JP2018179167A - Spherical slide bearing and method for manufacturing the same - Google Patents

Spherical slide bearing and method for manufacturing the same Download PDF

Info

Publication number
JP2018179167A
JP2018179167A JP2017080556A JP2017080556A JP2018179167A JP 2018179167 A JP2018179167 A JP 2018179167A JP 2017080556 A JP2017080556 A JP 2017080556A JP 2017080556 A JP2017080556 A JP 2017080556A JP 2018179167 A JP2018179167 A JP 2018179167A
Authority
JP
Japan
Prior art keywords
inner ring
outer ring
ring
peripheral surface
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017080556A
Other languages
Japanese (ja)
Inventor
洋輔 中野
Yosuke Nakano
洋輔 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2017080556A priority Critical patent/JP2018179167A/en
Publication of JP2018179167A publication Critical patent/JP2018179167A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Support Of The Bearing (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a spherical slide bearing that is excellent in bearing life at low cost.SOLUTION: A spherical slide bearing 1 includes an outer ring 2 and an inner ring 3. An inner peripheral surface 4 of the outer ring 2 and an outer peripheral surface 5 of the inner ring 3 become a partially spherical-shaped bearing surface of the spherical slide bearing 1. The inner ring 3 is formed of a sintered metal and holds lubricant in the internal hole 6 thereof, while the outer ring 2 is formed of ceramic.SELECTED DRAWING: Figure 2

Description

本発明は、球面滑り軸受及びその製造方法に関する。   The present invention relates to a spherical plain bearing and a method of manufacturing the same.

従来、揺動運動環境下もしくは調心運動環境下においては、外輪の内周面と内輪の外周面とがともに部分球面形状をなす軸受面となる球面滑り軸受が好適に使用されている。また、定期的な給油が困難な場合には、内輪と、外輪との間に、自己潤滑性を示す樹脂製のライナーを配置してなる無給油式の球面滑り軸受が好適に使用されている(例えば、特許文献1を参照)。   Heretofore, spherical slide bearings in which the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring both have a partial spherical shape are suitably used under a rocking movement environment or a centering movement environment. Also, if regular oiling is difficult, oil-free spherical plain bearings, in which a resin liner showing self-lubricity is placed between the inner ring and the outer ring, are preferably used. (See, for example, Patent Document 1).

特開2011−247408号公報JP, 2011-247408, A

一方で、上述した無給油式の球面滑り軸受を、高荷重、高速度の揺動環境下において使用する場合には、ライナーの摩耗が進行し、最終的にライナーが少なくとも部分的に消失することを想定する必要がある。このように樹脂製のライナーが部分的にでも消失するとライナーが固定されている面(例えば外輪の内周面)が露出し、対向する面(例えば内輪の外周面)と金属接触するおそれが生じる。これにより、摺動面間でのトルク増大や焼き付きが発生すれば、滑り軸受としての機能を失うおそれがある。   On the other hand, when using the above-mentioned oil-free spherical plain bearing under high load and high speed swing environment, the wear of the liner progresses and the liner finally disappears at least partially. It is necessary to assume. As described above, even if the resin liner partially disappears, the surface (for example, the inner peripheral surface of the outer ring) to which the liner is fixed is exposed, and there is a possibility of metal contact with the opposing surface (for example, the outer peripheral surface of the inner ring) . As a result, if an increase in torque or seizing between sliding surfaces occurs, there is a risk of losing the function as a sliding bearing.

また、球面滑り軸受は、軸受面となる外輪の内周面と内輪の外周面がともに部分球面形状をなすことから、球面滑り軸受の組み立てに際しては、内輪と外輪をそれぞれ製作した後、内輪を外輪の内周に圧入する必要が生じる。あるいは、円筒状をなす外輪素材の内周に内輪を導入した後、外輪素材に塑性加工を施して外輪の内周面を部分球面形状に成形する手段も考えられる。しかしながら、何れにしても、組立てに手間がかかるばかりでなく、塑性変形を伴うことから、軸受面の形状精度に影響を及ぼすおそれがある。軸受面の形状精度に問題がある場合、摺動状態が安定しない(局所的に強く接触することがある)ため、結果として、軸受寿命の低下を招くおそれがある。   Further, in the spherical slide bearing, both the inner peripheral surface of the outer ring as the bearing surface and the outer peripheral surface of the inner ring have a partial spherical shape, so when assembling the spherical slide bearing, the inner ring is manufactured after the inner ring and outer ring are manufactured. It is necessary to press-fit the inner periphery of the outer ring. Alternatively, after the inner ring is introduced to the inner periphery of the cylindrical outer ring material, means may be subjected to plastic working on the outer ring material to form the inner peripheral surface of the outer ring into a partial spherical shape. However, in any case, not only assembly takes time but also plastic deformation, which may affect the shape accuracy of the bearing surface. If there is a problem in the shape accuracy of the bearing surface, the sliding state may not be stable (locally strong contact may occur), and as a result, the bearing life may be reduced.

以上の実情に鑑み、本発明では、軸受寿命に優れた球面滑り軸受を低コストに製造することを、解決すべき技術課題とする。   In view of the above situation, in the present invention, manufacturing a spherical plain bearing excellent in bearing life at low cost is a technical problem to be solved.

前記課題の解決は、本発明に係る球面滑り軸受によって達成される。すなわち、この滑り軸受は、外輪及び内輪を備え、外輪の内周面と内輪の外周面が部分球面形状の軸受面となる球面滑り軸受であって、内輪は焼結金属で形成され、その内部空孔に潤滑剤が保持されると共に、外輪はセラミックスで形成されている点をもって特徴付けられる。   The solution to the problem is achieved by the spherical plain bearing according to the invention. That is, this slide bearing is a spherical slide bearing having an outer ring and an inner ring and the inner circumferential surface of the outer ring and the outer circumferential surface of the inner ring being a partially spherical bearing surface, the inner ring being formed of sintered metal The lubricant is held in the holes, and the outer ring is characterized by being formed of a ceramic.

このように、本発明では、内輪を焼結金属で形成し、その内部空孔に潤滑剤が保持された形態をとるようにしたので、内輪の外周面に自己潤滑性を付与することができる。これにより、軸受面(外周面)に潤滑剤が供給されるようになるので、外輪内周面との間で良好な摺動潤滑状態を維持することができる。よって、従来の無給油式球面滑り軸受と比べて、耐摩耗性及び耐焼き付き性を向上させて、軸受寿命の向上を図ることが可能となる。   As described above, in the present invention, the inner ring is formed of a sintered metal and the lubricant is held in the inner holes thereof, so that the outer peripheral surface of the inner ring can be provided with self-lubricity. . As a result, the lubricant is supplied to the bearing surface (the outer peripheral surface), so that a good sliding lubrication state can be maintained with the outer peripheral surface of the outer ring. Therefore, it is possible to improve the bearing life by improving the wear resistance and the seizure resistance as compared with the conventional oil-free spherical slide bearing.

また、本発明では、上述した機能を奏する内輪を焼結金属で形成すると共に、外輪をセラミックスで形成するようにした。セラミックスは、一般的な金属材料(ステンレス鋼など)と比べて高い硬度を示し、耐摩耗性に優れている。また油膜切れを生じた場合でも凝着を起こしにくい特性を示す。さらには、セラミックスの耐熱温度は非常に高いため、例えば内輪を焼結金属で形成するに際して、内輪を外輪の内周に配置した状態で内輪に焼結処理を施すことができる。よって、外輪と内輪をそれぞれ製作して組み立てる工程を省略して簡易に球面滑り軸受を組み立てることが可能となる。また、外輪をセラミックス製とすることで、焼結処理後の寸法変化や組織変化も最小限に抑えられるため、部分球面形状をなす軸受面の形状精度を維持することができる。軸受面の形状精度が良好であれば、摺動状態も安定するので、これによっても、軸受寿命の向上を図ることが可能となる。   Further, in the present invention, the inner ring having the above-described function is formed of a sintered metal, and the outer ring is formed of a ceramic. Ceramics exhibit high hardness and excellent wear resistance as compared to common metal materials (such as stainless steel). In addition, even when the oil film is broken, it exhibits the characteristic that adhesion is not easily caused. Furthermore, since the heat resistance temperature of the ceramic is very high, for example, when the inner ring is formed of a sintered metal, the inner ring can be subjected to a sintering process in a state where the inner ring is disposed on the inner periphery of the outer ring. Therefore, it becomes possible to assemble a spherical plain bearing simply by omitting the process of manufacturing and assembling the outer ring and the inner ring respectively. Further, by making the outer ring of ceramic, dimensional changes and structural changes after the sintering process can be minimized, so that the shape accuracy of the bearing surface having a partial spherical shape can be maintained. If the shape accuracy of the bearing surface is good, the sliding state is also stable, which also makes it possible to improve the bearing life.

また、本発明に係る球面滑り軸受においては、内輪の外周面が、外輪の内周面で成形された被成形面であってもよい。   In the spherical slide bearing according to the present invention, the outer peripheral surface of the inner ring may be a molding surface formed of the inner peripheral surface of the outer ring.

このように内輪の外周面を外輪の内周面で成形された被成形面とすることによって、焼結金属製の内輪を外輪の内周面で成形することができる。すなわち、内輪を焼結金属で形成する場合、まず原料となる金属粉末を成形金型の内部に充填し、圧縮成形することにより内輪の圧粉体を成形することになるが、内輪の外周面を外輪の内周面で成形された被成形面とすることにより、外輪を成形金型の一部として使用して内輪の圧粉体を成形することができる。よって、圧粉成形後、外輪の内周に内輪の圧粉体が配置された状態のままで焼結処理を施すことにより、内輪の作製と同時に内輪の外輪内周への組込みを行うことができる。よって、組み立て工程をさらに簡略化して、製造コストの更なる低減化を図ることが可能となる。   By thus forming the outer peripheral surface of the inner ring as a molded surface formed by the inner peripheral surface of the outer ring, the sintered metal inner ring can be formed on the inner peripheral surface of the outer ring. That is, when the inner ring is formed of a sintered metal, first, metal powder as a raw material is filled into the inside of a molding die, and compression molding is performed to form a green compact of the inner ring. By forming the molded surface on the inner peripheral surface of the outer ring, it is possible to use the outer ring as a part of the molding die to form a green compact of the inner ring. Therefore, after compacting, by carrying out a sintering process while the green compact of the inner ring is disposed on the inner circumference of the outer ring, the inner ring can be incorporated into the inner ring of the outer ring simultaneously with the preparation of the inner ring. it can. Therefore, the assembly process can be further simplified to further reduce the manufacturing cost.

また、本発明に係る球面滑り軸受においては、セラミックスの線膨張係数が、焼結金属の線膨張係数より大きくてもよい。   In the spherical slide bearing according to the present invention, the linear expansion coefficient of the ceramic may be larger than the linear expansion coefficient of the sintered metal.

セラミックスは、高い硬度を示す一方で、脆い性質を示す一面を有する。そのため、例えば上述のようにセラミックス製の外輪を内輪素材の外周に配置した状態で内輪素材に焼結処理を施す場合、内輪素材の膨張により半径方向外側に向けた圧迫力を外輪が受ける事態が想定される。この場合、あまりに圧迫力が大きいと外輪の割れが懸念される。この点、外輪の材料となるセラミックスの線膨張係数を、内輪の材料となる焼結金属の線膨張係数よりも大きく設定することによって、外輪に対する半径方向内側からの圧迫力を緩和することができるので、内輪を所定の温度まで加熱して十分な焼結処理を施しつつも、外輪に作用する圧迫力を軽減して、外輪の割れを防止することが可能となる。   Ceramics have high hardness and one surface showing brittle properties. Therefore, for example, when the inner ring material is subjected to a sintering process in a state where the outer ring made of ceramics is disposed on the outer periphery of the inner ring material as described above, the outer ring receives a compressive force directed radially outward due to expansion of the inner ring material. is assumed. In this case, if the compression force is too large, the outer ring may be cracked. In this respect, by setting the linear expansion coefficient of the ceramic that is the material of the outer ring to be larger than the linear expansion coefficient of the sintered metal that is the material of the inner ring, it is possible to relieve the compressive force from the inside in the radial direction to the outer ring. Therefore, while the inner ring is heated to a predetermined temperature and subjected to a sufficient sintering process, it is possible to reduce the pressing force acting on the outer ring and to prevent the outer ring from cracking.

また、本発明に係る球面滑り軸受においては、内輪の表面のうち外周面を除く領域が封孔されていてもよい。   Further, in the spherical plain bearing according to the present invention, the area of the surface of the inner ring excluding the outer peripheral surface may be sealed.

このように内輪の表面に対して部分的に封孔処理を施すことによって、軸受面となる内輪の外周面のみから潤滑剤が滲み出るようにし、かつその他の領域(例えば軸方向端面)から不要な潤滑剤の漏れ出しを防止することができる。よって、潤滑剤を軸受面の摺動潤滑に無駄なく使用することができ、これにより軸受寿命の更なる向上を図ることが可能となる。   By partially sealing the surface of the inner ring in this manner, the lubricant is made to exude only from the outer peripheral surface of the inner ring to be the bearing surface, and unnecessary from other regions (for example, axial end surfaces) Lubricant can be prevented from leaking out. Therefore, the lubricant can be used without loss for the sliding lubrication of the bearing surface, which makes it possible to further improve the bearing life.

また、前記課題の解決は、本発明に係る球面滑り軸受の製造方法によっても達成される。すなわち、この製造方法は、外輪及び内輪を備え、外輪の内周面と内輪の外周面が部分球面形状の軸受面となる球面滑り軸受の製造方法において、外輪を作製する外輪作製工程と、所定の金属粉末を圧縮成形する圧縮成形工程と、圧縮成形により得た圧粉体を焼結して内輪を作製する焼結工程とを備え、圧縮成形工程で、外輪を成形金型の一部として使用すると共に、焼結工程で、外輪を圧粉体の外周に保持した状態で焼結する点をもって特徴付けられる。   Further, the solution of the above problems is also achieved by the method of manufacturing a spherical plain bearing according to the present invention. That is, this manufacturing method is a manufacturing method of a spherical plain bearing having an outer ring and an inner ring, and an inner peripheral surface of the outer ring and an outer peripheral surface of the inner ring having a partial spherically shaped bearing surface. And a sintering step of sintering the green compact obtained by compression molding to produce an inner ring, wherein the outer ring is used as part of a molding die in the compression molding step. It is characterized in that it is used and sintered in the sintering step while holding the outer ring on the outer periphery of the green compact.

このように、本発明に係る球面滑り軸受の製造方法では、内輪の圧粉体を成形する圧縮成形工程で、外輪を成形金型の一部として使用すると共に、焼結工程で、外輪を圧粉体の外周に保持した状態で焼結するようにした。このようにすることで、外輪を成形金型の一部、すなわち成形面として使用して内輪の圧粉体を成形することができる。そして、圧粉成形後、外輪を圧粉体の外周に保持した状態のままで焼結処理を施すことにより、内輪の作製と同時に内輪の外輪内周への組込みを行うことができる。よって、内輪を外輪に組み込む工程を省略して、製造コストの低減化を図ることが可能となる。また、内輪を焼結金属で形成することによって、その内部空孔に潤滑剤が保持された形態をとることが可能となる。これにより、内輪の外周面に自己潤滑性を付与することができるので、外輪内周面との間で良好な摺動潤滑状態を維持することができる。よって、従来の無給油式球面滑り軸受と比べて、耐摩耗性及び耐焼き付き性を向上させて、軸受寿命の向上を図ることが可能となる。   As described above, in the method of manufacturing a spherical plain bearing according to the present invention, the outer ring is used as part of a molding die in the compression molding step of molding the green compact of the inner ring, and the outer ring is pressed in the sintering step. It was made to sinter in the state hold | maintained on the outer periphery of powder. In this way, the green compact of the inner ring can be molded using the outer ring as a part of the molding die, that is, as the molding surface. Then, after compacting, by performing the sintering process while holding the outer ring on the outer periphery of the green compact, the inner ring can be incorporated into the inner ring of the outer ring simultaneously with the preparation of the inner ring. Therefore, it is possible to reduce the manufacturing cost by omitting the step of incorporating the inner ring into the outer ring. In addition, by forming the inner ring of sintered metal, it becomes possible to take a form in which the lubricant is held in the internal pores. Thereby, since self-lubricity can be provided to the outer peripheral surface of an inner ring | wheel, a favorable sliding lubrication state can be maintained between outer ring | wheel inner peripheral surfaces. Therefore, it is possible to improve the bearing life by improving the wear resistance and the seizure resistance as compared with the conventional oil-free spherical slide bearing.

以上より、本発明によれば、軸受寿命に優れた球面滑り軸受を低コストに製造することが可能となる。   As mentioned above, according to this invention, it becomes possible to manufacture the spherical plain bearing excellent in bearing life at low cost.

本発明の一実施形態に係る球面滑り軸受の断面図である。It is a sectional view of a spherical slide bearing concerning one embodiment of the present invention. 図1に示す球面滑り軸受の製造工程の一例を説明するための図であって、外輪作製工程を説明するための外輪断面図である。It is a figure for demonstrating an example of the manufacturing process of the spherical plain bearing shown in FIG. 1, Comprising: It is an outer ring sectional view for explaining an outer ring production process. 図1に示す球面滑り軸受の製造工程の一例を説明するための図であって、(a)(b)ともに圧縮成形工程を説明するための要部断面図である。It is a figure for demonstrating an example of the manufacturing process of the spherical plain bearing shown in FIG. 1, Comprising: (a) and (b) are principal part sectional drawings for demonstrating a compression molding process. 図1に示す球面滑り軸受の製造工程の一例を説明するための図であって、焼結工程を説明するための要部断面図である。It is a figure for demonstrating an example of the manufacturing process of the spherical plain bearing shown in FIG. 1, Comprising: It is principal part sectional drawing for demonstrating a sintering process.

以下、本発明の一実施形態を図1〜図4に基づいて説明する。まず、本実施形態に係る球面滑り軸受1の構成を図1に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described based on FIGS. 1 to 4. First, the configuration of the spherical plain bearing 1 according to the present embodiment will be described based on FIG.

図1は、本実施形態に係る球面滑り軸受1の断面図を示している。この球面滑り軸受1は、図1に示すように、外輪2と、内輪3とを備える。   FIG. 1 shows a cross-sectional view of a spherical plain bearing 1 according to the present embodiment. The spherical plain bearing 1 includes an outer ring 2 and an inner ring 3 as shown in FIG.

外輪2は、セラミックスで形成されている。よって、軸受面となる外輪2の内周面4もセラミックスで形成されている。この場合、内周面4は部分球面形状をなしている。セラミックスとしては、いわゆるファインセラミックスと呼ばれ工業用に利用可能な非金属無機物質を主体とするものが使用でき、例えば、アルミナ、フォルステライト、ジルコニア、ジルコン、ステアタイト、コーディエライトなどの金属酸化物、もしくは窒化ケイ素、酸化ケイ素などの金属非酸化物が使用可能である。   The outer ring 2 is formed of a ceramic. Therefore, the inner circumferential surface 4 of the outer ring 2 which is the bearing surface is also formed of the ceramic. In this case, the inner circumferential surface 4 has a partial spherical shape. As ceramics, so-called fine ceramics which can be mainly used as nonmetallic inorganic materials which can be used for industrial use can be used. For example, metal oxides such as alumina, forsterite, zirconia, zircon, steatite, cordierite and the like can be used. Or non-metal oxides such as silicon nitride and silicon oxide can be used.

内輪3は、焼結金属で形成されている。よって、内輪3の外周面5も焼結金属で形成されている。この場合、内輪3の外周面5は部分球面形状をなしている。また、焼結金属の内部空孔6(図1中、散点模様で示す部分)には、所定の潤滑剤が含浸されており、これにより当該潤滑剤が内輪3の内部に保持されている。内輪3の外表面のうち、部分球面形状をなす外周面5を除く領域、すなわち軸方向端面7,7と、円筒状の内周面8には封孔処理が施されており、これにより軸方向端面7,7を含む表層部と、内周面8を含む表層部には、封孔部9が形成されている。   The inner ring 3 is formed of sintered metal. Therefore, the outer peripheral surface 5 of the inner ring 3 is also formed of sintered metal. In this case, the outer peripheral surface 5 of the inner ring 3 has a partial spherical shape. In addition, a predetermined lubricant is impregnated in the internal holes 6 (portions shown by the dotted pattern in FIG. 1) of the sintered metal, whereby the lubricant is held inside the inner ring 3 . Of the outer surface of the inner ring 3, the region excluding the outer peripheral surface 5 having a partial spherical shape, that is, the axial end faces 7 and 7, and the cylindrical inner peripheral surface 8 are sealed. A sealing portion 9 is formed in the surface layer portion including the direction end surfaces 7 and the surface layer portion including the inner peripheral surface 8.

内輪3を構成する焼結金属の材料は任意であり、例えば鉄系粉末(純鉄粉末だけでなく鉄合金粉末を含む)もしくは銅系粉末(純銅粉末だけでなく銅合金粉末を含む)を主成分とする金属粉末が使用可能である。例えば、強度や硬度を優先する場合には、鉄系粉末を主成分とする金属粉末で内輪3の焼結金属を形成するのがよい。もちろん、強度や硬度だけでなく良好な摺動性も考慮して、鉄系粉末及び銅系粉末を主成分とする(鉄系粉末と銅系粉末の一方が最も多く、他方が二番目に多い)金属粉末を使用することも可能である。   The material of the sintered metal constituting the inner ring 3 is optional, for example, mainly iron-based powder (including not only pure iron powder but also iron alloy powder) or copper-based powder (including not only pure copper powder but also copper alloy powder) It is possible to use a metal powder as a component. For example, in the case where priority is given to strength and hardness, it is preferable to form a sintered metal of the inner ring 3 with metal powder containing iron-based powder as a main component. Of course, in consideration of not only strength and hardness but also good slidability, iron-based powder and copper-based powder are main components (one of iron-based powder and copper-based powder is the most, the other is the second most It is also possible to use metal powders.

なお、内輪3の内部空孔に保持される潤滑剤としては特に制限なく使用でき、例えば潤滑油などの液体潤滑剤やグリースなどの半固形潤滑剤、もしくは二硫化モリブデン粉末や黒鉛など粉末状固体潤滑剤など、外輪2と内輪3との相対回転に伴い内輪3の内部空孔から摺動面間(外輪2の内周面4と内輪3の外周面5との間)に流動可能な限りにおいて、任意の潤滑剤を使用することが可能である。もちろん、実際の使用条件を考慮して、適切な種類の潤滑剤を選択することが望ましい。例えば、外輪2と内輪3との摺動領域が非常に高温になることが想定される使用環境下においては、劣化や揮発などの懸念がある潤滑油よりも固体潤滑剤が好適である。   The lubricant to be held in the internal pores of the inner ring 3 can be used without particular limitation, for example, liquid lubricants such as lubricating oil, semi-solid lubricants such as grease, or powdery solid such as molybdenum disulfide powder or graphite As long as the lubricant can flow from the inner cavity of the inner ring 3 to the sliding surface (between the inner peripheral surface 4 of the outer ring 2 and the outer peripheral surface 5 of the inner ring 3) as the outer ring 2 and the inner ring 3 rotate relative to each other. In, it is possible to use any lubricant. Of course, it is desirable to select an appropriate type of lubricant, taking into consideration the actual use conditions. For example, in the use environment where the sliding region between the outer ring 2 and the inner ring 3 is expected to be very high temperature, a solid lubricant is more preferable than a lubricating oil which has a concern such as deterioration or volatilization.

次に、上記構成の球面滑り軸受1の製造方法の一例を、図2〜図4に基づいて説明する。   Next, an example of the manufacturing method of the spherical plain bearing 1 of the said structure is demonstrated based on FIGS.

本実施形態に係る球面滑り軸受1の製造方法は、外輪作製工程(a)と、圧縮成形工程(b)と、焼結工程(c)、及び封孔処理工程(d)とを備える。以下、各工程の詳細を順に説明する。   The method of manufacturing the spherical plain bearing 1 according to the present embodiment includes an outer ring manufacturing step (a), a compression molding step (b), a sintering step (c), and a sealing treatment step (d). Hereinafter, the details of each step will be described in order.

(a)外輪作製工程
まず、図2に示すように、セラミックス製の外輪2を作製する。外輪2の内周には、球面滑り軸受1の軸受面をなす部分球面形状の内周面4が形成されている。この時点では、外輪2の内周に内輪3は導入されていない。
(A) Outer ring manufacturing process First, as shown in FIG. 2, the ceramic outer ring 2 is manufactured. A partially spherical inner circumferential surface 4 is formed on the inner periphery of the outer ring 2 as a bearing surface of the spherical slide bearing 1. At this time, the inner ring 3 is not introduced to the inner periphery of the outer ring 2.

(b)圧縮成形工程
次に、焼結金属製の内輪3を作製する。図3は、圧縮成形工程に使用する圧縮成形装置10の断面図である。この図に示すように、圧縮成形装置10は、上型11と、下型12と、コアロッド13と、スペーサ14と、充填空間15、及び外輪2とを備える。外輪2は下型12上の所定位置に設置され、この外輪2と下型12の上にスペーサ14が設置される。このように配置することにより、下型12と外輪2、コアロッド13、及びスペーサ14とで充填空間15が区画形成される。
(B) Compression molding step Next, the sintered metal inner ring 3 is manufactured. FIG. 3 is a cross-sectional view of the compression molding apparatus 10 used in the compression molding process. As shown in this figure, the compression molding apparatus 10 includes an upper die 11, a lower die 12, a core rod 13, a spacer 14, a filling space 15, and an outer ring 2. The outer ring 2 is installed at a predetermined position on the lower mold 12, and the spacer 14 is installed on the outer ring 2 and the lower mold 12. By arranging in this way, the filling space 15 is defined by the lower die 12, the outer ring 2, the core rod 13 and the spacer 14.

この充填空間15には、内輪3を形成する焼結金属の原料となる所定の金属粉末Pが充填される。充填空間15は、成形すべき内輪3に準じた形状をなす。本実施形態では、上型11の下部に押し込み部11aが設けられると共に、充填空間15の上部に押し込み部11aに対応する押し込み代15aが設けられている(図3(a)を参照)。この押し込み代15aを除いた部分が、成形すべき内輪3に準じた形状をなすようになっている。   The filling space 15 is filled with a predetermined metal powder P as a raw material of the sintered metal forming the inner ring 3. The filling space 15 has a shape according to the inner ring 3 to be formed. In the present embodiment, the push-in portion 11a is provided in the lower portion of the upper mold 11, and the push-in margin 15a corresponding to the push-in portion 11a is provided in the upper portion of the filling space 15 (see FIG. 3A). The portion excluding the pressing allowance 15a has a shape similar to the inner ring 3 to be molded.

上述した充填空間15に金属粉末Pを充填した後、上型11を下型12に接近させて、型締めを行うことにより、充填空間15内の金属粉末Pに圧迫力を付与して、圧縮成形を行う。本実施形態では、充填空間15の上部に押し込み代15aが設けられ、この押し込み代15aにまで金属粉末Pが充填されているので(図3(a)を参照)、この押し込み代15aに上型11の押し込み部11aを押し込むことで、充填空間15内の金属粉末に圧迫力が付与される。この場合、図3(b)に示すように、押し込み部11aの下面、下型12の上端面12aと内周面12b、コアロッド13の外周面13a、外輪2の内周面4、及びスペーサ14の内周面14aが成形面として金属粉末Pを圧迫し、これらの面に倣った形状の内輪圧粉体16が成形される。この内輪圧粉体16は外輪2の内周面4を成形面に含めて成形されたものであるから、内輪圧粉体16の成形時、内輪圧粉体16は既に外輪2の内周に導入された状態にある。よって、圧縮成形工程の終了時点で、外輪2の内周に内輪圧粉体16を配置してなる仮組み立て体17が形成される。   After the metal powder P is filled in the filling space 15 described above, the upper mold 11 is brought close to the lower mold 12 and clamping is performed to apply a pressing force to the metal powder P in the filling space 15, thereby compressing the metal powder P. Perform molding. In the present embodiment, the pressing allowance 15a is provided in the upper part of the filling space 15, and the metal powder P is filled up to the pressing allowance 15a (see FIG. 3A). The pressing force is applied to the metal powder in the filling space 15 by pressing the pressing portion 11 a of 11. In this case, as shown in FIG. 3B, the lower surface of the push-in portion 11a, the upper end surface 12a and the inner peripheral surface 12b of the lower mold 12, the outer peripheral surface 13a of the core rod 13, the inner peripheral surface 4 of the outer ring 2, and the spacer 14 The inner peripheral surface 14a of the second embodiment compresses the metal powder P as a molding surface, and the inner ring green compact 16 having a shape conforming to these surfaces is molded. Since the inner ring green compact 16 is formed by including the inner circumferential surface 4 of the outer ring 2 in the molding surface, the inner ring green compact 16 is already formed on the inner periphery of the outer ring 2 when the inner ring green compact 16 is molded. It has been introduced. Therefore, at the end of the compression molding process, a temporary assembly 17 in which the inner ring green compact 16 is disposed on the inner circumference of the outer ring 2 is formed.

(c)焼結工程
然る後、仮組み立て体17を加熱装置20に搬入して、加熱部21による所定の加熱処理を施す(図4を参照)。具体的には、内輪圧粉体16の主成分となる金属の焼結温度にまで内輪圧粉体16を加熱し、内輪圧粉体16を焼結する。焼結温度は、内輪圧粉体16の主成分となる金属の種類によって変動し、例えば鉄系成分であれば凡そ900℃〜1100℃、銅系成分であれば凡そ800℃〜1000℃に設定される。この際、外輪2はセラミックスで形成されているため、ステンレス鋼など従来の外輪2の材料と比べて耐熱温度の面で優れている。よって、内輪圧粉体16と共に上述の温度にまで加熱されたとしても、その寸法変化を最小限に抑えて、軸受面となる内周面4の形状精度を確保することができる。
(C) Sintering step After that, the temporary assembly 17 is carried into the heating device 20, and a predetermined heating process is performed by the heating unit 21 (see FIG. 4). Specifically, the inner ring green compact 16 is heated to the sintering temperature of the metal that is the main component of the inner ring green compact 16 and the inner ring green compact 16 is sintered. The sintering temperature varies depending on the type of metal that is the main component of the inner ring compact 16; for example, approximately 900 ° C. to 1100 ° C. for iron-based components, and approximately 800 ° C. to 1000 ° C. for copper-based components. Be done. Under the present circumstances, since the outer ring 2 is formed with ceramics, it is excellent in the surface of heat-resistant temperature compared with the material of the conventional outer rings 2 such as stainless steel. Therefore, even if the inner ring green compact 16 is heated to the above temperature, the dimensional change can be minimized, and the shape accuracy of the inner circumferential surface 4 to be the bearing surface can be secured.

(d)封孔処理工程
焼結後、焼結体の外表面のうち、軸方向端面7,7と内周面8(図1を参照)に対応する領域に封孔処理を施すことにより、封孔部9が形成される。最後に潤滑剤を内部空孔6に含浸させることにより、図1に示す内輪3が完成する。また、内輪3が完成するのと同時に、外輪2及び内輪3を備える球面滑り軸受1が完成する。なお、含浸処理と封孔処理の順序は特に限定されない。可能であれば、潤滑剤を焼結体の内部空孔6に含浸させてから、封孔処理を施してもよい。
(D) Sealing treatment step After sintering, the outer surface of the sintered body is subjected to sealing treatment in the region corresponding to the axial end faces 7 and 7 and the inner circumferential surface 8 (see FIG. 1), Sealing portion 9 is formed. Finally, the inner hole 6 is impregnated with a lubricant to complete the inner ring 3 shown in FIG. At the same time when the inner ring 3 is completed, the spherical plain bearing 1 including the outer ring 2 and the inner ring 3 is completed. The order of the impregnation treatment and the sealing treatment is not particularly limited. If possible, the lubricant may be impregnated into the internal pores 6 of the sintered body and then sealing treatment may be performed.

このように、本発明に係る球面滑り軸受1は、焼結金属製の内輪3を備えると共に、内輪3の内部空孔6に潤滑剤が保持された形態をなす。この構成によれば、内輪3の外周面5に潤滑剤が供給されるようになるので、外輪2の内周面4との間で良好な摺動潤滑状態を維持することができる。よって、従来の無給油式球面滑り軸受と比べて、耐摩耗性及び耐焼き付き性を向上させて、軸受寿命の向上を図ることが可能となる。   As described above, the spherical plain bearing 1 according to the present invention is provided with the inner ring 3 made of sintered metal, and the lubricant is held in the inner holes 6 of the inner ring 3. According to this configuration, since the lubricant is supplied to the outer peripheral surface 5 of the inner ring 3, a good sliding lubrication state can be maintained with the inner peripheral surface 4 of the outer ring 2. Therefore, it is possible to improve the bearing life by improving the wear resistance and the seizure resistance as compared with the conventional oil-free spherical slide bearing.

また、本実施形態では、内輪3の外表面のうち、部分球面形状をなす外周面5を除く領域、すなわち軸方向端面7,7を含む表層部と、円筒状の内周面8を含む表層部に封孔部9を形成するようにした。この構成によれば、軸受面となる内輪3の外周面5のみから潤滑剤が滲み出るようにし、かつその他の領域(軸方向端面7,7と内周面8)から不要な潤滑剤の漏れ出しを防止することができる。よって、潤滑剤を軸受面の摺動潤滑に無駄なく使用することができ、これにより軸受寿命の更なる向上を図ることが可能となる。   Further, in the present embodiment, of the outer surface of the inner ring 3, a region excluding the outer peripheral surface 5 having a partial spherical shape, that is, a surface layer including the axial end faces 7 and 7 and a surface layer including the cylindrical inner peripheral surface 8. The sealing portion 9 was formed in the portion. According to this configuration, the lubricant is made to exude only from the outer peripheral surface 5 of the inner ring 3 to be the bearing surface, and unnecessary lubricant leaks from the other regions (axial end surfaces 7 and 7 and the inner peripheral surface 8). It is possible to prevent the delivery. Therefore, the lubricant can be used without loss for the sliding lubrication of the bearing surface, which makes it possible to further improve the bearing life.

また、本発明に係る球面滑り軸受1では、上述した機能を奏する内輪3を焼結金属で形成すると共に、外輪2をセラミックスで形成するようにした。セラミックスは、一般的な金属材料(ステンレス鋼など)と比べて高い硬度を示し、耐摩耗性に優れている。さらには、セラミックスの耐熱温度は非常に高いため、内輪3を焼結金属で形成するに際して、図3に示すように、内輪3(内輪圧粉体16)を外輪2の内周に配置した状態で内輪圧粉体16に焼結処理を施すことができる。よって、外輪2と内輪3をそれぞれ製作して組み立てる工程を省略して簡易に球面滑り軸受1を組み立てることが可能となる。また、外輪2をセラミックス製とすることで、焼結処理後の寸法変化や組織変化も最小限に抑えられるため、部分球面形状をなす軸受面(内周面4)の形状精度を維持することができる。軸受面の形状精度が良好であれば、摺動状態も安定するので、これによっても、軸受寿命の向上を図ることが可能となる。   Further, in the spherical plain bearing 1 according to the present invention, the inner ring 3 having the above-described function is formed of a sintered metal, and the outer ring 2 is formed of a ceramic. Ceramics exhibit high hardness and excellent wear resistance as compared to common metal materials (such as stainless steel). Furthermore, since the heat resistance temperature of the ceramic is very high, when the inner ring 3 is formed of a sintered metal, the inner ring 3 (inner ring compact 16) is disposed on the inner periphery of the outer ring 2 as shown in FIG. The inner ring green compact 16 can be sintered. Therefore, it becomes possible to simplify the spherical slide bearing 1 simply by omitting the process of manufacturing and assembling the outer ring 2 and the inner ring 3 respectively. Further, by making the outer ring 2 made of ceramic, dimensional change and structure change after the sintering process can be minimized, so that the shape accuracy of the bearing surface (inner circumferential surface 4) having a partial spherical shape can be maintained. Can. If the shape accuracy of the bearing surface is good, the sliding state is also stable, which also makes it possible to improve the bearing life.

また、本実施形態では、内輪3の外周面5を、外輪2の内周面4で成形された被成形面とした。すなわち、図2に示すように、外輪2を圧縮成形装置10の一部として使用して内輪圧粉体16を成形することにより、外輪2の内周面4に準じた形状の外周面5を内輪3に成形することができる。また、圧粉成形後、外輪2の内周に内輪圧粉体16が配置された状態のままで焼結処理を施すことにより、内輪3の作製と同時に内輪3の外輪2内周への組込みを行うことができる。よって、組み立て工程をさらに簡略化して、製造コストの更なる低減化を図ることが可能となる。   Further, in the present embodiment, the outer peripheral surface 5 of the inner ring 3 is a molding surface formed by the inner peripheral surface 4 of the outer ring 2. That is, as shown in FIG. 2, by molding the inner ring green compact 16 using the outer ring 2 as a part of the compression molding apparatus 10, the outer peripheral surface 5 of a shape similar to the inner peripheral surface 4 of the outer ring 2 is It can be molded into the inner ring 3. In addition, after compacting, by performing sintering processing while the inner ring green compact 16 is disposed on the inner periphery of the outer ring 2, the inner ring 3 is incorporated into the outer ring 2 simultaneously with the preparation of the inner ring 3. It can be performed. Therefore, the assembly process can be further simplified to further reduce the manufacturing cost.

以上、本発明の一実施形態を説明したが、本発明に係る球面滑り軸受及びその製造方法は上記例示の形態に限定されることなく、本発明の範囲内において任意の形態を採り得ることはもちろんである。   As mentioned above, although one Embodiment of this invention was described, the spherical plain bearing concerning this invention and its manufacturing method are not limited to the form of the said illustration, It is possible to take arbitrary forms within the scope of the present invention Of course.

例えば上記実施形態では、充填空間15の上部に押し込み代15aを設けて、余分に金属粉末Pを充填し、この押し込み代15aを上型11に設けた押し込み部11aで押し込むようにしたが、もちろんこれは一例に過ぎない。充填空間15内の金属粉末に十分な圧迫力を付与できる限りにおいて、圧縮成形装置10の形態及びこの装置10を用いた金属粉末Pの圧迫態様は任意である。   For example, in the above embodiment, the pressing allowance 15a is provided in the upper part of the filling space 15, and the metal powder P is additionally filled, and the pressing allowance 15a is pressed by the pressing part 11a provided in the upper mold 11. This is just an example. The form of the compression molding apparatus 10 and the compression mode of the metal powder P using this apparatus 10 are optional as long as sufficient compression force can be applied to the metal powder in the filling space 15.

また、上記実施形態では、内輪3の外表面のうち外周面5を除く所定の領域(軸方向端面7,7及び内周面8)に封孔処理を施した場合を例示したが、もちろん封孔処理は必須ではない。潤滑剤の種類や使用環境によっては、焼結後に特に封孔処理を施すことなく内輪3を完成させてもよい。   Moreover, although the case where sealing treatment was given to the predetermined area | region (axial direction end surfaces 7 and 7 and inner peripheral surface 8) except the outer peripheral surface 5 among the outer surfaces of the inner ring 3 was illustrated in the said embodiment, of course Pore treatment is not essential. Depending on the type of lubricant and the use environment, the inner ring 3 may be completed without being subjected to sealing treatment after sintering.

また、上記実施形態では、内輪3を焼結金属で形成すると共に、外輪2をセラミックスで形成した場合を例示したが、外輪2の材質はセラミックスには限られない。内輪3の焼結温度の如何によっては、言い換えると、焼結温度以上の耐熱温度を示す材質であれば、外輪2の材料に採用することも可能である。   In the above embodiment, the inner ring 3 is formed of sintered metal and the outer ring 2 is formed of ceramic. However, the material of the outer ring 2 is not limited to ceramic. Depending on the sintering temperature of the inner ring 3, in other words, as long as the material exhibits a heat resistance temperature higher than the sintering temperature, it can be adopted as the material of the outer ring 2.

1 球面滑り軸受
2 外輪
3 内輪
4 内周面
5 外周面
6 内部空孔
9 封孔部
10 圧縮成形装置
11 上型
11a 押し込み部
12 下型
13 コアロッド
14 スペーサ
15 充填空間
15a 押し込み代
16 内輪圧粉体
17 仮組み立て体
20 加熱装置
21 加熱部
P 金属粉末
DESCRIPTION OF SYMBOLS 1 spherical slide bearing 2 outer ring 3 inner ring 4 inner circumferential surface 5 outer circumferential surface 6 inner hole 9 sealing portion 10 compression molding device 11 upper die 11 a push-in portion 12 lower die 13 core rod 14 spacer 15 filling space 15 a push-in margin 16 inner ring pressed powder Body 17 Temporary assembly 20 Heating device 21 Heating part P Metal powder

Claims (5)

外輪及び内輪を備え、前記外輪の内周面と前記内輪の外周面が部分球面形状の軸受面となる球面滑り軸受であって、
前記内輪は焼結金属で形成され、その内部空孔に潤滑剤が保持されると共に、
前記外輪はセラミックスで形成されていることを特徴とする球面滑り軸受。
A spherical plain bearing comprising an outer ring and an inner ring, wherein an inner circumferential surface of the outer ring and an outer circumferential surface of the inner ring are partially spherically shaped bearing surfaces,
The inner ring is formed of a sintered metal, and a lubricant is held in its inner cavity,
The spherical slide bearing characterized in that the outer ring is formed of a ceramic.
前記内輪の外周面は、前記外輪の内周面で成形された被成形面である請求項1に記載の球面滑り軸受。   The spherical plain bearing according to claim 1, wherein the outer peripheral surface of the inner ring is a molding surface formed by the inner peripheral surface of the outer ring. 前記セラミックスの線膨張係数が、前記焼結金属の線膨張係数より大きい請求項1又は2に記載の球面滑り軸受。   The spherical plain bearing according to claim 1 or 2, wherein a linear expansion coefficient of the ceramic is larger than a linear expansion coefficient of the sintered metal. 前記内輪の表面のうち前記外周面を除く領域が封孔されている請求項1〜3の何れか一項に記載の球面滑り軸受。   The spherical plain bearing according to any one of claims 1 to 3, wherein a region of the surface of the inner ring excluding the outer peripheral surface is sealed. 外輪及び内輪を備え、前記外輪の内周面と前記内輪の外周面が部分球面形状の軸受面となる球面滑り軸受の製造方法において、
前記外輪を作製する外輪作製工程と、
所定の金属粉末を圧縮成形する圧縮成形工程と、
前記圧縮成形により得た圧粉体を焼結して前記内輪を作製する焼結工程とを備え、
前記圧縮成形工程で、前記外輪を成形金型の一部として使用すると共に、前記焼結工程で、前記外輪を前記圧粉体の外周に保持した状態で焼結することを特徴とする、球面滑り軸受の製造方法。
A manufacturing method of a spherical slide bearing comprising an outer ring and an inner ring, wherein an inner peripheral surface of the outer ring and an outer peripheral surface of the inner ring are bearing surfaces of partial spherical shape,
An outer ring manufacturing step of manufacturing the outer ring;
A compression molding step of compression molding a predetermined metal powder;
And sintering the green compact obtained by the compression molding to produce the inner ring,
In the compression molding step, the outer ring is used as a part of a molding die, and in the sintering step, the outer ring is sintered while being held on the outer periphery of the green compact, a spherical surface Method of manufacturing a sliding bearing.
JP2017080556A 2017-04-14 2017-04-14 Spherical slide bearing and method for manufacturing the same Pending JP2018179167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017080556A JP2018179167A (en) 2017-04-14 2017-04-14 Spherical slide bearing and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017080556A JP2018179167A (en) 2017-04-14 2017-04-14 Spherical slide bearing and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2018179167A true JP2018179167A (en) 2018-11-15

Family

ID=64282721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017080556A Pending JP2018179167A (en) 2017-04-14 2017-04-14 Spherical slide bearing and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2018179167A (en)

Similar Documents

Publication Publication Date Title
US9939015B2 (en) Sintered bearing
KR102076922B1 (en) Method of forming a bearing component
US20190353205A1 (en) Method of molding double-layer sliding bearing
JP2014029178A (en) Spherical slide bearing and method of manufacturing the same
JP2018179167A (en) Spherical slide bearing and method for manufacturing the same
JP6788071B2 (en) Sintered bearing
JP2016117926A (en) Green compact and method for producing the same
KR101540036B1 (en) A Sintered Body having Dual Ring Structure and a Manufacturing Method for the same
JP5692719B2 (en) Spherical plain bearing and manufacturing method thereof
JP2016053210A (en) Exhaust valve device and gas cushion material
US20220186776A1 (en) Rolling bearing
RU184324U1 (en) SLEEVE FOR MOBILE MOBILE HEADSET COMPOUNDS
US1789714A (en) Connecting-rod bearing
TW201410360A (en) Bearing forming method
KR100789994B1 (en) Bush type sliding bearing comprising of sintered segments with sloped joining surface
CN111231195A (en) Inlaid self-lubricating air ring bearing and manufacturing method thereof
RU223009U1 (en) CERAMIC METAL SLIDING BEARING FOR POINT DRIVE
RU222219U1 (en) CERAMIC METAL RING FOR SLIDING BEARING OF POINT DRIVE
JP2001032840A (en) Slide bearing
JP2009228019A (en) Sintered metal component and manufacturing method therefor
CN103658661B (en) bearing forming method
JP2019211040A (en) Sintered bearing for supercharger and method for manufacturing the same
CN104279231A (en) Method for manufacturing high-accuracy self-lubrication bearings by transfer film technology
KR20140011882A (en) A sintered insert ring joined with oil gallery in diesel engine piston, method for manufacturing it, and piston comprising it
JP2019157918A (en) Sintered metal-made dynamic pressure bearing