b)に示したように、第1光学部材3a及び第2光学部材3bは、上記の関係が満たされれば、例えば、楕円形状であってもよく、上記実施形態のような球状体に限られない。また、第1光学部材3a及び第2光学部材3bの外面は凸状形状に限らず、凹状形状であってもよい。   The conditions under which the real mirror image is formed include light emitted from the object to be projected and incident on the first optical member 3a, and light transmitted through the imaging optical member 2 and emitted from the second optical member 3b. It is a relation of parity symmetry except for the traveling direction of the ray. Although the example of a structure of a spherical body was mentioned as the 1st optical member 3a and the 2nd optical member 3b in the above-mentioned embodiment, as shown in Drawing 7 (a) (b), the 1st optical member 3a and the 2nd The optical member 3b may have, for example, an elliptical shape as long as the above relationship is satisfied, and is not limited to the spherical body as in the above embodiment. Further, the outer surfaces of the first optical member 3a and the second optical member 3b are not limited to the convex shape, but may be a concave shape.

図8に示す変形例のように、第1光学部材3a及び第2光学部材3bの外面は、例えば、凹凸が波打った形状であってもよい。本変形例においても、点光源o(被投影物)から発せられた光が一方の第1光学部材3aを透過した更に屈折されても、結像光学部材2で反射された後に、他方の第2光学部材3bにより再び屈折されるので、面対称位置pで集束し、実鏡映像P(図3参照)を結像させることができる。また、第1光学部材3a及び第2光学部材3bは、結像光学部材2の素子平面2Sの両側に1個づつの構成例に限られず、各々2個以上であってもよい。更に、第1光学部材3aへの入射光と第2光学部材3bからの出射光とが、光線の進行方向を除いてパリティ対称の関係となれば、第1光学部材3a及び第2光学部材3bが、互いに異なる形状であっても、個数が異なっていてもよく、必ずしも素子平面2Sに対して物理的に面対称に配置されていなくてもよい。   As in the modification shown in FIG. 8, the outer surfaces of the first optical member 3 a and the second optical member 3 b may have, for example, a corrugated shape. Also in this modification, even if the light emitted from the point light source o (object to be projected) is further refracted after passing through the one first optical member 3a, after being reflected by the imaging optical member 2, the other Since the light is refracted again by the two optical members 3b, it is possible to focus at the plane symmetrical position p and to form a real mirror image P (see FIG. 3). Further, the first optical member 3a and the second optical member 3b are not limited to the configuration example one on each side of the element plane 2S of the imaging optical member 2, and may be two or more. Furthermore, if the incident light to the first optical member 3a and the outgoing light from the second optical member 3b have a parity symmetry relationship except for the traveling direction of the light beam, the first optical member 3a and the second optical member 3b However, even if they have different shapes, they may be different in number, and they do not necessarily have to be physically arranged in plane symmetry with respect to the element plane 2S.

また、第1光学部材3a(又は第2光学部材3b)の一部又は全部が、物理的配置としては結像光学部材2の素子平面2Sに対して面対称ではないが、虚像を考慮すると面対称配置されていてもよい。具体的には、図9に示す変形例のように、被投影物(ここでは点光源o)からの光が、ミラー31で反射されて第1光学部材3aに入射する場合、点光源oと光が集束する位置pとは面対称とはならないが、ミラー31による点光源oの虚像位置o’は、位置pと面対称となる。   In addition, although a part or all of the first optical member 3a (or the second optical member 3b) is not physically symmetrical with respect to the element plane 2S of the imaging optical member 2 as a physical arrangement, it is a plane in consideration of a virtual image. It may be arranged symmetrically. Specifically, as in the modified example shown in FIG. 9, when light from a projection target (here, point light source o) is reflected by the mirror 31 and is incident on the first optical member 3a, the point light source o The virtual image position o ′ of the point light source o due to the mirror 31 is in plane symmetry with the position p, although it is not plane symmetrical with the position p where the light is focused.

このように、上記実施形態及び上記変形例の結像光学系によれば、結像光学部材2の素子平面2Sを挟む第1光学部材3aの面対称位置に、第2光学部材3bを設けない場合には、実鏡映像が結像されず、第2光学部材3bを設けた場合にのみ、実鏡映像が結像される。また、第2光学部材3bは、第1光学部材3aと対応するものが設けられた場合に、実鏡映像が結像される。   As described above, according to the imaging optical system of the embodiment and the modification, the second optical member 3b is not provided at the plane symmetrical position of the first optical member 3a sandwiching the element plane 2S of the imaging optical member 2. In this case, the real mirror image is not formed, and the real mirror image is formed only when the second optical member 3 b is provided. When the second optical member 3b is provided to correspond to the first optical member 3a, a real mirror image is formed.

次に、本発明の第2の実施形態に係る結像光学系の構成例及び表示原理について、図10を参照して説明する。本実施形態の結像光学系1では、結像光学部材2として、入射する光を透過及び反射させるビームスプリッタ27と、ビームスプリッタ27で反射された光を再帰反射させるレトロリフレクタ28と、を有するものが用いられる。他の構成は、上記実施形態と同様である。   Next, a configuration example and display principle of an image forming optical system according to a second embodiment of the present invention will be described with reference to FIG. The imaging optical system 1 according to the present embodiment includes, as the imaging optical member 2, a beam splitter 27 for transmitting and reflecting incident light, and a retroreflector 28 for retroreflecting light reflected by the beam splitter 27. Are used. The other configuration is the same as the above embodiment.

本実施形態では、点光源oから出射された光は、ビームスプリッタ27で反射光と透過光に分かれる。反射光は、レトロリフレクタ28で再帰反射し、ビームスプリッタ27を透過した光が、ビームスプリッタ27(本実施形態での素子平面2S)に対して点光源oと面対称位置pに結像する。なお、本実施形態でも、第1光学部材3aのみを配置した場合、面対称の位置p’では集束せず、実鏡映像は結像されない(不図示)。一方、第2光学部材3bを、ビームスプリッタ27(素子平面2S)を挟む第1光学部材3aの面対称位置に設けると、面対称位置pで集束するので、実鏡映像P(図3参照)が結像される。   In the present embodiment, the light emitted from the point light source o is split by the beam splitter 27 into reflected light and transmitted light. The reflected light is retroreflected by the retroreflector 28, and the light transmitted through the beam splitter 27 forms an image at a point P with a point light source o with respect to the beam splitter 27 (element plane 2S in this embodiment). Also in the present embodiment, when only the first optical member 3a is disposed, focusing is not performed at the plane-symmetrical position p ', and a real mirror image is not formed (not shown). On the other hand, when the second optical member 3b is provided at the plane-symmetrical position of the first optical member 3a sandwiching the beam splitter 27 (element plane 2S), it converges at the plane-symmetrical position p, so the real mirror image P (see FIG. 3) Is imaged.

次に、本発明の第3の実施形態に係る結像光学系の構成例について、図11(a)(b)を参照して説明する。本実施形態の結像光学系1では、結像光学部材2として、所定の素子平面2Sに垂直な光軸を有するアフォーカルレンズ4を複数並べたアフォーカルレンズアレイ4Sが用いられる。アフォーカルレンズ4は、例えば、素子平面2Sに対して垂直な光軸gを有しそれぞれの焦点距離を隔てて配置した2つのレンズ4a、4bにより構成される。アフォーカルレンズ4の具体的な構成例としては、凸レンズや、光ファイバレンズ等が採用される。素子平面2Sの一方側からレンズ4aに入射した光は、それぞれ対をなす他方側のレンズ4bから出射して、点光源oとは素子平面2Sに対して面対称となる位置pに集光する。従って、上記実施形態及び変形例と同様に、点光源oと面対称位置pに実鏡映像P(図3参照)を結像させることができる。   Next, a configuration example of an imaging optical system according to a third embodiment of the present invention will be described with reference to FIGS. 11 (a) and 11 (b). In the imaging optical system 1 of the present embodiment, an afocal lens array 4S in which a plurality of afocal lenses 4 having an optical axis perpendicular to a predetermined element plane 2S are arranged is used as the imaging optical member 2. The afocal lens 4 is composed of, for example, two lenses 4a and 4b which have an optical axis g perpendicular to the element plane 2S and which are disposed at respective focal distances. As a specific configuration example of the afocal lens 4, a convex lens, an optical fiber lens or the like is adopted. The light incident on the lens 4a from one side of the element plane 2S is respectively emitted from the lens 4b on the other side forming a pair, and is condensed at a position p that is plane symmetrical with the point light source o with respect to the element plane 2S. . Therefore, the real mirror image P (see FIG. 3) can be formed at the point light source o and the plane symmetrical position p as in the above embodiment and modification.

本発明は、上記実施形態及び各種変形例に限られず、種々変形が可能である。上記実施形態及び変形例では、本発明の主たる構成である結像光学部材2、映像表示部13及び第1光学部材3a及び第2光学部材3bの構成例を示したが、本発明に係る結像光学系は、装置外面には、第2光学部材3bの光出射面のみが露出するようなケーシング(不図示)に内装されていてもよい。また、このケーシングや、上記実施形態で示した箱体12(図1参照)は、第1光学部材3a及び第2光学部材3bを適宜に取り換え可能なように構成されていてもよい。   The present invention is not limited to the above embodiment and various modifications, and various modifications are possible. In the above-described embodiment and modification, the configuration example of the imaging optical member 2, the image display unit 13, the first optical member 3a, and the second optical member 3b, which are the main components of the present invention, has been described. The imaging optical system may be mounted on a casing (not shown) such that only the light exit surface of the second optical member 3b is exposed on the outer surface of the apparatus. Moreover, this casing and the box 12 (refer FIG. 1) shown by the said embodiment may be comprised so that the 1st optical member 3a and the 2nd optical member 3b can be replaced | exchanged suitably.

1 結像光学系
10 映像表示装置
2 結像光学部材
2S 素子平面
20 2面コーナーリフレクタ
20S 2面コーナーリフレクタアレイ
22、23 垂直面(反射面)
24、25 スリットミラー
24S、25S スリットミラーアレイ
26 積層スリットミラーアレイ
27 ビームスプリッタ
28 レトロリフレクタ
4 アフォーカルレンズ
4S アフォーカルレンズアレイ
O 被投影物
P 実鏡映像
DESCRIPTION OF SYMBOLS 1 imaging optical system 10 image display apparatus 2 imaging optical member 2S element plane 20 2 plane corner reflector 20S 2 plane corner reflector array 22 and 23 perpendicular surface (reflection surface)
24, 25 Slit mirror 24S, 25S Slit mirror array 26 Multilayer slit mirror array 27 Beam splitter 28 Retro reflector 4 Afocal lens 4S Afocal lens array O Projected object P Real mirror image

Claims (9)

一方の空間に配置された被投影物の実鏡映像を他方の空間に結像する結像光学系であって、
前記一方の空間と他方の空間とを仕切る素子平面を有し、被投影物から発せられた光を透過させて被投影物の等倍映像を結像させる結像光学部材と、前記素子平面の両側に夫々設けられた第1光学部材及び第2光学部材と、を備え、
前記第1光学部材への入射光と前記第2光学部材からの出射光とが、光線の進行方向を除いてパリティ対称の関係となることを特徴とする結像光学系。
An imaging optical system for imaging a real mirror image of a projection object disposed in one space in the other space, comprising:
An imaging optical member having an element plane for dividing the one space from the other space, transmitting light emitted from the object to form an equal-magnification image of the object, and A first optical member and a second optical member respectively provided on both sides;
An imaging optical system, wherein incident light to the first optical member and outgoing light from the second optical member have a parity symmetry relationship except for the traveling direction of a light beam.
前記第1光学部材及び前記第2光学部材は、前記素子平面に対して物理的に面対称に配置されていることを特徴とする請求項1に記載の結像光学系。   The image forming optical system according to claim 1, wherein the first optical member and the second optical member are arranged in plane symmetry physically with respect to the element plane. 前記第2光学部材のうち観察者から視認される物理的境界面が非平坦面であることを特徴とする請求項1に記載の結像光学系。   The imaging optical system according to claim 1, wherein a physical boundary surface visually recognized by an observer among the second optical members is a non-flat surface. 前記結像光学部材は、屈折、反射又は回折光学系のいずれか又はそれらの組み合わせにより被投影物の実鏡映像を結像させる一又は複数の光学素子の組み合わせから構成されることを特徴とする請求項1乃至請求項3のいずれか一項に記載の結像光学系。   The imaging optical member is composed of a combination of one or more optical elements for imaging a real mirror image of an object to be projected by any one or combination of refractive, reflective or diffractive optical systems. The imaging optical system according to any one of claims 1 to 3. 前記結像光学部材は、互いに略垂直に配置された2つの反射面から成る2面コーナーリフレクタを複数並べた2面コーナーリフレクタアレイであることを特徴とする請求項4に記載の結像光学系。   The imaging optical system according to claim 4, wherein the imaging optical member is a two-surface corner reflector array in which a plurality of two-surface corner reflectors composed of two reflecting surfaces disposed substantially perpendicular to each other are arranged. . 前記結像光学部材は、前記素子面に対して垂直に配置されたスリットミラーを複数平行に並べて形成した2以上のスリットミラーアレイを、前記スリットミラーの並びが互いに直交するように向かい合わせて構成された積層スリットミラーアレイであることを特徴とする請求項4に記載の結像光学系。   The imaging optical member is configured such that two or more slit mirror arrays formed by arranging in parallel a plurality of slit mirrors arranged perpendicularly to the element surface face each other so that the array of the slit mirrors is orthogonal to each other 5. An imaging optical system according to claim 4, which is a laminated slit mirror array. 前記結像光学部材は、入射光を透過及び反射させるビームスプリッタと、前記ビームスプリッタで反射された光を再帰反射させるレトロリフレクタと、を有することを特徴とする請求項4に記載の結像光学系。   5. The imaging optics according to claim 4, wherein the imaging optical member has a beam splitter for transmitting and reflecting incident light, and a retroreflector for retroreflecting the light reflected by the beam splitter. system. 前記結像光学部材は、前記素子平面に垂直な光軸を有するアフォーカルレンズを複数並べたアフォーカルレンズアレイであることを特徴とする請求項4に記載の結像光学系。   5. The imaging optical system according to claim 4, wherein the imaging optical member is an afocal lens array in which a plurality of afocal lenses having an optical axis perpendicular to the element plane are arranged. 請求項1乃至請求項8のいずれか一項に記載の結像光学系を用いた映像表示装置。   An image display apparatus using the imaging optical system according to any one of claims 1 to 8.
JP2017080953A 2017-04-14 2017-04-14 Imaging optical system and image display device Active JP7058382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017080953A JP7058382B2 (en) 2017-04-14 2017-04-14 Imaging optical system and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017080953A JP7058382B2 (en) 2017-04-14 2017-04-14 Imaging optical system and image display device

Publications (2)

Publication Number Publication Date
JP2018180344A true JP2018180344A (en) 2018-11-15
JP7058382B2 JP7058382B2 (en) 2022-04-22

Family

ID=64275261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017080953A Active JP7058382B2 (en) 2017-04-14 2017-04-14 Imaging optical system and image display device

Country Status (1)

Country Link
JP (1) JP7058382B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009075483A (en) * 2007-09-21 2009-04-09 National Institute Of Information & Communication Technology Volume scanning type three-dimensional aerial video display
JP2009229905A (en) * 2008-03-24 2009-10-08 National Institute Of Information & Communication Technology Three-dimensional aerial image display
JP2014006462A (en) * 2012-06-27 2014-01-16 Hitachi Consumer Electronics Co Ltd Pinhole array and display device using the same
US20150153577A1 (en) * 2012-06-14 2015-06-04 Igor Nikitin Device for generating a virtual light image
JP2017026734A (en) * 2015-07-21 2017-02-02 コニカミノルタ株式会社 Aerial video display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009075483A (en) * 2007-09-21 2009-04-09 National Institute Of Information & Communication Technology Volume scanning type three-dimensional aerial video display
JP2009229905A (en) * 2008-03-24 2009-10-08 National Institute Of Information & Communication Technology Three-dimensional aerial image display
US20150153577A1 (en) * 2012-06-14 2015-06-04 Igor Nikitin Device for generating a virtual light image
JP2014006462A (en) * 2012-06-27 2014-01-16 Hitachi Consumer Electronics Co Ltd Pinhole array and display device using the same
JP2017026734A (en) * 2015-07-21 2017-02-02 コニカミノルタ株式会社 Aerial video display device

Also Published As

Publication number Publication date
JP7058382B2 (en) 2022-04-22

Similar Documents

Publication Publication Date Title
JP6217883B1 (en) Display device
KR101067941B1 (en) Optical system
JP5441059B2 (en) Multi-viewpoint aerial image display device
JP7177475B2 (en) Display device and display method of aerial image
JP5385080B2 (en) Display device
US5418584A (en) Retroreflective array virtual image projection screen
JP5252584B2 (en) Transmission optical system
JP5834430B2 (en) Display device
JPWO2008111426A1 (en) Multi-viewpoint aerial image display device
WO2007116639A1 (en) Imageing element and display
JP2009075483A (en) Volume scanning type three-dimensional aerial video display
CN101680976A (en) Real mirror video image forming optical system
JP6459262B2 (en) Head mounted display
CN113917701B (en) Projection light field stereoscopic display device
JP2012008301A (en) Volume-scanning type 3d image display device
JP6662333B2 (en) Display device
JP2013109211A (en) Spatial image display
JP2012163702A (en) Parallax type three-dimensional aerial video display device
JP2009229905A (en) Three-dimensional aerial image display
JP5565845B2 (en) Volume scanning type 3D aerial image display
JP2009042337A (en) Two-point image formation optical device
JP5888742B2 (en) 3D display device
JP7058382B2 (en) Imaging optical system and image display device
JP2009288696A (en) Optical system, head-mounted projector, and retro-transmitting element
JP2014139620A (en) Volume scanning type three-dimensional aerial video display device

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170919

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220323

R150 Certificate of patent or registration of utility model

Ref document number: 7058382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150