JP2018179059A - Liquefied gas receiving device - Google Patents

Liquefied gas receiving device Download PDF

Info

Publication number
JP2018179059A
JP2018179059A JP2017075911A JP2017075911A JP2018179059A JP 2018179059 A JP2018179059 A JP 2018179059A JP 2017075911 A JP2017075911 A JP 2017075911A JP 2017075911 A JP2017075911 A JP 2017075911A JP 2018179059 A JP2018179059 A JP 2018179059A
Authority
JP
Japan
Prior art keywords
liquid level
liquefied gas
pressure gauge
density
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017075911A
Other languages
Japanese (ja)
Other versions
JP6873795B2 (en
Inventor
優幸 内田
Masayuki Uchida
優幸 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2017075911A priority Critical patent/JP6873795B2/en
Publication of JP2018179059A publication Critical patent/JP2018179059A/en
Application granted granted Critical
Publication of JP6873795B2 publication Critical patent/JP6873795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To properly cool receiving piping in a receiving facility.SOLUTION: A liquefied gas receiving facility with receiving piping that is connected to a tank for storing a liquefied gas includes: liquid level calculation means for calculating a liquid level height of the liquefied gas inside the receiving piping; density acquisition means for acquiring a density of a liquid phase of the liquefied gas that is stored in the receiving piping; and liquid level correction means for correcting the liquid level height based on the density of the liquefied gas that is acquired by the density acquisition means.SELECTED DRAWING: Figure 1

Description

本発明は、液化ガス受入装置に関するものである。   The present invention relates to a liquefied gas receiving apparatus.

液化ガスを貯留するタンクを含む受入設備には、定期的にタンカから液化ガスが供給されている。このため、受入設備は、タンカ及びタンクと接続される受入配管を有している。この受入配管は、タンカより液化ガスが供給されていない間も、内部を液化ガスで満たされることにより冷却されている。このような受入配管においては、内部の液化ガスの液面高さを監視し、液面高さを調整することで冷却性能を保持している。   A receiving facility including a tank for storing liquefied gas is regularly supplied with liquefied gas from a tanker. For this reason, the receiving facility has a receiving pipe connected to the tanker and the tank. The receiving pipe is cooled by filling the inside with liquefied gas even while the liquefied gas is not supplied from the tanker. In such a receiving pipe, the cooling performance is maintained by monitoring the liquid level of the liquefied gas inside and adjusting the liquid level.

例えば、特許文献1には、貯槽(タンク)と接続される受入配管の立ち上がり部において、立ち上がり部における液レベル(液面高さ)を検出する液レベル検出器が設けられる構成が開示されている。このような液レベル検出器の検出結果に基づいて、液レベルコントローラにより立ち上がり部の液レベルを調節している。   For example, Patent Document 1 discloses a configuration in which a liquid level detector for detecting the liquid level (liquid level height) at the rising portion is provided at the rising portion of the receiving pipe connected to the storage tank (tank). . The liquid level controller adjusts the liquid level at the rising portion on the basis of the detection result of the liquid level detector.

特開平7−119893号公報JP 7-119893 A

受入配管の液面高さを検出する検出器は、一般的に液面より上の気相圧力を検出する気相圧力計と液面より下の液相圧力を検出する液相圧力計とを有しており、予め定められた液化ガスの密度と、気相圧力及び液相圧力から液面高さを算出している。しかしながら、液化ガスは、時間が経過することで、含有成分のうち比重の軽いものが液面まで浮上して先に気化し、液相が濃縮する。この際、液化ガスの気化物が液面近傍に滞留することにより、液面高さを検出する検出器においては液面高さに変化が現れないものの、実際には液化ガスの濃縮により液面が低下している場合がある。受入配管における液化ガスの液面高さが正確に保持できないと、受入配管を適切に冷却することができない。   A detector for detecting the liquid level height of the receiving pipe generally comprises a gas phase pressure gauge for detecting a gas phase pressure above the liquid level, and a liquid phase pressure gauge for detecting a liquid phase pressure below the liquid level. The liquid level is calculated from the density of the liquefied gas, and the gas phase pressure and the liquid phase pressure, which are predetermined. However, as time passes, as for liquefied gas, one having a light specific gravity among the components floats up to the liquid surface and is first vaporized to condense the liquid phase. Under the present circumstances, although the change in liquid level height does not appear in the detector which detects liquid level height because the vaporized material of liquefied gas stays near liquid level, the liquid level is actually concentrated by liquefied gas. May have fallen. If the liquid level of the liquefied gas in the receiving pipe can not be accurately maintained, the receiving pipe can not be properly cooled.

本発明は、上述する問題点に鑑みてなされたもので、受入設備において、受入配管の冷却を適切に行うことを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to appropriately cool a receiving pipe in a receiving facility.

本発明は、上記課題を解決するために、本発明では、第1の手段として、液化ガスを貯留するタンクに接続される受入配管を備える液化ガス受入設備であって、上記受入配管内部の上記液化ガスの液面高さを算出する液面算出手段と、上記受入配管に貯留される上記液化ガスの液相の密度を取得する密度取得手段と、密度取得手段により取得された上記液化ガスの密度に基づいて上記液面高さを補正する液面補正手段とを備える、という構成を採用する。   The present invention is, in order to solve the above problems, a first means according to the present invention is a liquefied gas receiving facility comprising a receiving pipe connected to a tank for storing liquefied gas, the above-mentioned inside of the receiving pipe being characterized by Liquid level calculation means for calculating the liquid level height of the liquefied gas, Density acquisition means for acquiring the density of the liquid phase of the liquefied gas stored in the receiving pipe, and the liquefied gas acquired by the density acquisition means And a liquid level correction unit configured to correct the liquid level height based on the density.

第2の手段として、上記第1の手段において、上記密度取得手段は、上記液化ガスの液相の差圧に基づいて密度を算出する、という構成を採用する。   As a second means, in the first means, the density acquisition means calculates the density based on the differential pressure of the liquid phase of the liquefied gas.

第3の手段として、上記第2の手段において、上記密度取得手段は、上記液化ガスの液相の圧力を計測する第1圧力計と、上記第1圧力計と鉛直方向において異なる位置に設けられると共に上記液化ガスの液相の圧力を計測する第2圧力計と、上記第1圧力計及び上記第2圧力計から取得した液相の圧力に基づいて上記液化ガスの密度を算出する密度算出部とを備える、という構成を採用する。   As a third means, in the second means, the density acquiring means is provided at a position different from the first pressure gauge which measures the pressure of the liquid phase of the liquefied gas in the vertical direction from the first pressure gauge. And a second pressure gauge for measuring the pressure of the liquid phase of the liquefied gas, and a density calculation unit for calculating the density of the liquefied gas based on the pressure of the liquid phase obtained from the first pressure gauge and the second pressure gauge And a configuration of

第4の手段として、上記第3の手段において、上記液面算出手段は、上記受入配管内部の気相の圧力を計測する気相圧力計と、上記液化ガスの液相の圧力を計測する液相圧力計とを備え、上記液相圧力計は、上記第1圧力計または上記第2圧力計と兼用される、という構成を採用する。   As a fourth means, in the third means, the liquid level calculating means is a gas phase pressure gauge for measuring the pressure of the gas phase inside the receiving pipe, and a liquid for measuring the pressure of the liquid phase of the liquefied gas A phase pressure gauge is provided, and the liquid phase pressure gauge is configured to be used also as the first pressure gauge or the second pressure gauge.

第5の手段として、上記第1〜第4のいずれかの手段において、上記液面補正手段により補正された上記液面高さに基づいて上記液面高さを調整する液面調整手段を備え、上記液面調整手段は、上記受入配管と接続されて上記受入配管への上記液化ガスの流入量を調整するバルブと、上記液面補正手段により補正された上記液面高さを取得して上記バルブを開閉弁することにより上記受入配管の液面高さを調整する制御部とを備える、という構成を採用する。   As a fifth means, any one of the first to fourth means is provided with a liquid level adjusting means for adjusting the liquid level based on the liquid level corrected by the liquid level correcting means. The liquid level adjusting means is connected to the receiving pipe to obtain a valve for adjusting the inflow of the liquefied gas to the receiving pipe, and the liquid level height corrected by the liquid level correcting means. A control unit is provided to adjust the liquid level of the receiving pipe by opening and closing the valve.

本発明によれば、密度取得手段により、受入配管に貯留される液化ガスの密度を取得している。これにより、液相の液化ガスの正確な密度を取得できる。さらに、液面補正手段により、算出された液面高さを密度取得手段が取得した密度により補正することで、正確な液面高さに補正することができる。したがって、受入配管における正確な液面高さを取得することができ、受入配管を適切に冷却することができる。   According to the present invention, the density acquisition means acquires the density of the liquefied gas stored in the receiving pipe. Thereby, the accurate density of the liquefied gas in the liquid phase can be obtained. Furthermore, the liquid level correction means can correct the calculated liquid level height with the density acquired by the density acquisition means, so that the liquid level height can be corrected accurately. Therefore, the correct liquid level in the receiving pipe can be obtained, and the receiving pipe can be properly cooled.

本発明の一実施形態における受入設備の全体を含む模式図である。It is a schematic diagram including the whole of receiving facility in one embodiment of the present invention. 本発明の一実施形態における受入設備が備える垂直配管部を含む拡大模式図である。It is an expansion schematic diagram including the perpendicular piping part with which receiving facilities in one embodiment of the present invention are provided.

以下、図面を参照して、本発明に係る液化ガス受入設備の一実施形態について説明する。なお、以下の図面において、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。   Hereinafter, an embodiment of a liquefied gas receiving facility according to the present invention will be described with reference to the drawings. In the following drawings, the scale of each member is appropriately changed in order to make each member a recognizable size.

図1は、本実施形態における受入設備1の全体を含む模式図である。また、図2は、本実施形態における受入設備1が備える垂直配管部2cを含む拡大模式図である。
受入設備1は、液化天然ガスXを積載して輸送するLNGタンカ100にジョイント110を介して接続される払い出し管120に接続される設備である。このような受入設備1は、図1及び図2に示すように受入配管2と、貯蔵タンク3と、液面算出部4(液面算出手段)と、密度取得部5(密度取得手段)と、液面補正部6(液面補正手段)と、液面調整部7(液面調整手段)とを備えている。
FIG. 1 is a schematic view including the entire receiving facility 1 in the present embodiment. Moreover, FIG. 2 is an expansion schematic diagram containing the vertical piping part 2c with which the reception facility 1 in this embodiment is equipped.
The receiving facility 1 is a facility connected to a delivery pipe 120 connected via a joint 110 to an LNG tanker 100 loaded and transported with liquefied natural gas X. Such a receiving facility 1 includes a receiving pipe 2, a storage tank 3, a liquid level calculating unit 4 (liquid level calculating unit), and a density acquiring unit 5 (density acquiring unit) as shown in FIGS. And a liquid level correction unit 6 (liquid level correction means) and a liquid level adjustment unit 7 (liquid level adjustment means).

受入配管2は、払い出し管120と接続されると共に貯蔵タンク3と接続される配管である。受入配管2は、貯蔵タンク3側の端部が液相X1が流入する受入本管2aと気相X2が流入する受入支管2bとに分かれており、受入本管2aと受入支管2bのそれぞれが貯蔵タンク3の上面に接続される。また、受入配管2は、受入本管2aと受入支管2bよりも上流側の垂直配管部2cが貯蔵タンク3の上面まで鉛直方向に沿って配置される。なお、本発明における鉛直方向とは、地面に対して直角である場合に限らず、地面に対して斜めに傾斜している場合も含む。垂直配管部2cには、液相X1が上端近傍まで貯留されており、液相X1により配管部材を冷却している。さらに、受入配管2は、垂直配管部2cよりも上流側においてバルブ2dを有しており、バルブ2dよりも下流側における液化天然ガスXの流量が調節される。   The receiving pipe 2 is a pipe connected to the delivery pipe 120 and connected to the storage tank 3. Receiving pipe 2 is divided into a receiving main pipe 2a into which liquid phase X1 flows in and an receiving branch pipe 2b into which gas phase X2 flows in, and each of receiving main pipe 2a and receiving branch pipe 2b is It is connected to the upper surface of the storage tank 3. Further, in the receiving pipe 2, the vertical pipe portion 2 c on the upstream side of the receiving main pipe 2 a and the receiving branch pipe 2 b is disposed along the vertical direction up to the upper surface of the storage tank 3. Note that the vertical direction in the present invention is not limited to the case of being perpendicular to the ground, but also includes the case of being obliquely inclined to the ground. In the vertical piping portion 2c, the liquid phase X1 is stored to the vicinity of the upper end, and the piping member is cooled by the liquid phase X1. Furthermore, the receiving pipe 2 has a valve 2d on the upstream side of the vertical pipe portion 2c, and the flow rate of the liquefied natural gas X on the downstream side of the valve 2d is adjusted.

貯蔵タンク3は、タンカ100から受入配管2を介して液化天然ガスXを受け入れるタンクである。このような貯蔵タンク3は、例えば、内槽と外槽との間に保冷材が充填された二重殻構造の円筒型とされ、外周面をコンクリート3aにより覆われたタンク部3bを有している。   The storage tank 3 is a tank for receiving the liquefied natural gas X from the tanker 100 via the receiving pipe 2. Such a storage tank 3 is, for example, a double shell structure cylindrical type in which a cold insulating material is filled between an inner tank and an outer tank, and has a tank portion 3b whose outer peripheral surface is covered with concrete 3a. ing.

液面算出部4は、図2に示すように、気相圧力計4aと、液相圧力計4bと、算出部4cとを有している。気相圧力計4aは、垂直配管部2cの上端に設けられ、垂直配管部2cの上端に滞留する気体の圧力を計測する。液相圧力計4bは、垂直配管部2cの下端に設けられ、垂直配管部2cに貯留される液相X1の圧力を計測する。算出部4cは、液化天然ガスXの密度を予め記憶しており、気相圧力計4a及び液相圧力計4bからそれぞれ圧力値を取得し、気相の圧力値と液相の圧力値とから垂直配管部2cにおける液相X1の液面高さを算出する。   As shown in FIG. 2, the liquid level calculation unit 4 includes a vapor pressure gauge 4 a, a liquid pressure gauge 4 b, and a calculation unit 4 c. The gas phase pressure gauge 4a is provided at the upper end of the vertical piping 2c, and measures the pressure of the gas staying at the upper end of the vertical piping 2c. The liquid phase pressure gauge 4b is provided at the lower end of the vertical piping portion 2c, and measures the pressure of the liquid phase X1 stored in the vertical piping portion 2c. The calculation unit 4c stores the density of the liquefied natural gas X in advance, obtains pressure values from the gas phase pressure gauge 4a and the liquid phase pressure gauge 4b, respectively, and uses the pressure value of the gas phase and the pressure value of the liquid phase. The liquid level height of the liquid phase X1 in the vertical piping portion 2c is calculated.

密度取得部5は、第1圧力計5aと、第2圧力計5bと、密度算出部5cとを有している。第1圧力計5a及び第2圧力計5bは、気相圧力計4aと液相圧力計4bとの間に配置され、液相X1の圧力を計測する。第2圧力計5bは、鉛直方向において第1圧力計5aよりも下側に配置されている。また、第1圧力計5aと第2圧力計5bとの間の鉛直方向における距離が既知とされている。密度算出部5cは、第1圧力計5a及び第2圧力計5bのそれぞれの圧力値を取得し、その圧力差から液相X1の密度を算出する。   The density acquisition unit 5 includes a first pressure gauge 5a, a second pressure gauge 5b, and a density calculation unit 5c. The first pressure gauge 5a and the second pressure gauge 5b are disposed between the gas pressure gauge 4a and the liquid pressure gauge 4b, and measure the pressure of the liquid phase X1. The second pressure gauge 5b is disposed below the first pressure gauge 5a in the vertical direction. Further, the distance in the vertical direction between the first pressure gauge 5a and the second pressure gauge 5b is known. The density calculation unit 5c acquires pressure values of the first pressure gauge 5a and the second pressure gauge 5b, and calculates the density of the liquid phase X1 from the pressure difference.

液面補正部6は、液面算出部4から液面高さを取得し、さらに密度取得部5から取得した液相X1の密度に基づいて、上記液面高さを補正する。液面調整部7は、ポンプ7aと、調整バルブ7bと、制御部7cとを有している。ポンプ7aは、図1に示すように、貯蔵タンク3のタンク部3bに収容されており、タンク部3bに貯蔵された液相X1を、配管を通じて垂直配管部2cへと圧送する。調整バルブ7bは、垂直配管部2cとポンプ7aとの間に設けられている。制御部7cは、液面補正部6から取得した補正された液面高さに基づいて、ポンプ7a及び調整バルブ7bを制御し、垂直配管部2cの液面高さを調整する。   The liquid level correction unit 6 acquires the liquid level height from the liquid level calculation unit 4 and further corrects the liquid level based on the density of the liquid phase X1 acquired from the density acquisition unit 5. The liquid level adjustment unit 7 includes a pump 7a, an adjustment valve 7b, and a control unit 7c. The pump 7a is accommodated in the tank portion 3b of the storage tank 3 as shown in FIG. 1, and pumps the liquid phase X1 stored in the tank portion 3b to the vertical piping portion 2c through piping. The adjustment valve 7 b is provided between the vertical piping 2 c and the pump 7 a. The control unit 7 c controls the pump 7 a and the adjustment valve 7 b based on the corrected liquid level height acquired from the liquid level correction unit 6 to adjust the liquid level height of the vertical piping unit 2 c.

LNGタンカ100がジョイント110に接続され、払い出し管120を介して受入設備1にLNGタンカ100から液化天然ガスXが供給されると、バルブ2dが開弁され、受入配管2を介して貯蔵タンク3へと液化天然ガスXが貯留される。貯蔵タンク3に所定量の液化天然ガスXが貯留されると、バルブ2dが閉弁される。これにより、受入配管2において垂直配管部2cよりも下流側の液化天然ガスXが貯蔵タンク3へと流入し、垂直配管部2cには、液化天然ガスXが残留した状態となる。   When the LNG tanker 100 is connected to the joint 110 and the liquefied natural gas X is supplied from the LNG tanker 100 to the receiving facility 1 through the discharge pipe 120, the valve 2d is opened, and the storage tank 3 is connected through the receiving pipe 2 Liquefied natural gas X is stored. When a predetermined amount of liquefied natural gas X is stored in the storage tank 3, the valve 2d is closed. As a result, the liquefied natural gas X on the downstream side of the vertical piping portion 2c in the receiving piping 2 flows into the storage tank 3, and the liquefied natural gas X remains in the vertical piping portion 2c.

垂直配管部2cには、液化天然ガスXが残留した状態で、垂直配管部2cに液化天然ガスXが長期間(数日から数か月程度)貯留されると、液化天然ガスXに含まれる比重の軽い成分が気化し、液相X1と、気相X2とに分離する。このため、液相X1は元の液化天然ガスXの体積よりも小さくなり、垂直配管部2cにおける液相X1の液面高さが低下する。また、気相X2は、垂直配管部2cの上部に滞留する。   It is contained in liquefied natural gas X when liquefied natural gas X is stored in vertical piping part 2c for a long period (about several days to several months) in the state where liquefied natural gas X remains in vertical piping part 2c. The component with a low specific gravity is vaporized and separated into a liquid phase X1 and a gas phase X2. For this reason, the liquid phase X1 becomes smaller than the volume of the original liquefied natural gas X, and the liquid level height of the liquid phase X1 in the vertical piping portion 2c decreases. In addition, the gas phase X2 stays in the upper part of the vertical piping portion 2c.

このような受入設備1において、液面算出部4は、垂直配管部2cの気相圧力計4aにより垂直配管部2cの気相の圧力を計測し、液相圧力計4bにより液相X1の圧力を計測する。液面算出部4は、算出部4cにより、気相X2の圧力値、液相X1の圧力値及び、予め与えられたLNGタンカ100から供給された液化天然ガスXの密度に基づいて液面高さを算出する。   In the receiving facility 1 as described above, the liquid level calculation unit 4 measures the pressure of the gas phase of the vertical piping portion 2c by the gas phase pressure gauge 4a of the vertical piping portion 2c, and the pressure of the liquid phase X1 by the liquid phase pressure gauge 4b. Measure The liquid level calculation unit 4 calculates the liquid level based on the pressure value of the gas phase X2, the pressure value of the liquid phase X1, and the density of the liquefied natural gas X supplied from the LNG tanker 100 given in advance by the calculation unit 4c. Calculate the

また、密度取得部5は、第1圧力計5aと第2圧力計5bとが液相X1の圧力が計測する。そして、密度取得部5は、密度算出部5cが、第1圧力計5a及び第2圧力計5bにより計測された圧力値と、第1圧力計5aと第2圧力計5bとの鉛直方向における距離とに基づいて、液相X1の密度を算出する。さらに、液面補正部6は、密度取得部5により算出された密度に基づいて、液面算出部4から取得した液面高さを補正する。   The density acquisition unit 5 also measures the pressure of the liquid phase X1 between the first pressure gauge 5a and the second pressure gauge 5b. And the density acquisition part 5 is the distance in the perpendicular direction of the pressure value which the density calculation part 5c was measured by the 1st pressure gauge 5a and the 2nd pressure gauge 5b, and the 1st pressure gauge 5a and the 2nd pressure gauge 5b. And the density of liquid phase X1 is calculated. Further, the liquid level correction unit 6 corrects the liquid level height acquired from the liquid level calculation unit 4 based on the density calculated by the density acquisition unit 5.

続いて、液面調整部7は、制御部7cが液面補正部6から補正された液面高さを取得し、該液面高さが所定値よりも下回っている場合には、ポンプ7aを駆動させ、調整バルブ7bを開弁する。これにより、貯蔵タンク3内に貯蔵されている液相X1が垂直配管部2cに流入し、垂直配管部2cの液面高さが上昇する。液面調整部7は、制御部7cが垂直配管部2cにおける液相X1の液面高さが所定の高さとなると、ポンプ7aを停止させると共に調整バルブ7bを閉弁する。   Subsequently, the liquid level adjustment unit 7 obtains the liquid level height corrected by the control unit 7c from the liquid level correction unit 6, and if the liquid level height is lower than a predetermined value, the pump 7a Is driven to open the adjusting valve 7b. Thereby, the liquid phase X1 stored in the storage tank 3 flows into the vertical piping portion 2c, and the liquid level of the vertical piping portion 2c rises. The liquid level adjustment unit 7 stops the pump 7a and closes the adjustment valve 7b when the control unit 7c sets the liquid level of the liquid phase X1 in the vertical piping unit 2c to a predetermined height.

このような本実施形態の受入設備1は、密度取得部5により、液相X1の密度を取得し、さらに取得した密度に基づいて液面補正部6により液面高さの補正が行われる。これにより、液面算出部4により算出された液面高さに含まれる密度分布に基づく誤差を排除することができ、垂直配管部2cにおける正確な液面高さを取得することができる。したがって、垂直配管部2cにおける液面高さを適切に調節でき、受入配管2を適切に冷却することができる。   In the receiving facility 1 of the present embodiment, the density acquisition unit 5 acquires the density of the liquid phase X1, and the liquid level correction unit 6 corrects the liquid level based on the acquired density. Thereby, the error based on the density distribution included in the liquid level height calculated by the liquid level calculation unit 4 can be eliminated, and the correct liquid level height in the vertical piping portion 2c can be acquired. Therefore, the liquid level in the vertical piping portion 2c can be appropriately adjusted, and the receiving piping 2 can be properly cooled.

また、本実施形態の受入設備1は、密度取得部5が垂直配管部2cにおける鉛直方向の差圧を算出することにより、垂直配管部2cにおける液相X1の密度を算出している。したがって、既存の垂直配管部2cに対して圧力計を取り付けることにより垂直配管部2cにおける液相の密度を取得できるため、液相の密度を取得することが容易である。   Further, in the receiving facility 1 of the present embodiment, the density acquisition unit 5 calculates the differential pressure in the vertical direction in the vertical piping portion 2c, thereby calculating the density of the liquid phase X1 in the vertical piping portion 2c. Therefore, the density of the liquid phase in the vertical piping portion 2c can be acquired by attaching a pressure gauge to the existing vertical piping portion 2c, so it is easy to acquire the density of the liquid phase.

また、本実施形態の受入設備1は、液面補正部6により補正された液面高さに基づいて液面調整部7により垂直配管部2cにおける液相X1の液面高さを調整することができる。これにより、正確な液面高さに基づいて、受入配管2を適切に冷却することができる。   Further, in the receiving facility 1 of the present embodiment, the liquid level adjustment unit 7 adjusts the liquid level height of the liquid phase X1 in the vertical piping unit 2 c based on the liquid level height corrected by the liquid level correction unit 6. Can. Thus, the receiving pipe 2 can be properly cooled based on the correct liquid level.

以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の趣旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。   As mentioned above, although the suitable embodiment of the present invention was described referring to drawings, the present invention is not limited to the above-mentioned embodiment. The shapes, combinations, and the like of the constituent members shown in the above-described embodiment are merely examples, and various changes can be made based on design requirements and the like without departing from the spirit of the present invention.

上記実施形態においては、液面算出部4が気相圧力計4a及び液相圧力計4bを有し、密度取得部5が第1圧力計5a及び第2圧力計5bを有する構成を採用したが、本発明はこれに限定されない。液相圧力計4bと、第2圧力計5bとを兼用する兼用圧力計を備えるものとしてもよい。この場合、この場合、算出部4cは、兼用圧力計から圧力値を取得する。また、同様に、密度算出部5cは、兼用圧力計から圧力値を取得する。垂直配管部2cに設置する圧力計の数を減らすことができるため、取付がさらに容易となる。   In the above embodiment, the liquid level calculation unit 4 has a gas pressure gauge 4a and a liquid pressure gauge 4b, and the density acquisition unit 5 has a first pressure gauge 5a and a second pressure gauge 5b. The present invention is not limited to this. It is good also as what is provided with the combined pressure gauge which combines the liquid phase pressure gauge 4b and the 2nd pressure gauge 5b. In this case, in this case, the calculation unit 4c acquires a pressure value from the dual-use pressure gauge. Similarly, the density calculation unit 5c acquires a pressure value from the dual-use pressure gauge. Since the number of pressure gauges installed in the vertical piping portion 2c can be reduced, mounting becomes easier.

また、上記実施形態においては、密度取得部5は、鉛直方向において異なる位置の圧力の差分を算出することにより密度を算出する構成を採用したが、本発明はこれに限定されない。密度取得部5は、コリオリ式の密度計とすることも可能である。   Moreover, in the said embodiment, although the density acquisition part 5 employ | adopted the structure which calculates a density by calculating the difference of the pressure of a different position in a perpendicular direction, this invention is not limited to this. The density acquisition unit 5 can also be a Coriolis-type densitometer.

また、密度取得部5は、差圧計を用いることも可能である。この場合、上記実施形態の密度取得部5と同様に、差圧から密度を算出する密度算出部5cを有する。   The density acquisition unit 5 can also use a differential pressure gauge. In this case, similarly to the density acquisition unit 5 of the above embodiment, the density calculation unit 5c that calculates the density from the differential pressure is included.

1 受入設備
2 受入配管
2a 受入本管
2b 受入支管
2c 垂直配管部
2d バルブ
3 貯蔵タンク
3a コンクリート
3b タンク部
4 液面算出部
4a 気相圧力計
4b 液相圧力計
4c 算出部
5 密度取得部
5a 第1圧力計
5b 第2圧力計
5c 密度算出部
6 液面補正部
7 液面調整部
7a ポンプ
7b 調整バルブ
7c 制御部
100 タンカ
1 receiving facility 2 receiving piping 2a receiving main pipe 2b receiving branch pipe 2c vertical piping section 2d valve 3 storage tank 3a concrete 3b tank section 4 liquid level calculation section 4a gas phase pressure gauge 4b liquid phase pressure gauge 4c calculation section 5 density acquisition section 5a First pressure gauge 5b Second pressure gauge 5c Density calculation unit 6 Liquid level correction unit 7 Liquid level adjustment unit 7a Pump 7b Adjustment valve 7c Control unit 100 Tanker

Claims (5)

液化ガスを貯留するタンクに接続される受入配管を備える液化ガス受入設備であって、
前記受入配管内部の前記液化ガスの液面高さを算出する液面算出手段と、
前記受入配管に貯留される前記液化ガスの液相の密度を取得する密度取得手段と、
密度取得手段により取得された前記液化ガスの密度に基づいて前記液面高さを補正する液面補正手段と
を備えることを特徴とする液化ガス受入設備。
A liquefied gas receiving facility comprising receiving piping connected to a tank for storing liquefied gas, comprising:
Liquid level calculation means for calculating the liquid level of the liquefied gas inside the receiving pipe;
Density acquisition means for acquiring the density of the liquid phase of the liquefied gas stored in the receiving pipe;
And a liquid level correction unit that corrects the liquid level based on the density of the liquefied gas acquired by the density acquisition unit.
前記密度取得手段は、前記液化ガスの液相の差圧に基づいて密度を算出することを特徴とする請求項1記載の液化ガス受入設備。   The liquefied gas receiving facility according to claim 1, wherein the density acquisition unit calculates the density based on a differential pressure of a liquid phase of the liquefied gas. 前記密度取得手段は、
前記液化ガスの液相の圧力を計測する第1圧力計と、
前記第1圧力計と鉛直方向において異なる位置に設けられると共に前記液化ガスの液相の圧力を計測する第2圧力計と、
前記第1圧力計及び前記第2圧力計から取得した液相の圧力に基づいて前記液化ガスの密度を算出する密度算出部と
を備えることを特徴とする請求項2記載の液化ガス受入設備。
The density acquisition unit
A first pressure gauge for measuring the pressure of the liquid phase of the liquefied gas;
A second pressure gauge provided at a position different from the first pressure gauge in the vertical direction and measuring the pressure of the liquid phase of the liquefied gas;
The liquefied gas receiving facility according to claim 2, further comprising: a density calculation unit that calculates the density of the liquefied gas based on the pressure of the liquid phase acquired from the first pressure gauge and the second pressure gauge.
前記液面算出手段は、前記受入配管内部の気相の圧力を計測する気相圧力計と、前記液化ガスの液相の圧力を計測する液相圧力計とを備え、
前記液相圧力計は、前記第1圧力計または前記第2圧力計と兼用される
ことを特徴とする請求項3記載の液化ガス受入設備。
The liquid level calculation means includes a gas phase pressure gauge that measures the pressure of the gas phase inside the receiving pipe, and a liquid phase pressure gauge that measures the pressure of the liquid phase of the liquefied gas,
The liquefied gas receiving facility according to claim 3, wherein the liquid pressure gauge is also used as the first pressure gauge or the second pressure gauge.
前記液面補正手段により補正された前記液面高さに基づいて前記液面高さを調整する液面調整手段を備え、
前記液面調整手段は、前記受入配管と接続されて前記受入配管への前記液化ガスの流入量を調整するバルブと、前記液面補正手段により補正された前記液面高さを取得して前記バルブを開閉弁することにより前記受入配管の液面高さを調整する制御部とを備えることを特徴とする請求項1〜4のいずれか一項に記載の液化ガス受入設備。
The liquid level adjusting means is provided to adjust the liquid level based on the liquid level corrected by the liquid level correcting means.
The liquid level adjusting means is connected to the receiving pipe to adjust a flow amount of the liquefied gas into the receiving pipe, and the liquid level height corrected by the liquid level correcting means is acquired. The liquefied gas receiving facility according to any one of claims 1 to 4, further comprising: a control unit that adjusts a liquid level of the receiving pipe by opening and closing a valve.
JP2017075911A 2017-04-06 2017-04-06 Liquefied gas receiving device Active JP6873795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017075911A JP6873795B2 (en) 2017-04-06 2017-04-06 Liquefied gas receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017075911A JP6873795B2 (en) 2017-04-06 2017-04-06 Liquefied gas receiving device

Publications (2)

Publication Number Publication Date
JP2018179059A true JP2018179059A (en) 2018-11-15
JP6873795B2 JP6873795B2 (en) 2021-05-19

Family

ID=64281602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017075911A Active JP6873795B2 (en) 2017-04-06 2017-04-06 Liquefied gas receiving device

Country Status (1)

Country Link
JP (1) JP6873795B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4625553A (en) * 1985-04-12 1986-12-02 Dresser Industries, Inc. System to determine the level and weight of liquid in a tank or the like
JPH07119893A (en) * 1993-10-27 1995-05-12 Chiyoda Corp Control method for cryogenic liquid piping
JP2002013962A (en) * 2000-05-12 2002-01-18 Eaton Corp Liquid volume monitoring device and monitoring method therefor
JP2008170292A (en) * 2007-01-12 2008-07-24 Ebara Corp Measuring device of liquid density

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4625553A (en) * 1985-04-12 1986-12-02 Dresser Industries, Inc. System to determine the level and weight of liquid in a tank or the like
JPH07119893A (en) * 1993-10-27 1995-05-12 Chiyoda Corp Control method for cryogenic liquid piping
JP2002013962A (en) * 2000-05-12 2002-01-18 Eaton Corp Liquid volume monitoring device and monitoring method therefor
JP2008170292A (en) * 2007-01-12 2008-07-24 Ebara Corp Measuring device of liquid density

Also Published As

Publication number Publication date
JP6873795B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
KR101525142B1 (en) Material vaporization supply device equipped with material concentration detection mechanism
ES2877793T3 (en) A liquid dispenser
US9970596B2 (en) Dynamic-adaptive vapor reduction system and method
JP5123175B2 (en) Thermal mass flow meter and thermal mass flow controller
CN104884912A (en) Method of calibrating a level sensor
JP2016525682A5 (en)
KR20140070448A (en) Metering system and method for cryogenic liquids
US9725800B2 (en) Vaporizing system
KR102419164B1 (en) Flow rate calculation system and flow rate calculation method
JP6607796B2 (en) Liquid level detection device for liquid supply equipment, liquid level detection method for liquid supply equipment, and liquid supply equipment provided with the liquid level detection device
US20140234034A1 (en) Powder supply device and powder supply method
JP6873795B2 (en) Liquefied gas receiving device
CN109563970A (en) Method and apparatus for the detection gas amount in a manner of adjustable
RU2568981C2 (en) Measuring tank
JP2008089373A (en) Flow measurement by coriolis flowmeter, and flow controller
JP6270333B2 (en) Reactor water level measuring device
JP2006160287A (en) Tank truck and mass control system thereof
US11231144B2 (en) Methods for helium storage and supply
JP4891787B2 (en) Liquid density measuring device
JP2014106098A (en) Density measurement system for liquefied natural gas, facility for liquefied natural gas including the system and density measurement method for liquefied natural gas
KR101304250B1 (en) The apparatus of changes in effective volume of highly pressurized gas cylinders and measurement method using the same
US20230266154A1 (en) Flow Meter Assembly
US20220357193A1 (en) Measuring method and measuring apparatus for determining a flow rate of a process gas
JP2016003955A (en) Reactor water level measuring device
WO2015111747A1 (en) Liquid material vaporization apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170407

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20191128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20191206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210421

R150 Certificate of patent or registration of utility model

Ref document number: 6873795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250