JP2018171323A - Image pickup apparatus and tip member detachably attachable with respect to housing of image pickup apparatus - Google Patents

Image pickup apparatus and tip member detachably attachable with respect to housing of image pickup apparatus Download PDF

Info

Publication number
JP2018171323A
JP2018171323A JP2017072048A JP2017072048A JP2018171323A JP 2018171323 A JP2018171323 A JP 2018171323A JP 2017072048 A JP2017072048 A JP 2017072048A JP 2017072048 A JP2017072048 A JP 2017072048A JP 2018171323 A JP2018171323 A JP 2018171323A
Authority
JP
Japan
Prior art keywords
tip member
imaging device
recess
image
depression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017072048A
Other languages
Japanese (ja)
Other versions
JP6774365B2 (en
Inventor
啓介 反本
Keisuke Sorimoto
啓介 反本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J Morita Manufaturing Corp
Original Assignee
J Morita Manufaturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Morita Manufaturing Corp filed Critical J Morita Manufaturing Corp
Priority to JP2017072048A priority Critical patent/JP6774365B2/en
Publication of JP2018171323A publication Critical patent/JP2018171323A/en
Application granted granted Critical
Publication of JP6774365B2 publication Critical patent/JP6774365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an image pickup apparatus having excellent operability and capable of stably capturing an image, and tip member detachably attachable with respect to a housing of the image pickup apparatus.SOLUTION: An intraoral scanner 100 for capturing an image of teeth 200 is provided. The intraoral scanner 100 includes an optical measurement part 30, and a probe 10 being connectable to the optical measurement part 30 via a connecting part 20. The probe 10 includes: a housing 12 having an opening part 11 to be connected to the optical measurement part 30; a measurement window 13 (a daylighting part) provided at an opposite side of the opening part 11 in the housing 12; and a mirror 14 reflecting light introduced from the measurement window 13 to a direction of the opening part 11. The probe 10 includes a recess 15 at a side provided with the measurement window 13. More specifically, the recess 15 is provided at a farthest position from the opening part 11, at the position adjacent to the measurement window 13.SELECTED DRAWING: Figure 2

Description

本発明は、対象物を撮像する撮像装置および撮像装置の筺体から着脱可能である先端部材に関する。   The present invention relates to an imaging device that images a target object and a tip member that is detachable from a housing of the imaging device.

歯科分野において、画像診断や光学印象採得などの目的で口腔内の対象物(歯など)を撮像する場合、撮像装置の先端部を口腔内に挿入して撮像する。狭隘な口腔内に挿入する都合上、撮像装置の先端部を口腔内に入る程度に小さくする必要がある。それに応じて、先端部に組み込まれる撮像用の光学系もサイズの制約を受けることなどから、撮像視野が狭くなってしまう。そのため、一度で口腔内の全体画像(たとえば歯列全体を撮像した画像)を撮像することが困難である。そこで、先端部を口腔内で動かしながら連続して撮像された口腔内の個々の画像を合成して全体画像を生成する方法が開発されている(特許文献1)。特許文献1には、測定中には手で保持された撮像装置である歯科用カメラが下顎又は上顎などの歯科的対象物に対して相対的に移動し、規則的な時間間隔で撮像することが開示されている。   In the dental field, when imaging an object (such as a tooth) in the oral cavity for purposes such as diagnostic imaging or obtaining an optical impression, the distal end portion of the imaging device is inserted into the oral cavity. For convenience of insertion into a narrow oral cavity, it is necessary to make the tip of the imaging device small enough to enter the oral cavity. Accordingly, the imaging field of view is narrowed because the imaging optical system incorporated in the tip is also subject to size restrictions. For this reason, it is difficult to capture an entire intraoral image (for example, an image of the entire dentition) at once. In view of this, a method has been developed in which individual images of the oral cavity that are continuously captured while moving the tip portion in the oral cavity are combined to generate an entire image (Patent Document 1). In Patent Document 1, a dental camera, which is an imaging device held by hand during measurement, moves relative to a dental object such as the lower jaw or the upper jaw and takes images at regular time intervals. Is disclosed.

特表2015−530137号公報Special table 2015-530137

特許文献1に開示されているように口腔内の画像を連続して撮像し、個々の画像を合成して歯列全体の画像を生成する場合、個々の画像間には合成処理に必要な共通する特徴的な構造が含まれている必要がある。口腔内においては、凹凸の大きい歯牙部分のほうが、凹凸の少ない歯肉部分よりも特徴的な構造を多く含んでいることが多い。したがって、特徴的な構造をより多く含む歯牙部分を常に撮像視野内に収めながら連続撮像することが有利である。すなわち操作者は、撮像装置の先端部を歯に向けながら、歯列に沿って撮像装置を動かす必要がある。しかしながら、先端部と口腔内との接触部分が滑るなどして、先端部の位置が歯列からずれてしまうことがあり、安定して撮像することができないという課題があった。また、口腔内の画像を連続して撮像するために、たとえば、動かしている先端部の方向を旋回させる方向旋回動作や、上顎の歯と下顎の歯とが噛み合った状態で歯の側面に沿って先端部材を動かす側方撮像(バイトスキャン)動作などの様々な動作に対応できる操作性のよい撮像装置であることが望まれる。   As disclosed in Patent Document 1, when images in the oral cavity are continuously captured and the images of the entire dentition are generated by combining the individual images, the common images necessary for the combining process are required between the individual images. It is necessary to include a characteristic structure. In the oral cavity, a tooth part with large irregularities often contains more characteristic structures than a gingival part with few irregularities. Therefore, it is advantageous to perform continuous imaging while always keeping a tooth portion including more characteristic structures within the imaging field. That is, the operator needs to move the imaging device along the dentition while directing the tip of the imaging device toward the teeth. However, there is a problem that the position of the tip portion may be displaced from the dentition due to slippage of the contact portion between the tip portion and the oral cavity, and stable imaging cannot be performed. Further, in order to continuously capture images in the oral cavity, for example, a direction turning operation for turning the direction of the moving tip, or along the side surface of the tooth with the upper teeth and the lower teeth engaged. Therefore, it is desired that the imaging device has good operability and can cope with various operations such as a lateral imaging (bite scan) operation for moving the tip member.

本発明は、操作性が良く、かつ、安定して撮像することができる撮像装置および撮像装置の筺体から着脱可能である先端部材を提供することを目的とする。   An object of the present invention is to provide an imaging device that has good operability and can stably capture images, and a tip member that is detachable from a housing of the imaging device.

本発明に係る撮像装置は、対象物を撮像する撮像装置であって、筐体と、筐体の先端部に設けられ、対象物からの光を取り込むための採光部と、筐体内に設けられ、採光部から取り込んだ光を検出する検出部と、検出部で検出した結果を処理する処理部とを備え、先端部のうちの採光部を設けた側に窪みを設けた。   An image pickup apparatus according to the present invention is an image pickup apparatus that picks up an image of an object, and is provided in a housing, a daylighting unit for capturing light from the object, and a housing. The detection unit for detecting the light taken in from the daylighting unit and the processing unit for processing the result detected by the detection unit are provided, and a depression is provided on the side of the tip portion where the daylighting unit is provided.

本発明に係る対象物を撮像する撮像装置の筺体から着脱可能である先端部材は、筺体と接続可能な接続部と、接続部の反対側に設けられ、対象物からの光を取り込むための採光部とを備え、採光部を設けた側に窪みを設けた。   A tip member that is detachable from a housing of an imaging device that captures an image of an object according to the present invention is provided on a connection portion connectable to the housing and on the opposite side of the connection portion, and is used for capturing light from the object And a recess was provided on the side where the daylighting unit was provided.

本発明に係る撮像装置は、先端部のうちの採光部を設けた側に設けた窪みに対象物をあてがい、対象物の上を滑らせながら連続撮像することができる。窪みに対象物をあてがうことができるため、装置の位置が安定し、滑らせる方向とは異なる方向に対象物が動いてしまうことを防止することができる。その結果、本発明に係る撮像装置は、操作性がよく、かつ、安定した撮像ができる。また、本発明に係る撮像装置の筺体から着脱可能である先端部材のうちの採光部を設けた側に窪みを設けた。この窪みに対象物をあてがいながら、対象物の上を滑らせることができる。窪みに対象物をあてがうことができるため、装置の位置が安定し、滑らせる方向とは異なる方向に対象物が動いてしまうことを防止することができる。その結果、本発明に係る先端部材を撮像装置に用いることで、操作性がよく、かつ、安定した撮像ができる。   The imaging device according to the present invention can perform continuous imaging while slid on the object by applying the object to a recess provided on the side of the distal end where the daylighting unit is provided. Since the object can be assigned to the depression, the position of the apparatus is stabilized, and the object can be prevented from moving in a direction different from the sliding direction. As a result, the imaging apparatus according to the present invention has good operability and can perform stable imaging. Moreover, the hollow was provided in the side which provided the lighting part among the front-end | tip members which can be attached or detached from the housing of the imaging device which concerns on this invention. The object can be slid on the object while applying the object to the depression. Since the object can be assigned to the depression, the position of the apparatus is stabilized, and the object can be prevented from moving in a direction different from the sliding direction. As a result, by using the tip member according to the present invention for the imaging apparatus, it is possible to perform stable imaging with good operability.

本発明の実施の形態1に係る三次元スキャナの構成を示すブロック図である。It is a block diagram which shows the structure of the three-dimensional scanner which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る先端部材の構成を説明するための概略図である。It is the schematic for demonstrating the structure of the front-end | tip member which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る先端部材の底面図であって、計測窓の近傍を拡大した図である。It is a bottom view of the tip member concerning Embodiment 1 of the present invention, and is the figure which expanded the neighborhood of a measurement window. 本発明の実施の形態1に係る窪みを先端部材の前方から見た場合の拡大図である。It is an enlarged view at the time of seeing the hollow which concerns on Embodiment 1 of this invention from the front of a front-end | tip member. 本発明の実施の形態1に係る先端部材を歯の上面にあてがった様子を示す模式図である。It is a schematic diagram which shows a mode that the front-end | tip member which concerns on Embodiment 1 of this invention was applied to the upper surface of the tooth | gear. 本発明の実施の形態1に係る先端部材を歯の側面にあてがった様子を示す模式図である。It is a schematic diagram which shows a mode that the front-end | tip member which concerns on Embodiment 1 of this invention was applied to the side surface of the tooth | gear. 本発明の実施の形態1に係るハンドピース内に配置された光学系の模式図である。It is a schematic diagram of the optical system arrange | positioned in the handpiece which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る三次元スキャナが撮像した画像を示す図である。It is a figure which shows the image which the three-dimensional scanner which concerns on Embodiment 1 of this invention imaged. 本発明の実施の形態1に係る三次元スキャナが撮像した画像を合成する方法について説明するための図である。It is a figure for demonstrating the method to synthesize | combine the image imaged by the three-dimensional scanner which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る先端部材の構成を説明するための概略図である。It is the schematic for demonstrating the structure of the front-end | tip member which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る先端部材の構成を説明するための概略図である。It is the schematic for demonstrating the structure of the front-end | tip member which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る先端部材の構成を説明するための概略図である。It is the schematic for demonstrating the structure of the front-end | tip member which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る先端部材の構成を説明するための概略図である。It is the schematic for demonstrating the structure of the front-end | tip member which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係るハンドピースの構成を説明するための概略図である。It is the schematic for demonstrating the structure of the handpiece which concerns on Embodiment 6 of this invention. 変形例1の窪みの形状を説明するための概略図である。It is the schematic for demonstrating the shape of the hollow of the modification 1. FIG. 変形例2の窪みの形状を説明するための概略図である。10 is a schematic diagram for explaining a shape of a recess according to Modification 2. FIG.

以下、本発明に係る実施の形態について図面を参照して説明する。
(実施の形態1)
本発明の実施の形態1に係る撮像装置は、口腔内の歯の三次元画像を撮像するための撮像装置(三次元スキャナ)である。しかし、本発明に係る撮像装置は、三次元スキャナに限定されるものではなく、同様の構成を有する他の撮像装置について適用することができる。たとえば、対象物の断層画像を撮像するための光干渉断層撮影装置、対象物の二次元画像を撮像するためのカメラ、複数の二次元画像を重ね合せて合成することで得られる対象物のパノラマ画像を撮像するためのカメラにも適用できる。また、撮像装置が撮像する対象は、歯に限られるものではなく、窪みが設けられた撮像装置の先端部または先端部材で接触可能な突起を有する生体や人工物であってもよい。たとえば、ヒトまたは動物の骨、印象材を用いて採得した生体の型(印象)、人工の骨格模型または生体模型、その他の工業製品などを、撮像装置が撮像する対象とすることができる。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
(Embodiment 1)
The imaging apparatus according to Embodiment 1 of the present invention is an imaging apparatus (three-dimensional scanner) for capturing a three-dimensional image of teeth in the oral cavity. However, the imaging apparatus according to the present invention is not limited to the three-dimensional scanner, and can be applied to other imaging apparatuses having the same configuration. For example, an optical coherence tomography apparatus for capturing a tomographic image of an object, a camera for capturing a two-dimensional image of the object, a panorama of the object obtained by superimposing and synthesizing a plurality of two-dimensional images It can also be applied to a camera for capturing an image. Further, the object to be imaged by the imaging device is not limited to the tooth, and may be a living body or an artificial object having a protrusion that can be contacted by the distal end portion or the distal end member of the imaging device provided with the depression. For example, a human or animal bone, a living body type (impression) obtained using an impression material, an artificial skeletal model or living body model, other industrial products, or the like can be targeted for imaging by the imaging apparatus.

[三次元スキャナの構成]
図1は、本発明の実施の形態1に係る三次元スキャナ100の構成を示すブロック図である。図1に示す三次元スキャナ100は、先端部材10、接続部20、光学計測部30、制御部40、表示部50、および電源部60を含んでいる。先端部材10は、口腔内に差込まれ、対象物である歯200にパターンを有する光(以下、パターンともいう)を投影し、パターンが投影された歯200からの反射光を光学計測部30に導いている。また、先端部材10は、光学計測部30に対して着脱可能であるので、感染対策として、生体に接触する可能性のある先端部材10だけを光学計測部30から取り外して滅菌処理(たとえば、高温高湿環境での処理)を施すことが可能である。三次元スキャナ100の装置全部を滅菌処理した場合、光学部品や電子部品などが多く含まれるため装置の寿命が短くなる欠点があるが、先端部材10だけを取り外して滅菌処理した場合当該欠点は生じない。接続部20は、先端部材10と嵌合可能な形状をしており、光学計測部30から突出している部分である。接続部20は、先端部材10で採光した光を光学計測部30へ導くためのレンズ系や、カバーガラス、光学フィルタ、位相差板(1/4波長板)等の光学部品を有していてもよい。
[Configuration of 3D scanner]
FIG. 1 is a block diagram showing a configuration of a three-dimensional scanner 100 according to Embodiment 1 of the present invention. A three-dimensional scanner 100 shown in FIG. 1 includes a tip member 10, a connection unit 20, an optical measurement unit 30, a control unit 40, a display unit 50, and a power supply unit 60. The tip member 10 is inserted into the oral cavity, projects light having a pattern (hereinafter also referred to as a pattern) onto the tooth 200 that is the object, and the reflected light from the tooth 200 onto which the pattern is projected is reflected in the optical measurement unit 30. Leading to. Further, since the tip member 10 is detachable from the optical measurement unit 30, only the tip member 10 that may come into contact with the living body is removed from the optical measurement unit 30 as a countermeasure against infection and sterilized (for example, at a high temperature). Treatment in a high-humidity environment). When the entire apparatus of the three-dimensional scanner 100 is sterilized, there are disadvantages that the life of the apparatus is shortened because many optical parts and electronic parts are included. However, when only the tip member 10 is removed and sterilized, the disadvantage occurs. Absent. The connecting portion 20 has a shape that can be fitted to the tip member 10 and is a portion protruding from the optical measuring portion 30. The connection unit 20 includes a lens system for guiding the light collected by the tip member 10 to the optical measurement unit 30, and optical components such as a cover glass, an optical filter, and a phase difference plate (¼ wavelength plate). Also good.

光学計測部30は、先端部材10を介して歯200にパターンを投影し、パターンが投影された歯200からの反射光を検出、処理することで、歯200の三次元画像を撮像する。光学計測部30は、図1には示していないものの、対象物である歯200に投影するパターンを生成するための光学部品(パターン生成素子)および光源、パターンを歯200の表面に結像するためのレンズ部品、焦点位置(ピント)を変化させることが可能な焦点可変部、投影したパターンを検出するための撮像素子23を有している(図7参照)。なお、光学計測部30は、合焦法の原理を用いて三次元形状を取得する構成として以下説明するが、当該構成に限定されず、共焦点法、三角測量法、白色干渉法、ステレオ法、フォトグラメトリ法、SLAM法(Simultaneous Localization and Mapping)、光干渉断層法(Optical Coherence Tomography: OCT)などの原理を用いて三次元形状を取得する構成でもよい。つまり、計測原理に応じて、パターンの形態(パターンを有しない光の場合もある)や、光学計測部30に内蔵される光学部品や電子部品の構成が異なるものの、本発明の提供する先端部材10は、光学的な手法を用いて三次元形状を取得する構成であればいずれの原理を用いた構成であっても適用することが可能である。なお、先端部材10、接続部20と光学計測部30とで、口腔内を撮像するためのハンドピース80を構成している。また、撮像素子23は、たとえば、CCDイメージセンサやCMOSイメージセンサなどの光学センサや、歯200からの反射光と参照光との干渉信号を検出するためのセンサなどであって、用途に適した撮像素子23が光学計測部30に設けられている。   The optical measurement unit 30 projects a pattern on the tooth 200 via the tip member 10, and detects and processes reflected light from the tooth 200 on which the pattern is projected, thereby capturing a three-dimensional image of the tooth 200. Although not shown in FIG. 1, the optical measurement unit 30 forms an image on the surface of the tooth 200 with an optical component (pattern generation element), a light source, and a pattern for generating a pattern to be projected onto the target tooth 200. Lens components, a focus variable unit capable of changing the focus position (focus), and an image sensor 23 for detecting the projected pattern (see FIG. 7). The optical measurement unit 30 will be described below as a configuration for acquiring a three-dimensional shape using the principle of the focusing method. However, the configuration is not limited to the configuration, and the confocal method, the triangulation method, the white interference method, and the stereo method are used. The three-dimensional shape may be obtained using a principle such as a photogrammetry method, a SLAM method (Simultaneous Localization and Mapping), or an optical coherence tomography (OCT). That is, the tip member provided by the present invention is different in the form of the pattern (may be light without a pattern) and the configuration of the optical component and the electronic component built in the optical measurement unit 30 depending on the measurement principle. No. 10 can be applied to any configuration using any principle as long as the configuration acquires a three-dimensional shape using an optical technique. The tip member 10, the connection unit 20, and the optical measurement unit 30 constitute a handpiece 80 for imaging the oral cavity. The image sensor 23 is, for example, an optical sensor such as a CCD image sensor or a CMOS image sensor, a sensor for detecting an interference signal between the reflected light from the tooth 200 and the reference light, and the like, and is suitable for use. An image sensor 23 is provided in the optical measurement unit 30.

制御部40は、光学計測部30の動作を制御するとともに、光学計測部30で検出した歯200からの反射光の情報を処理して対象物の三次元画像を撮像する。具体的には、制御部40は、歯200からの反射光を二次元の要素画像(以下、二次元要素画像ともいう)として検出し、前記二次元要素画像の撮像を焦点可変部によってピントを少しずつ変えながら複数回行う。制御部40は、得られた複数の二次元要素画像を元に、最もピントの合っている距離を制御部40での演算処理によって求めることで、一つの三次元画像を得る。ここで三次元画像は、歯200の三次元形状情報や、色情報(たとえば、赤、青、緑など色ごとの反射率情報)などを含む。また、三次元画像は、三次元テクスチャの法線方向情報などの、その他の情報を含んでいてももちろんよい。制御部40は、制御中枢としてのCPU(Central Processing Unit)、CPUが動作するためのプログラムや制御データ等を記憶しているROM(Read Only Memory)、CPUのワークエリアとして機能するRAM(Random Access Memory)、周辺機器との信号の整合性を保つための入出力インターフェイス等が設けられている。また、制御部40は、取得した三次元画像を表示部50に出力することが可能であるとともに、光学計測部30の設定などの情報を図示していない入力装置などで入力可能である。なお、撮像した二次元要素画像を処理して三次元画像を撮像するための演算の少なくとも一部は、制御部40のCPUによってソフトウェアとして実現されてもよいし、当該CPUとは別に処理を行うハードウェアとして実現されてもよい。また、当該CPUやハードウェアなどの処理部のうち少なくとも一部は、光学計測部30の内部に組み込まれていてもよい。また、図1では三次元スキャナ100の各構成要素(30、40、50、60)がケーブル(図中の太線)によって配線されているように描かれているが、これらの配線のうち一部または全部が無線通信によって接続されていてもよい。また、制御部40が片手で持ち上げられるほど十分に小型かつ軽量であれば、制御部40と光学計測部30とが一体化され、ひとつのハンドピース80として構成されていてもよい。   The control unit 40 controls the operation of the optical measurement unit 30 and processes information on the reflected light from the teeth 200 detected by the optical measurement unit 30 to capture a three-dimensional image of the object. Specifically, the control unit 40 detects reflected light from the teeth 200 as a two-dimensional element image (hereinafter also referred to as a two-dimensional element image), and focuses the two-dimensional element image on the focus variable unit. Repeat several times, changing little by little. Based on the obtained two-dimensional element images, the control unit 40 obtains a most in-focus distance by arithmetic processing in the control unit 40, thereby obtaining one three-dimensional image. Here, the three-dimensional image includes three-dimensional shape information of the teeth 200, color information (for example, reflectance information for each color such as red, blue, and green). Of course, the three-dimensional image may include other information such as the normal direction information of the three-dimensional texture. The control unit 40 includes a CPU (Central Processing Unit) as a control center, a ROM (Read Only Memory) that stores programs and control data for operating the CPU, and a RAM (Random Access) that functions as a work area for the CPU. Memory) and an input / output interface for maintaining signal consistency with peripheral devices. Further, the control unit 40 can output the acquired three-dimensional image to the display unit 50 and can input information such as settings of the optical measurement unit 30 with an input device (not shown). It should be noted that at least a part of the calculation for processing the captured two-dimensional element image and capturing the three-dimensional image may be realized as software by the CPU of the control unit 40, or processing is performed separately from the CPU. It may be realized as hardware. In addition, at least a part of the processing unit such as the CPU or hardware may be incorporated in the optical measurement unit 30. In FIG. 1, each component (30, 40, 50, 60) of the three-dimensional scanner 100 is depicted as being wired by a cable (thick line in the figure). Or all may be connected by radio | wireless communication. If the control unit 40 is sufficiently small and light enough to be lifted with one hand, the control unit 40 and the optical measurement unit 30 may be integrated and configured as a single handpiece 80.

表示部50は、制御部40で得られた歯200の三次元画像の撮像結果を表示するための表示装置である。また、表示部50は、光学計測部30の設定情報や、患者情報、スキャナの起動状態、取扱説明書、ヘルプ画面などの、その他の情報を表示するための表示装置としても利用することができる。表示部50の例として、たとえば据え置き式の液晶ディスプレイや、ヘッドマウント式やメガネ式のウェアラブルディスプレイなどが適用できる。また、表示部50は複数あってもよく、前記三次元画像の撮像結果やその他の情報が、複数の表示部50上に同時表示あるいは分割表示されるよう構成されてもよい。電源部60は、光学計測部30および制御部40を駆動するための電力を供給するための装置である。電源部60は、図1に示すように制御部40の外部に設けられていても、制御部40の内部に設けられていてもよい。また、電源部60は、制御部40、光学計測部30、表示部50に対し、別々に給電できるよう、複数設けられていてもよい。   The display unit 50 is a display device for displaying the imaging result of the three-dimensional image of the tooth 200 obtained by the control unit 40. The display unit 50 can also be used as a display device for displaying other information such as setting information of the optical measurement unit 30, patient information, scanner activation status, instruction manual, help screen, and the like. . As an example of the display unit 50, for example, a stationary liquid crystal display, a head mounted type or a glasses type wearable display can be applied. In addition, a plurality of display units 50 may be provided, and the imaging result of the three-dimensional image and other information may be displayed on the plurality of display units 50 simultaneously or dividedly. The power supply unit 60 is a device for supplying power for driving the optical measurement unit 30 and the control unit 40. As shown in FIG. 1, the power supply unit 60 may be provided outside the control unit 40 or may be provided inside the control unit 40. Further, a plurality of power supply units 60 may be provided so that power can be separately supplied to the control unit 40, the optical measurement unit 30, and the display unit 50.

[先端部材の構成]
図2は、本発明の実施の形態1に係る先端部材10の構成の概略図である。先端部材10の一方端は、直方体を斜めに切った形状をしている。先端部材10は、光学計測部30と接続するための開口部11を有する筐体12と、開口部11とは反対側の筐体12に設けられた計測窓13(採光部)と、計測窓13から取り込んだ光を開口部11の方向に反射するミラー14とを備える。また、先端部材10のうちの計測窓13を設けた側に窪み15が設けられている。より具体的には、窪み15は開口部11から最も離れた位置であって、計測窓13に隣接する位置に設けられている。また、窪み15は、先端部材10の計測窓13が設けられた側の面を設置面として平面に設置した場合に、当該平面と先端部材10との間に隙間が生じるように設けられている。
[Configuration of tip member]
FIG. 2 is a schematic diagram of the configuration of the tip member 10 according to Embodiment 1 of the present invention. One end of the tip member 10 has a shape obtained by cutting a rectangular parallelepiped diagonally. The tip member 10 includes a housing 12 having an opening 11 for connection to the optical measurement unit 30, a measurement window 13 (lighting unit) provided in the housing 12 on the side opposite to the opening 11, and a measurement window And a mirror 14 that reflects the light taken in from 13 in the direction of the opening 11. Further, a recess 15 is provided on the side of the tip member 10 on which the measurement window 13 is provided. More specifically, the recess 15 is provided at a position farthest from the opening 11 and adjacent to the measurement window 13. Further, the recess 15 is provided so that a gap is generated between the flat surface and the tip member 10 when the tip member 10 is installed on a flat surface with the surface on which the measurement window 13 is provided as the installation surface. .

なお、以下では、説明の便宜上、先端部材10の長手方向をY軸と規定し、計測窓13を設けた面に平行であってY軸に対して垂直方向に向かうX軸とし、Y軸およびX軸に対して垂直なZ軸が設定されているものとする。また、開口部11を設けた位置から計測窓13に向かう方向を前方とし、前方から先端部材10をみたときの右側を右といい、左側を左という。   In the following, for convenience of explanation, the longitudinal direction of the tip member 10 is defined as the Y axis, and is defined as the X axis parallel to the surface on which the measurement window 13 is provided and extending in the direction perpendicular to the Y axis. It is assumed that a Z axis perpendicular to the X axis is set. The direction from the position where the opening 11 is provided toward the measurement window 13 is the front, the right side when the tip member 10 is viewed from the front is called right, and the left side is called left.

図3は、本発明の実施の形態1に係る先端部材10の底面図であって、計測窓13の近傍を拡大した図である。図3に示すように、窪み15は、先端部材10の外周と計測窓13との間に設けられている。また、窪み15のY軸方向の幅は、筐体12のY軸方向の厚みと一致するように描かれているが、窪み15のY軸方向の幅が、筐体12のY軸方向の厚みよりも狭くなるよう構成してもよい。   FIG. 3 is a bottom view of the tip member 10 according to Embodiment 1 of the present invention, and is an enlarged view of the vicinity of the measurement window 13. As shown in FIG. 3, the recess 15 is provided between the outer periphery of the tip member 10 and the measurement window 13. The width of the recess 15 in the Y-axis direction is drawn so as to match the thickness of the housing 12 in the Y-axis direction, but the width of the recess 15 in the Y-axis direction is the same as that of the housing 12 in the Y-axis direction. You may comprise so that it may become narrower than thickness.

図4は、本発明の実施の形態1に係る窪み15を先端部材10の前方から見た場合の拡大図である。図4に示すように、先端部材10を前方から見たときに、窪み15を通して、計測窓13が見えるように窪み15は設けられている。なお、図4においては、窪み15を通して計測窓13が見える様子については、図示を省略している。また、窪み15の形状は、窪み15の中央部付近で窪みの深さdが最大となり、極値となる形状である。また、先端部材10の前方から見た場合の窪み15の形状は、先端部材10の底面(XY平面、すなわち計測窓13を通る光軸に対して直交する面)から緩やかに窪みの最大深さdに至り、緩やかに先端部材10の底面に戻る曲線形状をしている。三次元スキャナ100のZ方向の撮像可能範囲Hは、窪み15のうち、窪みの深さdが最大となる位置から当該位置よりも先端部材のやや内側の位置までの領域に位置する点を基準に、先端部材10の外側に向かって設定される。撮像可能範囲Hの範囲内に置かれた対象物は正しく撮像され、範囲外に置かれた対象物については正しく撮像されない。撮像可能範囲Hは図示していない焦点可変部のピントの調整可能幅に対応しており、無限に大きくすることはできない。   FIG. 4 is an enlarged view of the hollow 15 according to Embodiment 1 of the present invention when viewed from the front of the tip member 10. As shown in FIG. 4, the depression 15 is provided so that the measurement window 13 can be seen through the depression 15 when the tip member 10 is viewed from the front. In FIG. 4, the state in which the measurement window 13 can be seen through the depression 15 is not shown. Further, the shape of the recess 15 is a shape in which the depth d of the recess is maximized in the vicinity of the central portion of the recess 15 and becomes an extreme value. The shape of the recess 15 when viewed from the front of the tip member 10 is the maximum depth of the recess gently from the bottom surface of the tip member 10 (the XY plane, that is, the plane orthogonal to the optical axis passing through the measurement window 13). It has a curved shape that reaches d and gently returns to the bottom surface of the tip member 10. The imageable range H in the Z direction of the three-dimensional scanner 100 is based on a point located in a region of the recess 15 from a position where the depth d of the recess is maximum to a position slightly inside the tip member from the position. To the outside of the tip member 10. An object placed within the imageable range H is correctly imaged, and an object placed outside the range is not correctly imaged. The imageable range H corresponds to the focus adjustable width of the focus variable unit (not shown) and cannot be increased indefinitely.

窪み15の傾斜角である窪み15の曲線形状に接する接線TとXY平面とのなす角αは、45度以下となっている。つまり、窪み15は、深さが急激に変わるような形状をしておらず、緩やかに深さが変わるような形状をしている。角度αが大きすぎると(たとえば90度に近い角度)、窪み15の内面が歯の側面を挟み込んで保持するような先端部材10の形状となってしまう。そのため、患者の口腔内で先端部材10を動かしながら連続撮像する際、特に方向旋回する際に、撮像を中断し、先端部材10を一度Z方向に引き抜いてから先端部材10の方向を再設定しなければならないなどの手間が生じる。これに対し、角度αを45度以下の浅い角度としたことで、当該保持効果は生まれず、方向旋回が容易となるため、中断することなく連続的に撮像を行うことが可能となる。すなわち三次元スキャナ100の操作性が向上する。また、窪み15の形状を滑らかな曲線形状としたことで、窪み15が角張った形状であった場合とくらべ、撮像中に窪み15の一部が対象物に引っ掛かり、患者に不快感を与えるリスクが低減する。   The angle α formed between the tangent line T that is in contact with the curved shape of the depression 15 and the XY plane, which is the inclination angle of the depression 15, is 45 degrees or less. That is, the recess 15 does not have a shape in which the depth changes suddenly, but has a shape in which the depth changes gradually. When the angle α is too large (for example, an angle close to 90 degrees), the shape of the tip member 10 is such that the inner surface of the recess 15 sandwiches and holds the side surfaces of the teeth. Therefore, when continuously imaging while moving the tip member 10 in the oral cavity of the patient, especially when turning the direction, the imaging is interrupted, the tip member 10 is once pulled in the Z direction, and then the direction of the tip member 10 is reset. There is a trouble such as having to. On the other hand, when the angle α is set to a shallow angle of 45 degrees or less, the holding effect is not generated and the direction turning is facilitated, so that continuous imaging can be performed without interruption. That is, the operability of the three-dimensional scanner 100 is improved. In addition, since the shape of the recess 15 is a smooth curved shape, the risk of causing a part of the recess 15 to be caught on an object during imaging and causing discomfort to the patient as compared to the case where the recess 15 has an angular shape. Is reduced.

本発明の実施の形態1に係る窪み15の内面の形状は、曲面形状をしている。なお、窪み15の形状はY軸方向に沿って変わらないようにしてもよく、また、Y軸方向に沿って変わるようにしてもよい。具体的に、窪み15の形状がY軸方向に沿って変わらないような形状とは、窪み15に略円柱状の曲面が嵌るような形状である。また、窪みの形状がY軸方向に沿って変わるような形状とは、窪み15に略円錐状、略球状、または略トロイダル状の曲面が嵌るような形状である。   The shape of the inner surface of the recess 15 according to Embodiment 1 of the present invention is a curved surface. Note that the shape of the recess 15 may not be changed along the Y-axis direction, or may be changed along the Y-axis direction. Specifically, the shape in which the shape of the recess 15 does not change along the Y-axis direction is a shape in which a substantially cylindrical curved surface is fitted in the recess 15. In addition, the shape in which the shape of the depression changes along the Y-axis direction is a shape in which a substantially conical, substantially spherical, or substantially toroidal curved surface is fitted in the depression 15.

図4に示すように、X軸方向の窪みの幅wは、先端部材10のX軸方向の幅aの半分よりも大きい。つまり、窪みの幅wと先端部材10のX軸方向の幅aとの間には、a<w×2という関係が成立する。このように、窪みの幅wを十分大きく設定したことで、歯200(幅が10mm程度ある)に対して窪み15を接触させ安定するのに十分な窪みの幅wを確保できる。また、窪みの幅wを十分大きく設定することで、洗浄の際に洗浄器具や薬液が窪み内部に行き届きやすくなり、より衛生的になる。   As shown in FIG. 4, the width w of the recess in the X-axis direction is larger than half the width a of the tip member 10 in the X-axis direction. That is, a relationship of a <w × 2 is established between the width w of the recess and the width a of the tip member 10 in the X-axis direction. Thus, by setting the width w of the dent sufficiently large, it is possible to secure the width w of the dent sufficient to bring the dent 15 into contact with the tooth 200 (having a width of about 10 mm) and stabilize it. In addition, by setting the width w of the recess sufficiently large, it becomes easier for the cleaning tool and the chemical solution to reach the interior of the recess during cleaning, so that it becomes more hygienic.

また、窪み15の形状は、窪みの最大深さdが、窪みの幅wの半分未満となるような形状である。つまり、窪みの最大深さdと、窪みの幅wとの間には、d<w×1/2という関係が成立する。また、窪みの最大深さdを十分小さく設定したことで、撮像可能範囲Hのうち、XY平面よりも先端部材10の外側にある撮像可能範囲H’を十分に確保することができる。撮像可能範囲H’が十分に確保されないと、歯200の咬合面を撮像することはできても、窪み15に接触させた歯200の咬合面からZ方向に遠い位置にある歯肉を撮像したい場合や、バイトスキャン動作において歯200の側面を撮像したい場合などの他の撮像状況において、対象物を撮像可能範囲H、H’内に位置づけることができず、正しく撮像することができない。よって窪みの最大深さdは小さく設定する必要がある。また、窪みの最大深さdを十分小さく設定することで前述の方向旋回動作を阻害するような保持効果が生じない。   Further, the shape of the recess 15 is such that the maximum depth d of the recess is less than half of the width w of the recess. That is, the relationship d <w × 1/2 is established between the maximum depth d of the recess and the width w of the recess. Further, by setting the maximum depth d of the depression sufficiently small, it is possible to sufficiently secure the imageable range H ′ outside the tip member 10 from the XY plane in the imageable range H. If the imageable range H ′ is not sufficiently secured, the occlusal surface of the tooth 200 can be imaged, but it is desired to image the gingiva at a position far from the occlusal surface of the tooth 200 in contact with the depression 15 in the Z direction. In other imaging situations, such as when it is desired to image the side surface of the tooth 200 in the bite scan operation, the object cannot be positioned within the imageable ranges H and H ′, and imaging cannot be performed correctly. Therefore, the maximum depth d of the depression needs to be set small. Moreover, the holding effect which inhibits the above-mentioned direction turning operation | movement does not arise by setting the maximum depth d of a hollow sufficiently small.

図5は、本発明の実施の形態1に係る先端部材10を歯200の上面にあてがった様子を示す模式図である。また、図6は、本発明の実施の形態1に係る先端部材10を歯200の側面にあてがった様子を示す模式図である。ここで、あてがうとは、先端部材10と歯200とが少なくとも1点以上で接するように、先端部材10を歯200に当てることである。図5に示すように、本実施の形態1に係る先端部材10を歯200の上面にあてがうと、窪み15に歯200がはまり、窪み15の内側の辺と歯200とが2点(図5中の接点201)で接触する。窪み15の内側の辺と歯200とが2点で接触するため、歯200に対して先端部材10が図の左右方向にずれにくい。よって、先端部材10のうちの計測窓13を設けた側に窪み15を設けることで、測定中に先端部材10が歯200からずれてしまうことを防止することができ、安定して撮像することができる。また、窪み15は歯200と2点で接触しているだけで、歯200を挟み込む形状でないため、先端部材10を図の左右方向の位置を維持させつつ図の前後方向にずらすことや方向旋回動作が可能になるので、連続して歯200を撮像するような場合に、窪み15に沿って歯200の上面を滑らせるようにハンドピース80を動かすことができる。よって、先端部材10のうちの計測窓13を設けた側に窪み15を設けることで、歯200から先端部材10を離すことなく測定することができ、操作性よく撮像することができる。なお、当該接触点の数が1点の場合であっても、撮像することは可能である。たとえば対象物が前歯のような幅の小さな歯200であった場合や、臼歯であっても患者の個人差によって尖った構造を有していた場合には、窪み15に対して歯200が1点で接触する場合がある。この場合、歯200に対し、略Z方向に力を加えて先端部10を押し当てることで、窪みの深さdが最大となる(極値をとる)位置にまで先端部材10が移動し、位置安定するため、操作性良く撮像することができる。もちろん、接触させずに歯200から先端部材10を少し離して撮像することも可能である。   FIG. 5 is a schematic diagram showing a state in which the tip member 10 according to Embodiment 1 of the present invention is applied to the upper surface of the tooth 200. FIG. 6 is a schematic diagram showing a state in which the tip member 10 according to Embodiment 1 of the present invention is applied to the side surface of the tooth 200. Here, “to apply” means to apply the tip member 10 to the tooth 200 so that the tip member 10 and the tooth 200 are in contact with each other at least at one point or more. As shown in FIG. 5, when the tip member 10 according to the first embodiment is applied to the upper surface of the tooth 200, the tooth 200 fits into the recess 15, and the inner side of the recess 15 and the tooth 200 are two points (FIG. 5). Contact at the middle contact 201). Since the inner side of the recess 15 and the tooth 200 are in contact with each other at two points, the tip member 10 is not easily displaced in the left-right direction in the drawing with respect to the tooth 200. Therefore, by providing the depression 15 on the side of the tip member 10 on which the measurement window 13 is provided, it is possible to prevent the tip member 10 from being displaced from the tooth 200 during measurement, and to stably capture an image. Can do. Further, since the recess 15 is only in contact with the tooth 200 at two points and does not have a shape sandwiching the tooth 200, the tip member 10 is shifted in the front-rear direction or the direction swivel while maintaining the position in the left-right direction in the figure. Since the movement becomes possible, the handpiece 80 can be moved so as to slide the upper surface of the tooth 200 along the recess 15 when the tooth 200 is continuously imaged. Therefore, by providing the depression 15 on the side of the tip member 10 on which the measurement window 13 is provided, measurement can be performed without separating the tip member 10 from the tooth 200, and imaging can be performed with good operability. Even if the number of the contact points is one, it is possible to take an image. For example, when the object is a tooth 200 having a small width such as an anterior tooth, or even if it is a molar, it has a sharp structure due to individual differences among patients, and the tooth 200 is 1 in the depression 15. There may be contact at a point. In this case, the tip member 10 is moved to a position where the depth d of the dent is maximized (takes an extreme value) by pressing the tip portion 10 against the tooth 200 by applying a force in a substantially Z direction. Since the position is stabilized, it is possible to take an image with good operability. Of course, it is also possible to image the tip member 10 slightly away from the tooth 200 without making contact.

図6に示すように、バイトスキャンをする場合、窪み15を設けることで、窪み15の両端にある窪んでいない部位が歯肉210にあたる。このような場合にあっても、歯肉210に窪んでいない部位をあてがいながら歯肉210の表面を滑らせるようにハンドピース80を動かすことができる。また、バイトスキャンをする場合には、先端部材10が歯200と頬の肉とに挟まれるため、測定中に先端部材10が歯200からずれてしまう虞はない。ここで、窪みの最大深さdの値を大きく設定しすぎた場合、すなわち窪み15の内面が歯200の側面を挟み込んで保持するような先端部材10の形状となってしまった場合には、図4に示した撮像可能範囲H’が狭くなるため、撮像対象である歯200の側面が撮像可能範囲H、H’から外れ、正しく撮像できなくなる虞がある。さらに最大深さdの大きさに応じて、先端部材10の高さが大きくなってしまうため、頬の肉が過剰に引っ張られて患者に苦痛を与えてしまう虞がある。よって、窪みの深さdは小さく設定するのが良い。   As shown in FIG. 6, when a bite scan is performed, by providing the recess 15, the non-recessed portions at both ends of the recess 15 correspond to the gingiva 210. Even in such a case, the handpiece 80 can be moved so as to slide the surface of the gingiva 210 while allocating a portion not depressed in the gingival 210. Further, when performing a bite scan, since the tip member 10 is sandwiched between the teeth 200 and the cheek meat, there is no possibility that the tip member 10 is displaced from the teeth 200 during measurement. Here, if the value of the maximum depth d of the dent is set too large, that is, if the inner surface of the dent 15 becomes the shape of the tip member 10 that holds the side surfaces of the teeth 200, Since the imageable range H ′ shown in FIG. 4 is narrowed, there is a possibility that the side surface of the tooth 200 that is the imaging target deviates from the imageable ranges H and H ′, and imaging cannot be performed correctly. Furthermore, since the height of the tip member 10 is increased according to the size of the maximum depth d, there is a possibility that the meat of the cheek is excessively pulled and pain is given to the patient. Therefore, it is preferable to set the depth d of the recess small.

なお、先端部材10と歯肉210とを接触させると、先端部材10の窪んでいない部位が歯肉210にあたる。このとき、歯肉210と先端部材10の窪んでいない部位の面とで接する。歯肉210とは、面で接触するため、患者に苦痛を与える虞がない。   Note that when the tip member 10 and the gingiva 210 are brought into contact with each other, a portion of the tip member 10 that is not recessed corresponds to the gingiva 210. At this time, the gingiva 210 contacts with the surface of the portion of the tip member 10 that is not recessed. Since the gingiva 210 is in contact with the surface, there is no risk of causing pain to the patient.

[三次元画像の合成]
図7〜図9を用いて、本発明の実施の形態1に係る三次元スキャナ100が実行する三次元画像の合成方法について説明する。図7は、本発明の実施の形態1に係るハンドピース80内に配置された光学系の模式図である。図8は、本発明の実施の形態1に係る三次元スキャナ100が撮像した三次元画像を示す図である。図9は、本発明の実施の形態1に係る三次元スキャナ100が撮像した三次元画像を合成する方法について説明するための図である。
[Composition of 3D images]
A 3D image synthesis method executed by the 3D scanner 100 according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 7 is a schematic diagram of an optical system arranged in the handpiece 80 according to Embodiment 1 of the present invention. FIG. 8 is a diagram showing a three-dimensional image captured by the three-dimensional scanner 100 according to Embodiment 1 of the present invention. FIG. 9 is a diagram for explaining a method of synthesizing a 3D image captured by the 3D scanner 100 according to Embodiment 1 of the present invention.

ハンドピース80には、図7に示すように、光学素子であるレンズ21,22および光を検出して撮像する撮像素子23とが設けられている。なお、ハンドピース80には、これ以外に、測定対象物に投影するパターンを生成するための光学部品(パターン生成素子)および光源、レンズのピントを調整するためのピント調整機構、光源から歯200へと向かう光と、歯200から撮像素子23へと向かう光とを分離するビームスプリッタなどが必要に応じて設けられている。ただし、これらの構成については、図7での図示および詳細な説明については省略している。また、レンズ系が2枚のレンズ21,22で構成される例を示しているが、レンズの枚数は2枚に限定されず、1枚のレンズや、3枚以上のレンズで構成されていてもよい。また、レンズ系が構成する光路24aと光路24bとが、撮像素子23付近および歯200付近にて、互いが平行となるようなテレセントリックなレンズ系として描かれているが、これに限定されずどのようなレンズでも良い。たとえば広角レンズや、魚眼レンズのような超広角レンズや、対象物の上面と側面に同時にピント合わせが可能なハイパーセントリックレンズなどでもよい。   As shown in FIG. 7, the handpiece 80 is provided with lenses 21 and 22 that are optical elements, and an image sensor 23 that detects and images light. In addition to this, the handpiece 80 includes an optical component (pattern generation element) and a light source for generating a pattern to be projected onto the measurement object, a focus adjustment mechanism for adjusting the focus of the lens, and a tooth 200 from the light source. A beam splitter or the like that separates the light traveling toward and the light traveling from the teeth 200 toward the image sensor 23 is provided as necessary. However, for these configurations, illustration and detailed description in FIG. 7 are omitted. In addition, although an example in which the lens system includes two lenses 21 and 22 is shown, the number of lenses is not limited to two, and the lens system includes one lens or three or more lenses. Also good. In addition, the optical path 24a and the optical path 24b that the lens system configures are depicted as a telecentric lens system in which the optical path 24a and the optical path 24b are parallel to each other in the vicinity of the imaging device 23 and the teeth 200. Such a lens may be used. For example, it may be a wide-angle lens, a super-wide-angle lens such as a fish-eye lens, or a high-percentric lens that can focus on the top and side surfaces of the object at the same time.

撮像素子23は、レンズ21,22を通って導かれた歯200からの反射光を検出することで、歯200の二次元要素画像を撮像する。三次元スキャナ100は、焦点可変部を用いてピントを変えながら撮像された複数の二次元要素画像に基づき、一つの三次元画像70を撮像する。ここで三次元画像70は、歯200の三次元形状情報と、色情報(たとえば、赤、青、緑など各色の反射率情報)などを含む。三次元テクスチャの法線方向情報などのその他の情報を含んでいてももちろんよい。レンズ21,22を通る光路には、レンズ21,22の中心付近である特定領域21a,22aを通る光路24aと、レンズ21,22の外周付近の非特定領域21b,22bを通る光路24bとがある。図8に示す三次元スキャナ100が撮像した三次元画像70のうち、光路24aを通る光に基づいて撮像した特定部分70aと、光路24bを通る光に基づいて撮像した非特定部分70bとを比較すると、非特定部分70bのほうが、レンズの収差、レンズへのコーティングの不完全性、レンズの加工誤差などの影響を強く受けるため、三次元画像70の品質(画質や形状精度)が低下する。本発明の実施の形態1に係る三次元スキャナ100は、先端部材10の中心に位置する窪み15を歯列にあてがいながら撮像するため、関心となる撮像対象である歯200を、精度の良好な三次元画像70の中心付近(特定部分70a)に位置づけ易くすることができる。したがって、撮像の精度が向上する。また、下記にて述べるような、複数の三次元画像70を合成する場合においても精度を向上させることが可能である。   The image sensor 23 captures a two-dimensional element image of the tooth 200 by detecting the reflected light from the tooth 200 guided through the lenses 21 and 22. The three-dimensional scanner 100 captures a single three-dimensional image 70 based on a plurality of two-dimensional element images captured while changing the focus using the focus varying unit. Here, the three-dimensional image 70 includes three-dimensional shape information of the teeth 200, color information (for example, reflectance information of each color such as red, blue, and green). Of course, other information such as normal direction information of the three-dimensional texture may be included. The optical paths passing through the lenses 21 and 22 include an optical path 24 a passing through the specific areas 21 a and 22 a near the centers of the lenses 21 and 22 and an optical path 24 b passing through the non-specific areas 21 b and 22 b near the outer periphery of the lenses 21 and 22. is there. Of the three-dimensional image 70 picked up by the three-dimensional scanner 100 shown in FIG. 8, the specific portion 70a picked up based on the light passing through the optical path 24a is compared with the non-specific portion 70b picked up based on the light passing through the optical path 24b. As a result, the non-specific portion 70b is more strongly affected by lens aberration, lens imperfection in coating, lens processing error, and the like, so that the quality (image quality and shape accuracy) of the three-dimensional image 70 is lowered. Since the three-dimensional scanner 100 according to the first embodiment of the present invention images the depression 15 located at the center of the tip member 10 while applying the depression 15 to the dentition, the tooth 200 that is an imaging object of interest has good accuracy. It can be easily positioned near the center of the three-dimensional image 70 (specific portion 70a). Therefore, the imaging accuracy is improved. Further, the accuracy can be improved even when a plurality of three-dimensional images 70 are synthesized as described below.

本発明の実施の形態1に係る三次元スキャナ100の制御部40は、複数の三次元画像を互いに合成して一つの大きな三次元画像として表示部50に表示することができる。具体的には、歯列上で先端部材10の位置を変えながら別々に撮像された三次元画像(たとえば歯1〜2本程度の範囲を撮像した三次元画像)同士を比較し、両者に共通する部分を検出し、共通する部分に基づき両者を重ね合せることで、合成された一つの大きな三次元画像(たとえば歯列全体の三次元画像)を構築する。上記三次元画像の合成処理は、制御部40によって行われる。図9を用いて、制御部40が実行する三次元画像の合成の処理について説明する。ここでは、共通する三次元画像(以下、共通画像73ともいう)を互いに備える第1の三次元画像(以下、第1画像71ともいう)と第2の三次元画像(以下、第2画像72ともいう)とを制御部40が合成する場合を考える。共通画像73は、第1画像71と第2画像72の特定部分71a,72a同士が重なる領域Aと、第1画像71と第2画像72の非特定部分71b,72b同士が重なる領域Cと、それ以外の領域Bとを含む。制御部40は、領域Aの共通画像73だけに基づいて共通する三次元画像の位置(合成後の三次元座標)や、三次元画像の色、三次元画像の明度などの調整を行う。また、制御部40は、領域Bについては、非特定部分71b,72bの共通画像73は用いないで、特定部分71a,72aのみを用いて三次元画像を生成する。制御部40は、領域Cについては、第1画像71および第2画像72を合成することで三次元画像を生成する。   The control unit 40 of the three-dimensional scanner 100 according to Embodiment 1 of the present invention can combine a plurality of three-dimensional images with each other and display them on the display unit 50 as one large three-dimensional image. Specifically, three-dimensional images captured separately while changing the position of the tip member 10 on the dentition (for example, a three-dimensional image capturing a range of about one or two teeth) are compared and common to both. A portion to be detected is detected, and both are overlapped based on the common portion, thereby constructing a single large three-dimensional image (for example, a three-dimensional image of the entire dentition). The above three-dimensional image composition processing is performed by the control unit 40. With reference to FIG. 9, the process of synthesizing the three-dimensional image executed by the control unit 40 will be described. Here, a first three-dimensional image (hereinafter also referred to as a first image 71) and a second three-dimensional image (hereinafter referred to as a second image 72) each having a common three-dimensional image (hereinafter also referred to as a common image 73). A case where the control unit 40 combines the above is also considered. The common image 73 includes a region A in which the specific portions 71a and 72a of the first image 71 and the second image 72 overlap, a region C in which the non-specific portions 71b and 72b of the first image 71 and the second image 72 overlap, and Other regions B are included. The control unit 40 adjusts the position (three-dimensional coordinates after synthesis), the color of the three-dimensional image, the brightness of the three-dimensional image, and the like based on only the common image 73 in the region A. In addition, for the region B, the control unit 40 does not use the common image 73 of the non-specific portions 71b and 72b, and generates a three-dimensional image using only the specific portions 71a and 72a. For the region C, the control unit 40 generates a three-dimensional image by combining the first image 71 and the second image 72.

また、制御部40は、共通する三次元画像を特定する際に、特定部分71a,72a同士が共通しない場合は、一方が特定部分70aで、他方が非特定部分70bとなる領域Bの共通画像73に基づいて共通する三次元画像の位置や、三次元画像の色、三次元画像の明度などの調整を行う。また、制御部40は、共通する三次元画像を特定する際に、共通する三次元画像の全てが領域Cに応じた三次元画像である場合は、三次元画像の合成をしないようにしてもよい。   Further, when the control unit 40 specifies a common three-dimensional image, if the specific parts 71a and 72a are not common to each other, the common image of the region B in which one is the specific part 70a and the other is the non-specific part 70b. Based on 73, adjustment of the position of the common 3D image, the color of the 3D image, the brightness of the 3D image, etc. is performed. In addition, when specifying the common three-dimensional image, the control unit 40 may not synthesize the three-dimensional image if all the common three-dimensional images are three-dimensional images corresponding to the region C. Good.

つまり、制御部40は、撮像された三次元画像のうち、レンズ21,22のうちのいずれの領域を通過した光に基づいて撮像された領域であるかを特定し、特定した領域ごとに重み付けを行い、重み付けした三次元画像の領域の情報に基づいて、2つの三次元画像71,72のうちのどちらの情報を優先して合成処理に採用するかを決定し、三次元画像データを合成する。このようにすることで、ゆがみの少ない信頼度の高い領域の情報を優先して用いることができ、より正確な三次元画像を得ることができる。   In other words, the control unit 40 identifies which region of the lenses 21 and 22 has been captured based on the light that has passed through the captured three-dimensional image, and weights each identified region. To determine which of the two three-dimensional images 71 and 72 is to be preferentially adopted for the synthesis process based on the weighted three-dimensional image area information, and to synthesize the three-dimensional image data To do. By doing so, it is possible to preferentially use information of a highly reliable region with little distortion, and a more accurate three-dimensional image can be obtained.

重み付けの方法は上記に限らず、たとえば「特定部分の情報を70%利用し、非特定部分の情報を30%利用して合成する」などの比率を設定してもよい。また、前記の例では特定部分70a(71a,72a)と、非特定部分70b(71b,72b)の、2つの部分を画像内に規定して重み付けを行っていたが、3つ以上の部分を規定して重み付けを行ってもよい。あるいは、三次元画像の中心からの距離などの関数として、連続的に重み付けを設定してもよい。本発明の実施の形態1に係る三次元スキャナ100は、先端部材10の中心に位置する窪み15を歯列にあてがいながら撮像するため、関心となる撮像対象である歯200を、精度の良好な三次元画像70の中心付近(特定部分70a)に位置づけ易くすることができる。歯列部分は歯肉などの他の組織と比べ、三次元画像の合成処理に必要な形状特徴情報を多く含む。したがって、三次元画像の合成処理における、三次元画像同士の共通部分の検出する処理を精度よく実行することができ、合成後の三次元画像の精度が向上する。   The weighting method is not limited to the above. For example, a ratio such as “use 70% of specific part information and 30% of non-specific part information” may be set. In the above example, the specific portion 70a (71a, 72a) and the non-specific portion 70b (71b, 72b) are weighted by defining the two portions in the image. You may prescribe | regulate and weight. Alternatively, the weight may be set continuously as a function such as a distance from the center of the three-dimensional image. Since the three-dimensional scanner 100 according to the first embodiment of the present invention images the depression 15 located at the center of the tip member 10 while applying the depression 15 to the dentition, the tooth 200 that is an imaging object of interest has good accuracy. It can be easily positioned near the center of the three-dimensional image 70 (specific portion 70a). The dentition portion includes a lot of shape feature information necessary for the synthesis process of the three-dimensional image, as compared with other tissues such as gums. Therefore, the process of detecting the common part between the three-dimensional images in the synthesis process of the three-dimensional images can be executed with high accuracy, and the accuracy of the combined three-dimensional image is improved.

なお、本発明の実施の形態1においては、制御部40は、非特定部分70bの領域も三次元画像の合成に用いることとしたが、非特定部分70bを除外し、特定部分70aだけを用いて三次元画像を合成してもよい。このようにすることで、ゆがみの少ない信頼度の高い領域の情報だけを用いるため、より正確な三次元画像を得ることができる。なお、本発明の実施の形態1に係る三次元スキャナ100は、先端部材10の中心に位置する窪み15を歯列にあてがいながら撮像するため、関心となる撮像対象である歯200を、精度の良好な三次元画像70の中心付近(特定部分70a)に位置づけ易くすることができる。したがって、非特定部分の撮像結果(非特定部分70b)を除外したとしても、画像合成処理に必要な、形状特徴情報を多く含む歯列部分は除外対象とはなりにくいため、合成処理においてエラーなどが生じにくい。また、非特定部分70bを除外して合成を行うため、処理に必要なデータ点数が少なくて済む。その結果、特定した領域ごとに重み付けをする場合に比べて、合成にかかる処理負担を軽減することができる。すなわち、高速に連続撮像することが可能となる。また、三次元画像の外周部(非特定部分70b)の撮像結果を採用しないようにしたことで、対応するレンズの領域(非特定領域21b、22b)を通過する光については考慮せずにレンズの設計をすることが可能となる。そのため、レンズの径を小さくすることができたり、これまで収差低減のために必要であった膨大な枚数の補正用レンズや高価な非球面レンズの枚数を削減したりすることができる。また、レンズの径を小さくすることで、先端部材10の径も小さくすることができ、先端部材10を小型化することができる。これにより、バイトスキャンを行った場合に、頬の肉が過剰に引っ張られて患者に苦痛を与えてしまうことを防ぐことができる。なお、重み付けした画像の領域の情報に基づいて画像データを合成する場合、非特定部分70bのデータも用いることができるため、画像データを有効に利用することができる。その結果、少ない画像で歯200の全体形状を撮像することができ、早く撮像することができる。   In Embodiment 1 of the present invention, the control unit 40 uses the region of the non-specific portion 70b for the synthesis of the three-dimensional image, but excludes the non-specific portion 70b and uses only the specific portion 70a. Thus, a three-dimensional image may be synthesized. In this way, since only information on a highly reliable area with little distortion is used, a more accurate three-dimensional image can be obtained. In addition, since the three-dimensional scanner 100 according to the first embodiment of the present invention images the depression 15 positioned at the center of the tip member 10 while applying it to the dentition, the tooth 200 that is an imaging object of interest can be accurately obtained. It can be easily positioned near the center of the good three-dimensional image 70 (specific portion 70a). Therefore, even if the imaging result of the non-specific part (non-specific part 70b) is excluded, the dentition part that contains a lot of shape feature information necessary for the image composition process is not likely to be excluded. Is unlikely to occur. Further, since the synthesis is performed excluding the non-specific portion 70b, the number of data points required for the processing can be reduced. As a result, compared to the case where weighting is performed for each identified area, the processing load for synthesis can be reduced. That is, continuous imaging can be performed at high speed. Further, since the imaging result of the outer peripheral portion (non-specific portion 70b) of the three-dimensional image is not adopted, the lens without considering the light passing through the corresponding lens region (non-specific region 21b, 22b). It becomes possible to design. Therefore, it is possible to reduce the diameter of the lens, and it is possible to reduce the number of correction lenses and expensive aspherical lenses that have been necessary to reduce aberrations. Further, by reducing the diameter of the lens, the diameter of the tip member 10 can also be reduced, and the tip member 10 can be reduced in size. Thereby, when a bite scan is performed, it is possible to prevent the cheek meat from being pulled excessively and causing pain to the patient. Note that when image data is synthesized based on weighted image area information, the data of the non-specific portion 70b can also be used, so that the image data can be used effectively. As a result, the entire shape of the tooth 200 can be captured with a small number of images, and imaging can be performed quickly.

また、本発明の実施の形態1に係る三次元スキャナ100を用いることで、従来の窪みの無い先端部材を使用した三次元スキャナと比べ、操作性において、以下のような有利な効果が得られる。一般に、歯科用の三次元スキャナは図1に示すように、ハンドピース80、表示部50、制御部40などから構成される。また、制御部40にて実行される、三次元画像を得るための演算には、一定の処理時間を必要とする。すなわち、患者の口腔内にて先端部材10を歯200に置いたタイミングで、表示部50の画面上に撮像結果として表示されている歯200を測定者が見たとしても、先端部材10が置かれている歯200の位置と、表示部50の画面上に撮像結果として表示されている歯200の位置とは、必ずしも一致しない。そのため、従来の先端部材に窪みを有さない三次元スキャナを使用し、患者の口腔内を確認せずに表示部の画面だけを注視して撮像を続けた場合に、表示部の画面上では先端部材が正しい位置(歯200の中心)に置かれているように見えても、実際の歯200の上では先端部材が横滑りを起こしていることがあり、撮像に失敗することがあった。上記失敗を防止するためには、操作者(歯科医師など)は、患者の口腔内と、表示部の画面とを交互に見比べながら撮像する必要があり、操作性が悪かった。一方で、本発明の実施の形態1に係る三次元スキャナ100を用いた場合には、先端部材10に窪み15を設けた効果により、上記横滑りによる撮像の失敗が発生しにくい。その結果、操作者は患者の口腔内を頻繁に確認せずとも、表示部50に表示される画像だけを見ながら撮像することができ、操作性が向上する。   Further, by using the three-dimensional scanner 100 according to the first embodiment of the present invention, the following advantageous effects can be obtained in operability as compared with a conventional three-dimensional scanner using a tip member without a depression. . In general, as shown in FIG. 1, a dental three-dimensional scanner includes a handpiece 80, a display unit 50, a control unit 40, and the like. In addition, the calculation for obtaining a three-dimensional image executed by the control unit 40 requires a certain processing time. That is, even when the measurer sees the tooth 200 displayed as an imaging result on the screen of the display unit 50 at the timing when the tip member 10 is placed on the tooth 200 in the oral cavity of the patient, the tip member 10 is placed. The position of the tooth 200 that is displayed does not necessarily match the position of the tooth 200 that is displayed as the imaging result on the screen of the display unit 50. Therefore, when a conventional 3D scanner that does not have a dent in the tip member is used, and imaging is continued by gazing only at the screen of the display unit without checking the inside of the oral cavity of the patient, on the screen of the display unit, Even if the tip member appears to be placed at the correct position (the center of the tooth 200), the tip member may have skidding on the actual tooth 200, and imaging may fail. In order to prevent the failure, it is necessary for an operator (such as a dentist) to take an image while alternately comparing the patient's oral cavity and the screen of the display unit, and the operability is poor. On the other hand, when the three-dimensional scanner 100 according to the first embodiment of the present invention is used, imaging failure due to the skidding hardly occurs due to the effect of providing the recess 15 in the tip member 10. As a result, the operator can take an image while only looking at the image displayed on the display unit 50 without frequently checking the inside of the patient's mouth, and the operability is improved.

(実施の形態2)
実施の形態1に係る先端部材10では、窪み15を1つ有する構成について説明した。しかし、実施の形態2に係る先端部材10では、窪み15を2つ有する構成について説明する。図10は、本発明の実施の形態2に係る先端部材10の構成を説明するための概略図である。なお、本実施の形態2に係る先端部材10では、図2〜4に示した実施の形態1に係る先端部材10と同じ構成について同じ符号を用いて詳しい説明を繰返さない。また、図10においては、ミラー14の図示を省略している。
(Embodiment 2)
In the tip member 10 according to Embodiment 1, the configuration having one recess 15 has been described. However, in the tip member 10 according to the second embodiment, a configuration having two depressions 15 will be described. FIG. 10 is a schematic diagram for explaining the configuration of the tip member 10 according to the second embodiment of the present invention. In the tip member 10 according to the second embodiment, the same reference numerals are used for the same components as those of the tip member 10 according to the first embodiment shown in FIGS. In FIG. 10, the mirror 14 is not shown.

図10に示すように、実施の形態2に係る先端部材10のうちの計測窓13を設けた側に窪み15が2つ設けられている。具体的に、実施の形態2に係る先端部材10は、実施の形態1に係る窪み15と同じ位置に設けられた窪み15aと、計測窓13に隣接する位置であって、計測窓13の後方に設けられた窪み15bとを備える。窪み15a,15bは、それぞれ、実施の形態1に係る先端部材10に設けられた窪み15と同じ形状であって、かつ同じ大きさである。窪み15bは、計測窓13に隣接する位置であって、前方から後方に向かってY軸方向に設けられている。   As shown in FIG. 10, two indentations 15 are provided on the side of the tip member 10 according to the second embodiment where the measurement window 13 is provided. Specifically, the tip member 10 according to the second embodiment is a position adjacent to the depression 15a provided at the same position as the depression 15 according to the first embodiment and the measurement window 13, and behind the measurement window 13. And a recess 15b provided in the. The depressions 15a and 15b have the same shape and the same size as the depression 15 provided in the tip member 10 according to the first embodiment. The recess 15b is a position adjacent to the measurement window 13, and is provided in the Y-axis direction from the front to the rear.

このように、歯列に沿ったレールのように窪み15a,15bを平行に設け、両方の窪みに歯をあてがうことで、窪み15aだけを設ける場合よりも安定して歯200の上面を滑らせるように先端部材10を動かすことができる。すなわち撮像の精度や操作性が向上する。   In this way, the recesses 15a and 15b are provided in parallel like rails along the tooth row, and the teeth are applied to both recesses, so that the upper surface of the tooth 200 is slid more stably than when only the recess 15a is provided. Thus, the tip member 10 can be moved. That is, imaging accuracy and operability are improved.

(実施の形態3)
実施の形態1に係る先端部材10では、窪み15を1つ有する構成について説明した。しかし、実施の形態3に係る先端部材10では、窪み15を2つ有し、計測窓13と筐体12との間に段差16を設けた構成について説明する。図11は、本発明の実施の形態3に係る先端部材10の構成を説明するための概略図である。なお、本実施の形態3に係る先端部材10では、図2〜4に示した実施の形態1に係る先端部材10と同じ構成について同じ符号を用いて詳しい説明を繰返さない。また、図11においては、ミラー14の図示を省略している。
(Embodiment 3)
In the tip member 10 according to Embodiment 1, the configuration having one recess 15 has been described. However, in the tip member 10 according to the third embodiment, a configuration in which two depressions 15 are provided and a step 16 is provided between the measurement window 13 and the housing 12 will be described. FIG. 11 is a schematic diagram for explaining the configuration of the tip member 10 according to Embodiment 3 of the present invention. In the tip member 10 according to the third embodiment, the same components as those of the tip member 10 according to the first embodiment shown in FIGS. In FIG. 11, the mirror 14 is not shown.

図11に示すように、実施の形態3に係る先端部材10の筐体12には、計測窓13との間に段差16が設けられている。また、筐体12の外面のうちの計測窓13が設けられた面は傾斜面17となっている。実施の形態3に係る先端部材10のうちの計測窓13を設けた側に窪み15が2つ設けられている。具体的に、実施の形態3に係る先端部材10は、実施の形態1に係る窪み15と同じ位置に設けられた窪み15aと、段差16に設けられた窪み15cとを備える。窪み15a,15cは、それぞれ、実施の形態1に係る先端部材10に設けられた窪み15と同じ形状であって、かつ同じ大きさである。窪み15cは、段差16に設けられており、Z軸方向に設けられている。段差16の形成は、先端部材10の筐体12の厚みが足りず、窪み15cにおいて十分な窪みの深さdが確保できない場合などに有効である。   As shown in FIG. 11, a step 16 is provided between the housing 12 of the tip member 10 according to the third embodiment and the measurement window 13. Further, the surface of the outer surface of the housing 12 on which the measurement window 13 is provided is an inclined surface 17. Two indentations 15 are provided on the side of the tip member 10 according to Embodiment 3 where the measurement window 13 is provided. Specifically, the tip member 10 according to the third embodiment includes a dent 15 a provided at the same position as the dent 15 according to the first embodiment, and a dent 15 c provided at the step 16. Each of the recesses 15a and 15c has the same shape and the same size as the recess 15 provided in the tip member 10 according to the first embodiment. The recess 15c is provided in the step 16, and is provided in the Z-axis direction. The formation of the step 16 is effective when the thickness of the casing 12 of the tip member 10 is insufficient and a sufficient depth d of the recess cannot be secured in the recess 15c.

また、先端部材10に段差16を設けたことにより、斜面17が形成され、以下のような効果も奏する。傾斜面17を備えない先端部材10を歯200にあてがった場合に、窪み15aに歯200をはめようとすると、計測窓13と歯200の上面との間に隙間ができてしまう。この隙間からパターン以外の光が光学計測部30内に入ってしまい、撮像に影響を与える虞がある。そこで、傾斜面17を備えることで、計測窓13と歯200の上面との間に生じてしまう隙間を減らすことができる。その結果、パターン以外の光が光学計測部30に入ってしまうことを防止することができる。さらに、段差16に窪み15cを設けることで、窪み15a,15cによって歯列に沿ったレールが形成されるため、窪み15aだけを設けるよりも安定して歯200の上面を滑らせるように先端部材10を動かすことができる。   Further, by providing the step 16 on the tip member 10, a slope 17 is formed, and the following effects are also achieved. When the tip member 10 that does not include the inclined surface 17 is applied to the tooth 200, if an attempt is made to fit the tooth 200 in the recess 15 a, a gap is formed between the measurement window 13 and the upper surface of the tooth 200. There is a possibility that light other than the pattern enters the optical measurement unit 30 from this gap and affects imaging. Therefore, by providing the inclined surface 17, it is possible to reduce a gap that occurs between the measurement window 13 and the upper surface of the tooth 200. As a result, it is possible to prevent light other than the pattern from entering the optical measurement unit 30. Furthermore, since the rail along the tooth row is formed by the depressions 15a and 15c by providing the depression 15c in the step 16, the tip member is slid on the upper surface of the tooth 200 more stably than providing only the depression 15a. 10 can be moved.

(実施の形態4)
実施の形態1に係る先端部材10では、窪み15を1つ有する構成について説明した。しかし、実施の形態4に係る先端部材10では、窪み15を3つ有する構成について説明する。図12は、本発明の実施の形態4に係る先端部材10の構成を説明するための概略図である。なお、本実施の形態4に係る先端部材10では、図2〜4に示した実施の形態1に係る先端部材10と同じ構成について同じ符号を用いて詳しい説明を繰返さない。また、図12においては、ミラー14の図示を省略している。
(Embodiment 4)
In the tip member 10 according to Embodiment 1, the configuration having one recess 15 has been described. However, in the tip member 10 according to the fourth embodiment, a configuration having three recesses 15 will be described. FIG. 12 is a schematic view for explaining the configuration of the tip member 10 according to the fourth embodiment of the present invention. In the tip member 10 according to the fourth embodiment, the same reference numerals are used for the same components as those of the tip member 10 according to the first embodiment shown in FIGS. In FIG. 12, the mirror 14 is not shown.

図11に示すように、実施の形態4に係る先端部材10のうちの計測窓13を設けた側に窪み15が3つ設けられている。具体的に、実施の形態4に係る先端部材10は、実施の形態1に係る窪み15と同じ位置に設けられた窪み15aと、計測窓13に隣接する位置であって、計測窓13の左右に設けられた窪み15d,15eとを備える。窪み15a,15d,15eは、それぞれ、実施の形態1に係る先端部材10に設けられた窪み15と同じ形状であって、かつ同じ大きさである。窪み15d,15eは、計測窓13に隣接する位置であって、Z軸方向に設けられている。   As shown in FIG. 11, three depressions 15 are provided on the side where the measurement window 13 is provided in the tip member 10 according to the fourth embodiment. Specifically, the tip member 10 according to the fourth embodiment is a position adjacent to the depression 15a provided at the same position as the depression 15 according to the first embodiment and the measurement window 13, and left and right of the measurement window 13. And dimples 15d and 15e. Each of the recesses 15a, 15d, and 15e has the same shape and the same size as the recess 15 provided in the tip member 10 according to the first embodiment. The depressions 15d and 15e are positions adjacent to the measurement window 13 and are provided in the Z-axis direction.

歯200の上面に沿って、ハンドピース80をY軸方向に動かす場合(たとえば臼歯を撮像する場合)には、窪み15aに歯200の上面をあてがいながらハンドピース80を動かすことができる。また、歯200の上面に沿って、ハンドピース80をX軸方向に動かす場合(たとえば前歯を撮像する場合)には、窪み15d,15eに歯200の上面をあてがいながらハンドピース80を動かすことができる。このように、実施の形態4に係る先端部材10は、窪み15aに加えて、窪み15d,15eを備えることにより、歯列の撮像におけるさまざまな先端部材10の移動方向に対応できるようになり、安定して撮像できる部位が増える。   When the handpiece 80 is moved along the upper surface of the tooth 200 in the Y-axis direction (for example, when imaging a molar tooth), the handpiece 80 can be moved while the upper surface of the tooth 200 is applied to the recess 15a. Further, when the handpiece 80 is moved in the X-axis direction along the upper surface of the tooth 200 (for example, when imaging the front teeth), the handpiece 80 can be moved while the upper surface of the tooth 200 is applied to the recesses 15d and 15e. it can. As described above, the distal end member 10 according to the fourth embodiment includes the recesses 15d and 15e in addition to the recess 15a, and thus can cope with various movement directions of the distal end member 10 in imaging of the dentition. The part which can be imaged stably increases.

(実施の形態5)
実施の形態1に係る先端部材10では、先端部材10に窪み15だけを設ける構成について説明した。しかし、実施の形態5に係る先端部材10では、窪み15に軟性部材18を設けた構成について説明する。図13は、本発明の実施の形態5に係る先端部材10の構成を説明するための概略図である。なお、本実施の形態5に係る先端部材10では、図2〜4に示した実施の形態1に係る先端部材10と同じ構成について同じ符号を用いて詳しい説明を繰返さない。また、図13においては、ミラー14の図示を省略している。
(Embodiment 5)
In the tip member 10 according to Embodiment 1, the configuration in which only the recess 15 is provided in the tip member 10 has been described. However, in the tip member 10 according to the fifth embodiment, a configuration in which the soft member 18 is provided in the recess 15 will be described. FIG. 13 is a schematic view for explaining the configuration of the tip member 10 according to the fifth embodiment of the present invention. In the tip member 10 according to the fifth embodiment, the same reference numerals are used for the same components as those of the tip member 10 according to the first embodiment shown in FIGS. In FIG. 13, the mirror 14 is not shown.

図13に示すように、実施の形態5に係る先端部材10のうちの計測窓13を設けた側に窪み15が1つ設けられている。窪み15が設けられている位置、窪み15の大きさ、形状は、いずれも、実施の形態1に係る先端部材10に設けられた窪み15と同じである。実施の形態5に係る先端部材10に設けられた窪み15には、窪み15を埋めるように軟性部材18が設けられている。軟性部材18は、可塑性の部材であっても、弾性の部材であってもよく、外力を加えた場合に変形する部材であればよい。軟性部材18としては、たとえば、医療用ゴム(シリコーンゴムやフッ素ゴム)などを使用することができる。軟性部材18は先端部材10と、一体化(たとえば接着固定など)されており、先端部10と一緒に滅菌処理し繰り返し使用するよう構成しても良いし、軟性部材18が先端部10から着脱交換可能な構成としても良い。後者は、軟性部材18を使用毎、あるいは一定回数使用毎に使い捨てする場合などに好適である。なお、図13では軟性部材18の一辺は直線的であるように描かれているが、湾曲していてももちろんよい。また、撮像の対象物が生体でなければ(人口の生体模型や工業製品など)軟性部材18の材料は、医療用材料でなくとも良い。たとえば窪み15が接触する対象物を傷付けないように、やわらかい素材(スポンジ、フェルト、各種繊維など)で軟性部材18を構成するのがよい。   As shown in FIG. 13, one recess 15 is provided on the side where the measurement window 13 is provided in the tip member 10 according to the fifth embodiment. The position where the dent 15 is provided, and the size and shape of the dent 15 are all the same as the dent 15 provided in the tip member 10 according to the first embodiment. A soft member 18 is provided in the recess 15 provided in the tip member 10 according to the fifth embodiment so as to fill the recess 15. The flexible member 18 may be a plastic member or an elastic member, and may be a member that deforms when an external force is applied. As the flexible member 18, for example, medical rubber (silicone rubber or fluorine rubber) can be used. The flexible member 18 is integrated with the tip member 10 (for example, adhesive fixing), and may be configured to be sterilized together with the tip portion 10 and repeatedly used, or the flexible member 18 is detached from the tip portion 10. A replaceable configuration may be used. The latter is suitable when, for example, the flexible member 18 is disposable after every use or after a certain number of uses. In FIG. 13, one side of the soft member 18 is drawn so as to be straight, but may be curved. In addition, if the object to be imaged is not a living body (such as a biological model of a population or an industrial product), the material of the flexible member 18 may not be a medical material. For example, the soft member 18 may be made of a soft material (sponge, felt, various fibers, etc.) so as not to damage the object that the dent 15 contacts.

軟性部材18を歯200に押し当てることで、軟性部材18は変形する。そのため、窪み15に軟性部材18を設けた場合であっても、軟性部材18が変形するため、窪み15に歯200をはめることができ、軟性部材18を設けない場合と同様の効果が得られる。また、軟性部材18としてゴムのような摩擦の高い部材を適用することで、先端部材10と歯200との間に摩擦が生じ、適度に滑りにくくすることが可能なため、軟性部材18を設けない場合と比べて、より安定して測定をすることができる。   By pressing the soft member 18 against the tooth 200, the soft member 18 is deformed. Therefore, even when the soft member 18 is provided in the recess 15, since the soft member 18 is deformed, the teeth 200 can be fitted in the recess 15, and the same effect as in the case where the soft member 18 is not provided is obtained. . Further, by applying a high friction member such as rubber as the soft member 18, friction is generated between the tip member 10 and the teeth 200, and it is possible to appropriately prevent slipping. Therefore, the soft member 18 is provided. Compared to the case where there is no measurement, the measurement can be performed more stably.

(実施の形態6)
実施の形態1に係るハンドピース80では、先端部材10が光学計測部30に着脱可能に設けられている例について説明した。しかし、実施の形態6に係るハンドピース80では、先端部材10と光学計測部30とが一体化されている構成について説明する。図14は、本発明の実施の形態6に係るハンドピース80の構成を説明するための概略図である。なお、本実施の形態6に係る先端部83では、図2〜4に示した実施の形態1に係る先端部材10と同じ構成について同じ符号を用いて詳しい説明を繰返さない。
(Embodiment 6)
In the handpiece 80 according to the first embodiment, the example in which the tip member 10 is detachably provided on the optical measurement unit 30 has been described. However, in the handpiece 80 according to the sixth embodiment, a configuration in which the tip member 10 and the optical measurement unit 30 are integrated will be described. FIG. 14 is a schematic diagram for explaining a configuration of a handpiece 80 according to Embodiment 6 of the present invention. In addition, in the front-end | tip part 83 which concerns on this Embodiment 6, the detailed description is not repeated using the same code | symbol about the same structure as the front-end | tip member 10 which concerns on Embodiment 1 shown to FIGS.

実施の形態6に係るハンドピース80は、筐体81と、筐体81内に設けられたレンズ21,22および撮像素子23とを含む。筐体81は、本体部82と本体部82に連続して設けられた先端部83とからなる。本体部82は、測定者が測定をする際に持つ把持部の機能を有している。   A handpiece 80 according to the sixth embodiment includes a housing 81, lenses 21 and 22 and an image sensor 23 provided in the housing 81. The casing 81 includes a main body portion 82 and a distal end portion 83 provided continuously to the main body portion 82. The main body part 82 has a gripping part function that the measurer has when measuring.

図14においては、光源は図示していないものの、筐体81内に設けられており、光源から照射された光が歯200に反射し、その反射光が、光路24に沿って直接、レンズ21,22を通って撮像素子23により撮像される。図14において、レンズの枚数は2枚でなくとも良いし、光軸の方向を折り返すためのミラーなどが設けられていてもちろんよい。また、レンズ21、22や撮像素子23がすべて先端部に内蔵されるよう描かれているが、一部の部品は把持部側に組み込まれていてもよい。   In FIG. 14, although the light source is not shown, the light source is provided in the housing 81, and the light emitted from the light source is reflected on the teeth 200, and the reflected light directly passes along the optical path 24 to the lens 21. , 22 and imaged by the image sensor 23. In FIG. 14, the number of lenses does not have to be two, and of course, a mirror or the like for turning back the direction of the optical axis may be provided. In addition, although the lenses 21 and 22 and the image sensor 23 are all drawn in the tip portion, some components may be built in the grip portion side.

筐体81の先端部83のうちの計測窓13を設けた側に窪み15を備える。ここで、実施の形態6に係るハンドピース80に設けられた窪み15と、実施の形態1に係るハンドピース80に設けられた窪み15とは、同じ形状、同じ大きさである。また、設けられた位置も、計測窓13に隣接する位置であって、先端部83と本体部82との境目から最も遠い位置であって、実施の形態1に係るハンドピース80に設けられた窪み15が設けられた位置と共通する。そのため、実施の形態1に係る三次元スキャナ100と同様、実施の形態6に係る三次元スキャナ100を用いた場合であっても、操作性がよく、安定して撮像することができる。特に滅菌不要な計測物を撮像する場合(たとえば、生体ではない人工の模型など)には、着脱式ではなく、三次元スキャナ本体部82と先端部83とが一体となっている構造が適用できる。   A recess 15 is provided on the side of the front end 83 of the housing 81 where the measurement window 13 is provided. Here, the depression 15 provided in the handpiece 80 according to the sixth embodiment and the depression 15 provided in the handpiece 80 according to the first embodiment have the same shape and the same size. Further, the provided position is also a position adjacent to the measurement window 13 and the farthest position from the boundary between the distal end portion 83 and the main body portion 82, and is provided in the handpiece 80 according to the first embodiment. It is common with the position where the recess 15 is provided. Therefore, similarly to the three-dimensional scanner 100 according to the first embodiment, even when the three-dimensional scanner 100 according to the sixth embodiment is used, the operability is good and stable imaging can be performed. In particular, in the case of imaging a measurement object that does not require sterilization (for example, an artificial model that is not a living body), a structure in which the three-dimensional scanner main body 82 and the tip 83 are integrated can be applied. .

(変形例1)
図15は、変形例1の窪み15の形状を説明するための概略図である。実施の形態1〜6に係る三次元スキャナ100に設けられた窪み15の形状は、窪み15の内面に接する接線TとXY平面とのなす角αは45度以下となるような形状であるとした。しかし、窪み15は、図15に示すように、窪み15の曲線形状に接する接線TとXY平面とのなす角αが45度を超える領域を備えていてもよい。図15に示すように、接線TとXY平面とのなす角αが45度を超える領域が局所的に存在してもよいが、当該領域の深さdが十分短ければ(たとえば1mm以下であれば)、当該領域の幅w1も短くなり、歯200の側面を両側から挟み込んで保持するような形態とはならない。そのため保持効果が生じず、歯列の撮像に必要な方向旋回動作の阻害とはならない。
(Modification 1)
FIG. 15 is a schematic diagram for explaining the shape of the recess 15 of the first modification. The shape of the recess 15 provided in the three-dimensional scanner 100 according to the first to sixth embodiments is such that the angle α formed between the tangent line T in contact with the inner surface of the recess 15 and the XY plane is 45 degrees or less. did. However, as shown in FIG. 15, the recess 15 may include a region where the angle α formed between the tangent line T in contact with the curved shape of the recess 15 and the XY plane exceeds 45 degrees. As shown in FIG. 15, there may be a region where the angle α formed by the tangent line T and the XY plane exceeds 45 degrees, but if the depth d of the region is sufficiently short (for example, 1 mm or less). For example, the width w1 of the area is also shortened, and the side surface of the tooth 200 is not sandwiched and held from both sides. Therefore, the holding effect does not occur, and the direction turning operation necessary for imaging the dentition is not hindered.

(変形例2)
図16は、変形例2の窪み15の形状を説明するための概略図である。実施の形態1〜6に係る三次元スキャナ100に設けられた窪み15の形状は、曲面形状をしているとしたが、曲面に限られない。たとえば、図16に示すように、平面形状であってもよい。図16に示す窪み15は三角柱がはまりこむような形状をしている。このような場合であっても、窪み15の内面が対象物である歯200に2点で接するため、実施の形態1〜6と同様の効果が得られる。また、窪み15の形状は変形例1および2の形状に限られず、窪み15の表面に凹凸を設けたような形状であってもよい。
(Modification 2)
FIG. 16 is a schematic diagram for explaining the shape of the recess 15 of the second modification. Although the shape of the recess 15 provided in the three-dimensional scanner 100 according to the first to sixth embodiments is a curved surface, it is not limited to a curved surface. For example, as shown in FIG. The recess 15 shown in FIG. 16 has a shape in which a triangular prism is fitted. Even in such a case, since the inner surface of the recess 15 is in contact with the tooth 200 that is the object at two points, the same effects as those of the first to sixth embodiments can be obtained. Further, the shape of the recess 15 is not limited to the shapes of the first and second modifications, and may be a shape in which unevenness is provided on the surface of the recess 15.

(変形例3)
実施の形態1〜5において、先端部材10の形状は、直方体を斜めに切った形状としたがこれに限られない。たとえば、先端部材10の形状は、直方体形状をしていてもよいし、円柱形状をしていてもよい。また、計測窓13の形状も四角形として図示しているが、これに限らず、円形、楕円形、丸みを帯びた四角形、多角形などの形状でもよい。なお、先端部材10の形状は、先端部材10の外面のうちの計測窓13を設けた側が略平面となる形状が好ましい。計測窓13を設けた側が略平面とすることで、歯200に窪み15がはまっているときに、窪み15から歯200がはずれたとしても、計測窓13を設けた側が球面になっている場合に比べてずれにくくなる。また、図2、10〜13などでは、わかりやすさのため、角張った形状の(エッジ部が尖っている)先端部材10を図示しているが、当該エッジ部に対して面取り加工やフィレット加工などの加工が施されていてももちろん良い。当該加工を施すことにより、患者の口腔内に尖ったエッジが接触し、痛みなどの不快感を患者に与える可能性が低減する。また、操作者の手にエッジ部が引っ掛かることによる医療用手袋の破損などのリスクが低減する。上記先端部材や先端部の形状の変形例に応じて、ミラー14の形状も図示の長方形に限らず、楕円型や面取りされた多角形などを適宜選択するのが良い。
(Modification 3)
In Embodiment 1-5, although the shape of the front-end | tip member 10 was made into the shape which cut the rectangular parallelepiped diagonally, it is not restricted to this. For example, the shape of the tip member 10 may be a rectangular parallelepiped shape or may be a cylindrical shape. Moreover, although the shape of the measurement window 13 is illustrated as a quadrangle, the shape is not limited to this, and may be a shape such as a circle, an ellipse, a rounded rectangle, or a polygon. The shape of the tip member 10 is preferably a shape in which the side of the outer surface of the tip member 10 on which the measurement window 13 is provided is substantially flat. When the side on which the measurement window 13 is provided is a substantially flat surface, when the depression 15 is fitted in the tooth 200, even if the tooth 200 is detached from the depression 15, the side on which the measurement window 13 is provided is spherical. It becomes hard to shift compared with. In addition, in FIGS. 2 and 10 to 13 and the like, the tip member 10 having an angular shape (the edge portion is sharp) is illustrated for easy understanding. However, the edge portion may be chamfered or filleted. Of course, it may be processed. By performing the processing, a sharp edge comes into contact with the patient's mouth, and the possibility of giving the patient discomfort such as pain is reduced. Further, the risk of breakage of medical gloves due to the edge portion being caught in the operator's hand is reduced. The shape of the mirror 14 is not limited to the illustrated rectangle, and an elliptical shape, a chamfered polygon, or the like may be selected as appropriate in accordance with the shape of the tip member or the tip portion.

(変形例4)
実施の形態1〜6において、先端部材10を前方から見たときに、窪み15を通して、計測窓13が見えるように窪み15は設けられているとした。しかし、筐体12の厚みと同じ大きさの窪み15を設ける必要はなく、筐体12の厚みよりも小さな窪み15を設けてもよい。具体的には、筐体12を厚み方向に貫くような窪み15ではなく、筐体12の筐体12の表面を削ったような窪み15であってもよい。
(Modification 4)
In the first to sixth embodiments, the depression 15 is provided so that the measurement window 13 can be seen through the depression 15 when the tip member 10 is viewed from the front. However, it is not necessary to provide the depression 15 having the same size as the thickness of the casing 12, and the depression 15 smaller than the thickness of the casing 12 may be provided. Specifically, instead of the recess 15 that penetrates the casing 12 in the thickness direction, the recess 15 that is obtained by scraping the surface of the casing 12 of the casing 12 may be used.

(変形例5)
本実施の形態1においては、制御部40が合成処理する画像データは、三次元画像としたが、撮像装置を光干渉断層撮影装置とした場合に、制御部40は断層画像データを合成するようにしてもよい。同様に、撮像装置を、二次元画像を撮像するカメラとしてもよい。その場合、制御部40が合成する画像データは、二次元画像となる。複数の二次元画像データを合成することで全体データ(パノラマ二次元画像)が形成される。
(Modification 5)
In the first embodiment, the image data to be combined by the control unit 40 is a three-dimensional image. However, when the imaging apparatus is an optical coherence tomography apparatus, the control unit 40 combines the tomographic image data. It may be. Similarly, the imaging device may be a camera that captures a two-dimensional image. In that case, the image data synthesized by the control unit 40 is a two-dimensional image. Overall data (panoramic two-dimensional image) is formed by combining a plurality of two-dimensional image data.

(変形例6)
実施の形態2〜5において、窪み15a〜15eは、全て実施の形態1に係る窪み15と同じ形状、同じ大きさとしたが、窪み15a〜15e、それぞれの形状が異なってもよく、また、その一部が共通で、一部が異なるようにしてもよい。
(Modification 6)
In the second to fifth embodiments, the recesses 15a to 15e have the same shape and the same size as the recess 15 according to the first embodiment, but the recesses 15a to 15e may have different shapes. Some may be common and some may be different.

(変形例7)
実施の形態1〜6において、窪み15は筐体12に設けることとした。しかし、窪み15を設けた筐体12とは異なる部品を筐体12に取り付けることで、先端部材10に窪みを設けてもよい。
(Modification 7)
In the first to sixth embodiments, the recess 15 is provided in the housing 12. However, the tip member 10 may be provided with a recess by attaching to the housing 12 a component different from the housing 12 provided with the recess 15.

(変形例8)
図11では、段差16が後方の一辺のみに配置される例を示したが、段差は別の辺にあったり、複数の辺にあったりしても良い。すなわち、前方一辺が段差となっている構造(傾斜面17の傾きの方向が逆)や、4辺すべてに段差が形成されていてもよい。
(Modification 8)
Although FIG. 11 shows an example in which the step 16 is arranged only on one side behind, the step may be on another side or on a plurality of sides. That is, a structure in which the front side has a step (the inclination direction of the inclined surface 17 is reversed), or a step may be formed on all four sides.

(変形例9)
実施の形態1〜6において、撮像装置が撮像する画像を三次元画像として説明したが、これに限られない。撮像装置が撮像する画像は、たとえば、二次元画像や断層画像、並びに、三次元画像、二次元画像および断層画像を組合わせた画像であってもよい。画像は、テクスチャの法線方向の情報、対象物の物性の情報、撮像した時刻の情報、患者の情報、画像データの信頼度を示す情報、撮像装置や先端部材の個体情報(シリアルナンバー)や校正情報、および、画像同士を合成する際に用いられる重み付けに関する情報などの、その他の情報を含んでいてもよい。二次元画像は、二次元の画像であって、色情報を含むカラー画像であっても、色情報を含まないモノクロ画像であってもよく、赤外線画像、紫外線画像、蛍光画像、またはマルチスペクトル画像であってもよい。また、断層画像は、たとえば、対象物の表面よりも深い部分の情報を含む三次元の断層データである。三次元画像、二次元画像および断層画像を組合わせた画像は、たとえば、三次元形状情報や断層データの表面にテクスチャとして、二次元画像を貼り合せた画像である。
(Modification 9)
In Embodiment 1-6, although the image which an imaging device images was demonstrated as a three-dimensional image, it is not restricted to this. The image captured by the imaging device may be, for example, a two-dimensional image, a tomographic image, or a combination of a three-dimensional image, a two-dimensional image, and a tomographic image. The image includes information on the normal direction of the texture, information on the physical properties of the object, information on the time of imaging, information on the patient, information indicating the reliability of the image data, individual information (serial number) of the imaging device and the tip member, Other information such as calibration information and information on weighting used when images are combined may be included. The two-dimensional image is a two-dimensional image, which may be a color image including color information or a monochrome image not including color information, an infrared image, an ultraviolet image, a fluorescence image, or a multispectral image. It may be. The tomographic image is, for example, three-dimensional tomographic data including information on a portion deeper than the surface of the object. The image obtained by combining the three-dimensional image, the two-dimensional image, and the tomographic image is, for example, an image obtained by pasting the two-dimensional image as a texture on the surface of the three-dimensional shape information or tomographic data.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

10 先端部材、11 開口部、12,81 筐体、13 計測窓、14 ミラー、15,15a,15b,15c,15d,15e 窪み、16 段差、17 傾斜面、18 軟性部材、20 接続部、21,22 レンズ、21a,22a 特定領域、21b,22b 非特定領域、23 撮像素子、24,24a,24b 光路、40 制御部、50 表示部、60 電源部、70 三次元画像、70a,71a,72a 特定部分、70b,71b,72b 非特定部分、71 第1画像、72 第2画像、73 共通画像、80 ハンドピース、82 本体部、83 先端部、100 三次元スキャナ、200 歯、201 接点、210 歯肉、T 接線、w,w1 窪みの幅、d 窪みの深さ、a 先端部材の幅。   DESCRIPTION OF SYMBOLS 10 Tip member, 11 Opening part, 12, 81 Case, 13 Measuring window, 14 Mirror, 15, 15a, 15b, 15c, 15d, 15e Dimple, 16 steps, 17 Inclined surface, 18 Flexible member, 20 Connection part, 21 , 22 Lens, 21a, 22a Specific area, 21b, 22b Non-specific area, 23 Image sensor, 24, 24a, 24b Optical path, 40 Control section, 50 Display section, 60 Power supply section, 70 Three-dimensional image, 70a, 71a, 72a Specific part, 70b, 71b, 72b Non-specific part, 71 First image, 72 Second image, 73 Common image, 80 Handpiece, 82 Main body part, 83 Tip part, 100 Three-dimensional scanner, 200 Teeth, 201 Contact, 210 Gingiva, T tangent, w, w1 Depth width, d Depth depth, a Width of tip member.

Claims (18)

対象物を撮像する撮像装置であって、
筐体と、
前記筐体の先端部に設けられ、前記対象物からの光を取り込むための採光部と、
前記筐体内に設けられ、前記採光部から取り込んだ光を検出する検出部と、
前記検出部で検出した結果を処理する処理部とを備え、
前記先端部のうちの前記採光部を設けた側に窪みを設けた、撮像装置。
An imaging device for imaging an object,
A housing,
A lighting unit provided at the tip of the housing, for capturing light from the object;
A detection unit provided in the housing for detecting light taken from the daylighting unit;
A processing unit for processing the result detected by the detection unit,
The imaging device which provided the hollow in the side which provided the said lighting part among the said front-end | tip parts.
前記先端部の外面のうちの前記採光部を設けた側が、略平面である請求項1に記載の撮像装置。   The imaging device according to claim 1, wherein a side of the outer surface of the tip portion on which the daylighting unit is provided is a substantially flat surface. 前記窪みは、前記先端部の外面のうちの前記採光部を設けた側の外周と前記採光部との間に設けられている、請求項1または請求項2に記載の撮像装置。   The imaging device according to claim 1 or 2, wherein the depression is provided between an outer periphery of the outer surface of the tip portion on the side where the daylighting unit is provided and the daylighting unit. 前記窪みは、前記先端部と前記筐体の本体部との境目から最も遠い位置に設けられている、請求項1〜請求項3のいずれかに記載の撮像装置。   The imaging device according to claim 1, wherein the recess is provided at a position farthest from a boundary between the tip portion and a main body portion of the housing. 前記窪みは、当該窪みの内側の辺と前記対象物とが少なくとも2点で接触することが可能な大きさを有している、請求項1〜請求項4のいずれかに記載の撮像装置。   The imaging device according to any one of claims 1 to 4, wherein the recess has a size such that an inner side of the recess and the object can contact at least two points. 前記窪みの最大深さdと、当該窪みの幅wとの関係が、
d<w×1/2
である、請求項1〜請求項5のいずれかに記載の撮像装置。
The relationship between the maximum depth d of the recess and the width w of the recess is
d <w × 1/2
The imaging device according to any one of claims 1 to 5, wherein
前記窪みが設けられた位置における前記先端部の幅aと、当該窪みの幅wとの関係が、
a<w×2
である、請求項1〜請求項6のいずれかに記載の撮像装置。
The relationship between the width a of the tip at the position where the depression is provided and the width w of the depression,
a <w × 2
The imaging device according to any one of claims 1 to 6, wherein
前記窪みは、当該窪みの中心付近で、当該窪みの深さが最大でかつ当該窪みの極値となる形状である、請求項1〜請求項7のいずれかに記載の撮像装置。   The imaging device according to claim 1, wherein the depression has a shape in which the depth of the depression is maximum and an extreme value of the depression near the center of the depression. 前記窪みの形状が曲面形状である、請求項1〜請求項8のいずれかに記載の撮像装置。   The imaging device according to claim 1, wherein a shape of the depression is a curved surface shape. 前記採光部を通る光軸に対して直交する面と前記窪みの内面に接する接線とのなす角が45度以下である、請求項1〜請求項9のいずれかに記載の撮像装置。   The imaging device according to any one of claims 1 to 9, wherein an angle formed by a surface perpendicular to the optical axis passing through the daylighting unit and a tangent line in contact with the inner surface of the depression is 45 degrees or less. 前記採光部を通る光軸に対して直交する面と前記窪みの内面に接する接線とのなす角が45度を超える領域における当該窪みの深さが1mm以下である、請求項1〜請求項10のいずれかに記載の撮像装置。   The depth of the dent in a region where an angle formed by a plane perpendicular to the optical axis passing through the daylighting section and a tangent line in contact with the inner surface of the dent exceeds 45 degrees is 1 mm or less. The imaging device according to any one of the above. 前記先端部は、前記筐体の本体部から着脱可能である、請求項1〜請求項11のいずれかに記載の撮像装置。   The imaging device according to claim 1, wherein the tip is detachable from a main body of the housing. 前記処理部は、前記対象物に対して前記先端部を移動させて撮像した場合に、前記検出部で検出した結果である複数の画像データのうち、撮像範囲の一部が共通する画像データ同士を合成する、請求項1〜請求項12のいずれかに記載の撮像装置。   In the case where the processing unit captures an image by moving the tip with respect to the object, among the plurality of image data obtained as a result of detection by the detection unit, image data in which a part of an imaging range is common The imaging device according to claim 1, wherein the imaging device is synthesized. 前記処理部は、前記筐体内に設けられた光学素子の通過する領域に応じて画像データ内の領域に対して重み付けを行ない、重み付けした画像データ内の領域の情報に基づいて、撮像範囲の一部が共通する画像データ同士を合成する、請求項13に記載の撮像装置。   The processing unit weights a region in the image data according to a region through which an optical element provided in the casing passes, and based on information on the region in the weighted image data, The imaging apparatus according to claim 13, wherein image data having common parts is synthesized. 前記処理部は、重み付けした画像データ内の領域の情報のうち特定の情報を除外して、撮像範囲の一部が共通する画像データ同士を合成する、請求項14に記載の撮像装置。   The imaging device according to claim 14, wherein the processing unit synthesizes image data having a common imaging range by excluding specific information from information on areas in the weighted image data. 前記画像データが3次元の画像データである、請求項13〜請求項15のいずれかに記載の撮像装置。   The imaging apparatus according to claim 13, wherein the image data is three-dimensional image data. 前記画像データが3次元の断層画像データである、請求項13〜請求項15のいずれかに記載の撮像装置。   The imaging apparatus according to claim 13, wherein the image data is three-dimensional tomographic image data. 対象物を撮像する撮像装置の筺体から着脱可能である先端部材であって、
前記筺体と接続可能な接続部と、
前記接続部の反対側に設けられ、前記対象物からの光を取り込むための採光部とを備え、
前記採光部を設けた側に窪みを設けた、先端部材。
A tip member that is detachable from the housing of the imaging device that images the object,
A connecting portion connectable to the housing;
Provided on the opposite side of the connection portion, and a daylighting portion for taking in light from the object,
The tip member which provided the hollow in the side which provided the said lighting part.
JP2017072048A 2017-03-31 2017-03-31 Tip member that can be attached to and detached from the image pickup device and the housing of the image pickup device. Active JP6774365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017072048A JP6774365B2 (en) 2017-03-31 2017-03-31 Tip member that can be attached to and detached from the image pickup device and the housing of the image pickup device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017072048A JP6774365B2 (en) 2017-03-31 2017-03-31 Tip member that can be attached to and detached from the image pickup device and the housing of the image pickup device.

Publications (2)

Publication Number Publication Date
JP2018171323A true JP2018171323A (en) 2018-11-08
JP6774365B2 JP6774365B2 (en) 2020-10-21

Family

ID=64107913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017072048A Active JP6774365B2 (en) 2017-03-31 2017-03-31 Tip member that can be attached to and detached from the image pickup device and the housing of the image pickup device.

Country Status (1)

Country Link
JP (1) JP6774365B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102056910B1 (en) 2018-12-21 2019-12-17 주식회사 디오에프연구소 3d intraoral scanner and intraoral scanning method using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313433A (en) * 1996-03-27 1997-12-09 Asahi Optical Co Ltd Front end of lateral observation endoscope
JP2004202069A (en) * 2002-12-26 2004-07-22 Mitsutoyo Corp Image reader and image reading method
JP2006081842A (en) * 2004-09-17 2006-03-30 Morita Mfg Co Ltd Auxiliary device for photography
JP2011182176A (en) * 2010-03-01 2011-09-15 Toyama Univ Wide viewing angle image processing method, and wide viewing angle image photographing device
WO2014188808A1 (en) * 2013-05-22 2014-11-27 オリンパスメディカルシステムズ株式会社 Endoscope system
JP2016508753A (en) * 2012-12-21 2016-03-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Gingival detection using a photodetector in a dental hygiene detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313433A (en) * 1996-03-27 1997-12-09 Asahi Optical Co Ltd Front end of lateral observation endoscope
JP2004202069A (en) * 2002-12-26 2004-07-22 Mitsutoyo Corp Image reader and image reading method
JP2006081842A (en) * 2004-09-17 2006-03-30 Morita Mfg Co Ltd Auxiliary device for photography
JP2011182176A (en) * 2010-03-01 2011-09-15 Toyama Univ Wide viewing angle image processing method, and wide viewing angle image photographing device
JP2016508753A (en) * 2012-12-21 2016-03-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Gingival detection using a photodetector in a dental hygiene detector
WO2014188808A1 (en) * 2013-05-22 2014-11-27 オリンパスメディカルシステムズ株式会社 Endoscope system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102056910B1 (en) 2018-12-21 2019-12-17 주식회사 디오에프연구소 3d intraoral scanner and intraoral scanning method using the same
WO2020130598A1 (en) * 2018-12-21 2020-06-25 주식회사 디오에프연구소 Three-dimensional intraoral scanner and intraoral scanning method using same

Also Published As

Publication number Publication date
JP6774365B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
US11533986B2 (en) Tracked toothbrush and toothbrush tracking system
US11690701B2 (en) Intraoral scanner
US9931021B2 (en) Method for identifying objects in a subject&#39;s ear
KR102050547B1 (en) Device and method for subgingival measurement
US10159547B2 (en) Measuring apparatus and method for three-dimensional measurement of an oral cavity
AU2014211763B2 (en) Method for identifying objects in a subject&#39;s ear
JP6770500B2 (en) Oral observation device, observation unit and observation method
US20130108981A1 (en) Device for taking three-dimensional and temporal optical imprints in color
JP2017525522A (en) Visualization device in the patient&#39;s mouth
US20230190109A1 (en) Intraoral scanner
CN113116584B (en) Cover, imaging device, data generation system, and data generation method
JP6774365B2 (en) Tip member that can be attached to and detached from the image pickup device and the housing of the image pickup device.
JP2008048992A (en) Mobility measuring method and device using the method
JP2007181577A (en) Tooth fixing camera
WO2023012792A1 (en) Intraoral scanning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201002

R150 Certificate of patent or registration of utility model

Ref document number: 6774365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150