JP2018176597A - Data generation device for three-dimensional creation, three-dimensional creation device, and path data generation program for three-dimensional creation - Google Patents

Data generation device for three-dimensional creation, three-dimensional creation device, and path data generation program for three-dimensional creation Download PDF

Info

Publication number
JP2018176597A
JP2018176597A JP2017081557A JP2017081557A JP2018176597A JP 2018176597 A JP2018176597 A JP 2018176597A JP 2017081557 A JP2017081557 A JP 2017081557A JP 2017081557 A JP2017081557 A JP 2017081557A JP 2018176597 A JP2018176597 A JP 2018176597A
Authority
JP
Japan
Prior art keywords
dimensional
modeling
discharge
data
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017081557A
Other languages
Japanese (ja)
Other versions
JP6900762B2 (en
Inventor
敦 荻原
Atsushi Ogiwara
敦 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2017081557A priority Critical patent/JP6900762B2/en
Publication of JP2018176597A publication Critical patent/JP2018176597A/en
Application granted granted Critical
Publication of JP6900762B2 publication Critical patent/JP6900762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To restrain gaps from overlapping in the laminating direction of a creation material when a three-dimensional shape is created using a three-dimensional creation method for creating a three-dimensional shape by continuously discharging a creation material along a contour set up on the basis of two-dimensional data of a sliced surface formed by slicing the three-dimensional shape data and by continuously discharging a creation material to the inside of the contour.SOLUTION: A path data generation device 10 for three-dimensional creation continuously discharges a creation material in accordance with a contour set up on the basis of two-dimensional data of a sliced surface formed by slicing three-dimensional data of a three-dimensional shape, and generates path data showing a discharging path of the creation material so that the creation material is continuously discharged to the inside of the contour. When the contours overlap each other in the laminating direction of the creation material, at least one of the number or a thickness of contours on at least one layer among layers with overlapped contours is modified.SELECTED DRAWING: Figure 1

Description

本発明は、三次元造形用経路データ生成装置、三次元造形装置、及び三次元造形用経路データ生成プログラムに関する。   The present invention relates to a three-dimensional modeling route data generation apparatus, a three-dimensional modeling apparatus, and a three-dimensional modeling route data generation program.

特許文献1には、3次元物体のコンピュータ支援設計モデルを修正する方法であって、 前記方法は、限界壁幅を設定することと、前記コンピュータ支援設計モデルの少なくとも1つのスライス層ポリラインを提供することであって、前記少なくとも1つのスライス層ポリラインが第1部分および第2部分を含む、少なくとも1つのスライス層ポリラインを提供することと、前記第1部分と前記第2部分との間の第1距離を判定することと、前記第1距離が前記限界壁幅より小さい場合に、前記第1部分と前記第2部分との間に第2距離を提供するように、前記第1部分および前記第2部分の位置を調整することであって、前記第2距離が前記限界壁幅とほぼ等しいか、または前記限界壁幅よりも大きい、前記第1部分および前記第2部分の位置を調整することと、を備える方法が開示されている。   Patent Document 1 discloses a method of correcting a computer aided design model of a three-dimensional object, wherein the method comprises setting a limit wall width and providing at least one slice layer polyline of the computer aided design model. Providing at least one slice layer polyline, wherein the at least one slice layer polyline comprises a first portion and a second portion, and a first between the first portion and the second portion. Determining the distance, and providing the second distance between the first portion and the second portion if the first distance is less than the limit wall width; Adjusting the position of the two parts, wherein the second distance is approximately equal to or greater than the limit wall width, of the first and second portions The method comprises the adjusting the location, is disclosed.

特許文献2には、押出しベースの層状堆積システムを使用して3次元物体を形成する方法であって、3次元物体の層を構築するために空隙領域を定めるビルド径路を生成する段階と、前記空隙領域に少なくとも1つの中間径路を生成する段階と、前記少なくとも1つの中間径路に少なくとも部分的に基づいて残存径路を生成する段階と、を含むことを特徴とする方法が開示されている。   U.S. Pat. No. 5,959,015 describes a method of forming a three-dimensional object using an extrusion-based layered deposition system, generating a build path defining a void area to build up a layer of the three-dimensional object; A method is disclosed comprising the steps of generating at least one intermediate path in the void area and generating a remaining path based at least in part on said at least one intermediate path.

特表2010−533086号公報JP-A-2010-533086 特表2009−525207号公報Japanese Patent Application Publication No. 2009-525207

本発明は、三次元形状データをスライスしたスライス面の二次元データに基づいて設定された輪郭線に従って造形材料を連続して吐出すると共に、輪郭線の内部に造形材料を連続して吐出することにより三次元形状を造形する三次元造形法を用いて三次元形状を造形する際に、造形材料の積層方向に隙間が重なるのを抑制することができる三次元造形用データ生成装置、三次元造形装置、及び三次元造形用経路データ生成プログラムを提供することを目的とする。   The present invention continuously discharges a modeling material according to an outline set based on two-dimensional data of a sliced surface obtained by slicing three-dimensional shape data, and continuously discharges the modeling material inside the outline. A three-dimensional modeling data generation apparatus capable of suppressing a gap from overlapping in a stacking direction of modeling materials when modeling a three-dimensional shape using a three-dimensional modeling method of modeling a three-dimensional shape An object of the present invention is to provide an apparatus and a three-dimensional modeling route data generation program.

上記目的を達成するために、請求項1に記載の三次元造形用データ生成装置の発明は、三次元形状の三次元形状データをスライスしたスライス面の二次元データに基づいて設定された輪郭線に従って造形材料が連続して吐出されると共に、前記輪郭線の内部に前記造形材料が連続して吐出されるように前記造形材料の吐出経路を表す経路データを生成する生成部と、前記造形材料の積層方向に前記輪郭線が重なる場合は、前記輪郭線が重なる層のうち少なくとも1層の前記輪郭線の本数及び太さの少なくとも一方を変更することで前記吐出経路を変更する変更部と、を備える。   In order to achieve the above object, the invention of a three-dimensional modeling data generation apparatus according to claim 1 is an outline set based on two-dimensional data of a sliced surface obtained by slicing three-dimensional shape data of a three-dimensional shape. And a generation unit that generates path data representing a discharge path of the modeling material so that the modeling material is continuously discharged according to the shape line, and the modeling material is continuously discharged to the inside of the contour line; A changing unit that changes the ejection path by changing at least one of the number and thickness of at least one of the layers in which the outlines overlap, when the outlines overlap in the stacking direction of the layers; Equipped with

請求項2記載の発明は、前記変更部は、前記輪郭線が重なる層のうち前記積層方向における両端の層の前記輪郭線の本数及び太さの少なくとも一方を変更する。   In the invention according to claim 2, the changing unit changes at least one of the number and the thickness of the outlines of the layers at both ends in the stacking direction among the layers in which the outlines overlap.

請求項3記載の発明の三次元造形装置は、造形材料を吐出する吐出部と、請求項1又は請求項2記載の三次元造形用データ生成装置により生成された前記三次元造形用経路データを取得する取得部と、前記取得部により取得された前記三次元造形用経路データに従って前記造形材料が吐出されるように前記吐出部を制御する制御部と、を備える。   The three-dimensional modeling apparatus of the invention according to a third aspect of the present invention is a discharge unit for discharging a modeling material, and the three-dimensional modeling path data generated by the three-dimensional modeling data generation apparatus according to the first or second aspect. It has an acquisition part to acquire, and a control part which controls the discharge part so that the modeling material may be discharged according to the path data for three-dimensional modeling acquired by the acquisition part.

請求項4記載の発明は、前記制御部は、前記輪郭線の内部に前記造形材料が連続して吐出される際に、前記吐出経路の折り返し部分で吐出される前記造形材料の量が、前記折り返し部分以外の部分で吐出される前記造形材料よりも多くなるように、前記吐出部による前記造形材料の吐出量を制御する。   In the invention according to claim 4, when the control unit is continuously discharged the modeling material into the contour line, the amount of the modeling material to be discharged at the folded portion of the discharge path is The amount of discharge of the modeling material by the discharge unit is controlled so as to be larger than the modeling material discharged in a portion other than the folded portion.

請求項5記載の発明は、前記制御部は、前記輪郭線の内部に前記造形材料が連続して吐出される際に、前記輪郭線が重なる層のうち前記積層方向における両端の層の、前記吐出経路の折り返し部分で吐出される前記造形材料の量が、前記折り返し部分以外の部分で吐出される前記造形材料よりも多くなるように、前記吐出部による前記造形材料の吐出量を制御する。   In the invention according to claim 5, when the shaping material is continuously discharged to the inside of the outline, the control unit is the layer of the layers at both ends in the stacking direction among the layers in which the outline overlaps. The amount of discharge of the modeling material by the discharge unit is controlled such that the amount of the modeling material discharged in the folded portion of the discharge path is larger than the amount of the modeling material discharged in the portion other than the folded portion.

請求項6記載の発明は、前記制御部は、前記輪郭線の内部に前記造形材料が連続して吐出される際に、前記吐出経路の折り返し部分で吐出される前記造形材料の量が、前記折り返し部分以外の部分で吐出される前記造形材料よりも多くなるように、前記吐出部の移動速度を遅くするよう制御する。   In the invention according to claim 6, in the control unit, when the modeling material is continuously discharged into the inside of the outline, the amount of the modeling material discharged in the folded portion of the discharge path is Control is performed to slow the moving speed of the discharge portion so that the amount of the material to be discharged is larger than that of the portion other than the folded portion.

請求項7記載の発明は、前記制御部は、前記輪郭線の内部に前記造形材料が連続して吐出される際に、前記輪郭線が重なる層のうち前記積層方向における両端の層の、前記吐出経路の折り返し部分で吐出される前記造形材料の量が、前記折り返し部分以外の部分で吐出される前記造形材料よりも多くなるように、前記吐出部の移動速度を遅くするよう制御する。   In the invention according to claim 7, when the shaping material is continuously discharged to the inside of the outline, the control unit is the layer of the layers at both ends in the stacking direction among the layers in which the outline overlaps. The moving speed of the discharge portion is controlled to be slow so that the amount of the modeling material discharged in the folded portion of the discharge path is larger than the amount of the modeling material discharged in the portion other than the folded portion.

請求項8記載の発明の三次元造形用経路データ生成プログラムは、コンピュータを、請求項1又は請求項2記載の三次元造形用データ生成装置の各部として機能させるための三次元造形用経路データ生成プログラムである。   The route data generation program for three-dimensional modeling of the invention according to claim 8 generates route data for three-dimensional modeling for causing the computer to function as each unit of the data creation apparatus for three-dimensional modeling according to claim 1 or 2 It is a program.

請求項1、3、8に記載の発明によれば、三次元形状データをスライスしたスライス面の二次元データに基づいて設定された輪郭線に従って造形材料を連続して吐出すると共に、輪郭線の内部に造形材料を連続して吐出することにより三次元形状を造形する三次元造形法を用いて三次元形状を造形する際に、造形材料の積層方向に隙間が重なるのを抑制することができる、という効果を有する。   According to the first, third, and eighth aspects of the present invention, the forming material is continuously discharged in accordance with the contour line set based on the two-dimensional data of the slice plane obtained by slicing the three-dimensional shape data. When forming a three-dimensional shape using a three-dimensional forming method of forming a three-dimensional shape by continuously discharging the forming material into the inside, it is possible to suppress that a gap overlaps in the stacking direction of the forming material It has an effect of.

請求項2に記載の発明によれば、輪郭線が重なる層のうち積層方向における両端の層以外の輪郭線の本数及び太さの少なくとも一方を変更する場合と比較して、微少な穴が形成されるのが抑制される、という効果を有する。   According to the second aspect of the present invention, a minute hole is formed as compared with the case where at least one of the number and thickness of contour lines other than the layers at both ends in the stacking direction among the layers where the contour lines overlap is changed. It has the effect of being suppressed.

請求項4に記載の発明によれば、吐出経路の折り返し部分と折り返し部分以外の部分とで造形材料の吐出量を同じにした場合と比較して、微少な穴が形成されるのが抑制される、という効果を有する。   According to the fourth aspect of the present invention, the formation of minute holes is suppressed as compared with the case where the discharge amount of the modeling material is made the same between the folded portion of the discharge path and the portion other than the folded portion. Have the effect of

請求項5に記載の発明によれば、輪郭線が重なる層のうち積層方向における両端の層以外の層について、吐出経路の折り返し部分で吐出される造形材料の量が多くなるように吐出量を制御する場合と比較して、三次元形状の表面の隙間を小さくすることができる、という効果を有する。   According to the fifth aspect of the present invention, the discharge amount is increased so that the amount of the modeling material to be discharged in the turn-back portion of the discharge path is increased for the layers other than the layers at both ends in the stacking direction among the layers where the outlines overlap. As compared with the case of control, it is possible to reduce the clearance of the three-dimensional shaped surface.

請求項6に記載の発明によれば、吐出経路の折り返し部分と折り返し部分以外の部分とで吐出部の移動速度を同じにした場合と比較して、微少な穴が形成されるのが抑制される、という効果を有する。   According to the sixth aspect of the present invention, the formation of a minute hole is suppressed as compared with the case where the moving speed of the discharge portion is made the same between the folded portion of the discharge path and the portion other than the folded portion. Have the effect of

請求項7に記載の発明によれば、輪郭線が重なる層のうち積層方向における両端の層以外の層について、吐出経路の折り返し部分で吐出される造形材料の量が多くなるように吐出部の移動速度を遅くする場合と比較して、三次元形状の表面の隙間を小さくすることができる、という効果を有する。   According to the seventh aspect of the present invention, in the layer where the outline overlaps, the layers other than the layers at both ends in the stacking direction are such that the amount of the modeling material discharged in the folded portion of the discharge path is increased. As compared with the case of reducing the moving speed, it is possible to reduce the gap between the surfaces of the three-dimensional shape.

三次元造形用経路データの生成装置の構成例を示す図である。It is a figure which shows the structural example of the production | generation apparatus of the path | route data for three-dimensional modeling. 三次元形状の一例を示す図である。It is a figure which shows an example of a three-dimensional shape. 三次元造形用経路データの生成処理の流れの一例を示すフローチャートである。It is a flow chart which shows an example of a flow of generation processing of course data for three-dimensional modeling. 三次元形状の一例を示す斜視図である。It is a perspective view which shows an example of a three-dimensional shape. 三次元形状の一例を示す側面図である。It is a side view showing an example of a three-dimensional shape. 三次元造形用経路データについて説明するための図である。It is a figure for demonstrating the path | route data for three-dimensional modeling. 輪郭線の数を2本に増加させた場合の三次元造形用経路データについて説明するための図である。It is a figure for demonstrating the path | route data for three-dimensional modeling at the time of increasing the number of outlines to two. 三次元造形装置の構成例を示す図である。It is a figure which shows the structural example of a three-dimensional modeling apparatus.

以下、図面を参照して、本発明を実施するための形態例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、図1を参照して、本実施の形態に係る三次元造形用経路データの生成装置10の構成について説明する。   First, with reference to FIG. 1, the structure of the production | generation apparatus 10 of the path | route data for three-dimensional modeling which concerns on this Embodiment is demonstrated.

生成装置10は、例えばパーソナルコンピュータ等で構成され、コントローラ12を備える。コントローラ12は、CPU(Central Processing Unit)12A、ROM(Read Only Memory)12B、RAM(Random Access Memory)12C、不揮発性メモリ12D、及び入出力インターフェース(I/O)12Eを備える。そして、CPU12A、ROM12B、RAM12C、不揮発性メモリ12D、及びI/O12Eがバス12Fを介して各々接続されている。   The generation device 10 is configured of, for example, a personal computer, and includes the controller 12. The controller 12 includes a central processing unit (CPU) 12A, a read only memory (ROM) 12B, a random access memory (RAM) 12C, a non-volatile memory 12D, and an input / output interface (I / O) 12E. The CPU 12A, the ROM 12B, the RAM 12C, the non-volatile memory 12D, and the I / O 12E are connected to one another via the bus 12F.

また、I/O12Eには、操作部14、表示部16、通信部18、及び記憶部20が接続されている。なお、CPU12Aは、生成部及び変更部の一例である。   Further, the I / O 12E is connected to the operation unit 14, the display unit 16, the communication unit 18, and the storage unit 20. The CPU 12A is an example of a generation unit and a change unit.

操作部14は、生成装置10のユーザーから指示を受け付ける、例えばマウス、キーボード、及びタッチパネル等の入力デバイスを含んで構成される。   The operation unit 14 includes an input device such as a mouse, a keyboard, and a touch panel that receives an instruction from the user of the generation device 10.

表示部16は、例えば液晶ディスプレイ及び有機EL(Electro Luminescence)ディスプレイ等の表示デバイスを含んで構成される。   The display unit 16 includes, for example, display devices such as a liquid crystal display and an organic EL (Electro Luminescence) display.

通信部18は、例えばインターネット及びLAN(Local Area Network)といった通信回線に接続され、通信回線に接続されたパーソナルコンピュータ等の外部装置とデータ通信を行うためのインターフェースを有する。   The communication unit 18 is connected to a communication line such as the Internet and a LAN (Local Area Network), for example, and has an interface for performing data communication with an external device such as a personal computer connected to the communication line.

記憶部20は、ハードディスク等の不揮発性の記憶装置で構成され、後述する三次元造形用経路データの生成プログラム、三次元形状データ等を記憶する。CPU12Aは、記憶部20に記憶された三次元造形用経路データの生成プログラムを読み込んで実行する。   The storage unit 20 is configured by a non-volatile storage device such as a hard disk, and stores a generation program of three-dimensional modeling path data, which will be described later, three-dimensional shape data, and the like. The CPU 12A reads and executes a generation program of three-dimensional modeling route data stored in the storage unit 20.

図2は、三次元形状データによって表される三次元形状32の一例を示す図である。図2に示すように、生成装置10は、直交するX軸、Y軸、及びZ軸によって表される三次元座標空間を用いて三次元形状32を表す。   FIG. 2 is a view showing an example of a three-dimensional shape 32 represented by three-dimensional shape data. As shown in FIG. 2, the generator 10 represents a three-dimensional shape 32 using a three-dimensional coordinate space represented by orthogonal X, Y, and Z axes.

本実施形態では、三次元形状データのデータフォーマットとして、三次元形状32をボクセル34の集合によって表現するデータフォーマットを用いた場合について説明するが、他のデータフォーマットを用いてもよい。   In the present embodiment, as a data format of three-dimensional shape data, a data format in which the three-dimensional shape 32 is represented by a set of voxels 34 is used, but other data format may be used.

ここで、ボクセル34とは、三次元形状32の基本要素であり、例えば直方体が用いられるが、直方体に限らず、球又は円柱等を用いてもよい。ボクセル34を積み上げることで所望の三次元形状32が表現される。また、各ボクセル34には、例えば色、強度、材質、質感等のボクセル34の性質を表す属性が指定されており、ボクセル34の有無及びボクセル34の属性によって、三次元形状32の色や材質等が表現される。以下、ボクセル34の属性として指定された色を色情報と称する。   Here, the voxel 34 is a basic element of the three-dimensional shape 32. For example, a rectangular parallelepiped is used, but not limited to a rectangular parallelepiped, a sphere or a cylinder may be used. The desired three-dimensional shape 32 is represented by stacking the voxels 34. Further, in each voxel 34, an attribute representing the property of the voxel 34 such as color, intensity, material, texture, etc. is designated, and the color or material of the three-dimensional shape 32 is determined by the presence or absence of the voxel 34 and the attribute of the voxel 34. Etc. are expressed. Hereinafter, the color designated as the attribute of the voxel 34 is referred to as color information.

ここで、「材質」とは、樹脂、金属、ゴム等の材料のジャンルを表す情報、ABS、PLA等の材料名を表す情報、市販されている材料の商品名、商品番号等を表す情報、ISO、JIS等の規格で定められている材料名、略称、番号等の材料を表す情報、熱伝導率、導電率、磁性等の材料特性を表す情報の少なくとも1つの情報を含む。   Here, the "material" is information representing the genre of the material such as resin, metal, rubber, information representing the material name such as ABS or PLA, information representing the trade name of the commercially available material, product number, etc. It includes at least one piece of information indicating material names, abbreviations, numbers and the like defined by standards such as ISO and JIS, and information indicating material characteristics such as thermal conductivity, conductivity, magnetism and the like.

また、「質感」とは、三次元形状データの反射率、透過率、光沢、表面性状等の他、色だけではなく見た目又は触り心地を表す属性も含む。   Further, the "texture" includes not only the color but also an attribute representing an appearance or touch, in addition to the reflectance, transmittance, gloss, surface property and the like of the three-dimensional shape data.

なお、属性には、周期、数式、及び他の三次元形状データの少なくとも1つの情報を用いて設定される属性パターンを含む。属性パターンとは、一定周期の繰り返し、グラデーション、数式で表される傾斜や極点による表現、他の三次元形状データ等に従って三次元形状データの色、材質、質感等を連続的に変更すること、三次元形状データの指示された範囲を指示された形状で充填すること又は連続的に変更すること、の少なくとも1つを含む。   Note that the attribute includes an attribute pattern set using at least one information of a period, a mathematical expression, and other three-dimensional shape data. The attribute pattern is to continuously change the color, material, texture, etc. of the three-dimensional shape data according to repetition of a constant cycle, gradation, expression represented by a slope or a mathematical expression, other three-dimensional shape data, etc. Filling or continuously changing the indicated range of the three-dimensional shape data with the indicated shape.

上述したように、三次元形状32はボクセル34の集合によって表されるが、具体的には、例えば三次元座標空間におけるX、Y、Zの座標の要素値nによって表される。ここで、nは0以上の整数である。三次元座標空間における座標を(X、Y、Z)で表せば、座標(X、Y、Z)にボクセル34が存在する場合は、nを1以上の整数とする。一方、座標(X、Y、Z)にボクセル34が存在しない場合は、nを0とする。これにより、三次元形状32が表される。   As described above, the three-dimensional shape 32 is represented by a set of voxels 34. Specifically, for example, it is represented by an element value n of X, Y, Z coordinates in a three-dimensional coordinate space. Here, n is an integer of 0 or more. If coordinates in the three-dimensional coordinate space are represented by (X, Y, Z), n is an integer of 1 or more when voxels 34 exist at the coordinates (X, Y, Z). On the other hand, n is 0 if voxels 34 do not exist at the coordinates (X, Y, Z). Thereby, a three-dimensional shape 32 is represented.

なお、nが1以上の場合、nはボクセルの属性を表す。例えばn=2の場合は、そのボクセルの材料がA、色が赤であることを表し、n=3であれば材料がB、色が緑であることを表す等である。すなわちnの値とボクセルの属性とは1対1に対応する。   When n is 1 or more, n represents an attribute of a voxel. For example, in the case of n = 2, it indicates that the material of the voxel is A and the color is red, and if n = 3, it indicates that the material is B and the color is green, and so on. That is, the value of n and the attribute of the voxel correspond one to one.

また、三次元形状32の形状に制約はなく、三次元形状データを用いて表現される形状であれば、どのような形状であってもよい。   Further, the shape of the three-dimensional shape 32 is not limited, and may be any shape as long as it is a shape represented using three-dimensional shape data.

なお、本実施形態では、三次元形状データをスライスしたスライス面の二次元データに基づいて設定された、三次元形状の外面を画定する輪郭線に従って造形材料を連続して吐出すると共に、輪郭線の内部に造形材料を連続して吐出することにより三次元形状を造形する三次元造形法を用いて三次元形状を造形する際に、造形材料を吐出する経路を定めた三次元造形用経路データを生成する場合について説明する。三次元造形用経路データは、例えば造形材料の吐出経路及び造形材料の太さを含むデータである。   In the present embodiment, the molding material is continuously discharged in accordance with the outline that defines the outer surface of the three-dimensional shape set based on the two-dimensional data of the sliced surface obtained by slicing the three-dimensional shape data. When forming a three-dimensional shape by using a three-dimensional forming method of forming a three-dimensional shape by continuously discharging the forming material into the inside of the three-dimensional forming route data defining a path for discharging the forming material The case of generating. The three-dimensional formation route data is, for example, data including a discharge route of the formation material and a thickness of the formation material.

上記のような三次元造形法、すなわち一筆書きのように造形材料を連続して吐出することにより三次元形状を造形する三次元造形法としては、例えば熱可塑性樹脂を溶かし積層させることで三次元形状を造形する熱溶解積層法(FDM:Fused Deposition Modeling)等があるが、これに限られるものではない。   As a three-dimensional modeling method as described above, that is, a three-dimensional modeling method in which a three-dimensional shape is modeled by continuously discharging a modeling material like one-stroke writing, for example, a thermoplastic resin is melted and laminated to form three-dimensional Although there are a hot melt lamination method (FDM: Fused Deposition Modeling) etc. which model a shape, it is not restricted to this.

次に、図3を参照して、本実施の形態に係る生成装置10の作用を説明する。CPU12Aが三次元造形用経路データの生成プログラムを読み込んで実行することにより、図3に示す生成処理が実行される。なお、図3に示す生成処理は、例えば、ユーザーの操作により生成プログラムの実行が指示された場合に実行される。   Next, with reference to FIG. 3, an operation of the generation device 10 according to the present embodiment will be described. The CPU 12A reads and executes a generation program for three-dimensional modeling route data, whereby the generation process shown in FIG. 3 is executed. The generation process illustrated in FIG. 3 is executed, for example, when execution of a generation program is instructed by a user operation.

なお、本実施形態では、説明を簡単にするために、図4に示すような直方体の三次元形状40の三次元造形用経路データを生成する場合について説明する。   In the present embodiment, in order to simplify the description, the case of generating path data for three-dimensional shaping of a three-dimensional shape 40 of a rectangular parallelepiped as shown in FIG. 4 will be described.

ステップS100では、記憶部20から三次元形状データを読み込む。   In step S100, three-dimensional shape data is read from the storage unit 20.

ステップS102では、三次元形状データに基づいてスライスデータ(二次元データ)を生成する。具体的には、図5に示すように、三次元形状40が接地される接地面(XY平面)と平行な面をスライス面Sとして設定し、三次元形状40をZ軸方向に予め定めた間隔dでスライスすることによりスライスデータを生成する。生成されたスライスデータは、スライス面Sにおける三次元形状40の輪郭線を表すデータである。   In step S102, slice data (two-dimensional data) is generated based on the three-dimensional shape data. Specifically, as shown in FIG. 5, a plane parallel to the ground plane (XY plane) to which the three-dimensional shape 40 is grounded is set as the slice plane S, and the three-dimensional shape 40 is predetermined in the Z axis Slice data is generated by slicing at an interval d. The generated slice data is data representing the outline of the three-dimensional shape 40 in the slice plane S.

ステップS104では、ステップS102で生成したスライスデータをボクセルデータに変換することでボクセルデータを生成する。ボクセルデータは、三次元形状40を例えば直方体等の予め定めた形状のボクセルで表したデータである。従って、ステップS104では、ステップS102で生成したスライスデータで表される輪郭線で囲まれた領域を複数のボクセルに分割する。   In step S104, voxel data is generated by converting the slice data generated in step S102 into voxel data. The voxel data is data representing the three-dimensional shape 40 by voxels of a predetermined shape such as a rectangular parallelepiped, for example. Therefore, in step S104, the area surrounded by the outline represented by the slice data generated in step S102 is divided into a plurality of voxels.

ステップS106では、ステップS104で生成されたスライスデータに基づいて、造形材料の吐出経路を表す経路データを生成する。   In step S106, based on the slice data generated in step S104, path data representing a discharge path of the build material is generated.

本実施形態では、一筆書きのように造形材料を連続して吐出することにより三次元形状を造形する三次元造形法を用いるので、スライスデータに基づいて造形材料が吐出される吐出領域の輪郭線を求め、求めた輪郭線及び輪郭線の内部に造形材料を連続して吐出する経路を求める。   In the present embodiment, since a three-dimensional forming method of forming a three-dimensional shape by continuously discharging the forming material like one-stroke writing is used, the outline of the discharge area where the forming material is discharged based on the slice data. And a path for continuously discharging the forming material to the inside of the obtained outline and the outline.

図5に示す三次元形状40の場合、スライス面Sでスライスした場合のXY平面における形状は矩形状となる。この場合、図6に示すように、三次元形状40の輪郭線に従って造形材料50が連続して吐出される経路52A、及び、輪郭線の内部に造形材料50が折り返されながら連続して吐出される経路52Bを含む経路52を表す経路データが生成される。   In the case of the three-dimensional shape 40 shown in FIG. 5, the shape in the XY plane when sliced on the slice surface S is rectangular. In this case, as shown in FIG. 6, the path 52A in which the build material 50 is continuously discharged according to the outline of the three-dimensional shape 40, and the build material 50 is continuously discharged while being folded back inside the outline. Path data representing the path 52 including the path 52B is generated.

ところで、図6に示すように、経路52Aに沿って吐出された造形材料50と、経路52Bに沿って吐出された造形材料50との間には、造形材料が存在しない隙間54が発生する。   By the way, as shown in FIG. 6, a gap 54 in which no modeling material exists is generated between the modeling material 50 discharged along the path 52A and the modeling material 50 discharged along the path 52B.

三次元形状40のような直方体の場合、各スライス面における二次元形状は全て同じ矩形状となる。この場合、各層の隙間54が同じ位置に発生するため、複数の層の隙間54が造形材料の積層方向、すなわちZ軸方向に重なることにより、三次元形状40に複数の微少な穴が形成されてしまうこととなる。   In the case of a rectangular parallelepiped such as the three-dimensional shape 40, the two-dimensional shape in each slice plane is the same rectangular shape. In this case, since the gaps 54 of the respective layers occur at the same position, the plurality of minute holes are formed in the three-dimensional shape 40 by the gaps 54 of the plurality of layers overlapping in the stacking direction of the modeling material, that is, the Z axis direction. It will

そこで、ステップS108では、造形材料の積層方向に輪郭線が重なる層が存在するか否かを判定し、存在する場合はステップS110へ移行し、存在しない場合はステップS112へ移行する。   Therefore, in step S108, it is determined whether or not there is a layer in which the outlines overlap in the stacking direction of the forming materials, and if it exists, the process proceeds to step S110, and if it does not exist, the process proceeds to step S112.

ステップS110では、輪郭線が重なる層のうち少なくとも1層の輪郭線の本数及び太さの少なくとも一方を変更する。   In step S110, at least one of the number and thickness of the outline of at least one layer of the layers where the outlines overlap is changed.

例えば、Z方向において最上層の輪郭線を2本に増加させ、その他の層の輪郭線は1本のままとする。この場合、図7に示すように、2本に増加された輪郭線に従って造形材料50が連続して吐出される経路56A、及び、輪郭線の内部に造形材料50が折り返されながら連続して吐出される経路56Bを含む経路56を表す経路データが生成される。また、最上層以外の層については、図6に示す経路52を表す経路データが生成される。   For example, the contour of the top layer is increased to two in the Z direction, and the contours of the other layers are left alone. In this case, as shown in FIG. 7, the path 56A in which the build material 50 is continuously discharged in accordance with the two increased outlines, and the form material 50 is continuously discharged while being folded back inside the outline. Path data is generated that is representative of the path 56 that includes the path 56B. Also, for layers other than the top layer, path data representing the path 52 shown in FIG. 6 is generated.

これにより、図7に示すように、経路56Aに沿って吐出された造形材料50と、経路56Bに沿って吐出された造形材料50との間に発生する隙間58のXY平面における位置は、図6に示す隙間54のXY平面における位置と重ならない。このため、三次元形状40に複数の微少な穴が形成されるのが抑制される。   Thereby, as shown in FIG. 7, the position in the XY plane of the gap 58 generated between the modeling material 50 discharged along the path 56A and the modeling material 50 discharged along the path 56B is It does not overlap with the position in the XY plane of the gap 54 shown in FIG. For this reason, formation of a plurality of minute holes in the three-dimensional shape 40 is suppressed.

なお、最上層だけでなく、最下層の輪郭線の本数を最上層と同様に増加させてもよい。また、例えば最上層の輪郭線の太さを他の層と比べて太くしてもよい。これにより、最上層に発生する隙間のXY平面の位置と最上層以外の層に発生する隙間のXY平面における位置が異なることとなり、三次元形状40に複数の微少な穴が形成されるのが抑制される。なお、この場合も、最上層だけでなく、最下層の輪郭線の太さを最上層と同様に太くしてもよい。   In addition, the number of outlines of not only the top layer but the bottom layer may be increased similarly to the top layer. Also, for example, the thickness of the contour line of the top layer may be thicker than that of other layers. Thereby, the position of the gap generated in the uppermost layer in the XY plane and the position in the XY plane of the gaps generated in the layers other than the uppermost layer are different, and a plurality of minute holes are formed in the three-dimensional shape 40 Be suppressed. Also in this case, not only the thickness of the top layer, but also the thickness of the lowermost layer may be made the same as the thickness of the top layer.

ステップS112では、上記の処理を行うことにより生成された三次元造形用経路データを記憶部20に記憶する。   In step S112, the three-dimensional modeling route data generated by performing the above-described processing is stored in the storage unit 20.

このように、本実施形態では、造形材料の積層方向に輪郭線が重なる層が存在する場合には、輪郭線が重なる層のうち少なくとも1層の輪郭線の本数及び太さの少なくとも一方を変更する。これにより、造形材料の積層方向に隙間が重なり、微少な穴が形成されるのが抑制される。   As described above, in the present embodiment, when there is a layer in which the outlines overlap in the stacking direction of the modeling material, at least one of the number and the thickness of the outlines of at least one layer is changed among the layers in which the outlines overlap. Do. Thereby, the gaps overlap in the stacking direction of the modeling material, and the formation of minute holes is suppressed.

次に、三次元造形用経路データの生成装置10により生成された三次元造形用経路データを用いて三次元形状を造形する三次元造形装置について説明する。   Next, a three-dimensional modeling apparatus for modeling a three-dimensional shape using the three-dimensional modeling route data generated by the three-dimensional modeling route data generation apparatus 10 will be described.

図8には、本実施の形態に係る三次元造形装置100の構成を示した。図12に示すように、三次元造形装置100は、吐出ヘッド102、吐出ヘッド駆動部104、造形台106、造形台駆動部108、取得部110、及び制御部112を備える。   In FIG. 8, the structure of the three-dimensional modeling apparatus 100 which concerns on this Embodiment was shown. As shown in FIG. 12, the three-dimensional modeling apparatus 100 includes a discharge head 102, a discharge head drive unit 104, a modeling table 106, a modeling table drive unit 108, an acquisition unit 110, and a control unit 112.

吐出部の一例としての吐出ヘッド102は、三次元形状40を造形するための造形材料を吐出する。吐出ヘッド102は、吐出ヘッド駆動部104によって駆動され、XY平面上を二次元に走査される。   The discharge head 102 as an example of the discharge unit discharges a forming material for forming the three-dimensional shape 40. The ejection head 102 is driven by the ejection head driving unit 104, and is two-dimensionally scanned on the XY plane.

造形台106は、造形台駆動部108によって駆動され、Z軸方向に昇降される。   The forming table 106 is driven by the forming table drive unit 108 and is moved up and down in the Z-axis direction.

取得部110は、三次元造形用経路データの生成装置10が生成した三次元造形用経路データを取得する。   The acquisition unit 110 acquires the three-dimensional formation path data generated by the three-dimensional formation path data generation device 10.

制御部112は、取得部110が取得した三次元造形用経路データに従って造形材料が吐出されるように、吐出ヘッド駆動部104を駆動して吐出ヘッド102を二次元に走査させると共に、吐出ヘッド102による造形材料の吐出を制御する。   The control unit 112 drives the discharge head driving unit 104 to two-dimensionally scan the discharge head 102 so that the modeling material is discharged according to the three-dimensional modeling route data acquired by the acquisition unit 110, and the discharge head 102. Control the discharge of the molding material.

また、制御部112は、各層の造形が終了する毎に、造形台駆動部108を駆動して造形台106を予め定めた間隔d分降下させる。   In addition, the control unit 112 drives the forming table driving unit 108 to lower the forming table 106 by a predetermined interval d each time the formation of each layer is finished.

ここで、三次元造形用経路データの生成装置10が生成した三次元造形用経路データは、輪郭線が重なる層のうち少なくとも1層の輪郭線の本数及び太さの少なくとも一方が変更された三次元造形用経路データである。このため、輪郭線に沿って吐出された造形材料と、輪郭線の内部に折り返されながら吐出された造形材料と、の間に発生する隙間が積層方向に重なるのが抑制され、微少な穴が形成されるのが抑制される。   Here, the three-dimensional modeling path data generated by the three-dimensional modeling path data generation apparatus 10 is a third order in which at least one of the number and thickness of the contour lines of at least one layer in the layers where the contour lines overlap is changed. It is route data for original modeling. For this reason, it is suppressed that the gap generated between the modeling material discharged along the contour line and the modeling material discharged while being folded back to the inside of the contour line overlaps in the stacking direction, and the minute holes are small. It is suppressed from being formed.

なお、取得部110が、輪郭線が重なる層のうち少なくとも1層の輪郭線の本数及び太さの少なくとも一方が変更されていない三次元造形用経路データを取得してもよい。すなわち、図3のステップS106で生成された三次元造形用経路データを取得してもよい。   Note that the acquiring unit 110 may acquire three-dimensional modeling route data in which at least one of the number and the thickness of at least one of the outlines of the overlapping layers is not changed. That is, the three-dimensional modeling path data generated in step S106 of FIG. 3 may be acquired.

この場合、制御部112は、輪郭線の内部に造形材料が連続して吐出される際に、吐出経路の折り返し部分で吐出される造形材料の量が、折り返し部分以外の部分で吐出される造形材料よりも多くなるように、吐出ヘッド102による造形材料の吐出量を制御するようにしてもよい(第1の制御)。なお、吐出量の制御は、例えば吐出圧を変えることにより行ってもよいし、造形材料の温度を上げて粘度を下げることにより行ってもよい。これにより、吐出経路の折り返し部分で吐出される造形材料の量と折り返し部分以外の部分で吐出される造形材料の量とを同じにした場合と比較して、輪郭線に沿って吐出された造形材料と輪郭線の内部に折り返されながら吐出された造形材料との間に発生する隙間が小さくなり、微少な穴が形成されるのが抑制される。また、上記の第1の制御を、輪郭線が重なる層のうち積層方向における両端の層に適用すると、表面に発生する隙間が小さくなる。   In this case, when the molding material is continuously discharged into the outline, the control unit 112 is configured to discharge the amount of the molding material discharged in the folded portion of the discharge path in a portion other than the folded portion. The discharge amount of the modeling material by the discharge head 102 may be controlled so as to be larger than the material (first control). The control of the discharge amount may be performed, for example, by changing the discharge pressure, or may be performed by raising the temperature of the shaping material to lower the viscosity. Thus, as compared with the case where the amount of the forming material discharged in the return portion of the discharge path and the amount of the forming material discharged in the other portion are the same, the shape discharged along the contour line The gap generated between the material and the ejected molding material while being folded back inside the contour line becomes smaller, and the formation of minute holes is suppressed. In addition, when the first control described above is applied to the layers at both ends in the stacking direction among the layers in which the outlines overlap, the gap generated on the surface is reduced.

また、制御部112は、輪郭線の内部に造形材料が連続して吐出される際に、吐出経路の折り返し部分で吐出される造形材料の量が、折り返し部分以外の部分で吐出される造形材料よりも多くなるように、吐出ヘッド102の移動速度を遅くするよう制御してもよい(第2の制御)。これにより、吐出経路の折り返し部分と折り返し部分以外の部分とで吐出ヘッドの移動速度を同じにした場合と比較して、輪郭線に沿って吐出された造形材料と輪郭線の内部に折り返されながら吐出された造形材料との間に発生する隙間が小さくなり、微少な穴が形成されるのが抑制される。また、上記の吐出ヘッド102の移動速度を遅くする制御を、輪郭線が重なる層のうち積層方向における両端の層に適用すると、表面に発生する隙間を小さくなる。   In addition, when the molding material is continuously discharged into the outline, the control unit 112 is a molding material in which the amount of the molding material discharged in the return portion of the discharge path is discharged in a portion other than the return portion. The moving speed of the ejection head 102 may be controlled to be slower (second control) so as to be higher than the above. As a result, as compared with the case where the moving speed of the discharge head is made the same between the folded portion of the discharge path and the portion other than the folded portion, it is folded back inside the molding material and the contour line discharged along the contour line. The gap generated between the material and the discharged molding material is reduced, and the formation of a minute hole is suppressed. In addition, when the control for reducing the moving speed of the ejection head 102 described above is applied to the layers at both ends in the stacking direction among the layers in which the outlines overlap, the gap generated on the surface is reduced.

また、輪郭線が重なる層のうち少なくとも1層の輪郭線の本数及び太さの少なくとも一方が変更された三次元造形用経路データを取得して、上記の第1の制御又は第2の制御を実行するようにしてもよい。これにより、輪郭線に沿って吐出された造形材料と輪郭線の内部に折り返されながら吐出された造形材料との間に発生する隙間が更に小さくなり、微少な穴が形成されるのが更に抑制される。   In addition, three-dimensional modeling route data in which at least one of the number and the thickness of at least one of the outlines of the overlapping layers is changed is acquired, and the first control or the second control is performed. It may be performed. Thereby, the gap generated between the modeling material discharged along the contour line and the modeling material discharged while being folded back to the inside of the contour line is further reduced, and the formation of minute holes is further suppressed Be done.

以上、各実施形態を用いて本発明について説明したが、本発明は各実施形態に記載の範囲には限定されない。本発明の要旨を逸脱しない範囲で各実施形態に多様な変更または改良を加えることができ、当該変更または改良を加えた形態も本発明の技術的範囲に含まれる。   As mentioned above, although this invention was demonstrated using each embodiment, this invention is not limited to the range as described in each embodiment. Various changes or improvements can be added to each embodiment without departing from the scope of the present invention, and a form to which the changes or improvements are added is also included in the technical scope of the present invention.

例えば、図3に示した三次元造形用経路データの生成処理をASIC(Application Specific Integrated Circuit)等のハードウエアで実現するようにしてもよい。この場合、ソフトウエアで実現する場合に比べて、処理の高速化が図られる。   For example, the process of generating the route data for three-dimensional formation shown in FIG. 3 may be realized by hardware such as an application specific integrated circuit (ASIC). In this case, the processing speed can be increased as compared to the case of software implementation.

また、各実施形態では、三次元造形用経路データの生成プログラムがROM12Bにインストールされている形態を説明したが、これに限定されるものではない。本実施形態に係る三次元造形用経路データの生成プログラムを、コンピュータ読取可能な記憶媒体に記録した形態で提供してもよい。例えば、本発明に係る三次元造形用経路データの生成プログラムを、CD(Compact Disc)−ROM及びDVD(Digital Versatile Disc)−ROM等の光ディスクに記録した形態、若しくはUSB(Universal Serial Bus)メモリ及びメモリカード等の半導体メモリに記録した形態で提供してもよい。また、本実施形態に係る三次元造形用経路データの生成プログラムを、通信部18に接続された通信回線を介して外部装置から取得するようにしてもよい。   Moreover, although the form by which the production | generation program of the path | route data for three-dimensional modeling was installed in ROM12B was demonstrated by each embodiment, it is not limited to this. The generation program of the path data for three-dimensional modeling according to the present embodiment may be provided in the form of being recorded in a computer readable storage medium. For example, a form in which a program for generating route data for three-dimensional modeling according to the present invention is recorded on an optical disc such as a CD (Compact Disc) -ROM and a DVD (Digital Versatile Disc) -ROM, or a USB (Universal Serial Bus) memory and You may provide in the form recorded on semiconductor memory, such as a memory card. In addition, the generation program of the route data for three-dimensional modeling according to the present embodiment may be acquired from the external device via the communication line connected to the communication unit 18.

10 三次元造形用経路データの生成装置
12 コントローラ
14 操作部
16 表示部
18 通信部
20 記憶部
32 三次元形状
34 ボクセル
40 三次元形状
50 造形材料
52、56 経路
54、58 隙間
100 三次元造形装置
102 吐出ヘッド
104 吐出ヘッド駆動部
106 造形台
108 造形台駆動部
110 取得部
112 制御部
DESCRIPTION OF SYMBOLS 10 Three-dimensional modeling route data generation device 12 Controller 14 Operation unit 16 Display unit 18 Communication unit 20 Memory unit 32 Three-dimensional shape 34 Voxel 40 Three-dimensional shape 50 Modeling material 52, 56 Pathway 54, 58 Clearance 100 Three-dimensional modeling device 102 Ejection head 104 Ejection head drive unit 106 Modeling table 108 Modeling table drive unit 110 Acquisition unit 112 Control unit

Claims (8)

三次元形状の三次元形状データをスライスしたスライス面の二次元データに基づいて設定された輪郭線に従って造形材料が連続して吐出されると共に、前記輪郭線の内部に前記造形材料が連続して吐出されるように前記造形材料の吐出経路を表す経路データを生成する生成部と、
前記造形材料の積層方向に前記輪郭線が重なる場合は、前記輪郭線が重なる層のうち少なくとも1層の前記輪郭線の本数及び太さの少なくとも一方を変更する変更部と、
を備えた三次元造形用データ生成装置。
The forming material is continuously discharged in accordance with the outline set based on the two-dimensional data of the sliced surface obtained by slicing the three-dimensional shape data of the three-dimensional shape, and the forming material is continuously formed inside the outline. A generation unit that generates path data representing an ejection path of the modeling material so as to be ejected;
When the outlines overlap in the stacking direction of the modeling material, a changing unit that changes at least one of the number and thickness of the outlines of at least one layer of the layers in which the outlines overlap;
3D modeling data generator equipped with
前記変更部は、前記輪郭線が重なる層のうち前記積層方向における両端の層の前記輪郭線の本数及び太さの少なくとも一方を変更する
請求項1記載の三次元造形用データ生成装置。
The three-dimensional modeling data generation apparatus according to claim 1, wherein the changing unit changes at least one of the number and thickness of the outlines of the layers at both ends in the stacking direction among the layers where the outlines overlap.
造形材料を吐出する吐出部と、
請求項1又は請求項2記載の三次元造形用データ生成装置により生成された三次元造形用経路データを取得する取得部と、
前記取得部により取得された前記三次元造形用経路データに従って前記造形材料が吐出されるように前記吐出部を制御する制御部と、
を備えた三次元造形装置。
A discharge unit that discharges the modeling material;
An acquisition unit for acquiring route data for three-dimensional formation generated by the data generation apparatus for three-dimensional formation according to claim 1 or 2;
A control unit configured to control the discharge unit such that the modeling material is discharged according to the three-dimensional modeling route data acquired by the acquisition unit;
3D modeling device equipped with
前記制御部は、前記輪郭線の内部に前記造形材料が連続して吐出される際に、前記吐出経路の折り返し部分で吐出される前記造形材料の量が、前記折り返し部分以外の部分で吐出される前記造形材料よりも多くなるように、前記吐出部による前記造形材料の吐出量を制御する
請求項3記載の三次元造形装置。
The control unit is configured to discharge the amount of the modeling material discharged at the turnback portion of the discharge path at a portion other than the turnback portion when the modeling material is continuously discharged inside the outline. The three-dimensional forming apparatus according to claim 3, wherein the discharge amount of the forming material by the discharge unit is controlled so as to be larger than the forming material.
前記制御部は、前記輪郭線の内部に前記造形材料が連続して吐出される際に、前記輪郭線が重なる層のうち前記積層方向における両端の層の、前記吐出経路の折り返し部分で吐出される前記造形材料の量が、前記折り返し部分以外の部分で吐出される前記造形材料よりも多くなるように、前記吐出部による前記造形材料の吐出量を制御する
請求項4記載の三次元造形装置。
The control unit is configured to discharge at a turn-back portion of the discharge path of the layers at both ends in the stacking direction among the layers on which the outline overlaps, when the modeling material is continuously discharged inside the outline. The three-dimensional modeling apparatus according to claim 4, wherein the discharge amount of the modeling material by the discharge unit is controlled such that the amount of the modeling material is larger than that of the modeling material discharged in a portion other than the folded portion. .
前記制御部は、前記輪郭線の内部に前記造形材料が連続して吐出される際に、前記吐出経路の折り返し部分で吐出される前記造形材料の量が、前記折り返し部分以外の部分で吐出される前記造形材料よりも多くなるように、前記吐出部の移動速度を遅くするよう制御する
請求項3記載の三次元造形装置。
The control unit is configured to discharge the amount of the modeling material discharged at the turnback portion of the discharge path at a portion other than the turnback portion when the modeling material is continuously discharged inside the outline. The three-dimensional shaping apparatus according to claim 3, wherein the moving speed of the discharge unit is controlled to be slower than the shaping material.
前記制御部は、前記輪郭線の内部に前記造形材料が連続して吐出される際に、前記輪郭線が重なる層のうち前記積層方向における両端の層の、前記吐出経路の折り返し部分で吐出される前記造形材料の量が、前記折り返し部分以外の部分で吐出される前記造形材料よりも多くなるように、前記吐出部の移動速度を遅くするよう制御する
請求項6記載の三次元造形装置。
The control unit is configured to discharge at a turn-back portion of the discharge path of the layers at both ends in the stacking direction among the layers on which the outline overlaps, when the modeling material is continuously discharged inside the outline. The three-dimensional shaping apparatus according to claim 6, wherein the moving speed of the discharge unit is controlled to be slow so that the amount of the shaping material is larger than that of the shaping material discharged in the portion other than the folded portion.
コンピュータを、請求項1又は請求項2記載の三次元造形用データ生成装置の各部として機能させるための三次元造形用経路データ生成プログラム。   A three-dimensional modeling path data generation program for causing a computer to function as each unit of the three-dimensional modeling data generation apparatus according to claim 1 or 2.
JP2017081557A 2017-04-17 2017-04-17 Data generator for 3D modeling, 3D modeling device, and path data generation program for 3D modeling Active JP6900762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017081557A JP6900762B2 (en) 2017-04-17 2017-04-17 Data generator for 3D modeling, 3D modeling device, and path data generation program for 3D modeling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017081557A JP6900762B2 (en) 2017-04-17 2017-04-17 Data generator for 3D modeling, 3D modeling device, and path data generation program for 3D modeling

Publications (2)

Publication Number Publication Date
JP2018176597A true JP2018176597A (en) 2018-11-15
JP6900762B2 JP6900762B2 (en) 2021-07-07

Family

ID=64282278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081557A Active JP6900762B2 (en) 2017-04-17 2017-04-17 Data generator for 3D modeling, 3D modeling device, and path data generation program for 3D modeling

Country Status (1)

Country Link
JP (1) JP6900762B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020192743A (en) * 2019-05-29 2020-12-03 セイコーエプソン株式会社 Manufacturing method of three dimensional molded product and three dimensional molding device
CN115195122A (en) * 2021-04-13 2022-10-18 精工爱普生株式会社 Information processing device, three-dimensional modeling system, and information display method
US11480947B2 (en) 2019-06-14 2022-10-25 Mitsubishi Electric Corporation Control information generation device and control information generation method for controlling an additive manufacturing apparatus using bead width correction
US11548214B2 (en) * 2020-02-12 2023-01-10 Seiko Epson Corporation Three-dimensional shaped object manufacturing method and three-dimensional shaping device
US11679562B2 (en) 2019-07-19 2023-06-20 Seiko Epson Corporation Method for manufacturing three-dimensional shaped object and three-dimensional shaping device
JP7400259B2 (en) 2019-08-14 2023-12-19 富士フイルムビジネスイノベーション株式会社 3D shape data generation device, 3D printing device, and 3D shape data generation program
US11911970B2 (en) 2020-09-29 2024-02-27 Seiko Epson Corporation Method for manufacturing three-dimensional shaped object, information processing device, and three-dimensional shaping device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525207A (en) * 2006-01-31 2009-07-09 ストラタシス・インコーポレイテッド Method for constructing a three-dimensional object with an extrusion-based layered deposition system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525207A (en) * 2006-01-31 2009-07-09 ストラタシス・インコーポレイテッド Method for constructing a three-dimensional object with an extrusion-based layered deposition system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020192743A (en) * 2019-05-29 2020-12-03 セイコーエプソン株式会社 Manufacturing method of three dimensional molded product and three dimensional molding device
US11660820B2 (en) 2019-05-29 2023-05-30 Seiko Epson Corporation Three-dimensional shaped object manufacturing method and three-dimensional shaping device
US11480947B2 (en) 2019-06-14 2022-10-25 Mitsubishi Electric Corporation Control information generation device and control information generation method for controlling an additive manufacturing apparatus using bead width correction
US11679562B2 (en) 2019-07-19 2023-06-20 Seiko Epson Corporation Method for manufacturing three-dimensional shaped object and three-dimensional shaping device
JP7342477B2 (en) 2019-07-19 2023-09-12 セイコーエプソン株式会社 Three-dimensional object manufacturing method and three-dimensional printing device
JP7400259B2 (en) 2019-08-14 2023-12-19 富士フイルムビジネスイノベーション株式会社 3D shape data generation device, 3D printing device, and 3D shape data generation program
US11548214B2 (en) * 2020-02-12 2023-01-10 Seiko Epson Corporation Three-dimensional shaped object manufacturing method and three-dimensional shaping device
JP7459546B2 (en) 2020-02-12 2024-04-02 セイコーエプソン株式会社 A method for manufacturing a three-dimensional object, and a three-dimensional printing device
US11911970B2 (en) 2020-09-29 2024-02-27 Seiko Epson Corporation Method for manufacturing three-dimensional shaped object, information processing device, and three-dimensional shaping device
CN115195122A (en) * 2021-04-13 2022-10-18 精工爱普生株式会社 Information processing device, three-dimensional modeling system, and information display method
CN115195122B (en) * 2021-04-13 2023-12-26 精工爱普生株式会社 Information processing apparatus, three-dimensional modeling system, and information display method

Also Published As

Publication number Publication date
JP6900762B2 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
JP2018176597A (en) Data generation device for three-dimensional creation, three-dimensional creation device, and path data generation program for three-dimensional creation
Jin et al. A novel path planning methodology for extrusion-based additive manufacturing of thin-walled parts
JP5711780B2 (en) Sequential filling optimization
JP7040236B2 (en) 3D shape data editing device, 3D modeling device, 3D modeling system, and 3D shape data editing program
JP6740269B2 (en) Color 3D printing method and 3D printing equipment
JP2016198974A (en) Slice model generation apparatus and three-dimensional molding system
Zhao et al. Personalized food printing for portrait images
CN108268222A (en) For the pattern of 3D printing
KR20160137344A (en) Control method of printing temperature and device thereof
Novakova-Marcincinova et al. Effective utilization of rapid prototyping technology
Novak-Marcincin et al. Analyses and solutions on technical and economical aspects of rapid prototyping technology
WO2020122931A1 (en) Evaluating candidate virtual build volumes
CN109003324B (en) Path data generating apparatus and method for three-dimensional modeling
JP6296809B2 (en) 3D printer support program, medium storing 3D printer support program, and 3D printer support apparatus storing 3D printer support program.
Zhong et al. Ceramic 3D printed sweeping surfaces
JP7206705B2 (en) 3D shape data generation device, 3D modeling device, and 3D shape data generation program
Kanada Method of designing, partitioning, and printing 3D objects with specified printing direction
CN110770797A (en) Determining an object volume in a virtual object space
Ghazanfari et al. Adaptive rastering algorithm for freeform extrusion fabrication processes
Yang et al. Binary image carving for 3D printing
JP6759953B2 (en) Information processing equipment, 3D printer system, information processing method and program
Grigolato et al. Heterogeneous objects representation for additive manufacturing: a review
US11597143B2 (en) Additive manufacturing process using fusing and non-fusing printing fluids
JP6969157B2 (en) 3D shape data editing device and 3D shape data editing program
US11628627B2 (en) Additive manufacturing process to disguise physical characteristics of item

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210531

R150 Certificate of patent or registration of utility model

Ref document number: 6900762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150