JP2018171640A - Two-phase stainless steel wire material for weld rod and two-phase stainless steel wire for weld rod - Google Patents

Two-phase stainless steel wire material for weld rod and two-phase stainless steel wire for weld rod Download PDF

Info

Publication number
JP2018171640A
JP2018171640A JP2017073106A JP2017073106A JP2018171640A JP 2018171640 A JP2018171640 A JP 2018171640A JP 2017073106 A JP2017073106 A JP 2017073106A JP 2017073106 A JP2017073106 A JP 2017073106A JP 2018171640 A JP2018171640 A JP 2018171640A
Authority
JP
Japan
Prior art keywords
less
oxide
number ratio
stainless steel
steel wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017073106A
Other languages
Japanese (ja)
Other versions
JP6820223B2 (en
Inventor
農 金子
No Kaneko
農 金子
成雄 福元
Shigeo Fukumoto
成雄 福元
光司 高野
Koji Takano
光司 高野
裕也 日笠
Hironari Hikasa
裕也 日笠
辰 菊池
Jin Kikuchi
辰 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2017073106A priority Critical patent/JP6820223B2/en
Publication of JP2018171640A publication Critical patent/JP2018171640A/en
Application granted granted Critical
Publication of JP6820223B2 publication Critical patent/JP6820223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a two-phase stainless steel wire material for weld rod which causes no nozzle blocking during casting, and is excellent in hot workability and weld workability.SOLUTION: A two-phase stainless steel wire material for weld rod contains C:0.005-0.10%, Si:0.20-2.00%, Mn:0.50-5.50%, Ni:6.00-10.00%, Cr:21.00-26.00%, Mo:0.05-4.00%, P:0.040% or less, S:0.0025% or less, N:0.10-0.30%, Al:0.005-0.080%, Ca:0.0006-0.0025%, Mg:0.0005-0.0030%, B:0.0010- 0.0060%, and the balance Fe with impurities, and has a DF value of 30-60%, where a number ratio of Ca Al Mg-based oxides is 40% or more, a number ratio of Si Mn Cr Fe-based oxides is 20% or less, and a number ratio of an Mg oxide is 4 times or more of the Al Mg oxide (Al Mg oxide including O).SELECTED DRAWING: None

Description

本発明は、溶接棒用二相ステンレス鋼線材及び溶接棒用二相ステンレス鋼線に関する。   The present invention relates to a duplex stainless steel wire for a welding rod and a duplex stainless steel wire for a welding rod.

二相ステンレス鋼は、Cr、Ni、Moを主要元素とし、フェライトとオーステナイトの相比率が約50%となるように調整して、靱性、耐食性を確保したステンレス鋼である。二相ステンレス鋼を溶接する場合、ガスシールドアーク溶接法が用いられる。ガスシールドアーク溶接法は、非消耗電極式と消耗電極式とに大別される。このうち、消耗電極式の溶接法である、ガスメタルアーク(Gas Metal Arc、略してGMA)溶接法は、溶接ワイヤを電極とし、溶融したワイヤと溶融した母材とで溶接金属を形成させることにより溶接する方法である。   The duplex stainless steel is a stainless steel which has toughness and corrosion resistance by adjusting Cr, Ni and Mo as main elements and adjusting the phase ratio of ferrite and austenite to about 50%. When welding duplex stainless steel, gas shielded arc welding is used. The gas shielded arc welding method is roughly classified into a non-consumable electrode type and a consumable electrode type. Among them, the gas metal arc (abbreviated as GMA) welding method, which is a consumable electrode type welding method, uses a welding wire as an electrode, and forms a weld metal with the molten wire and the molten base material. It is the method of welding by.

GMA溶接法では、溶接時のスパッタの発生を抑制するため、Ca量を低減させた二相ステンレス鋼からなる溶接棒が用いられる場合がある。しかし、鋼中のCa量が低減すると、介在物の改質が進まず、スピネル系の介在物(MgO・Al系)が増大して、鋼の連続鋳造時にタンディッシュに溶鋼を送るノズルが閉塞しやすい問題がある。また、Ca量が低減することで、Ca系の介在物の個数密度が低下する。Ca系の介在物には、鋼中のS(硫黄)を固定化して無害化する作用を有するものがあるが、Ca量が低減すると、Sを固定化する介在物量が減少して鋼中の固溶Sが増大し、これにより、熱間圧延時に割れが発生する場合がある。このため、ノズル閉塞を防止し、熱間加工性に優れ、溶接作業性にも優れた二相ステンレス鋼からなる溶接棒が望まれている。 In the GMA welding method, in order to suppress generation of spatter during welding, a welding rod made of duplex stainless steel with a reduced Ca content may be used. However, when the Ca content in the steel is reduced, the inclusions are not reformed, and the spinel inclusions (MgO.Al 2 O 3 system) increase, and the molten steel is sent to the tundish during continuous casting of steel. There is a problem that the nozzle is easily blocked. Further, the number density of Ca-based inclusions is reduced by reducing the amount of Ca. Some Ca-based inclusions have the effect of immobilizing S (sulfur) in steel and detoxifying it. However, when the amount of Ca is reduced, the amount of inclusions that immobilize S is reduced and the amount of inclusions in steel is reduced. The solid solution S increases, which may cause cracks during hot rolling. For this reason, the welding rod which consists of a duplex stainless steel which prevents nozzle obstruction | occlusion, is excellent in hot workability, and was excellent also in welding workability is desired.

特許文献1には、C、Si、Mn、P、S、Ni、Cr、Mo、N、Al、Mg、Ca、O、残部がFeおよび不可避的不純物からなり、鋼中に含まれる非金属介在物が、MgO・Al、Al、MgO、MnO−Al系酸化物、CaO濃度が40mass%以下のCaO−Al系酸化物のうちの1種または2種以上からなり、全非金属介在物に対するCaO−Al系酸化物の個数比率が40%以下、全非金属介在物におけるCaO濃度が10mass%以下、60℃、20%NaCl水溶液中における孔食電位Vc’10が600mV(vsSCE)以上である二相ステンレス鋼が記載されている。 Patent Document 1 includes C, Si, Mn, P, S, Ni, Cr, Mo, N, Al, Mg, Ca, O, the balance being Fe and inevitable impurities, and non-metallic inclusions contained in the steel. things, MgO · Al 2 O 3, Al 2 O 3, MgO, MnO-Al 2 O 3 based oxide, one or two of CaO concentration 40 mass% or less of CaO-Al 2 O 3 based oxide The number ratio of CaO—Al 2 O 3 oxide to all nonmetallic inclusions is 40% or less, and the CaO concentration in all nonmetallic inclusions is 10 mass% or less, 60 ° C., in a 20% NaCl aqueous solution. A duplex stainless steel having a pitting potential Vc ′ 10 of 600 mV (vs SCE) or more is described.

また、特許文献2には、C、Si、Mn、P、S、Ni、Cr、Mo、V、sol.Al、Ca、B、N、O、残部Feより成り、かつγ相割合が30〜70%である熱間加工性に優れた高耐食二相ステンレス鋼が記載されている。   Patent Document 2 discloses C, Si, Mn, P, S, Ni, Cr, Mo, V, sol. A highly corrosion-resistant duplex stainless steel made of Al, Ca, B, N, O and the balance Fe and having excellent hot workability with a γ phase ratio of 30 to 70% is described.

特許文献1に記載の二相ステンレス鋼は、Ca量が0.0005質量%以下と低く、この鋼材を溶接棒に用いた場合には溶接時のスパッタが抑制されるが、一方で特許文献1の二相ステンレス鋼は、積極的にMgO系介在物やMgO−Al系介在物を析出させているため、鋼材の鋳造時にノズル閉塞を起こしやすく、生産性が劣る。また、特許文献1に記載された二相ステンレス鋼は、CaO含有介在物からCa成分が水溶液中に溶出して母材金属と介在物との間に隙間を形成し、この隙間を起点として孔食が発生して耐食性を劣化させることに鑑み、鋼中に含まれるCa濃度を0.0005質量%以下に低減したものであり、溶接性については何ら検討されていない。 The duplex stainless steel described in Patent Document 1 has a low Ca content of 0.0005% by mass or less. When this steel material is used as a welding rod, spattering during welding is suppressed. Since this duplex stainless steel positively precipitates MgO inclusions and MgO-Al 2 O 3 inclusions, nozzle clogging tends to occur during the casting of the steel material, resulting in poor productivity. Further, in the duplex stainless steel described in Patent Document 1, the Ca component elutes from the CaO-containing inclusions into the aqueous solution to form a gap between the base metal and the inclusion, and this gap serves as a starting point. In view of the occurrence of corrosion and deterioration of corrosion resistance, the Ca concentration contained in the steel is reduced to 0.0005% by mass or less, and no study is made on weldability.

また、特許文献2に記載の高耐食二相ステンレス鋼は、Caの濃度が高い鋼が含まれる。そのため、このステンレス鋼を溶接棒として溶接を行うと、スパッタが多く発生する問題がある。   Further, the high corrosion resistance duplex stainless steel described in Patent Document 2 includes steel having a high Ca concentration. Therefore, when this stainless steel is welded as a welding rod, there is a problem that spatter is often generated.

特許第4824640号公報Japanese Patent No. 4824640 特公平7−17987号公報Japanese Patent Publication No. 7-17987

本発明は、上記事情に鑑みてなされたものであり、鋳造時のノズル閉塞のおそれがなく、熱間加工性に優れ、更には溶接時の作業性にも優れた溶接棒用二相ステンレス鋼線材及び溶接棒用二相ステンレス鋼線を提供することを課題とする。   The present invention has been made in view of the above circumstances, and there is no risk of nozzle clogging during casting, excellent hot workability, and further excellent workability during welding. An object is to provide a duplex stainless steel wire for a wire rod and a welding rod.

Caを比較的多く含む鋼は、製鋼過程において介在物の改質が進み、スピネル系の介在物(MgO・Al系)の生成が抑制されて、鋳造時のノズル詰まりが防止されるが、Caを多く含むため溶接時にスパッタが生成して溶接作業性が低下する。
一方、鋼中のCa量を低減すると、ノズル詰まりが発生するほか、スピネル系の介在物(MgO・Al系)の増大に伴い、S(硫黄)の固定化に有効なCa・Al・Mg系酸化物が減少し、鋼中の固溶S量が増大し、熱間加工性が低下する。
更には、Sを吸収しやすいSi・Mn・Cr・Fe系酸化物の個数比率が増大すると、固溶Sが減少することになるが、Si・Mn・Cr・Fe系酸化物は加熱等によって容易に還元されやすく、溶接入熱により還元されて固溶Sを鋼中に放出させて、熱間加工性を低下させる。
In steel containing a relatively large amount of Ca, the modification of inclusions proceeds in the steelmaking process, and the generation of spinel inclusions (MgO.Al 2 O 3 system) is suppressed, and nozzle clogging during casting is prevented. However, since it contains a large amount of Ca, spatter is generated during welding and welding workability is reduced.
On the other hand, when the amount of Ca in steel is reduced, nozzle clogging occurs, and Ca / Al, which is effective for fixing S (sulfur), is accompanied by an increase in spinel inclusions (MgO.Al 2 O 3 system). -Mg-based oxides decrease, the amount of solute S in steel increases, and hot workability decreases.
Furthermore, as the number ratio of Si, Mn, Cr, and Fe-based oxides that easily absorb S increases, solid solution S decreases. It is easily reduced and reduced by welding heat input to release solute S into the steel, thereby reducing hot workability.

以上の現象を知見した本発明者らが、溶接作業性、生産性及び熱間加工性を向上させるために鋭意検討したところ、Ca量を0.0006〜0.0025%の範囲とし、鋼中に存在する介在物のうちのCa・Al・Mg系酸化物の個数比率、Si・Mn・Cr・Fe系酸化物の個数比率、および、Mg酸化物の個数比率とAl・Mg酸化物の個数比率との比を所定の範囲にすることで、溶接作業性、生産性及び熱間加工性を向上させることに成功した。本発明の要旨は以下の通りである。   The present inventors who have found the above phenomenon intensively studied in order to improve welding workability, productivity and hot workability, and the Ca content is in the range of 0.0006 to 0.0025%, and in the steel. The number ratio of Ca, Al, Mg-based oxides, the number ratio of Si, Mn, Cr, Fe-based oxides, and the number ratio of Mg oxides and the number of Al / Mg oxides We succeeded in improving welding workability, productivity and hot workability by making the ratio with the ratio within a predetermined range. The gist of the present invention is as follows.

[1] 化学成分が質量%で、
C:0.005〜0.10%、
Si:0.20〜2.00%、
Mn:0.50〜5.50%、
Ni:6.00〜10.00%、
Cr:21.00〜26.00%、
Mo:0.05〜4.00%、
P:0.040%以下、
S:0.0025%以下、
N:0.10〜0.30%、
Al:0.005〜0.080%、
Ca:0.0006〜0.0025%、
Mg:0.0005〜0.0030%、
B:0.0010〜0.0060%
を含有し、残部がFe及び不純物からなり、
下記式で表されるDF値が30.0〜60.0%であり、
鋼中に存在する粒径1.0μm以上の介在物のうち、Ca・Al・Mg系酸化物の個数比率が40%以上、Si・Mn・Cr・Fe系酸化物の個数比率が20%以下、Mg酸化物の個数比率がAl・Mg酸化物の個数比率の4倍以上(Al・Mg酸化物の個数比率が0の場合を含む)である、溶接棒用二相ステンレス鋼線材。
DF値=7.2×([Cr]+0.88[Mo]+0.78[Si]+2.2[Ti]+2.3[V])−8.9×([Ni]+0.03[Mn]+0.72[Cu]+22[C]+21[N])−44.9
ただし、上記式における元素記号は当該元素の含有率(質量%)であり、当該元素を含まない場合は0を代入する。
[2] 更に、質量%で、
V:1.00%以下、
Ti:0.005%以下、
Cu:0.50%以下
のうちの1種または2種以上を含む、[1]に記載の溶接棒用二相ステンレス鋼線材。
[3] 更に、質量%で、
REM:0.0100%以下、
Ta:0.0010〜0.1000%
のうちの1種または2種を含む、[1]または[2]に記載の溶接棒用二相ステンレス鋼線材。
[4] 化学成分が質量%で、
C:0.005〜0.10%、
Si:0.20〜2.00%、
Mn:0.50〜5.50%、
Ni:6.00〜10.00%、
Cr:21.00〜26.00%、
Mo:0.05〜4.00%、
P:0.040%以下、
S:0.0025%以下、
N:0.10〜0.30%、
Al:0.005〜0.080%、
Ca:0.0006〜0.0025%、
Mg:0.0005〜0.0030%、
B:0.0010〜0.0060%
を含有し、残部がFe及び不純物からなり、
下記式で表されるDF値が30.0〜60.0%であり、
鋼中に存在する粒径1.0μm以上の介在物のうち、Ca・Al・Mg系酸化物の個数比率が40%以上、Si・Mn・Cr・Fe系酸化物の個数比率が20%以下、Mg酸化物の個数比率がAl・Mg酸化物の個数比率の4倍以上(Al・Mg酸化物の個数比率が0の場合を含む)である、溶接棒用二相ステンレス鋼線。
DF値=7.2×([Cr]+0.88[Mo]+0.78[Si]+2.2[Ti]+2.3[V])−8.9×([Ni]+0.03[Mn]+0.72[Cu]+22[C]+21[N])−44.9
ただし、上記式における元素記号は当該元素の含有率(質量%)であり、当該元素を含まない場合は0を代入する。
[5] 更に、質量%で、
V:1.00%以下、
Ti:0.005%以下、
Cu:0.50%以下
のうちの1種または2種以上を含む、[4]に記載の溶接棒用二相ステンレス鋼線。
[6] 更に、質量%で、
REM:0.0100%以下、
Ta:0.0010〜0.1000%
のうちの1種または2種を含む、[4]または[5]に記載の溶接棒用二相ステンレス鋼線。
上記において、Al・Mg酸化物の個数比率が0の場合を含むとは、Al・Mg酸化物の個数比率が0%の場合、Mg酸化物の個数比率が0%超であれば本発明に該当することを意味する。
[1] The chemical component is mass%,
C: 0.005-0.10%,
Si: 0.20 to 2.00%
Mn: 0.50 to 5.50%,
Ni: 6.00 to 10.00%,
Cr: 21.00 to 26.00%,
Mo: 0.05 to 4.00%
P: 0.040% or less,
S: 0.0025% or less,
N: 0.10 to 0.30%,
Al: 0.005 to 0.080%,
Ca: 0.0006 to 0.0025%,
Mg: 0.0005 to 0.0030%,
B: 0.0010 to 0.0060%
And the balance consists of Fe and impurities,
The DF value represented by the following formula is 30.0 to 60.0%,
Among inclusions with a particle size of 1.0 μm or more present in steel, the number ratio of Ca / Al / Mg-based oxide is 40% or more, and the number ratio of Si / Mn / Cr / Fe-based oxide is 20% or less. A duplex stainless steel wire rod for welding rods in which the number ratio of Mg oxide is at least four times the number ratio of Al · Mg oxide (including the case where the number ratio of Al · Mg oxide is 0).
DF value = 7.2 × ([Cr] +0.88 [Mo] +0.78 [Si] +2.2 [Ti] +2.3 [V]) − 8.9 × ([Ni] +0.03 [Mn] ] +0.72 [Cu] +22 [C] +21 [N]) − 44.9
However, the element symbol in the above formula is the content (% by mass) of the element, and 0 is substituted when the element is not included.
[2] Furthermore, in mass%,
V: 1.00% or less,
Ti: 0.005% or less,
Cu: The duplex stainless steel wire for welding rods according to [1], containing one or more of 0.50% or less.
[3] Furthermore, in mass%,
REM: 0.0100% or less,
Ta: 0.0010 to 0.1000%
The duplex stainless steel wire for welding rods according to [1] or [2], comprising one or two of the above.
[4] The chemical component is mass%,
C: 0.005-0.10%,
Si: 0.20 to 2.00%
Mn: 0.50 to 5.50%,
Ni: 6.00 to 10.00%,
Cr: 21.00 to 26.00%,
Mo: 0.05 to 4.00%
P: 0.040% or less,
S: 0.0025% or less,
N: 0.10 to 0.30%,
Al: 0.005 to 0.080%,
Ca: 0.0006 to 0.0025%,
Mg: 0.0005 to 0.0030%,
B: 0.0010 to 0.0060%
And the balance consists of Fe and impurities,
The DF value represented by the following formula is 30.0 to 60.0%,
Among inclusions with a particle size of 1.0 μm or more present in steel, the number ratio of Ca / Al / Mg-based oxide is 40% or more, and the number ratio of Si / Mn / Cr / Fe-based oxide is 20% or less. A duplex stainless steel wire for welding rods in which the number ratio of Mg oxide is four times or more of the number ratio of Al · Mg oxide (including the case where the number ratio of Al · Mg oxide is 0).
DF value = 7.2 × ([Cr] +0.88 [Mo] +0.78 [Si] +2.2 [Ti] +2.3 [V]) − 8.9 × ([Ni] +0.03 [Mn] ] +0.72 [Cu] +22 [C] +21 [N]) − 44.9
However, the element symbol in the above formula is the content (% by mass) of the element, and 0 is substituted when the element is not included.
[5] Furthermore, in mass%,
V: 1.00% or less,
Ti: 0.005% or less,
Cu: The duplex stainless steel wire for welding rods according to [4], containing one or more of 0.50% or less.
[6] Furthermore, in mass%,
REM: 0.0100% or less,
Ta: 0.0010 to 0.1000%
The duplex stainless steel wire for welding rods according to [4] or [5], comprising one or two of the above.
In the above description, the case where the number ratio of Al / Mg oxide is 0 includes that the number ratio of Al / Mg oxide is 0% and the number ratio of Mg oxide is more than 0%. Means applicable.

本発明によれば、溶接性と熱間加工性の両方に優れた溶接棒用二相ステンレス鋼線材及び溶接棒用二相ステンレス鋼線を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the duplex stainless steel wire for welding rods excellent in both weldability and hot workability, and the duplex stainless steel wire for welding rods can be provided.

以下、本発明の実施形態である溶接棒用二相ステンレス鋼線材(以下、線材と言う場合がある)及び溶接棒用二相ステンレス鋼線(以下、鋼線と言う場合がある)について説明する。
本実施形態の線材及び鋼線は、化学成分が質量%で、C:0.005〜0.10%、Si:0.20〜2.00%、Mn:0.50〜5.50%、Ni:6.00〜10.00%、Cr:21.00〜26.00%、Mo:0.05〜4.00%、P:0.040%以下、S:0.0025%以下、N:0.10〜0.30%、Al:0.005〜0.080%、Ca:0.0006〜0.0025%、Mg:0.0005〜0.0030%、B:0.0010〜0.0060%を含有し、残部がFe及び不純物からなり、下記式で表されるDF値が30.0〜60.0%であり、鋼中に存在する介在物のうち、Ca・Al・Mg系酸化物の個数比率が40%以上、Si・Mn・Cr・Fe系酸化物の個数比率が20%以下、Mg酸化物の個数比率がAl・Mg酸化物の個数比率の4倍以上(Al・Mg酸化物の個数比率が0の場合を含む)である、線材及び鋼線である。
Hereinafter, a duplex stainless steel wire for a welding rod (hereinafter may be referred to as a wire) and a duplex stainless steel wire for a welding rod (hereinafter may be referred to as a steel wire) according to embodiments of the present invention will be described. .
The wire and steel wire of the present embodiment have a chemical composition of mass%, C: 0.005 to 0.10%, Si: 0.20 to 2.00%, Mn: 0.50 to 5.50%, Ni: 6.00 to 10.00%, Cr: 21.00 to 26.00%, Mo: 0.05 to 4.00%, P: 0.040% or less, S: 0.0025% or less, N : 0.10-0.30%, Al: 0.005-0.080%, Ca: 0.0006-0.0025%, Mg: 0.0005-0.0030%, B: 0.0010-0 .0060% is contained, the balance is Fe and impurities, the DF value represented by the following formula is 30.0 to 60.0%, and among inclusions present in steel, Ca · Al · Mg The number ratio of the system oxide is 40% or more, the number ratio of the Si / Mn / Cr / Fe system oxide is 20% or less, and the number of Mg oxides Ratio is more than four times the number ratio of Al · Mg oxide (number ratio of Al · Mg oxides comprises 0), a wire rod and steel wire.

DF値=7.2×([Cr]+0.88[Mo]+0.78[Si]+2.2[Ti]+2.3[V])−8.9×([Ni]+0.03[Mn]+0.72[Cu]+22[C]+21[N])−44.9
ただし、上記式における元素記号は当該元素の含有率(質量%)であり、当該元素を含まない場合は0を代入する。
DF value = 7.2 × ([Cr] +0.88 [Mo] +0.78 [Si] +2.2 [Ti] +2.3 [V]) − 8.9 × ([Ni] +0.03 [Mn] ] +0.72 [Cu] +22 [C] +21 [N]) − 44.9
However, the element symbol in the above formula is the content (% by mass) of the element, and 0 is substituted when the element is not included.

また、本実施形態の線材及び鋼線は、更に質量%で、V:1.00%以下、Ti:0.005%以下、Cu:0.50%以下のうちの1種または2種以上を含んでもよく、更にはREM:0.0100%以下、Ta:0.0010〜0.1000%のうちの1種または2種を含んでもよい。   Moreover, the wire rod and steel wire of this embodiment are further mass%, and V: 1.00% or less, Ti: 0.005% or less, Cu: 0.50% or less, 1 type or 2 types or more. Further, it may include one or two of REM: 0.0100% or less and Ta: 0.0010 to 0.1000%.

以下、溶接棒用二相ステンレス鋼線材及び溶接棒用二相ステンレス鋼線の化学成分につて説明する。なお、以下の説明では特に断らない限り、「%」は「質量%」を意味する。   Hereinafter, the chemical components of the duplex stainless steel wire for the welding rod and the duplex stainless steel wire for the welding rod will be described. In the following description, “%” means “mass%” unless otherwise specified.

C:0.005〜0.10%
Cは鋼中に存在する不可避的な元素であり、強力なオーステナイト化元素でもある。その含有量が0.10%を超えると、溶接時および溶接再熱時にCrと結合し炭化物を形成するため、溶接金属の靭性及び耐食性が劣化する。そのため、Cの含有量を0.10%以下とする。好ましくは0.025%以下である。また、過度に低減しようとすると逆に製造コストが増加し、また、強力なオーステナイト化元素であるCが少ないと、DF値を著しく低下させるため、下限は0.005%以上とすることが好ましい。更に好ましい下限は0.010%以上である。
C: 0.005-0.10%
C is an inevitable element present in steel and is also a strong austenitizing element. If its content exceeds 0.10%, it combines with Cr during welding and welding reheating to form carbides, so that the toughness and corrosion resistance of the weld metal deteriorate. Therefore, the C content is 0.10% or less. Preferably it is 0.025% or less. On the other hand, if it is attempted to reduce excessively, the manufacturing cost increases, and if the amount of C, which is a strong austenitizing element, is small, the DF value is significantly reduced, so the lower limit is preferably made 0.005% or more. . A more preferred lower limit is 0.010% or more.

Si:0.20〜2.00%
Siは二相ステンレス鋼の溶製時に脱酸剤として作用する元素であるが、熱間加工性確保の面から、2.00%以下にコントロールする必要がある。また、Siを極度に低減するためには精錬時のコスト増加を招くことから、下限を0.20%以上とする。より顕著に改善できるという観点からは0.20〜0.80%にすることが好ましく、さらに好ましくは0.20〜0.60%の範囲である。
Si: 0.20 to 2.00%
Si is an element that acts as a deoxidizer during the melting of duplex stainless steel, but it must be controlled to 2.00% or less from the viewpoint of ensuring hot workability. Moreover, in order to reduce Si extremely, since the cost at the time of refining is caused, a minimum is made 0.20% or more. From the viewpoint that it can be remarkably improved, the content is preferably 0.20 to 0.80%, more preferably 0.20 to 0.60%.

Mn:0.50〜5.50%
Mnは脱酸剤であるとともに、熱間加工性を向上させる効果があり、SをMnSとして固定してFeSの生成による赤熱脆性の発生を防止するのに有効な元素であり、その効果を発揮させるためには0.50%以上が必要である。しかし、多量に含有すると溶製中の耐火物溶損を増大させることや耐食性が劣化することになるので5.50%以下としている。0.50%未満とするには精錬工程におけるコスト増加を招くため、下限を0.50%以上とすることが好ましい。より好ましくはMnを0.80〜5.00%とする。
Mn: 0.50 to 5.50%
Mn is a deoxidizer and has the effect of improving hot workability. It is an element effective for fixing S as MnS and preventing the occurrence of red hot brittleness due to the formation of FeS. In order to achieve this, 0.50% or more is necessary. However, if it is contained in a large amount, the refractory melting loss during melting is increased and the corrosion resistance is deteriorated, so the content is made 5.50% or less. If it is less than 0.50%, the cost in the refining process is increased, so the lower limit is preferably 0.50% or more. More preferably, Mn is 0.80 to 5.00%.

Ni:6.00〜10.00%
Niはγ相を増加させる元素であり、さらに溶接金属の耐食性および靭性を改善する。また熱間加工割れを抑制する効果も持つ。これらの効果を得るために6.00%以上含有することが望ましい。一方でNiは高価な元素であり、過剰に添加することはコストアップにつながるため、上限を10.00%以下とする。好ましくは、7.00〜9.00%である。
Ni: 6.00 to 10.00%
Ni is an element that increases the γ phase, and further improves the corrosion resistance and toughness of the weld metal. It also has the effect of suppressing hot working cracks. In order to acquire these effects, it is desirable to contain 6.00% or more. On the other hand, Ni is an expensive element, and adding excessively leads to an increase in cost, so the upper limit is made 10.00% or less. Preferably, it is 7.00 to 9.00%.

Cr:21.00〜26.00%
Crはステンレス鋼の基本元素で、溶接金属の耐食性の向上に寄与する。二相ステンレス鋼の高耐食性を確保するため、21.00%以上を下限とする。一方で、Crは溶接部でのσ相の生成を促進し、溶接部の靭性低下に繋がるため、添加量を26.00%以下とする。好ましくは21.00〜25.50%であり、更に好ましくは21.00〜25.00%である。
Cr: 21.00 to 26.00%
Cr is a basic element of stainless steel and contributes to improving the corrosion resistance of the weld metal. In order to ensure the high corrosion resistance of the duplex stainless steel, the lower limit is made 21.00% or more. On the other hand, Cr promotes the generation of the σ phase in the weld and leads to a decrease in the toughness of the weld. Therefore, the addition amount is made 26.00% or less. Preferably it is 21.00-25.50%, More preferably, it is 21.00-25.00%.

Mo:0.05〜4.00%
Moは耐食性向上に有効な元素であるばかりではなく、固溶強化の効果があり、0.05%以上含有させる。しかし、4.00%を超えると熱間加工性が悪化するため、上限は4.00%以下にする。好ましくは0.10〜4.00%である。
Mo: 0.05 to 4.00%
Mo is not only an element effective for improving corrosion resistance, but also has an effect of strengthening solid solution, and is contained in an amount of 0.05% or more. However, if it exceeds 4.00%, the hot workability deteriorates, so the upper limit is made 4.00% or less. Preferably it is 0.10 to 4.00%.

P:0.040%以下
Pは、鋼中に不可避的に含有される元素であり、鋼の熱間加工性を劣化させるため、0.040%以下に限定する。望ましくは0.030%以下である。
P: 0.040% or less P is an element inevitably contained in steel, and is limited to 0.040% or less in order to deteriorate the hot workability of steel. Desirably, it is 0.030% or less.

S:0.0025%以下
Sは不可避的な不純物として含有される元素であり、熱間加工性を低下させて熱間圧延時の割れ欠陥を発生させやすくさせ、耐食性も劣化させるので、0.0025%以下としている。望ましくは0.0010%以下である。
S: 0.0025% or less S is an element contained as an unavoidable impurity, and decreases hot workability, easily causes cracking defects during hot rolling, and deteriorates corrosion resistance. 0025% or less. Desirably, it is 0.0010% or less.

N:0.10〜0.30%
Nはオーステナイトの安定化に寄与する作用を有する元素であり、同時に耐食性および強度向上に効果的な元素であるので、0.10%以上必要である。しかし、多量に含有すると、熱間加工性起因の表面疵の問題が発生するので、上限を0.30%以下とする。好ましくは0.12〜0.30%であり、更に好ましくは0.14〜0.30%である。
N: 0.10 to 0.30%
N is an element having an effect of contributing to stabilization of austenite, and at the same time, is an element effective for improving corrosion resistance and strength, and therefore needs to be 0.10% or more. However, if it is contained in a large amount, a problem of surface flaws due to hot workability occurs, so the upper limit is made 0.30% or less. Preferably it is 0.12-0.30%, More preferably, it is 0.14-0.30%.

Al:0.005〜0.080%
Alは脱酸剤としての効果を有する元素であり、脱酸剤として作用させる場合には0.005%以上含有させる。しかし、Alを過剰に含有すると有害なスピネル系の酸化物(MgO・Al系介在物)が多量に生成し、鋳造時にノズル閉塞を誘発させるため、0.080%以下とする。より好ましくは0.060%以下である。更に好ましくは0.050%以下である。
Al: 0.005-0.080%
Al is an element having an effect as a deoxidizing agent, and when acting as a deoxidizing agent, 0.005% or more is contained. However, if Al is contained excessively, harmful spinel oxides (MgO.Al 2 O 3 inclusions) are produced in large quantities and induce nozzle clogging during casting. More preferably, it is 0.060% or less. More preferably, it is 0.050% or less.

Ca:0.0006〜0.0025%
CaはSを固定して熱間加工性を改善できるので、その効果を得るためには0.0006%以上含有させる。しかし、多量に含有させると有害なスピネル系の酸化物(MgO・Al系介在物)が多量に生成し、鋳造時にノズル閉塞を誘発させるため、上限を0.0025%以下とする。より好ましくは、0.0010〜0.0020%とする。
Ca: 0.0006 to 0.0025%
Since Ca can fix S and improve hot workability, in order to acquire the effect, it is made to contain 0.0006% or more. However, if contained in a large amount, harmful spinel oxides (MgO.Al 2 O 3 inclusions) are produced in large amounts and induce nozzle clogging during casting, so the upper limit is made 0.0025% or less. More preferably, it is 0.0010 to 0.0020%.

Mg:0.0005〜0.0030%
Mgは熱間加工性を改善させる元素であり、また、Ca・Al・Mg系酸化物やMg系酸化物の増大に寄与するため、0.0005%以上を含有させる。一方で、Mgの含有率が0.0030%を超えると、逆に熱間加工性を低下させるため、上限を0.0030%以下とする。
Mg: 0.0005 to 0.0030%
Mg is an element that improves hot workability, and contributes to an increase in Ca · Al · Mg-based oxides and Mg-based oxides, so 0.0005% or more is contained. On the other hand, if the Mg content exceeds 0.0030%, the hot workability is decreased, so the upper limit is made 0.0030% or less.

B:0.0010〜0.0060%
Bは、熱間加工性を改善させる元素であり、0.0010%以上を含有させる。一方で、0.0060%超の含有は耐食性が劣化するため、上限を0.0060%以下とする。望ましくは0.0015〜0.0025%である。
B: 0.0010 to 0.0060%
B is an element that improves hot workability and contains 0.0010% or more. On the other hand, if the content exceeds 0.0060%, the corrosion resistance deteriorates, so the upper limit is made 0.0060% or less. Desirably, it is 0.0015 to 0.0025%.

上記化学成分の残部は、Fe及び不純物である。ここで、不純物とは、鋼を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。ただし、本発明においては、不純物のうち、P及びSについては、上述のように、上限を規定する必要がある。   The balance of the chemical component is Fe and impurities. Here, the impurity is a component that is mixed due to various factors in the manufacturing process including raw materials such as ore and scrap when industrially manufacturing steel, and does not adversely affect the present invention. It means what is allowed in the range. However, in the present invention, it is necessary to define an upper limit for P and S among impurities as described above.

また、本実施形態の溶接棒用二相ステンレス鋼線材及び溶接棒用二相ステンレス鋼線は、更に質量%で、V:1.00%以下、Ti:0.005%以下、Cu:0.50%以下のうちの1種または2種以上を含んでもよい。更には、REM:0.0100%以下、Ta:0.0010〜0.1000%の1種または2種を含んでもよい。これらの元素を含まない場合のこれらの元素の下限値は0%である。   Moreover, the duplex stainless steel wire for welding rods and duplex stainless steel wire for welding rods of this embodiment are further in mass%, V: 1.00% or less, Ti: 0.005% or less, Cu: 0.00. One or more of 50% or less may be included. Furthermore, you may include 1 type or 2 types of REM: 0.0100% or less and Ta: 0.0010-0.1000%. When these elements are not included, the lower limit of these elements is 0%.

V:1.00%以下
Ti:0.005%以下
V、Tiは、フェライト相率の調整(DF値の調整)のために含有してもよい。また、Tiは原料スクラップ由来として混入する場合がある。ただし、V、Tiが過剰に含有させると、溶接後の溶接金属の靱性が低下するので、Vの上限を1.00%以下とし、Tiの上限を0.005%以下とする。
V: 1.00% or less Ti: 0.005% or less V and Ti may be contained for adjusting the ferrite phase ratio (DF value adjustment). Ti may be mixed as raw material scrap. However, if V and Ti are contained excessively, the toughness of the weld metal after welding is lowered, so the upper limit of V is set to 1.00% or less and the upper limit of Ti is set to 0.005% or less.

Cu:0.50%以下
Cuは、V、Tiと同様に、フェライト相率の調整(DF値の調整)のために含有してもよい。また、Cuは原料スクラップ由来として混入する場合がある。ただし、Cuが過剰に含有させると、熱間加工性が低下するので、Cuの上限は0.50%以下とする。
Cu: 0.50% or less Cu, like V and Ti, may be contained for adjusting the ferrite phase ratio (DF value adjustment). Moreover, Cu may mix as raw material scrap origin. However, if Cu is excessively contained, hot workability deteriorates, so the upper limit of Cu is 0.50% or less.

REM:0.0100%以下
REM(希土類金属:Rare−Earth Metal)は、Sと親和性が高いのでS固定元素として作用して熱間加工性の向上が見込める。ただし、REMを過剰に含有するとノズル閉塞の原因となるため、上限を0.0100%以下とする。なおREMは、Sc、Yおよびランタノイドからなる合計17元素を指し、REMの含有量は、これらの17元素の合計含有量を意味する。
REM: 0.0100% or less Since REM (rare earth metal) has a high affinity with S, it can act as an S-fixing element to improve hot workability. However, excessive inclusion of REM causes nozzle clogging, so the upper limit is made 0.0100% or less. Note that REM refers to a total of 17 elements composed of Sc, Y, and lanthanoid, and the content of REM means the total content of these 17 elements.

Ta:0.0010〜0.1000%
Taは、Sと親和性が高いのでS固定元素として作用して熱間加工性の向上が見込めるため、0.0010%以上を含有させるとよい。ただし、過剰な添加は靱性の低下を招くので、上限を0.10%以下とする。
Ta: 0.0010 to 0.1000%
Since Ta has a high affinity with S, it acts as an S-fixing element and is expected to improve hot workability. Therefore, it is preferable to contain 0.0010% or more. However, excessive addition causes a decrease in toughness, so the upper limit is made 0.10% or less.

DF値:30.0〜60.0%
また、上述してきた鋼の化学成分の含有量は、下記式で表されるDF値で30.0〜60.0%の範囲となるように調整する必要がある。DF値とは、鋼中のフェライト相量を推測する数値であり、下記式は、種々成分量を変更して製造した本発明に係る二相ステンレス鋼とそのフェライト相量との関係を回帰して求めたものである。DF値が30.0%を下回ると熱間加工性が劣化するため、下限を30.0%とする。一方DF値が60.0%を超えた場合にも熱間加工性の劣化を招く。好ましくは、45.0〜55.0%の範囲である。
DF value: 30.0-60.0%
Moreover, it is necessary to adjust content of the chemical component of the steel mentioned above so that it may become the range of 30.0-60.0% by the DF value represented by a following formula. The DF value is a numerical value for estimating the amount of ferrite phase in the steel, and the following equation is a regression of the relationship between the duplex stainless steel according to the present invention produced by changing various component amounts and the ferrite phase amount. It is what I asked for. If the DF value is less than 30.0%, the hot workability deteriorates, so the lower limit is made 30.0%. On the other hand, when the DF value exceeds 60.0%, the hot workability is deteriorated. Preferably, it is 45.0 to 55.0% of range.

DF値=7.2×([Cr]+0.88[Mo]+0.78[Si]+2.2[Ti]+2.3[V])−8.9×([Ni]+0.03[Mn]+0.72[Cu]+22[C]+21[N])−44.9
ただし、上記式における元素記号は当該元素の含有率(質量%)であり、当該元素を含まない場合は0を代入する。
DF value = 7.2 × ([Cr] +0.88 [Mo] +0.78 [Si] +2.2 [Ti] +2.3 [V]) − 8.9 × ([Ni] +0.03 [Mn] ] +0.72 [Cu] +22 [C] +21 [N]) − 44.9
However, the element symbol in the above formula is the content (% by mass) of the element, and 0 is substituted when the element is not included.

次に、本実施形態の線材及び鋼線に含まれる介在物について説明する。
本実施形態の線材及び鋼線の組織中には様々な種類及びサイズの介在物が含まれるが、特に、粒径1.0μm以上の介在物のうち、Ca・Al・Mg系酸化物の個数比率が40%以上、Si・Mn・Cr・Fe系酸化物の個数比率が20%以下、Mg酸化物の個数比率がAl・Mg酸化物の個数比率の4倍以上であることが好ましい。
介在物の粒径を1.0μm以上とした理由は、比較的粒径が大きな介在物ほど、鋳造時のノズル詰まり、熱間加工性及び溶接作業性に影響を及ぼすためである。
Next, the inclusions included in the wire rod and steel wire of the present embodiment will be described.
The structure of the wire rod and steel wire of the present embodiment includes various types and sizes of inclusions. In particular, among the inclusions having a particle size of 1.0 μm or more, the number of Ca · Al · Mg-based oxides. It is preferable that the ratio is 40% or more, the number ratio of Si / Mn / Cr / Fe-based oxide is 20% or less, and the number ratio of Mg oxide is four times or more of the number ratio of Al / Mg oxide.
The reason why the inclusion particle size is 1.0 μm or more is because inclusions having a relatively large particle size affect nozzle clogging during casting, hot workability, and welding workability.

Ca・Al・Mg系酸化物は、O(酸素)を除き、Ca、Al、Mgを合計で90質量%以上含む介在物である。Ca、Al、Mgはそれぞれ、例えば、CaO、Al、MgOといった形態で含まれる。Ca・Al・Mg系酸化物の析出量が増えると、スピネル系の介在物(MgO・Al系)の生成が抑制され、鋼鋳造時のノズル閉塞が抑制されるようになる。また、Ca・Al・Mg系酸化物は鋼中のSを固定化する性質があり、固溶Sを低減して熱間加工性を向上させる。組織中に含まれる介在物のうち、Ca・Al・Mg系酸化物の個数比率は40%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが更に好ましい。Ca・Al・Mg系酸化物の個数比率が40%未満になると、スピネル系の介在物(MgO・Al系)の個数が増大し、鋼鋳造時のノズル閉塞を防止できなくなる。また、熱間加工性が低下する。 Ca · Al · Mg-based oxides are inclusions containing at least 90% by mass of Ca, Al, and Mg, excluding O (oxygen). Ca, Al, and Mg are included in the form of, for example, CaO, Al 2 O 3 , and MgO, respectively. When the amount of precipitation of Ca · Al · Mg-based oxide increases, the generation of spinel inclusions (MgO · Al 2 O 3 -based) is suppressed, and nozzle clogging during steel casting is suppressed. Further, Ca · Al · Mg-based oxides have a property of fixing S in steel, and reduce the solid solution S to improve hot workability. Of the inclusions contained in the structure, the number ratio of the Ca · Al · Mg oxide is preferably 40% or more, more preferably 60% or more, and even more preferably 70% or more. . If the number ratio of the Ca.Al.Mg based oxide is less than 40%, the number of spinel inclusions (MgO.Al 2 O 3 based) increases, and it becomes impossible to prevent nozzle clogging during steel casting. Moreover, hot workability falls.

Si・Mn・Cr・Fe系酸化物は、O(酸素)を除き、Si、Mn、Cr、Feを合計で75質量%以上含む介在物である。Si、Mn、Cr、Feはそれぞれ、例えば、SiO、MnO、CrO、FeOといった形態で含まれる。Si・Mn・Cr・Fe系酸化物は、固溶Sを固定化する性質があるが、その一方で、加熱等によって容易に還元されやすい。このため、溶接入熱を受けると、Si・Mn・Cr・Fe系酸化物によって固定化されていたSが、鋼中に放出される。これにより、鋼中の固溶Sが増大して熱間加工性を低下させる。従って、Si・Mn・Cr・Fe系酸化物は少ない方がよい。よって、組織中に含まれる介在物のうち、Si・Mn・Cr・Fe系酸化物の個数比率は20%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることが更に好ましい。Si・Mn・Cr・Fe系酸化物の個数比率が20%超になると熱間加工性が低下する。 The Si.Mn.Cr.Fe-based oxide is an inclusion containing 75% by mass or more of Si, Mn, Cr, and Fe in total, excluding O (oxygen). Si, Mn, Cr, and Fe are included in the form of, for example, SiO 2 , MnO, CrO, and FeO. Si / Mn / Cr / Fe-based oxides have the property of fixing solute S, but on the other hand, they are easily reduced by heating or the like. For this reason, when receiving welding heat input, S fixed by the Si / Mn / Cr / Fe-based oxide is released into the steel. Thereby, the solid solution S in steel increases and hot workability is reduced. Therefore, it is better that the Si / Mn / Cr / Fe-based oxide is less. Therefore, among the inclusions contained in the structure, the number ratio of Si / Mn / Cr / Fe-based oxides is preferably 20% or less, more preferably 10% or less, and 5% or less. More preferably. When the number ratio of Si / Mn / Cr / Fe-based oxide exceeds 20%, hot workability deteriorates.

また、本実施形態の線材及び鋼線においては、Mg酸化物の個数比率がAl・Mg酸化物の個数比率の4倍以上(Al・Mg酸化物の個数比率が0の場合を含む)であることが好ましい。Al・Mg酸化物の個数比率が0の場合を含むとは、Al・Mg酸化物の個数比率が0%の場合、Mg酸化物の個数比率が0%超であれば本発明鋼に該当することを意味する。Mg酸化物は、O(酸素)を除き、Mgを80質量%以上含む介在物である。Mgは主にMgOの形態で含まれる。また、Al・Mg酸化物はスピネル系の介在物であり、O(酸素)を除き、Mg、Alを80質量%以上含み、かつAlとMgの比[Al]/[Mg]が1.5〜2.5である介在物である。AlはAlの形態で含まれ、MgはMgOの形態で含まれる。Mg酸化物は、Ca・Al・Mg系酸化物と同様に、析出量が増えることでスピネル系の介在物(Al・Mg酸化物)の生成を抑制させ、鋼鋳造時のノズル閉塞が防止されるようになる。また、熱間加工性も向上する。そこで、本実施形態では、Mg酸化物の個数比率をAl・Mg酸化物の個数比率の4倍以上とする。4倍未満では、ノズル閉塞が防止できず、また、熱間加工性が悪化するので好ましくない。 In the wire rod and steel wire of this embodiment, the number ratio of Mg oxide is four times or more the number ratio of Al · Mg oxide (including the case where the number ratio of Al · Mg oxide is 0). It is preferable. The case where the number ratio of Al.Mg oxide is 0 means that the number ratio of Al.Mg oxide is 0%, and the case where the number ratio of Mg oxide exceeds 0% corresponds to the steel of the present invention. Means that. Mg oxide is an inclusion containing 80% by mass or more of Mg except for O (oxygen). Mg is mainly contained in the form of MgO. Further, Al · Mg oxide is a spinel inclusion, contains O, and contains 80 mass% or more of Mg and Al, and the ratio of Al to Mg [Al] / [Mg] is 1.5. Inclusions that are ~ 2.5. Al is included in the form of Al 2 O 3 and Mg is included in the form of MgO. Similar to Ca / Al / Mg-based oxides, Mg oxide suppresses the formation of spinel inclusions (Al / Mg oxides) by increasing the amount of precipitation and prevents nozzle clogging during steel casting. Become so. Also, hot workability is improved. Therefore, in this embodiment, the number ratio of Mg oxide is set to four times or more of the number ratio of Al · Mg oxide. If it is less than 4 times, nozzle clogging cannot be prevented and hot workability deteriorates, which is not preferable.

上記以外にも、本実施形態の線材及び鋼線の組織中には様々な介在物が存在するが、これらについては本発明では特に規定しない。   In addition to the above, there are various inclusions in the structure of the wire rod and steel wire of the present embodiment, but these are not particularly defined in the present invention.

以下、介在物の測定方法について説明する。線材または鋼線において伸線方向の任意の水平方向の断面を観察し、粒径が1.0μm以上の介在物を無作為に20個選び、これを母集団とし、母集団に含まれる介在物をSEM−EDSで分析することで、介在物の種類と個数を同定する。その結果から、Ca・Al・Mg系酸化物、Si・Mn・Cr・Fe系酸化物、Mg酸化物及びAl・Mg酸化物の個数を求め、更に個数比率を求める。たとえば、20個の母集団から4個のCa・Al・Mg系酸化物が見つかった場合には、Ca・Al・Mg系酸化物の個数比率は4/20×100=20%とする。
但し、MgOやMgO・Alは、単独で存在する場合もあれば、Ca・Al・Mg系酸化物内に存在する場合もある。そこで、Ca・Al・Mg系酸化物中に粒径1.0μm以上のMgOあるいはMgO・Alが存在する場合には、MgOはCa・Al・Mg系酸化物およびMg酸化物としてそれぞれカウントし、MgO・AlはCa・Al・Mg系酸化物及びAl・Mg酸化物としてカウントする。
Hereinafter, a method for measuring inclusions will be described. Observe an arbitrary horizontal cross-section in the wire drawing direction of the wire or steel wire, randomly select 20 inclusions with a particle size of 1.0 μm or more, and use them as a population, and inclusions included in the population Is analyzed by SEM-EDS to identify the type and number of inclusions. From the results, the numbers of Ca.Al.Mg based oxide, Si.Mn.Cr.Fe based oxide, Mg oxide and Al.Mg oxide are obtained, and the number ratio is further obtained. For example, when four Ca · Al · Mg-based oxides are found from 20 populations, the number ratio of Ca · Al · Mg-based oxides is 4/20 × 100 = 20%.
However, MgO and MgO.Al 2 O 3 may exist alone or in a Ca.Al.Mg-based oxide. Therefore, when MgO or MgO.Al 2 O 3 having a particle diameter of 1.0 μm or more is present in the Ca · Al · Mg-based oxide, MgO is converted into Ca · Al · Mg-based oxide and Mg oxide, respectively. Counting, MgO.Al 2 O 3 is counted as Ca · Al · Mg oxide and Al · Mg oxide.

次に、本実施形態の線材の製造方法について説明する。一次精錬においてSiまたはAlで脱酸処理を行い、溶鋼中T.Oを0.0050%以下にした後、二次精錬においてCaを添加する。この際、Caの添加形態は特に限定しないが、金属CaやCa合金の形で添加することが挙げられる。これにより、介在物の組成を本発明範囲に調整することができる。   Next, the manufacturing method of the wire rod of this embodiment is demonstrated. In primary refining, deoxidation treatment is performed with Si or Al. After making O into 0.0050% or less, Ca is added in the secondary refining. At this time, the addition form of Ca is not particularly limited, but it may be added in the form of metallic Ca or Ca alloy. Thereby, the composition of inclusions can be adjusted within the scope of the present invention.

介在物の組成が調整された溶鋼は、鋳造ノズルによってタンディッシュに注入され、鋳型にて鋳造されて鋳片とされる。鋳片を熱間圧延することにより、本実施形態の線材を製造する。また、例えば、線材に対して1次伸線加工を行ったのち、1000〜1100℃のストランド熱処理を行い、2次伸線加工を行うことで、本実施形態の鋼線を製造する。
但し、本発明の製造方法はこれに限定されるものではなく、本発明の効果が得られる範囲で適宜設定することが出来る。
Molten steel whose composition of inclusions is adjusted is poured into a tundish by a casting nozzle and cast into a slab by casting with a mold. The wire rod of this embodiment is manufactured by hot rolling the slab. Moreover, for example, after performing the primary wire drawing on the wire, a strand heat treatment at 1000 to 1100 ° C. is performed, and the secondary wire drawing is performed, thereby manufacturing the steel wire of the present embodiment.
However, the production method of the present invention is not limited to this, and can be appropriately set within a range where the effects of the present invention can be obtained.

以下、実施例について説明する。なお、実施例の条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Examples will be described below. In addition, the conditions of an Example are one example of conditions employ | adopted in order to confirm the feasibility and effect of this invention, and this invention is not limited to this one example of conditions. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

表1に示す化学成分を有する溶鋼を鋳造ノズルからタンディッシュに注入し、鋳型によって鋳造して鋳片とし、更に鋳片を熱間圧延することで、線径5.5mmの線材を製造した。更に、得られた線材に対して1次伸線加工を行ったのち、1000〜1100℃のストランド熱処理を行い、2次伸線加工を行うことで、線径1.0mmの鋼線を製造した。なお、介在物の析出量の調整は、溶鋼の一次精錬においてSiまたはAlで脱酸処理を行い、溶鋼中T.Oを調整後、二次精錬においてCaを添加することで調整した。また、熱間圧延は、鋳片を1100℃に加熱し、圧延開始温度1080℃、圧延終了温度1050℃、総減面率99.9%の条件で行った。そして、鋳造時のノズル閉塞性、熱間加工性、鋼線を溶接棒として溶接した場合の溶接作業性について評価した。結果を表2に示す。   Molten steel having chemical components shown in Table 1 was poured into a tundish from a casting nozzle, cast into a slab by casting with a mold, and the slab was hot-rolled to produce a wire having a wire diameter of 5.5 mm. Furthermore, after the primary wire drawing was performed on the obtained wire, a strand heat treatment at 1000 to 1100 ° C. was performed, and the secondary wire drawing was performed to produce a steel wire having a wire diameter of 1.0 mm. . In addition, adjustment of the precipitation amount of inclusions is performed by performing deoxidation treatment with Si or Al in the primary refining of molten steel. After adjusting O, it adjusted by adding Ca in secondary refining. The hot rolling was performed under the conditions of heating the cast slab to 1100 ° C., rolling start temperature 1080 ° C., rolling end temperature 1050 ° C., and total area reduction 99.9%. And the nozzle obstruction | occlusion property at the time of casting, hot workability, and the welding workability | operativity at the time of welding a steel wire as a welding rod were evaluated. The results are shown in Table 2.

鋳造時のノズル閉塞性は、ノズルの詰まりの有無を確認し、以下の評価基準で評価した。
○:ノズル閉塞なし
×:ノズル閉塞傾向により連続鋳造不可
The nozzle blockage at the time of casting was evaluated according to the following evaluation criteria by confirming the presence or absence of nozzle clogging.
○: No nozzle clogging ×: Continuous casting impossible due to nozzle clogging tendency

熱間加工性は、熱間圧延後の線材の表面疵の有無を確認し、以下の評価基準で評価した。
○:疵なし
×:0.15mm以上の深さの表面疵あり
The hot workability was evaluated according to the following evaluation criteria by confirming the presence or absence of surface defects on the wire after hot rolling.
○: No wrinkles ×: Surface wrinkles with a depth of 0.15 mm or more

溶接作業性は、以下の方法により評価した。
銅製の捕集箱内で、二相ステンレス鋼板(NSSC2120、新日鐵住金ステンレス(株)製)上に、ビードオンプレートで、溶接電流150A、電圧24V、溶接速度30cm/min、シールドガス100%CO(20l/min)、及び予熱なしの条件で、試験対象となる鋼線からなる溶接棒を用いて、1分間、溶接ビードを作製した。この溶接ビードの作成の間に箱内に飛散したスパッタの有無を評価した。評価基準は以下の通りである。
Welding workability was evaluated by the following method.
Inside a copper collection box, on a duplex stainless steel plate (NSSC2120, manufactured by Nippon Steel & Sumikin Stainless Steel Co., Ltd.), with a bead-on plate, welding current 150A, voltage 24V, welding speed 30cm / min, shielding gas 100% A weld bead was produced for 1 minute using a welding rod made of a steel wire to be tested under the conditions of CO 2 (20 l / min) and no preheating. The presence or absence of spatter scattered in the box during the production of the weld bead was evaluated. The evaluation criteria are as follows.

○:スパッタの発生なし
×:スパッタの発生あり
○: Spatter is not generated ×: Spatter is generated

また、介在物の存在割合については、線材を評価用の試料とし、伸線方向の任意の水平方向の断面を観察し、粒径1.0μm以上の介在物を無作為に20個を選定し、各介在物をSEM−EDSで分析することで、介在物の種類と個数を同定した。その結果から、Ca・Al・Mg系酸化物、Si・Mn・Cr・Fe系酸化物、Mg酸化物及びAl・Mg酸化物の個数を求め、更に個数比率を求めた。MgOやMgO・Alについては、Ca・Al・Mg系酸化物中に粒径1.0μm以上のMgOあるいはMgO・Alが存在する場合には、MgOはCa・Al・Mg系酸化物およびMg酸化物としてそれぞれカウントし、MgO・AlはCa・Al・Mg系酸化物及びAl・Mg酸化物としてカウントした。また、Al・Mg酸化物の個数比率が0%であり、Mg酸化物の個数比率が0%超の場合は、本発明鋼に該当するものとする。表2における「Mg酸化物/Al・Mg酸化物」は、Mg酸化物の個数比率とAl・Mg酸化物の個数比率の比を示す。
結果を表2に示す。
In addition, regarding the existence ratio of inclusions, a wire is used as an evaluation sample, an arbitrary horizontal section in the wire drawing direction is observed, and 20 inclusions having a particle diameter of 1.0 μm or more are randomly selected. The type and number of inclusions were identified by analyzing each inclusion with SEM-EDS. From the results, the number of Ca.Al.Mg-based oxide, Si.Mn.Cr.Fe-based oxide, Mg oxide and Al.Mg oxide was determined, and the number ratio was further determined. The MgO and MgO · Al 2 O 3, when Ca · Al · Mg-based oxide particle size 1.0μm or more MgO or MgO · Al 2 O 3 in the present, MgO is Ca · Al · Mg counting each as a system oxide and Mg oxide, MgO · Al 2 O 3 was counted as Ca · Al · Mg-based oxides and Al · Mg oxides. Further, when the number ratio of Al · Mg oxide is 0% and the number ratio of Mg oxide exceeds 0%, it corresponds to the steel of the present invention. “Mg oxide / Al · Mg oxide” in Table 2 represents the ratio of the number ratio of Mg oxide to the number ratio of Al · Mg oxide.
The results are shown in Table 2.

Figure 2018171640
Figure 2018171640

Figure 2018171640
Figure 2018171640

表1及び表2に示すように、試験No.1〜8、17〜19は、化学成分及び介在物の個数比率が本発明範囲を満たしており、ノズル閉塞性、熱間加工性、溶接作業性がいずれも良好だった。
試験No.9は、DF値が30.0%未満となり、熱間加工性及び溶接作業性が悪化した。
試験No.10は、DF値が60.0%超となり、熱間加工性が悪化した。
試験No.11は、Ca・Al・Mg系酸化物の個数比率が40%未満になり、ノズル詰まりは起きなかったが、熱間加工性が悪化した。
試験No.12は、Si・Mn・Cr・Fe系酸化物の個数比率が20%超になり、ノズル詰まりは起きなかったが、熱間加工性が悪化した。
試験No.13は、Mg酸化物の個数比率がAl・Mg酸化物の個数比率の4倍未満になり、ノズル詰まりが発生した。
試験No.14は、S量が0.0025%を超えており、熱間加工性が悪化した。
試験No.15は、Ca量が0.0006%未満になっており、また、Mg酸化物の個数比率がAl・Mg酸化物の個数比率の4倍未満になり、ノズル詰まりが発生した。
試験No.16は、Ca量が0.0025%を超えており、溶接作業性が悪化した。
As shown in Table 1 and Table 2, test no. In Nos. 1 to 8 and 17 to 19, the number ratio of chemical components and inclusions satisfied the scope of the present invention, and the nozzle closing property, hot workability, and welding workability were all good.
Test No. In No. 9, the DF value was less than 30.0%, and the hot workability and welding workability deteriorated.
Test No. No. 10, the DF value exceeded 60.0%, and the hot workability deteriorated.
Test No. No. 11 had a Ca / Al / Mg oxide number ratio of less than 40%, and nozzle clogging did not occur, but hot workability deteriorated.
Test No. In No. 12, the number ratio of Si / Mn / Cr / Fe-based oxide exceeded 20%, and nozzle clogging did not occur, but hot workability deteriorated.
Test No. In No. 13, the number ratio of Mg oxide was less than four times the number ratio of Al · Mg oxide, and nozzle clogging occurred.
Test No. In No. 14, the amount of S exceeded 0.0025%, and hot workability deteriorated.
Test No. No. 15 had a Ca content of less than 0.0006%, and the number ratio of Mg oxide was less than four times the number ratio of Al · Mg oxide, resulting in nozzle clogging.
Test No. In No. 16, the Ca content exceeded 0.0025%, and the welding workability deteriorated.

以上説明したように、化学成分が所定の範囲を満たし、DF値が30.0〜60.0%であり、Ca・Al・Mg系酸化物の個数比率が40%以上、Si・Mn・Cr・Fe系酸化物の個数比率が20%以下、Mg酸化物の個数比率がAl・Mg酸化物の個数比率の4倍以上(Al・Mg酸化物の個数比率が0の場合を含む)である線材及び鋼線は、溶接作業性、生産性及び熱間加工性に優れることがわかる。   As described above, the chemical composition satisfies a predetermined range, the DF value is 30.0 to 60.0%, the number ratio of Ca / Al / Mg-based oxide is 40% or more, Si / Mn / Cr The number ratio of Fe-based oxide is 20% or less, and the number ratio of Mg oxide is four times or more of the number ratio of Al / Mg oxide (including the case where the number ratio of Al / Mg oxide is 0). It turns out that a wire and a steel wire are excellent in welding workability, productivity, and hot workability.

Claims (6)

化学成分が質量%で、
C:0.005〜0.10%、
Si:0.20〜2.00%、
Mn:0.50〜5.50%、
Ni:6.00〜10.00%、
Cr:21.00〜26.00%、
Mo:0.05〜4.00%、
P:0.040%以下、
S:0.0025%以下、
N:0.10〜0.30%、
Al:0.005〜0.080%、
Ca:0.0006〜0.0025%、
Mg:0.0005〜0.0030%、
B:0.0010〜0.0060%
を含有し、残部がFe及び不純物からなり、
下記式で表されるDF値が30〜60%であり、
鋼中に存在する粒径1.0μm以上の介在物のうち、Ca・Al・Mg系酸化物の個数比率が40%以上、Si・Mn・Cr・Fe系酸化物の個数比率が20%以下、Mg酸化物の個数比率がAl・Mg酸化物の個数比率の4倍以上(Al・Mg酸化物の個数比率が0の場合を含む)である、溶接棒用二相ステンレス鋼線材。
DF値=7.2×([Cr]+0.88[Mo]+0.78[Si]+2.2[Ti]+2.3[V])−8.9×([Ni]+0.03[Mn]+0.72[Cu]+22[C]+21[N])−44.9
ただし、上記式における元素記号は当該元素の含有率(質量%)であり、当該元素を含まない場合は0を代入する。
Chemical composition is mass%,
C: 0.005-0.10%,
Si: 0.20 to 2.00%
Mn: 0.50 to 5.50%,
Ni: 6.00 to 10.00%,
Cr: 21.00 to 26.00%,
Mo: 0.05 to 4.00%
P: 0.040% or less,
S: 0.0025% or less,
N: 0.10 to 0.30%,
Al: 0.005 to 0.080%,
Ca: 0.0006 to 0.0025%,
Mg: 0.0005 to 0.0030%,
B: 0.0010 to 0.0060%
And the balance consists of Fe and impurities,
The DF value represented by the following formula is 30 to 60%,
Among inclusions with a particle size of 1.0 μm or more present in steel, the number ratio of Ca / Al / Mg-based oxide is 40% or more, and the number ratio of Si / Mn / Cr / Fe-based oxide is 20% or less. A duplex stainless steel wire rod for welding rods in which the number ratio of Mg oxide is at least four times the number ratio of Al · Mg oxide (including the case where the number ratio of Al · Mg oxide is 0).
DF value = 7.2 × ([Cr] +0.88 [Mo] +0.78 [Si] +2.2 [Ti] +2.3 [V]) − 8.9 × ([Ni] +0.03 [Mn] ] +0.72 [Cu] +22 [C] +21 [N]) − 44.9
However, the element symbol in the above formula is the content (% by mass) of the element, and 0 is substituted when the element is not included.
更に、質量%で、
V:1.00%以下、
Ti:0.005%以下、
Cu:0.50%以下
のうちの1種または2種以上を含む、請求項1に記載の溶接棒用二相ステンレス鋼線材。
Furthermore, in mass%,
V: 1.00% or less,
Ti: 0.005% or less,
The duplex stainless steel wire for welding rods according to claim 1, comprising one or more of Cu: 0.50% or less.
更に、質量%で、
REM:0.0100%以下、
Ta:0.0010〜0.1000%、
のうちの1種または2種を含む、請求項1または請求項2に記載の溶接棒用二相ステンレス鋼線材。
Furthermore, in mass%,
REM: 0.0100% or less,
Ta: 0.0010 to 0.1000%,
The duplex stainless steel wire for welding rods according to claim 1 or 2, comprising one or two of the above.
化学成分が質量%で、
C:0.005〜0.10%、
Si:0.20〜2.00%、
Mn:0.50〜5.50%、
Ni:6.00〜10.00%、
Cr:21.00〜26.00%、
Mo:0.05〜4.00%、
P:0.040%以下、
S:0.0025%以下、
N:0.10〜0.30%、
Al:0.005〜0.080%、
Ca:0.0006〜0.0025%、
Mg:0.0005〜0.0030%、
B:0.0010〜0.0060%
を含有し、残部がFe及び不純物からなり、
下記式で表されるDF値が30〜60%であり、
鋼中に存在する粒径1.0μm以上の介在物のうち、Ca・Al・Mg系酸化物の個数比率が40%以上、Si・Mn・Cr・Fe系酸化物の個数比率が20%以下、Mg酸化物の個数比率がAl・Mg酸化物の個数比率の4倍以上(Al・Mg酸化物の個数比率が0の場合を含む)である、溶接棒用二相ステンレス鋼線。
DF値=7.2×([Cr]+0.88[Mo]+0.78[Si]+2.2[Ti]+2.3[V])−8.9×([Ni]+0.03[Mn]+0.72[Cu]+22[C]+21[N])−44.9
ただし、上記式における元素記号は当該元素の含有率(質量%)であり、当該元素を含まない場合は0を代入する。
Chemical composition is mass%,
C: 0.005-0.10%,
Si: 0.20 to 2.00%
Mn: 0.50 to 5.50%,
Ni: 6.00 to 10.00%,
Cr: 21.00 to 26.00%,
Mo: 0.05 to 4.00%
P: 0.040% or less,
S: 0.0025% or less,
N: 0.10 to 0.30%,
Al: 0.005 to 0.080%,
Ca: 0.0006 to 0.0025%,
Mg: 0.0005 to 0.0030%,
B: 0.0010 to 0.0060%
And the balance consists of Fe and impurities,
The DF value represented by the following formula is 30 to 60%,
Among inclusions with a particle size of 1.0 μm or more present in steel, the number ratio of Ca / Al / Mg-based oxide is 40% or more, and the number ratio of Si / Mn / Cr / Fe-based oxide is 20% or less. A duplex stainless steel wire for welding rods in which the number ratio of Mg oxide is four times or more of the number ratio of Al · Mg oxide (including the case where the number ratio of Al · Mg oxide is 0).
DF value = 7.2 × ([Cr] +0.88 [Mo] +0.78 [Si] +2.2 [Ti] +2.3 [V]) − 8.9 × ([Ni] +0.03 [Mn] ] +0.72 [Cu] +22 [C] +21 [N]) − 44.9
However, the element symbol in the above formula is the content (% by mass) of the element, and 0 is substituted when the element is not included.
更に、質量%で、
V:1.00%以下、
Ti:0.005%以下、
Cu:0.50%以下
のうちの1種または2種以上を含む、請求項4に記載の溶接棒用二相ステンレス鋼線。
Furthermore, in mass%,
V: 1.00% or less,
Ti: 0.005% or less,
The duplex stainless steel wire for welding rods according to claim 4, comprising one or more of Cu: 0.50% or less.
更に、質量%で、
REM:0.0100%以下、
Ta:0.0010〜0.1000%
のうちの1種または2種を含む、請求項4または請求項5に記載の溶接棒用二相ステンレス鋼線。
Furthermore, in mass%,
REM: 0.0100% or less,
Ta: 0.0010 to 0.1000%
The duplex stainless steel wire for welding rods according to claim 4 or 5, comprising one or two of the above.
JP2017073106A 2017-03-31 2017-03-31 Duplex stainless steel wire for welding rods and duplex stainless steel wire for welding rods Active JP6820223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017073106A JP6820223B2 (en) 2017-03-31 2017-03-31 Duplex stainless steel wire for welding rods and duplex stainless steel wire for welding rods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017073106A JP6820223B2 (en) 2017-03-31 2017-03-31 Duplex stainless steel wire for welding rods and duplex stainless steel wire for welding rods

Publications (2)

Publication Number Publication Date
JP2018171640A true JP2018171640A (en) 2018-11-08
JP6820223B2 JP6820223B2 (en) 2021-01-27

Family

ID=64107630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017073106A Active JP6820223B2 (en) 2017-03-31 2017-03-31 Duplex stainless steel wire for welding rods and duplex stainless steel wire for welding rods

Country Status (1)

Country Link
JP (1) JP6820223B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110438415A (en) * 2019-08-26 2019-11-12 江阴祥瑞不锈钢精线有限公司 A kind of mine screen net stainless steel wire and its manufacturing method
CN111716037A (en) * 2019-03-21 2020-09-29 本钢板材股份有限公司 Method for improving quality of welding wire steel casting blank
WO2022210651A1 (en) 2021-03-31 2022-10-06 日鉄ステンレス株式会社 Duplex stainless steel wire rod, and duplex stainless steel wire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014039953A (en) * 2012-08-23 2014-03-06 Nippon Steel & Sumitomo Metal Weld material for two-phase stainless steel
JP2015010248A (en) * 2013-06-27 2015-01-19 日本冶金工業株式会社 Two-phase stainless steel for urea plant
JP2015074807A (en) * 2013-10-09 2015-04-20 日本冶金工業株式会社 Stainless steel excellent in surface quality and method of producing the same
JP2016168616A (en) * 2015-03-13 2016-09-23 新日鐵住金株式会社 Welding material, and welded metal and welded joint formed by using the same
JP2016180172A (en) * 2015-03-25 2016-10-13 新日鐵住金ステンレス株式会社 Two-phase stainless steel wire and screw product and manufacturing method of two-phase stainless steel wire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014039953A (en) * 2012-08-23 2014-03-06 Nippon Steel & Sumitomo Metal Weld material for two-phase stainless steel
JP2015010248A (en) * 2013-06-27 2015-01-19 日本冶金工業株式会社 Two-phase stainless steel for urea plant
JP2015074807A (en) * 2013-10-09 2015-04-20 日本冶金工業株式会社 Stainless steel excellent in surface quality and method of producing the same
JP2016168616A (en) * 2015-03-13 2016-09-23 新日鐵住金株式会社 Welding material, and welded metal and welded joint formed by using the same
JP2016180172A (en) * 2015-03-25 2016-10-13 新日鐵住金ステンレス株式会社 Two-phase stainless steel wire and screw product and manufacturing method of two-phase stainless steel wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111716037A (en) * 2019-03-21 2020-09-29 本钢板材股份有限公司 Method for improving quality of welding wire steel casting blank
CN110438415A (en) * 2019-08-26 2019-11-12 江阴祥瑞不锈钢精线有限公司 A kind of mine screen net stainless steel wire and its manufacturing method
WO2022210651A1 (en) 2021-03-31 2022-10-06 日鉄ステンレス株式会社 Duplex stainless steel wire rod, and duplex stainless steel wire

Also Published As

Publication number Publication date
JP6820223B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
JP5157606B2 (en) TIG welding method of high strength steel using flux cored wire
US20110062133A1 (en) Flux cored wire for welding duplex stainless steel which refines solidified crystal grains
JP5231042B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP5671364B2 (en) Weld metal with excellent creep properties
JP2008093715A (en) High yield strength and high toughness flux-cored wire for gas-shielded arc welding
TW201730355A (en) Method for producing high strength stainless steel plate with excellent fatigue property
JP2011020154A (en) Flux-cored wire for gas shielded welding
JP6820223B2 (en) Duplex stainless steel wire for welding rods and duplex stainless steel wire for welding rods
JP6999475B2 (en) Highly Si-containing austenitic stainless steel with excellent manufacturability
TW201100561A (en) Steel for welded structure and producing method thereof
JP2019077925A (en) Stainless steel material excellent in slag spot generation inhibition performance, weld structural part, and manufacturing method therefor
KR101618482B1 (en) Steel material for welding
JP5616283B2 (en) Fe-Ni-Cr-Mo alloy and method for producing the same
JP6222806B2 (en) High corrosion resistance duplex stainless steel with excellent brittleness resistance
JP4673710B2 (en) Two-electrode single-sided one-pass large heat input submerged arc welding method with excellent weld metal toughness
JP6424867B2 (en) Stainless steel having a steel structure composed of two phases of a ferrite phase and a martensite phase and a method of manufacturing the same
WO2022210651A1 (en) Duplex stainless steel wire rod, and duplex stainless steel wire
JP2006110581A (en) High strength and high toughness wire for arc welding
JP2015110828A (en) Duplex stainless steel material and duplex stainless steel tube
KR102276525B1 (en) Flux cored wire for submerged arc welding and material for submerged arc welding
JP2003138339A (en) Weld joint
US20140328716A1 (en) Steel for welding
JPWO2019131036A1 (en) Low alloy high strength seamless steel pipe for oil wells
JP7205618B2 (en) steel
JP6341053B2 (en) High Si austenitic stainless steel containing composite non-metallic inclusions

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210104

R150 Certificate of patent or registration of utility model

Ref document number: 6820223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250