JP2018170218A - Positive electrode paste for battery - Google Patents

Positive electrode paste for battery Download PDF

Info

Publication number
JP2018170218A
JP2018170218A JP2017068390A JP2017068390A JP2018170218A JP 2018170218 A JP2018170218 A JP 2018170218A JP 2017068390 A JP2017068390 A JP 2017068390A JP 2017068390 A JP2017068390 A JP 2017068390A JP 2018170218 A JP2018170218 A JP 2018170218A
Authority
JP
Japan
Prior art keywords
positive electrode
copolymer
mass
structural unit
electrode paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017068390A
Other languages
Japanese (ja)
Other versions
JP6889002B2 (en
Inventor
貴大 矢野
Takahiro Yano
貴大 矢野
一夫 桑原
Kazuo Kuwabara
一夫 桑原
山本 大輔
Daisuke Yamamoto
大輔 山本
信也 上松
Shinya Uematsu
信也 上松
光彦 佐俣
Mitsuhiko Samata
光彦 佐俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
GS Yuasa Corp
Original Assignee
Kao Corp
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp, GS Yuasa Corp filed Critical Kao Corp
Priority to JP2017068390A priority Critical patent/JP6889002B2/en
Publication of JP2018170218A publication Critical patent/JP2018170218A/en
Application granted granted Critical
Publication of JP6889002B2 publication Critical patent/JP6889002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode paste for a battery, which enables formation of a positive electrode less in elution of a dispersant into electrolyte solution.SOLUTION: A positive electrode paste for a battery according to one embodiment of the present invention comprises a positive electrode active material, a conducting agent, a binding agent, a copolymer and a dispersant. The copolymer contains a constituting unit (a) represented by a formula (1), a constituting unit (b) represented by a formula (2), and a constituting unit (c) represented by a formula (3). In the copolymer, the content of the constituting unit (c) is 15 mass% or more and 45 mass% or less. In the formulas (1) to (3), R, R, R, R, R, R, R, R, Rand Rindividually and independently represent a hydrogen atom, a methyl group or an ethyl group; Ris a monovalent carbon hydride group with C8-30; Ris a straight or branched chain alkylene group with C2-4; and p is a number of 1-50.SELECTED DRAWING: None

Description

本発明は、電池用正極ペーストに関する。   The present invention relates to a positive electrode paste for a battery.

非水電解質電池用の正極は、通常、正極活物質と導電剤と結着剤とが分散媒中に分散された正極ペーストを用いて製造される。具体的には、この正極ペーストをアルミニウム箔等の導電性基材に塗工し、乾燥炉内を通過させて分散媒を揮発除去することにより、正極が得られる。   A positive electrode for a non-aqueous electrolyte battery is usually manufactured using a positive electrode paste in which a positive electrode active material, a conductive agent, and a binder are dispersed in a dispersion medium. Specifically, the positive electrode paste is applied to a conductive base material such as an aluminum foil and passed through a drying furnace to volatilize and remove the dispersion medium, thereby obtaining a positive electrode.

この正極の生産性を高めるために、上記の塗工工程におけるライン速度を高めることが検討されている。しかし、ライン速度を高めた場合、乾燥炉内の滞留時間が短くなるため、乾燥不足が生じる。短時間の乾燥を可能とする方法の一つとして、正極ペーストにおける固形分濃度を高くすること、すなわち分散媒の含有量を減らす方法がある。しかしこの場合、正極ペーストの粘度が増加するため、塗工の際にかすれが生じるなど、塗工性が低下するという不都合がある。   In order to increase the productivity of the positive electrode, it has been studied to increase the line speed in the coating process. However, when the line speed is increased, the residence time in the drying furnace is shortened, resulting in insufficient drying. One of the methods that enables drying in a short time is to increase the solid content concentration in the positive electrode paste, that is, to reduce the content of the dispersion medium. However, in this case, since the viscosity of the positive electrode paste is increased, there is a disadvantage that the coating property is deteriorated, for example, fading occurs during the coating.

そこで、正極ペーストの粘度の上昇を抑制するために、特定の構造を有する共重合体が含有された正極ペーストが提案されている(特許文献1参照)。この正極ペーストによれば、共重合体を含有させることで導電剤等の分散性が高まり、この結果粘度を低減することができる。   Therefore, in order to suppress an increase in the viscosity of the positive electrode paste, a positive electrode paste containing a copolymer having a specific structure has been proposed (see Patent Document 1). According to this positive electrode paste, the dispersibility of the conductive agent and the like is increased by containing the copolymer, and as a result, the viscosity can be reduced.

国際公開第2013/151062号International Publication No. 2013/151062

しかし、上記共重合体を含有する正極ペーストにより得られた正極を用いた電池は、充放電の繰り返しに伴う抵抗増加率が大きいという不都合を有する。この原因は、正極ペースト中に含有させた共重合体の電解液に対する溶解性が高いことにあると、発明者らは知見した。すなわち、正極から共重合体が電解液中に溶出した共重合体が、正極と負極との間に存在するセパレータの目詰まりを生じさせることにより、抵抗が増加するものと推測される。一方、共重合体の分子量を大きくすることで、電解液への共重合体の溶解性は低くなると考えられる。しかし、単に共重合体の分子量を大きくすると、ペーストの粘度が低下しづらくなることから好ましくない。   However, the battery using the positive electrode obtained from the positive electrode paste containing the copolymer has a disadvantage that the rate of increase in resistance due to repeated charge / discharge is large. The inventors have found that this is because of the high solubility of the copolymer contained in the positive electrode paste in the electrolytic solution. That is, it is presumed that the resistance is increased by the copolymer in which the copolymer is eluted from the positive electrode in the electrolytic solution causing clogging of the separator existing between the positive electrode and the negative electrode. On the other hand, it is considered that the solubility of the copolymer in the electrolytic solution is lowered by increasing the molecular weight of the copolymer. However, simply increasing the molecular weight of the copolymer is not preferable because the viscosity of the paste is difficult to decrease.

本発明は、以上のような事情に基づいてなされたものであり、その目的は、電解液への共重合体の溶出が少ない正極を形成することができる電池用正極ペーストを提供することである。   The present invention has been made based on the circumstances as described above, and an object thereof is to provide a positive electrode paste for a battery that can form a positive electrode with less copolymer elution into an electrolytic solution. .

上記課題を解決するためになされた本発明の一態様は、正極活物質、導電剤、結着剤、共重合体及び分散媒を含み、上記共重合体が、下記式(1)で表される構成単位(a)、下記式(2)で表される構成単位(b)及び下記式(3)で表される構成単位(c)を含有し、上記共重合体中の上記構成単位(c)の含有量が、15質量%以上45質量%以下である電池用正極ペーストである。

Figure 2018170218
(式(1)〜(3)中、R、R、R、R、R、R、R、R10、R11、及びR12は、それぞれ独立して、水素原子、メチル基又はエチル基である。Rは、炭素数8〜30の1価の炭化水素基である。Rは、炭素数2〜4の直鎖状又は分岐状のアルキレン基である。pは、1〜50の数である。) One embodiment of the present invention made to solve the above problems includes a positive electrode active material, a conductive agent, a binder, a copolymer, and a dispersion medium, and the copolymer is represented by the following formula (1). The structural unit (a), the structural unit (b) represented by the following formula (2) and the structural unit (c) represented by the following formula (3), The battery positive electrode paste has a content of c) of 15% by mass or more and 45% by mass or less.
Figure 2018170218
(In the formulas (1) to (3), R 1 , R 2 , R 3 , R 5 , R 6 , R 7 , R 9 , R 10 , R 11 , and R 12 are each independently a hydrogen atom. R 4 is a monovalent hydrocarbon group having 8 to 30 carbon atoms, and R 8 is a linear or branched alkylene group having 2 to 4 carbon atoms. p is a number from 1 to 50.)

本発明によれば、電解液への共重合体の溶出が少ない正極を形成することができる電池用正極ペーストを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode paste for batteries which can form a positive electrode with little elution of the copolymer to electrolyte solution can be provided.

本発明の一実施形態に係る電池用正極ペースト(以下、単に「ペースト」又は「正極ペースト」ということもある。)は、正極活物質、導電剤、結着剤、共重合体及び分散媒を含み、上記共重合体が、下記式(1)で表される構成単位(a)、下記式(2)で表される構成単位(b)及び下記式(3)で表される構成単位(c)を含有し、上記共重合体中の上記構成単位(c)の含有量が、15質量%以上45質量%以下である電池用正極ペーストである。   A positive electrode paste for a battery according to an embodiment of the present invention (hereinafter sometimes simply referred to as “paste” or “positive electrode paste”) includes a positive electrode active material, a conductive agent, a binder, a copolymer, and a dispersion medium. And the copolymer is a structural unit (a) represented by the following formula (1), a structural unit (b) represented by the following formula (2), and a structural unit represented by the following formula (3) ( a positive electrode paste for a battery containing c), wherein the content of the structural unit (c) in the copolymer is 15% by mass or more and 45% by mass or less.

Figure 2018170218
(式(1)〜(3)中、R、R、R、R、R、R、R、R10、R11、及びR12は、それぞれ独立して、水素原子、メチル基又はエチル基である。Rは、炭素数8〜30の1価の炭化水素基である。Rは、炭素数2〜4の直鎖状又は分岐状のアルキレン基である。pは、1〜50の数である。)
Figure 2018170218
(In the formulas (1) to (3), R 1 , R 2 , R 3 , R 5 , R 6 , R 7 , R 9 , R 10 , R 11 , and R 12 are each independently a hydrogen atom. R 4 is a monovalent hydrocarbon group having 8 to 30 carbon atoms, and R 8 is a linear or branched alkylene group having 2 to 4 carbon atoms. p is a number from 1 to 50.)

当該電池用正極ペーストに含有される上記共重合体は、側鎖にアミド基を有する上記構成単位(c)を所定割合で有するため、同程度の分子量で比較した場合に電解液への溶解性が低い。従って、当該電池用正極ペーストによれば、電解液への共重合体の溶出が少ない正極を形成することができ、その結果、充放電の繰り返しに伴う抵抗増加率が低減された電池を得ることができる。また、上記共重合体は上記構成単位(a)及び構成単位(b)を有するため、当該電池用正極ペーストは、固形分濃度を高くした場合の粘度の上昇を抑制することができ、良好な塗布性等を有する。これは、疎水基を有する上記構成単位(a)がペースト中の導電剤の粒子表面に強固に吸着し、ポリオキシアルキレン基を有する上記構成単位(b)が粒子間に強い立体的斥力をもたらすことにより、ペースト中における粒子の凝集抑制効果を生み出し、ペーストの粘度を低下させているものと推測される。このように上記共重合体は、分子量を大きくすることなく電解液に対する溶解性を低くすることができるため、正極ペーストの粘度低減と、形成される正極からの電解液への溶出抑制とを両立させることができる。   Since the copolymer contained in the battery positive electrode paste has the structural unit (c) having an amide group in the side chain at a predetermined ratio, the solubility in an electrolyte solution is compared when compared with the same molecular weight. Is low. Therefore, according to the positive electrode paste for a battery, it is possible to form a positive electrode with less copolymer elution into the electrolytic solution, and as a result, to obtain a battery in which the rate of increase in resistance due to repeated charge and discharge is reduced. Can do. Moreover, since the said copolymer has the said structural unit (a) and a structural unit (b), the said positive electrode paste for batteries can suppress the raise of the viscosity at the time of making solid content concentration high, and is favorable. Has applicability and the like. This is because the structural unit (a) having a hydrophobic group is firmly adsorbed on the particle surface of the conductive agent in the paste, and the structural unit (b) having a polyoxyalkylene group provides a strong steric repulsion between the particles. Thus, it is presumed that the effect of suppressing the aggregation of particles in the paste is produced and the viscosity of the paste is lowered. As described above, the above copolymer can lower the solubility in the electrolyte without increasing the molecular weight, and thus achieves both reduction in the viscosity of the positive electrode paste and suppression of elution from the formed positive electrode into the electrolyte. Can be made.

上記共重合体の構成単位(a)と構成単位(b)との質量比(構成単位(a)/構成単位(b))が、0.5以上5以下であることが好ましい。構成単位(a)と構成単位(b)との質量比を上記範囲とすることで、当該正極ペーストの粘度低減効果をより高めることができる。   The mass ratio (structural unit (a) / structural unit (b)) between the structural unit (a) and the structural unit (b) of the copolymer is preferably 0.5 or more and 5 or less. By setting the mass ratio of the structural unit (a) to the structural unit (b) in the above range, the viscosity reduction effect of the positive electrode paste can be further enhanced.

上記共重合体の重量平均分子量が、15,000以上100,000以下であることが好ましい。これにより、溶出抑制効果と粘度低減効果とをバランスよく高めることができる。   The copolymer preferably has a weight average molecular weight of 15,000 or more and 100,000 or less. Thereby, an elution suppression effect and a viscosity reduction effect can be improved with good balance.

上記共重合体の含有量が、上記導電剤100質量部に対して、0.5質量部以上30質量部以下であることが好ましい。共重合体の含有量を上記範囲とすることで、得られる正極における電解液への溶出量を抑えつつ、良好な粘度低減効果を発揮することができる。   The content of the copolymer is preferably 0.5 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the conductive agent. By setting the content of the copolymer within the above range, it is possible to exert a favorable viscosity reduction effect while suppressing the amount of elution into the electrolyte solution in the positive electrode obtained.

上記分散媒が、非水系分散媒であることが好ましい。これにより、粘度低減効果等をより高めることができる。   The dispersion medium is preferably a non-aqueous dispersion medium. Thereby, a viscosity reduction effect etc. can be heightened more.

以下、本発明の一実施形態に係る電池用正極ペーストについて、詳説する。   Hereinafter, the positive electrode paste for a battery according to an embodiment of the present invention will be described in detail.

<電池用正極ペースト>
当該電池用正極ペーストは、正極活物質、導電剤、結着剤、共重合体及び分散媒を含む。当該電池用正極ペーストは、さらにその他の成分(上記共重合体以外の他の機能性材料等)を含んでいてもよい。
<Positive electrode paste for batteries>
The positive electrode paste for a battery includes a positive electrode active material, a conductive agent, a binder, a copolymer, and a dispersion medium. The battery positive electrode paste may further contain other components (other functional materials other than the copolymer).

[正極活物質]
上記正極活物質は、リチウム等のイオンを吸蔵及び放出することのできる物質である。正極活物質としては、例えばLiMO(Mは少なくとも一種の遷移金属を表す)で表される複合酸化物(層状のα―NaFeO型結晶構造を有するLiCoO,LiNiO,LiMnO,LiNiαCo(1−α),LiNiαMnβCo(1−α−β),Li1+wNiαMnβCo(1−α−β−w)等、スピネル型結晶構造を有するLiMn,LiNiαMn(2−α)等)、LiMe(AO(Meは少なくとも一種の遷移金属を表し、Aは例えばP、Si、B、V等を表す)で表されるポリアニオン化合物(LiFePO,LiMnPO,LiNiPO,LiCoPO,Li(PO,LiMnSiO,LiCoPOF等)が挙げられる。これらの化合物中の元素又はポリアニオンは、他の元素又はアニオン種で一部が置換されていてもよい。正極活物質としては、これら化合物の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
[Positive electrode active material]
The positive electrode active material is a substance that can occlude and release ions such as lithium. As the positive electrode active material, for example, a composite oxide represented by Li x MO y (M represents at least one transition metal) (Li x CoO 2 having a layered α-NaFeO 2 type crystal structure, Li x NiO 2). Li x MnO 3 , Li x Ni α Co (1-α) O 2 , Li x Ni α Mn β Co (1-α-β) O 2 , Li 1 + w Ni α Mn β Co (1-α-β- w) O 2, etc., Li x Mn 2 O 4 having a spinel crystal structure, Li x Ni α Mn (2 -α) O 4 , etc.), Li w Me x (AO y) z (Me is at least one transition Represents a metal, and A represents, for example, P, Si, B, V, etc.) polyanion compound (LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 Mn SiO 4 , Li 2 CoPO 4 F, etc.). The elements or polyanions in these compounds may be partially substituted with other elements or anion species. As the positive electrode active material, one kind of these compounds may be used alone, or two or more kinds may be mixed and used.

当該電池用正極合材ペーストにおける固形分に占める上記正極活物質の含有量の下限としては、例えば50質量%とすることができ、60質量%とすることもでき、80質量%とすることができ、90質量%が好ましい。一方、この含有量の上限としては、99質量%とすることができ、98質量%とすることもできる。なお、固形分とは、分散媒以外の成分をいう。   The lower limit of the content of the positive electrode active material in the solid content of the battery positive electrode mixture paste can be, for example, 50% by mass, 60% by mass, or 80% by mass. 90 mass% is preferable. On the other hand, the upper limit of the content can be 99% by mass or 98% by mass. In addition, solid content means components other than a dispersion medium.

[導電剤]
上記導電剤は、電池性能に悪影響を与えない導電性材料であれば特に限定されない。このような導電剤としては、天然又は人造の黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラック、金属、導電性セラミックス等が挙げられ、アセチレンブラックが好ましい。
[Conductive agent]
The conductive agent is not particularly limited as long as it is a conductive material that does not adversely affect battery performance. Examples of such a conductive agent include natural or artificial graphite, furnace black, acetylene black, carbon black such as ketjen black, metal, conductive ceramics, and the like, and acetylene black is preferable.

また、比表面積が大きい導電剤を用いた場合、正極の充放電性能(出力等)を向上させることができるので好ましいが、その様な導電剤を用いた場合、ペースト粘度が高くなりやすい傾向にある。しかし、上記共重合体は比表面積が大きな導電剤を用いた時ほどペースト粘度低減効果がより大きくなるので好ましい。具体的には、導電剤の比表面積の下限は1m/gが好ましく、10m/gがより好ましく、30m/gが更に好ましい。一方、この上限は200m/gが好ましく、100m/gがより好ましく、80m/gが更に好ましい。また、上記比表面積は、BET法により求められるBET比表面積を指す。 Further, when a conductive agent having a large specific surface area is used, it is preferable because the charge / discharge performance (output, etc.) of the positive electrode can be improved. However, when such a conductive agent is used, the paste viscosity tends to increase. is there. However, the above copolymer is preferable because the effect of reducing the paste viscosity becomes larger as the conductive agent having a large specific surface area is used. Specifically, the lower limit of the specific surface area of the conductive agent is 1 m 2 / g are preferred, more preferably 10 m 2 / g, more preferably 30 m 2 / g. On the other hand, the upper limit is preferably 200 meters 2 / g, more preferably 100m 2 / g, 80m 2 / g is more preferable. Moreover, the said specific surface area points out the BET specific surface area calculated | required by BET method.

当該電池用正極合材ペーストにおける固形分に占める上記導電剤の含有量の下限としては、例えば1質量%が好ましく、2質量%がより好ましい。導電剤の含有量を上記下限以上とすることで、良好な導電性を発揮することができる。一方、この含有量の上限としては、例えば20質量%とすることができるが、10質量%が好ましく、5質量%がより好ましいことがある。導電剤の含有量を上記上限以下とすることで、得られる正極合材層の基材等との密着性を高めることなどができる。   The lower limit of the content of the conductive agent in the solid content in the battery positive electrode paste is, for example, preferably 1% by mass and more preferably 2% by mass. By setting the content of the conductive agent to the above lower limit or more, good conductivity can be exhibited. On the other hand, the upper limit of the content may be, for example, 20% by mass, preferably 10% by mass, and more preferably 5% by mass. By making content of a electrically conductive agent below the said upper limit, adhesiveness with the base material etc. of the positive electrode compound material layer obtained can be improved.

[結着剤]
上記結着剤(バインダ)は、正極活物質、導電剤等を固定させる成分である。結着剤としては、フッ化ビニリデン樹脂(ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体等)、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリプロピレン、ポリイミド等の熱可塑性樹脂;エチレン−プロピレン−ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。
[Binder]
The binder (binder) is a component that fixes a positive electrode active material, a conductive agent, and the like. As the binder, thermoplastic resins such as vinylidene fluoride resins (polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer, etc.), polytetrafluoroethylene (PTFE), polyethylene, polypropylene, polyimide; Examples thereof include elastomers such as ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), and fluorine rubber; polysaccharide polymers.

また、結着剤としては、正極ペースト中での共重合体との相性の良さから、フッ化ビニリデン樹脂を用いることが特に好ましい。   As the binder, it is particularly preferable to use a vinylidene fluoride resin because of its good compatibility with the copolymer in the positive electrode paste.

ここで、上記共重合体は正極ペーストの結着剤としては不向きであるため、ここでいう結着剤に上記共重合体は含まれない。   Here, since the copolymer is unsuitable as a binder for the positive electrode paste, the copolymer is not included in the binder here.

当該電池用正極合材ペーストにおける固形分に占める上記結着剤の含有量の下限としては、例えば1質量%が好ましく、2質量%がより好ましく、2.5質量%がさらに好ましい。結着剤の含有量を上記下限以上とすることで、得られる正極合材層の基材等との密着性を高めることなどができる。一方、この含有量の上限としては、例えば20質量%であり、10質量%が好ましく、6質量%がより好ましい。   As a minimum of content of the above-mentioned binder which accounts for solid content in the positive electrode compound paste for batteries, for example, 1 mass% is preferred, 2 mass% is more preferred, and 2.5 mass% is still more preferred. Adhesiveness with the base material etc. of the positive electrode compound material layer obtained by making content of a binder into the said minimum or more can be improved. On the other hand, as an upper limit of this content, it is 20 mass%, for example, 10 mass% is preferable and 6 mass% is more preferable.

[共重合体]
上記共重合体は、下記式(1)で表される構成単位(a)、下記式(2)で表される構成単位(b)及び下記式(3)で表される構成単位(c)を含有する。上記共重合体は、さらにその他の構成単位(d)を含有していてもよい。上記共重合体は、導電剤の分散性を高め、ペーストの粘度を低減させることができる。
[Copolymer]
The copolymer includes a structural unit (a) represented by the following formula (1), a structural unit (b) represented by the following formula (2), and a structural unit (c) represented by the following formula (3). Containing. The copolymer may further contain other structural unit (d). The said copolymer can raise the dispersibility of a electrically conductive agent and can reduce the viscosity of a paste.

Figure 2018170218
Figure 2018170218

式(1)〜(3)中、R、R、R、R、R、R、R、R10、R11、及びR12は、それぞれ独立して、水素原子、メチル基又はエチル基である。Rは、炭素数8〜30の1価の炭化水素基である。Rは、炭素数2〜4の直鎖状又は分岐状のアルキレン基である。pは、1〜50の数である。 In formulas (1) to (3), R 1 , R 2 , R 3 , R 5 , R 6 , R 7 , R 9 , R 10 , R 11 , and R 12 are each independently a hydrogen atom, A methyl group or an ethyl group. R 4 is a monovalent hydrocarbon group having 8 to 30 carbon atoms. R 8 is a linear or branched alkylene group having 2 to 4 carbon atoms. p is a number from 1 to 50.

(構成単位(a))
上記共重合体は、疎水基であるRを有する構成単位(a)を含有することにより、ペースト中の導電剤の粒子表面に良好に吸着することができる。
(Structural unit (a))
The copolymer, by including the structural unit having R 4 is a hydrophobic group (a), it is possible to satisfactorily adsorbed on the particle surfaces of the conductive agent in the paste.

上記R及びRとしては、水素原子が好ましい。上記Rとしては、水素原子及びメチル基が好ましく、メチル基がより好ましい。R〜Rをこれらの原子又は基とすることで、導電剤等への吸着性、正極ペーストの粘度低減効果、共重合の際の導入容易性等を高めることができる。 As said R < 1 > and R < 2 >, a hydrogen atom is preferable. As said R < 3 >, a hydrogen atom and a methyl group are preferable and a methyl group is more preferable. By using R 1 to R 3 as these atoms or groups, the adsorptivity to the conductive agent, the viscosity reducing effect of the positive electrode paste, the ease of introduction during copolymerization, and the like can be enhanced.

上記Rの炭素数8〜30の1価の炭化水素基としては、アルキル基、アルケニル基、アルキニル基等の脂肪族炭化水素基や、芳香族炭化水素基を挙げることができる。これらの中でも、脂肪族炭化水素基が好ましく、アルキル基及びアルケニル基が好ましい。また、Rの炭素数の下限としては、10が好ましく、12がより好ましく、13がさらに好ましく、18が更に好ましい。一方、この炭素数の上限は、26が好ましく、22がより好ましく、20がさらに好ましい。Rをこれらに限定することで、導電剤等への吸着性、正極ペーストの粘度低減効果等を高めることができる。具体的なRで表される基としては、オクチル基、2−エチルヘキシル基、デシル基、ラウリル基、ミリスチル基、セチル基、ステアリル基、オレイル基、ベヘニル基等を挙げることができる。 Examples of the monovalent hydrocarbon group having 8 to 30 carbon atoms of R 4 include aliphatic hydrocarbon groups such as alkyl groups, alkenyl groups, and alkynyl groups, and aromatic hydrocarbon groups. Among these, an aliphatic hydrocarbon group is preferable, and an alkyl group and an alkenyl group are preferable. The lower limit of the carbon number of R 4, preferably 10, more preferably from 12, more preferably 13, 18 is more preferred. On the other hand, the upper limit of this carbon number is preferably 26, more preferably 22, and even more preferably 20. By limiting R 4 to these, the adsorptivity to a conductive agent or the like, the viscosity reduction effect of the positive electrode paste, and the like can be enhanced. Specific examples of the group represented by R 4 include octyl group, 2-ethylhexyl group, decyl group, lauryl group, myristyl group, cetyl group, stearyl group, oleyl group, and behenyl group.

上記構成単位(a)を与えるモノマーとしては、2−エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート等が挙げられる。これらの中でも、導電剤等への吸着性や正極ペーストの粘度低減効果の観点から、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート及びベヘニル(メタ)アクリレートが好ましい。これらのモノマーは、1種を用いてもよいし、2種以上を用いてもよい。   Monomers that give the structural unit (a) include 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, and behenyl (meth) acrylate. Etc. Among these, lauryl (meth) acrylate, stearyl (meth) acrylate, and behenyl (meth) acrylate are preferable from the viewpoint of adsorptivity to a conductive agent and the like and a viscosity reduction effect of the positive electrode paste. 1 type may be used for these monomers and 2 or more types may be used for them.

上記共重合体中の上記構成単位(a)の含有量の下限としては、10質量%が好ましく、20質量%がより好ましく、30質量%がさらに好ましい。一方、この含有量の上限としては、80質量%が好ましく、70質量%がより好ましく、60質量%がさらに好ましい。構成単位(a)の含有量を上記範囲とすることで、導電剤への吸着性、正極ペーストの粘度低減効果等を高めることができる。   As a minimum of content of the said structural unit (a) in the said copolymer, 10 mass% is preferable, 20 mass% is more preferable, and 30 mass% is further more preferable. On the other hand, as an upper limit of this content, 80 mass% is preferable, 70 mass% is more preferable, and 60 mass% is further more preferable. By making content of a structural unit (a) into the said range, the adsorptivity to a electrically conductive agent, the viscosity reduction effect of a positive electrode paste, etc. can be improved.

(構成単位(b))
上記共重合体は、ポリオキシアルキレン基を有する構成単位(b)を含有することにより、この共重合体が吸着した粒子間に強い立体的斥力をもたらすことができる。これにより、ペースト中における粒子の凝集抑制効果が生じ、ペーストの粘度上昇を抑えることができる。
(Structural unit (b))
By containing the structural unit (b) having a polyoxyalkylene group, the copolymer can bring about a strong steric repulsion between particles adsorbed by the copolymer. Thereby, the aggregation suppression effect of the particle | grains in a paste arises, and the viscosity raise of a paste can be suppressed.

上記R及びRとしては、水素原子が好ましい。上記Rとしては、水素原子及びメチル基が好ましく、メチル基がより好ましい。上記Rとしては、メチル基及びエチル基が好ましく、メチル基がより好ましい。R〜R及びRをこれらの原子又は基とすることで、正極ペーストの粘度低減効果、共重合の際の導入容易性等を高めることができる。 As the R 5 and R 6, a hydrogen atom is preferred. R 7 is preferably a hydrogen atom and a methyl group, and more preferably a methyl group. R 9 is preferably a methyl group or an ethyl group, and more preferably a methyl group. By using R 5 to R 7 and R 9 as these atoms or groups, the viscosity reduction effect of the positive electrode paste, the ease of introduction during copolymerization, and the like can be enhanced.

上記Rの炭素数2〜4の直鎖状又は分岐状のアルキレン基としては、エチレン基及びプロピレン基が好ましく、エチレン基がより好ましい。Rをこれらの基とすることで、正極ペーストの粘度低減効果、共重合の際の導入容易性等を高めることができる。Rにおいては、複数種のアルキレン基が含まれていてもよい。 Examples of the linear or branched alkylene group having 2 to 4 carbon atoms in the R 8, an ethylene group and propylene group are preferred, and more preferably an ethylene group. By using R 8 as these groups, the viscosity reduction effect of the positive electrode paste, the ease of introduction during copolymerization, and the like can be enhanced. In R 8 , a plurality of types of alkylene groups may be contained.

上記pは、アルキレンオキサイド(−R−O−)の平均付加モル数であり、整数に限定されるものではない。pの上限としては、40が好ましく、25がより好ましく、10がさらに好ましく、7がよりさらに好ましい場合もあり、4がより好ましい場合もある。pを上記上限以下とすることで、電解液への溶解性をより低減することができる。 The above p is the average number of added moles of alkylene oxide (—R 8 —O—) and is not limited to an integer. As an upper limit of p, 40 is preferable, 25 is more preferable, 10 is more preferable, 7 is more preferable, and 4 is more preferable. By making p below the above upper limit, the solubility in the electrolytic solution can be further reduced.

上記構成単位(b)を与えるモノマーとしては、メトキシポリ(エチレングリコール/プロピレングリコール)(メタ)アクリレート、エトキシポリ(エチレングリコール/プロピレングリコール)(メタ)アクリレート、ポリ(エチレングリコール/プロピレングリコール)モノ(メタ)アクリレート等を挙げることができる。これらの中でも、メトキシポリエチレングリコールメタクリレートが好ましい。これらのモノマーは、1種を用いてもよいし、2種以上を用いてもよい。   Monomers that give the structural unit (b) include methoxypoly (ethylene glycol / propylene glycol) (meth) acrylate, ethoxypoly (ethylene glycol / propylene glycol) (meth) acrylate, and poly (ethylene glycol / propylene glycol) mono (meth). An acrylate etc. can be mentioned. Among these, methoxypolyethylene glycol methacrylate is preferable. 1 type may be used for these monomers and 2 or more types may be used for them.

上記共重合体中の上記構成単位(b)の含有量の下限としては、5質量%が好ましく、10質量%がより好ましく、15質量%がさらに好ましい。一方、この含有量の上限としては、60質量%が好ましく、50質量%がより好ましく、40質量%がさらに好ましい。構成単位(b)の含有量を上記範囲とすることで、正極ペーストの粘度低減効果や電解液への溶出抑制効果をより高めることができる。   As a minimum of content of the above-mentioned structural unit (b) in the above-mentioned copolymer, 5 mass% is preferred, 10 mass% is more preferred, and 15 mass% is still more preferred. On the other hand, as an upper limit of this content, 60 mass% is preferable, 50 mass% is more preferable, and 40 mass% is further more preferable. By making content of a structural unit (b) into the said range, the viscosity reduction effect of a positive electrode paste and the elution suppression effect to electrolyte solution can be improved more.

(構成単位(c))
上記共重合体は、アミド基を有する構成単位(c)を有することにより、得られる正極における電解液への溶出抑制効果を発揮することができる。
(Structural unit (c))
The said copolymer can exhibit the elution suppression effect to the electrolyte solution in the positive electrode obtained by having the structural unit (c) which has an amide group.

上記R10及びR11としては、水素原子が好ましい。上記R12としては、水素原子及びメチル基が好ましく、メチル基がより好ましい。R10〜R12をこれらの原子又は基とすることで、電解液への溶出抑制効果や、共重合の際の導入容易性等を高めることができる。 As the R 10 and R 11, a hydrogen atom is preferable. R 12 is preferably a hydrogen atom and a methyl group, and more preferably a methyl group. By using R 10 to R 12 as these atoms or groups, it is possible to enhance the elution suppression effect into the electrolyte, ease of introduction during copolymerization, and the like.

上記構成単位(c)を与えるモノマーとしては、(メタ)アクリルアミド、2−ブテン酸アミド等を挙げることができ、(メタ)アクリルアミドが好ましい。これらのモノマーは、1種を用いてもよいし、2種以上を用いてもよい。   Examples of the monomer that gives the structural unit (c) include (meth) acrylamide and 2-butenoic acid amide, and (meth) acrylamide is preferable. 1 type may be used for these monomers and 2 or more types may be used for them.

上記共重合体中の上記構成単位(c)の含有量の下限は、15質量%であり、17.5質量%が好ましく、20質量%がより好ましく、26質量%がさらに好ましい場合もある。構成単位(c)の含有量を上記下限以上とすることで、電解液への溶出抑制効果を高めることができる。一方、この含有量の上限は、45質量%であり、40質量%が好ましく、37.5質量%がより好ましく、35質量%がさらに好ましい。構成単位(c)の含有量を上記上限以下とすることで、正極ペーストの粘度低減効果をより高めることなどができる。   The lower limit of the content of the structural unit (c) in the copolymer is 15% by mass, preferably 17.5% by mass, more preferably 20% by mass, and even more preferably 26% by mass. By making content of a structural unit (c) more than the said minimum, the elution inhibitory effect to electrolyte solution can be heightened. On the other hand, the upper limit of this content is 45 mass%, 40 mass% is preferable, 37.5 mass% is more preferable, and 35 mass% is further more preferable. By making content of a structural unit (c) below the said upper limit, the viscosity reduction effect of a positive electrode paste can be improved more.

(構成単位(d))
その他の構成単位(d)を与えるモノマーとしては、上記構成単位(a)、構成単位(b)及び構成単位(c)を与えるモノマーと共重合可能なものであれば特に限定されるものではない。
(Structural unit (d))
The monomer that provides the other structural unit (d) is not particularly limited as long as it is copolymerizable with the monomer that provides the structural unit (a), the structural unit (b), and the structural unit (c). .

構成単位(d)を与えるモノマーとしては、(メタ)アクリル酸等の酸モノマー;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボロニル、(メタ)アクリル酸ジメチルアミノエチル等の(メタ)アクリル酸エステル類;N,N−ジメチル(メタ)アクリルアミド、tert−ブチル(メタ)アクリルアミド、N―イソプロピル(メタ)アクリルアミド等の(メタ)アクリルアミド類;スチレン、p−メチルスチレン等のスチレン類;酢酸ビニル等のビニルエステル類;2−ビニルピリジン等のビニルピリジン類;ビニルピロリドン等のビニルピロリドン類等を挙げることができる。これらのモノマーは、1種を用いてもよいし、2種以上を用いてもよい。   Monomers that give structural unit (d) include acid monomers such as (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, ( (Meth) acrylic acid esters such as tert-butyl (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dimethylaminoethyl (meth) acrylate; N, N -(Meth) acrylamides such as dimethyl (meth) acrylamide, tert-butyl (meth) acrylamide, N-isopropyl (meth) acrylamide; styrenes such as styrene and p-methylstyrene; vinyl esters such as vinyl acetate; 2 -Vinylpyridines such as vinylpyridine; vinylpyrrolidone, etc. And vinyl pyrrolidones and the like. 1 type may be used for these monomers and 2 or more types may be used for them.

上記共重合体中の上記構成単位(d)の含有量の上限としては、60質量%が好ましく、40質量%がより好ましく、20質量%がさらに好ましく、5質量%がよりさらに好ましく、1質量%であってもよい。構成単位(d)の含有量を上記上限以下とすることで、電解液への溶出抑制効果や、正極ペーストの粘度低減効果をより高めることができる。   As an upper limit of content of the said structural unit (d) in the said copolymer, 60 mass% is preferable, 40 mass% is more preferable, 20 mass% is further more preferable, 5 mass% is still more preferable, 1 mass %. By making content of a structural unit (d) below the said upper limit, the elution suppression effect to electrolyte solution and the viscosity reduction effect of positive electrode paste can be improved more.

上記共重合体においては、構成単位(d)の中でも、2以上の重合性基を有するモノマー(架橋性モノマー)に由来する構成単位を実質的に有さないことが好ましい。ここで、正極ペーストの粘度低減効果の観点から、当該正極ペーストにおいて、上記共重合体が分散媒に溶解していることが好ましい。また、一部が溶解している状態で使用することもできる。上記共重合体が架橋性モノマーに由来する構成単位を含む場合、共重合体の分散媒への溶解性が低下し、正極ペーストの粘度低減効果が低下する傾向にある。上記共重合体中の架橋性モノマーに由来する構成単位の含有量の上限は、5質量%が好ましく、1質量%がより好ましく、0.1質量%がさらに好ましい。架橋性モノマーに由来する構成単位の含有量を上記上限以下とすることで、正極ペーストの粘度低減効果を高めることができる。   In the copolymer, it is preferable that substantially no structural unit derived from a monomer (crosslinkable monomer) having two or more polymerizable groups among the structural units (d). Here, from the viewpoint of the effect of reducing the viscosity of the positive electrode paste, in the positive electrode paste, the copolymer is preferably dissolved in the dispersion medium. Moreover, it can also be used in the state which one part melt | dissolved. When the copolymer contains a structural unit derived from a crosslinkable monomer, the solubility of the copolymer in the dispersion medium is lowered, and the viscosity reduction effect of the positive electrode paste tends to be lowered. The upper limit of the content of the structural unit derived from the crosslinkable monomer in the copolymer is preferably 5% by mass, more preferably 1% by mass, and still more preferably 0.1% by mass. By making content of the structural unit derived from a crosslinkable monomer below the said upper limit, the viscosity reduction effect of a positive electrode paste can be heightened.

(構成単位比)
上記共重合体において、構成単位(a)と構成単位(b)との質量比(構成単位(a)/構成単位(b))の下限としては、0.5が好ましく、0.75がより好ましく、1がさらに好ましい。一方、この質量比の上限としては、5が好ましく、4がより好ましく、3がさらに好ましい。構成単位(a)と構成単位(b)との質量比を上記範囲とすることで、当該正極ペーストの粘度低減効果等をより高めることができる。
(Unit ratio)
In the copolymer, the lower limit of the mass ratio of the structural unit (a) to the structural unit (b) (structural unit (a) / structural unit (b)) is preferably 0.5, more preferably 0.75. 1 is more preferable. On the other hand, the upper limit of this mass ratio is preferably 5, more preferably 4, and even more preferably 3. By setting the mass ratio of the structural unit (a) and the structural unit (b) within the above range, the effect of reducing the viscosity of the positive electrode paste can be further enhanced.

上記共重合体において、構成単位(b)と構成単位(c)との質量比(構成単位(b)/構成単位(c))の下限としては、0.2が好ましく、0.4がより好ましく、0.6がさらに好ましい。一方、この質量比の上限としては、5が好ましく、4がより好ましく、3がさらに好ましく、1がさらに好ましい場合もある。構成単位(b)と構成単位(c)との質量比を上記範囲とすることで、同程度の分子量で比較した場合の電解液への溶出抑制効果や、正極ペーストの粘度低減効果をより高めることができる。   In the copolymer, the lower limit of the mass ratio of the structural unit (b) to the structural unit (c) (structural unit (b) / structural unit (c)) is preferably 0.2, more preferably 0.4. 0.6 is more preferable. On the other hand, the upper limit of this mass ratio is preferably 5, more preferably 4, more preferably 3, and even more preferably 1. By setting the mass ratio of the structural unit (b) and the structural unit (c) within the above range, the effect of suppressing elution into the electrolyte solution and the effect of reducing the viscosity of the positive electrode paste when compared with the same molecular weight are further enhanced. be able to.

上記共重合体において、構成単位(a)と構成単位(c)との質量比(構成単位(a)/構成単位(c))の下限としては、0.2が好ましく、0.5がより好ましく、0.8がさらに好ましい。一方、この質量比の上限としては、5が好ましく、4がより好ましく、3がさらに好ましい。構成単位(a)と構成単位(c)との質量比を上記範囲とすることで、電解液への溶出抑制効果や、正極ペーストの粘度低減効果をより高めることができる。   In the copolymer, the lower limit of the mass ratio of the structural unit (a) to the structural unit (c) (structural unit (a) / structural unit (c)) is preferably 0.2, more preferably 0.5. 0.8 is more preferable. On the other hand, the upper limit of this mass ratio is preferably 5, more preferably 4, and even more preferably 3. By setting the mass ratio of the structural unit (a) and the structural unit (c) within the above range, it is possible to further enhance the effect of suppressing elution into the electrolytic solution and the effect of reducing the viscosity of the positive electrode paste.

(分子量)
上記共重合体のゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量の下限としては、5,000が好ましく、7,500がより好ましく、10,000がさらに好ましく、15,000がよりさらに好ましく、18,000が特に好ましい。重量平均分子量を上記下限以上とすることで、電解液への溶解性をより低減することができ、また、粘度低減効果をより十分に発揮することができる。一方、この重量平均分子量の上限としては、500,000が好ましく、250,000がより好ましく、100,000がさらに好ましく、70,000が特に好ましい。重量平均分子量を上記上限以下とすることで、正極ペーストの粘度低減効果をより高めることができ、合成も容易となる。
(Molecular weight)
The lower limit of the weight average molecular weight measured by gel permeation chromatography (GPC) of the copolymer is preferably 5,000, more preferably 7,500, still more preferably 10,000, and even more preferably 15,000. Preferably, 18,000 is particularly preferable. By making a weight average molecular weight more than the said minimum, the solubility to electrolyte solution can be reduced more and the viscosity reduction effect can fully be exhibited. On the other hand, the upper limit of the weight average molecular weight is preferably 500,000, more preferably 250,000, still more preferably 100,000, and particularly preferably 70,000. By making a weight average molecular weight below the said upper limit, the viscosity reduction effect of a positive electrode paste can be improved more, and a synthesis | combination becomes easy.

(含有量)
当該電池用正極ペーストにおける固形分に占める上記共重合体の含有量の下限としては、上記導電剤100質量部に対して、0.1質量部であってもよいが、0.5質量部が好ましく、1.5質量部がより好ましいこともあり、3質量部が更に好ましいこともあり、6質量部が更に好ましいこともある。共重合体の含有量を上記下限以上とすることで、導電剤の分散性がより高まり、正極ペーストの粘度低減効果をより高めることができる。一方、この含有量の上限としては、40質量部であってもよいが、30質量部が好ましく、25質量部がより好ましいこともあり、20質量部が更に好ましいこともあり、15質量部が更に好ましいこともある。共重合体の含有量を上記上限以下とすることで、電池出力を良好な状態で維持することができ、また、電解液への溶出量を抑制することができる。
(Content)
The lower limit of the content of the copolymer in the solid content in the battery positive electrode paste may be 0.1 parts by mass with respect to 100 parts by mass of the conductive agent, but 0.5 parts by mass is Preferably, 1.5 parts by mass is more preferred, 3 parts by mass is even more preferred, and 6 parts by mass is even more preferred. By making content of a copolymer more than the said minimum, the dispersibility of a electrically conductive agent can improve more and the viscosity reduction effect of a positive electrode paste can be improved more. On the other hand, the upper limit of the content may be 40 parts by mass, preferably 30 parts by mass, more preferably 25 parts by mass, even more preferably 20 parts by mass, and 15 parts by mass. It may be more preferable. By setting the content of the copolymer to be equal to or less than the above upper limit, the battery output can be maintained in a good state, and the amount of elution into the electrolytic solution can be suppressed.

当該電池用正極ペーストにおける固形分に占める上記共重合体の含有量の下限としては、例えば0.01質量%である。共重合体の含有量を上記下限以上とすることで、十分な粘度低減効果を発揮することなどができる。一方、この含有量の上限としては、例えば3質量%であってもよいが、2質量%が好ましく、1.5質量%がより好ましいこともある。共重合体の含有量を上記上限以下とすることで、電解液への溶出量をいっそう低減することや、得られる正極合材層の基材等との密着性を高めることなどができる。   The lower limit of the content of the copolymer in the solid content of the battery positive electrode paste is, for example, 0.01% by mass. By setting the content of the copolymer to the above lower limit or more, a sufficient viscosity reducing effect can be exhibited. On the other hand, the upper limit of the content may be, for example, 3% by mass, but is preferably 2% by mass, and more preferably 1.5% by mass. By making the content of the copolymer not more than the above upper limit, the amount of elution into the electrolytic solution can be further reduced, and the adhesion of the resulting positive electrode mixture layer to the base material can be increased.

(共重合体の合成方法)
上記共重合体の合成方法は特に限定されず、通常の(メタ)アクリル酸エステル類の重合に使用される方法が用いられる。上記共重合体は、例えばフリーラジカル重合法、リビングラジカル重合法、アニオン重合法、リビングアニオン重合法等により合成することができる。例えば、フリーラジカル重合法を用いる場合は、構成単位(a)、構成単位(b)、構成単位(c)及び必要に応じて構成単位(d)を与える各モノマーを溶液重合法で重合させることにより行うことができる。なお、合成の容易性、及び溶媒への溶解性の観点から、溶液重合で合成することが好ましい。
(Method of synthesizing copolymer)
The method for synthesizing the copolymer is not particularly limited, and a method used for polymerization of ordinary (meth) acrylic acid esters is used. The copolymer can be synthesized by, for example, a free radical polymerization method, a living radical polymerization method, an anionic polymerization method, a living anion polymerization method, or the like. For example, when the free radical polymerization method is used, the monomer that gives the structural unit (a), the structural unit (b), the structural unit (c), and, if necessary, the structural unit (d) is polymerized by a solution polymerization method. Can be performed. In addition, it is preferable to synthesize | combine by solution polymerization from a viewpoint of the ease of a synthesis | combination and the solubility to a solvent.

溶液重合に用いる場合の溶媒としては、例えば脂肪族炭化水素(ヘキサン、ヘプタン等)、芳香族系炭化水素(トルエン、キシレン等)、低級アルコール(エタノール、イソプロパノール等)、ケトン(アセトン、メチルエチルケトン等)、エーテル(テトラヒドロフラン、ジエチレングリコールジメチルエーテル等)、その他、ジメチルスルホキシド、ジメチルホルムアミド、N−メチルピロリドン等の有機溶媒を使用することができる。溶媒量は、モノマー全量に対する質量比で、0.5〜10倍量が好ましい。   Solvents used for solution polymerization include, for example, aliphatic hydrocarbons (hexane, heptane, etc.), aromatic hydrocarbons (toluene, xylene, etc.), lower alcohols (ethanol, isopropanol, etc.), ketones (acetone, methyl ethyl ketone, etc.) , Ethers (tetrahydrofuran, diethylene glycol dimethyl ether, etc.), and other organic solvents such as dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone can be used. The amount of solvent is a mass ratio with respect to the total amount of monomers, and is preferably 0.5 to 10 times.

上記共重合体の合成に使用する重合開始剤としては、公知のラジカル重合開始剤を用いることができる。ラジカル重合開始剤としては、例えばアゾ系重合開始剤、ヒドロ過酸化物類、過酸化ジアルキル類、過酸化ジアシル類、ケトンぺルオキシド類等が挙げられる。重合開始剤量の下限としては、モノマー成分全量に対し、0.01モル%が好ましく、0.1モル%がより好ましく、0.2モル%がさらに好ましい。一方、この上限としては、5モル%が好ましく、3モル%がより好ましく、2モル%がさらに好ましい。重合反応は、窒素気流下、60℃以上180℃以下の温度範囲で行うのが好ましく、反応時間は0.5時間以上20時間以下が好ましい。   As a polymerization initiator used for the synthesis of the copolymer, a known radical polymerization initiator can be used. Examples of the radical polymerization initiator include azo polymerization initiators, hydroperoxides, dialkyl peroxides, diacyl peroxides, and ketone peroxides. The lower limit of the polymerization initiator amount is preferably 0.01 mol%, more preferably 0.1 mol%, still more preferably 0.2 mol%, based on the total amount of monomer components. On the other hand, as this upper limit, 5 mol% is preferable, 3 mol% is more preferable, and 2 mol% is further more preferable. The polymerization reaction is preferably performed in a temperature range of 60 ° C. to 180 ° C. under a nitrogen stream, and the reaction time is preferably 0.5 hours or more and 20 hours or less.

また、分子量を調整するための、公知の連鎖移動剤を用いることができる。連鎖移動剤としては、例えばイソプロピルアルコールや、メルカプトエタノール等のメルカプト化合物があげられる。   Moreover, a well-known chain transfer agent for adjusting molecular weight can be used. Examples of the chain transfer agent include mercapto compounds such as isopropyl alcohol and mercaptoethanol.

上記共重合体において、構成単位(a)、構成単位(b)、構成単位(c)及び必要に応じて含有される構成単位(d)の配列は、ランダム、ブロック、グラジエント、グラフト等のいずれでもよい。   In the above copolymer, the arrangement of the structural unit (a), the structural unit (b), the structural unit (c), and the structural unit (d) contained as necessary may be any of random, block, gradient, graft, etc. But you can.

[分散媒]
上記分散媒は、正極活物質、導電剤、結着剤及び共重合体等を均一的に分散させる成分である。なお、上記共重合体は、粘度低減効果をより高めるために、上記分散媒に少なくとも一部が溶解している。
[Dispersion medium]
The dispersion medium is a component that uniformly disperses the positive electrode active material, the conductive agent, the binder, the copolymer, and the like. The copolymer is at least partially dissolved in the dispersion medium in order to further enhance the viscosity reduction effect.

上記分散媒としては、共重合体を溶解可能なものを用いることができる。N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)ジメチルスルホキシド(DMSO)等の非プロトン性極性溶媒を初めとした非水系分散媒や、水等を用いることができる。上記分散媒は、共重合体の溶解性や電池内に余分な水分を持ち込まないようにする観点から、非水系分散媒であることが好ましく、非プロトン性極性溶媒がより好ましい。共重合体の溶解性の高さからNMPが特に好ましい。非水系分散媒とは、水以外の分散媒をいい、実質的に水を含有しない分散媒である。   As said dispersion medium, what can melt | dissolve a copolymer can be used. Use of a non-aqueous dispersion medium such as an aprotic polar solvent such as N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMA) dimethylsulfoxide (DMSO), water, etc. it can. The dispersion medium is preferably a non-aqueous dispersion medium, more preferably an aprotic polar solvent, from the viewpoint of the solubility of the copolymer and preventing excessive moisture from being brought into the battery. NMP is particularly preferred because of the high solubility of the copolymer. The non-aqueous dispersion medium refers to a dispersion medium other than water, and is a dispersion medium that does not substantially contain water.

当該電池用正極ペーストの固形分濃度(分散媒以外の成分の含有量)としては、例えば40質量%以上70質量%以下とすることができる。   As solid content concentration (content of components other than a dispersion medium) of the said positive electrode paste for batteries, it can be 40 mass% or more and 70 mass% or less, for example.

[電池用正極ペーストの調製方法]
当該電池用正極ペーストは、正極活物質、導電剤、結着剤、共重合体、分散媒等を混合及び撹拌することで調製することができる。この混合や撹拌には、プラネタリミキサー、ビーズミル、ジェットミル等の公知の撹拌装置を用いることができる。各成分の撹拌装置への投入の際には、攪拌羽根を回転させながら投入してもよい。これにより、攪拌装置の機械的負荷を抑えること、攪拌容器内の成分の嵩を抑えること、各成分の予備的な混合を行うことなどができる。また、全量を一度に投入せずに、複数回に分けて投入してもよい。これにより、攪拌装置の機械的な負荷を抑えることができる。
[Method for preparing positive electrode paste for battery]
The positive electrode paste for a battery can be prepared by mixing and stirring a positive electrode active material, a conductive agent, a binder, a copolymer, a dispersion medium, and the like. For this mixing and stirring, a known stirring device such as a planetary mixer, a bead mill, or a jet mill can be used. When each component is charged into the stirring device, it may be charged while rotating the stirring blade. Thereby, the mechanical load of the stirring device can be suppressed, the bulk of the components in the stirring container can be suppressed, and the preliminary mixing of each component can be performed. Alternatively, the entire amount may be divided into a plurality of times without being charged at once. Thereby, the mechanical load of the stirring device can be suppressed.

[電池用正極ペーストの使用方法]
当該電池用正極ペーストは、電池、好適には非水電解質二次電池の正極作成材料として用いられる。上記正極は、当該電池用正極ペーストをアルミニウム箔等の導電性の基材に塗工し、これを乾燥することにより作製することができる。正極の密度を上げるために、プレス機により圧密化を行うこともできる。正極ペーストの塗工には、ダイヘッド、コンマリバースロール、ダイレクトロール、グラビアロール等を用いることができる。塗工後の乾燥は、加温、エアフロー、赤外線照射等を単独あるいは組み合わせて行うことができる。また、正極のプレスは、ロールプレス機等により、行うことができる。
[How to use the positive electrode paste for batteries]
The positive electrode paste for a battery is used as a positive electrode preparation material for a battery, preferably a nonaqueous electrolyte secondary battery. The positive electrode can be produced by applying the positive electrode paste for a battery to a conductive base material such as an aluminum foil and drying it. In order to increase the density of the positive electrode, consolidation can be performed by a press machine. A die head, a comma reverse roll, a direct roll, a gravure roll, or the like can be used for coating the positive electrode paste. Drying after coating can be performed alone or in combination with heating, airflow, infrared irradiation and the like. The positive electrode can be pressed by a roll press or the like.

このようにして得られた正極においては、電解液への共重合体の溶解・溶出が抑制され、その結果、電池の充放電の繰り返しに伴う抵抗増加を抑制することができる。ここで、電解液は、通常、電解質塩と、この電解質塩を溶解する溶媒とを有する。この溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の鎖状カーボネートなどの非水溶媒を挙げることができる。なお、非水溶媒とは、水以外の溶媒をいい、実質的に水を含有しない溶媒である。   In the positive electrode thus obtained, dissolution / elution of the copolymer in the electrolytic solution is suppressed, and as a result, an increase in resistance due to repeated charge / discharge of the battery can be suppressed. Here, the electrolytic solution usually has an electrolyte salt and a solvent for dissolving the electrolyte salt. Examples of the solvent include non-aqueous solvents such as cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate, and chain carbonates such as diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate. The non-aqueous solvent means a solvent other than water and is a solvent that does not substantially contain water.

以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

実施例に用いた原料の略号は以下のとおりである。
・SMA:メタクリル酸ステアリル(新中村化学工業社製、品番:NK−エステルS)
・PEG(2)MA:メトキシポリエチレングリコールメタクリレート(新中村化学工業社製、品番:NKエステルM−20G、エチレンオキサイドの平均付加モル数p=2)
・PEG(9)MA:メトキシポリエチレングリコールメタクリレート(新中村化学工業社製、品番:NK−エステルM−90G、エチレンオキサイドの平均付加モル数p=9)
・MAAm:メタクリルアミド(和光純薬工業社製)
・MAA:メタクリル酸(和光純薬工業社製)
・DMAAm:ジメチルアクリルアミド(和光純薬工業社製)
・NMP:N−メチル−2−ピロリドン(和光純薬工業社製)
・V−65B:2,2’−アゾビス(2,4−ジメチルバレロニトリル)(和光純薬工業社製)
The abbreviations of the raw materials used in the examples are as follows.
SMA: stearyl methacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product number: NK-ester S)
PEG (2) MA: methoxy polyethylene glycol methacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product number: NK ester M-20G, average added mole number of ethylene oxide p = 2)
PEG (9) MA: methoxypolyethylene glycol methacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product number: NK-ester M-90G, average added mole number of ethylene oxide p = 9)
MAAm: methacrylamide (manufactured by Wako Pure Chemical Industries)
MAA: methacrylic acid (manufactured by Wako Pure Chemical Industries)
DMAAm: Dimethylacrylamide (manufactured by Wako Pure Chemical Industries, Ltd.)
NMP: N-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.)
V-65B: 2,2′-azobis (2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd.)

[合成例1]共重合体Hの合成
初期仕込み用モノマー溶液として、4.8gのSMA、2.8gのPEG(2)MA、22.4gのMAAm及び86.7gのNMPからなる溶液、並びに初期仕込み開始剤溶液として0.8gのV−65B及び3.3gのNMPからなる混合溶液を作製した。次に、滴下用モノマー溶液1として、106.1gのSMA、61.9gのPEG(2)MA、及び24.7gのNMPからなる混合溶液、滴下用モノマー溶液2として、67.6gのMAAm、及び135.3gのNMPからなる混合溶液、滴下用モノマー溶液3として、21.7gのSMA、12.7gのPEG(2)MA、及び20.0gのNMPからなる混合溶液、滴下用開始剤溶液1として6.7gのV−65B及び26.7gのNMPからなる混合溶液、並びに滴下用開始剤溶液2として0.8gのV−65B及び3.3gのNMPからなる混合溶液を作製した。
還流管、攪拌機、温度計、窒素導入管、及び滴下漏斗を取り付けたセパラブルフラスコに初期仕込み用モノマーを投入し、撹拌及び65℃に加熱にしながら反応槽内を1時間以上窒素置換した。槽内温度が65℃に到達したことを確認し、撹拌しながら初期仕込み開始剤溶液を添加した。10分撹拌後、滴下用モノマー溶液1、滴下用モノマー溶液2、及び滴下用開始剤溶液1を160分かけて槽内に滴下した。その後、滴下用モノマー溶液3及び滴下用開始剤溶液2を20分かけて槽内に滴下した。滴下終了後、更に65℃で1時間撹拌した。撹拌を続けながら80℃まで昇温し、槽内温度が80℃に到達したことを確認し、更に2時間撹拌した。次いで、600gのNMPを追加し、均一溶液になるまで撹拌した。希釈後、40℃以下まで空冷し、共重合体Hを得た。
[Synthesis Example 1] Synthesis of Copolymer H As a monomer solution for initial charging, a solution consisting of 4.8 g of SMA, 2.8 g of PEG (2) MA, 22.4 g of MAAm and 86.7 g of NMP, and A mixed solution consisting of 0.8 g of V-65B and 3.3 g of NMP was prepared as an initial charge initiator solution. Next, a mixed solution composed of 106.1 g of SMA, 61.9 g of PEG (2) MA, and 24.7 g of NMP as the dropping monomer solution 1, 67.6 g of MAAm as the dropping monomer solution 2, And a mixed solution consisting of 135.3 g of NMP, as a monomer solution 3 for dropping, a mixed solution consisting of 21.7 g of SMA, 12.7 g of PEG (2) MA, and 20.0 g of NMP, an initiator solution for dropping A mixed solution composed of 6.7 g of V-65B and 26.7 g of NMP as 1 and a mixed solution of 0.8 g of V-65B and 3.3 g of NMP as a dropping initiator solution 2 were prepared.
The monomer for initial charge was put into a separable flask equipped with a reflux tube, a stirrer, a thermometer, a nitrogen introduction tube, and a dropping funnel, and the inside of the reaction vessel was purged with nitrogen for 1 hour or more while stirring and heating to 65 ° C. After confirming that the bath temperature reached 65 ° C., the initial charge initiator solution was added while stirring. After stirring for 10 minutes, the dropping monomer solution 1, the dropping monomer solution 2 and the dropping initiator solution 1 were dropped into the tank over 160 minutes. Thereafter, the dropping monomer solution 3 and the dropping initiator solution 2 were dropped into the tank over 20 minutes. After completion of dropping, the mixture was further stirred at 65 ° C. for 1 hour. While continuing stirring, the temperature was raised to 80 ° C., and it was confirmed that the temperature in the tank had reached 80 ° C., and further stirred for 2 hours. Next, 600 g of NMP was added and stirred until a homogeneous solution was obtained. After dilution, the mixture was air-cooled to 40 ° C. or lower to obtain a copolymer H.

[合成例2]共重合体Iの合成
初期仕込み用モノマー溶液として、4.8gのSMA、2.8gのPEG(2)MA、22.4gのMAAm及び89.3gのNMPからなる溶液、並びに初期仕込み開始剤溶液として0.2gのV−65B及び0.7gのNMPからなる混合溶液を作製した。次に、滴下用モノマー溶液1として、106.1gのSMA、及び61.9gのPEG(2)MA、8.2gのNMPからなる混合溶液、滴下用モノマー溶液2として、67.6gのMAAm、及び135.3gのNMPからなる混合溶液、滴下用モノマー溶液3として、21.7gのSMA、12.7gのPEG(2)MA、及び17.9gのNMPからなる混合溶液、滴下用開始剤溶液1として1.4gのV−65B及び43.2gのNMPからなる混合溶液、並びに滴下用開始剤溶液2として0.2gのV−65B及び5.4gのNMPからなる混合溶液を作製した。
還流管、攪拌機、温度計、窒素導入管、及び滴下漏斗を取り付けたセパラブルフラスコに初期仕込み用モノマーを投入し、撹拌及び65℃に加熱にしながら反応槽内を1時間以上窒素置換した。槽内温度が65℃に到達したことを確認し、撹拌しながら初期仕込み開始剤溶液を添加した。10分撹拌後、滴下用モノマー溶液1、滴下用モノマー溶液2、及び滴下用開始剤溶液1を160分かけて槽内に滴下した。その後、滴下用モノマー溶液3及び滴下用開始剤溶液2を20分かけて槽内に滴下した。滴下終了後、更に65℃で1時間撹拌した。その後、撹拌を続けながらNMPを150g加え、80℃まで昇温した。槽内温度が80℃に到達したことを確認し、更に2時間撹拌した。次いで、450gのNMPを追加し、均一溶液になるまで撹拌した。希釈後、40℃以下まで空冷し、共重合体Iを得た。
[Synthesis Example 2] Synthesis of Copolymer I As a monomer solution for initial charging, a solution consisting of 4.8 g of SMA, 2.8 g of PEG (2) MA, 22.4 g of MAAm, and 89.3 g of NMP, and A mixed solution composed of 0.2 g of V-65B and 0.7 g of NMP was prepared as an initial charge initiator solution. Next, as a monomer solution 1 for dropping, a mixed solution consisting of 106.1 g of SMA and 61.9 g of PEG (2) MA and 8.2 g of NMP, and 67.6 g of MAAm as a monomer solution 2 for dropping, And a mixed solution consisting of 135.3 g of NMP, as a monomer solution 3 for dropping, a mixed solution consisting of 21.7 g of SMA, 12.7 g of PEG (2) MA, and 17.9 g of NMP, an initiator solution for dropping A mixed solution consisting of 1.4 g of V-65B and 43.2 g of NMP as 1 and a mixed solution of 0.2 g of V-65B and 5.4 g of NMP were prepared as the dropping initiator solution 2.
The monomer for initial charge was put into a separable flask equipped with a reflux tube, a stirrer, a thermometer, a nitrogen introduction tube, and a dropping funnel, and the inside of the reaction vessel was purged with nitrogen for 1 hour or more while stirring and heating to 65 ° C. After confirming that the bath temperature reached 65 ° C., the initial charge initiator solution was added while stirring. After stirring for 10 minutes, the dropping monomer solution 1, the dropping monomer solution 2 and the dropping initiator solution 1 were dropped into the tank over 160 minutes. Thereafter, the dropping monomer solution 3 and the dropping initiator solution 2 were dropped into the tank over 20 minutes. After completion of dropping, the mixture was further stirred at 65 ° C. for 1 hour. Thereafter, 150 g of NMP was added while stirring was continued, and the temperature was raised to 80 ° C. After confirming that the temperature in the tank reached 80 ° C., the mixture was further stirred for 2 hours. Next, 450 g of NMP was added and stirred until a homogeneous solution was obtained. After dilution, the mixture was air-cooled to 40 ° C. or less to obtain a copolymer I.

[比較合成例1]共重合体Oの合成
初期仕込み用溶液として、90gのNMPからなる溶液を作製した。次に、滴下用モノマー溶液1として、132.6gのSMA、77.4gのPEG(2)MA、90gのMAAm、及び300gのNMPからなる混合溶液、滴下用開始剤溶液1として3gのV−65B及び60gのNMPからなる混合溶液を作製した。
還流管、攪拌機、温度計、窒素導入管、及び滴下漏斗を取り付けたセパラブルフラスコに初期仕込み用モノマーを投入し、撹拌及び65℃に加熱にしながら反応槽内を1時間以上窒素置換した。槽内温度が65℃に到達したことを確認し、滴下用モノマー溶液1及び滴下用開始剤溶液1を180分かけて槽内に滴下した。滴下終了後、更に65℃で1時間撹拌した。その後、80℃まで昇温し、槽内温度が80℃に到達したことを確認し、更に2時間撹拌した。40℃以下まで空冷し、共重合体Oを得た。
[Comparative Synthesis Example 1] Synthesis of Copolymer O As an initial charging solution, a solution composed of 90 g of NMP was prepared. Next, as a monomer solution 1 for dropping, a mixed solution consisting of 132.6 g of SMA, 77.4 g of PEG (2) MA, 90 g of MAAm, and 300 g of NMP, and 3 g of V- A mixed solution consisting of 65B and 60 g of NMP was prepared.
The monomer for initial charge was put into a separable flask equipped with a reflux tube, a stirrer, a thermometer, a nitrogen introduction tube, and a dropping funnel, and the inside of the reaction vessel was purged with nitrogen for 1 hour or more while stirring and heating to 65 ° C. After confirming that the temperature in the tank reached 65 ° C., the dropping monomer solution 1 and the dropping initiator solution 1 were dropped into the tank over 180 minutes. After completion of dropping, the mixture was further stirred at 65 ° C. for 1 hour. Then, it heated up to 80 degreeC, it confirmed that the temperature in a tank reached | attained 80 degreeC, and also stirred for 2 hours. Air-cooled to 40 ° C. or lower to obtain a copolymer O.

[合成例3〜12、及び比較合成例2〜3]共重合体A〜G、J〜Nの合成
共重合体C〜Gは、初期モノマー溶液、初期開始剤溶液、滴下モノマー溶液1、滴下モノマー溶液2、滴下モノマー溶液3、滴下開始剤溶液1及び滴下開始剤溶液2を表1に記載の通りの組成としたこと、並びに希釈用溶媒量及び重合温度以外は、上記合成例1と同様の方法によりそれぞれ合成した。
共重合体A、B、J、K及びLは、初期モノマー溶液、初期開始剤溶液、滴下モノマー溶液1、滴下モノマー溶液2、滴下モノマー溶液3、滴下開始剤溶液1及び滴下開始剤溶液2を表1に記載の通りの組成としたこと、並びに希釈用溶媒量及び重合温度以外は、上記合成例2同様の方法によりそれぞれ合成した。
共重合体M及びNは、初期モノマー溶液、初期開始剤溶液、滴下モノマー溶液1、滴下モノマー溶液2、及び滴下開始剤溶液1を表1に記載の通りの組成としたこと、並びに重合温度以外は、上記比較合成例1同様の方法により合成した。
[Synthesis Examples 3 to 12 and Comparative Synthesis Examples 2 to 3] Synthesis of Copolymers A to G and J to N Copolymers C to G are an initial monomer solution, an initial initiator solution, a dropped monomer solution 1, and a drop. Monomer solution 2, dripped monomer solution 3, dripping initiator solution 1 and dripping initiator solution 2 have the same composition as shown in Table 1, and the same as in Synthesis Example 1 except for the amount of solvent for dilution and the polymerization temperature. The respective methods were synthesized.
Copolymers A, B, J, K, and L are prepared as follows: initial monomer solution, initial initiator solution, dropped monomer solution 1, dropped monomer solution 2, dropped monomer solution 3, dropped initiator solution 1 and dropped initiator solution 2. Each composition was synthesized in the same manner as in Synthesis Example 2 except that the composition was as shown in Table 1, and the amount of solvent for dilution and the polymerization temperature.
Copolymers M and N had initial monomer solution, initial initiator solution, dropped monomer solution 1, dropped monomer solution 2, and dropped initiator solution 1 as described in Table 1, and other than the polymerization temperature. Was synthesized by the same method as in Comparative Synthesis Example 1 above.

[共重合体の重量平均分子量の測定]
得られた各共重合体の重量平均分子量をゲル浸透クロマトグラフィー(GPC)測定より算出した。詳細な条件は以下に示すとおりである。重量平均分子量はすべてポリスチレン換算分子量である。サンプルは0.3質量%N,N−ジメチルホルムアミド溶液を調製し、0.2μmPTFEフィルターを通したものを用いた。測定結果を表1に示す。
測定装置:HLC−8320GPC(東ソー社製)
カラム :α−M+α−M(東ソー社製)
検出器 :示差屈折率検出器(RI)
溶離液 :60mmol/L HPO、50mmol/L LiBrのDMF溶液
流速 :1mL/min
カラム温度:40℃
試料溶液注入量:10μL
[Measurement of weight average molecular weight of copolymer]
The weight average molecular weight of each obtained copolymer was calculated from gel permeation chromatography (GPC) measurement. Detailed conditions are as follows. All weight average molecular weights are polystyrene conversion molecular weights. As the sample, a 0.3 mass% N, N-dimethylformamide solution prepared and passed through a 0.2 μm PTFE filter was used. The measurement results are shown in Table 1.
Measuring device: HLC-8320GPC (manufactured by Tosoh Corporation)
Column: α-M + α-M (manufactured by Tosoh Corporation)
Detector: Differential refractive index detector (RI)
Eluent: DMF solution flow rate of 60 mmol / L H 3 PO 4 , 50 mmol / L LiBr: 1 mL / min
Column temperature: 40 ° C
Sample solution injection volume: 10 μL

[アセチレンブラック(AB)ペーストの粘度の測定]
導電剤としてアセチレンブラック(AB)(デンカ社製デンカブラック粉状品)、結着剤としてのポリフッ化ビニリデン(クレハ社製#1100の12質量%NMP溶液)、及び非水系溶媒としてのNMPを用いてABペーストを作製した。導電剤及び結着剤の質量比率は50:50(固形分換算)とした。ABペーストはNMP量を調整することで固形分を15質量%とし、マルチブレンダーミルを用いた混練工程を経て作製した。
上記ABペースト20gに、ABに対して4質量%の各共重合体を添加し、自転・公転ミキサー(あわとり練太郎 AR−100)を用いて脱泡撹拌した(撹拌:2000rpm×4min、脱泡:2200rpm×1min)。粘度測定にはレオメータを使用した。測定は以下に示した条件にて実施した。得られたABペースト粘度を表1に示す。なお、共重合体を添加していないABペーストの粘度は42000mPa・sであった。
測定装置:Modular Compact Rheometer MCR 302(Anton Paar社製)
治具:25mmパラレルプレート
ギャップ幅:0.5mm
温度:20℃
せん断速度範囲:0.1−400s−1
測定点間隔:1s
[Measurement of viscosity of acetylene black (AB) paste]
Acetylene black (AB) (DENKA black powder product manufactured by Denka) as a conductive agent, polyvinylidene fluoride (a 12 mass% NMP solution of # 1100 manufactured by Kureha Co.) as a binder, and NMP as a non-aqueous solvent are used. Thus, an AB paste was prepared. The mass ratio of the conductive agent and the binder was 50:50 (solid content conversion). The AB paste was prepared through a kneading step using a multi-blender mill with a solid content of 15% by mass by adjusting the amount of NMP.
To 20 g of the AB paste, 4% by mass of each copolymer with respect to AB was added, and defoamed and stirred using a rotation / revolution mixer (Awatori Nertaro AR-100) (stirring: 2000 rpm × 4 min, demolding). Foam: 2200 rpm × 1 min). A rheometer was used for viscosity measurement. The measurement was carried out under the conditions shown below. The obtained AB paste viscosity is shown in Table 1. The viscosity of the AB paste to which no copolymer was added was 42000 mPa · s.
Measuring apparatus: Modular Compact Rheometer MCR 302 (manufactured by Anton Paar)
Jig: 25 mm Parallel plate gap width: 0.5 mm
Temperature: 20 ° C
Shear rate range: 0.1-400 s −1
Measuring point interval: 1s

[溶解率の測定]
共重合体の電解液への溶解性を確認する目的で、電解液に使用される溶媒への溶解率を測定した。得られた共重合体溶液をシャーレに入れ、140℃、窒素気流下にて12時間以上減圧乾燥した。得られた共重合体1gにエチレンカーボネートとジエチレンカーボネートとの混合溶媒(体積比50/50)9gを添加し、10%懸濁液を調製した。得られた懸濁液を40℃、1時間静置した。その後、0.5μmのPTFEフィルターでろ過し、溶解していない共重合体を除去した。ろ過した溶液を140℃、減圧、窒素気流下で乾燥することで混合溶媒に溶解した共重合体の質量を測定した。以下の式より、混合溶媒への溶解率を求めた。得られた溶解率を表1に示す。
[Measurement of dissolution rate]
In order to confirm the solubility of the copolymer in the electrolytic solution, the dissolution rate in the solvent used in the electrolytic solution was measured. The obtained copolymer solution was placed in a petri dish and dried under reduced pressure at 140 ° C. under a nitrogen stream for 12 hours or more. 9 g of a mixed solvent of ethylene carbonate and diethylene carbonate (volume ratio 50/50) was added to 1 g of the obtained copolymer to prepare a 10% suspension. The obtained suspension was allowed to stand at 40 ° C. for 1 hour. Then, it filtered with a 0.5 micrometer PTFE filter, and the undissolved copolymer was removed. The mass of the copolymer dissolved in the mixed solvent was measured by drying the filtered solution at 140 ° C. under reduced pressure and a nitrogen stream. The dissolution rate in the mixed solvent was determined from the following formula. The obtained dissolution rates are shown in Table 1.

Figure 2018170218
Figure 2018170218

[外観の評価]
27.5質量%の共重合体A/NMP溶液27.3g、及びNMP22.7gをサンプル瓶に加え、共重合体Aの15質量%NMP溶液を50g調製した。調製した溶液を60℃で1時間静置し、その後、外観を目視で評価した。共重合体B〜Oも同様の方法で評価した。評価結果を表1に示す。透明であるものは、共重合体が十分にNMPに溶解していることを示し、白濁が認められるものは、共重合体の少なくとも一部がNMPに溶解していないことを示す。
[Evaluation of appearance]
A 27.5 mass% copolymer A / NMP solution 27.3g and NMP 22.7g were added to the sample bottle, and 50 g of 15 mass% NMP solutions of the copolymer A were prepared. The prepared solution was allowed to stand at 60 ° C. for 1 hour, and then the appearance was visually evaluated. Copolymers B to O were also evaluated in the same manner. The evaluation results are shown in Table 1. Those that are transparent indicate that the copolymer is sufficiently dissolved in NMP, and those that are cloudy indicate that at least a part of the copolymer is not dissolved in NMP.

Figure 2018170218
Figure 2018170218

表1に示されるように、共重合体A〜Lは、電解液に対する溶解性が低いことが分かる。従って、共重合体A〜Lを含む電池用正極ペーストから得られた正極からは、共重合体の電解液への溶出が少なくなることが分かる。また、表1に示されるように、共重合体A〜Lを含むABペーストは、十分に粘度が低いことや、共重合体A〜Lは、分散媒であるNMPへの十分な溶解性を有することが分かる。なお、分子量の大きい共重合体Jは、NMPへの溶解性が比較的低く、ペースト粘度が比較的高い。一方、分子量の小さい共重合体Gは、電解液へ僅かながら溶解することがわかる。また、共重合体I、J、Lは其々の一部がNMPへ溶解していないことがわかる。   As shown in Table 1, it can be seen that the copolymers A to L have low solubility in the electrolytic solution. Therefore, it turns out that the elution to the electrolyte solution of a copolymer decreases from the positive electrode obtained from the positive electrode paste for batteries containing copolymer A-L. Further, as shown in Table 1, the AB paste containing the copolymers A to L has a sufficiently low viscosity, and the copolymers A to L have a sufficient solubility in NMP as a dispersion medium. It turns out that it has. The copolymer J having a large molecular weight has a relatively low solubility in NMP and a relatively high paste viscosity. On the other hand, it can be seen that the copolymer G having a small molecular weight is slightly dissolved in the electrolytic solution. It can also be seen that the copolymers I, J and L are not partly dissolved in NMP.

[実施例1〜7、比較例1]
共重合体を含有する正極ペーストを用いた正極合材層の密着性を確認するために、以下の密着性試験を行った。密着性試験1は極板の加工性能(スリット工程等)、密着性試験2は極板の巻回性能を模擬したものである。
[Examples 1 to 7, Comparative Example 1]
In order to confirm the adhesion of the positive electrode mixture layer using the positive electrode paste containing the copolymer, the following adhesion test was performed. The adhesion test 1 simulates the processing performance of the electrode plate (slit process, etc.), and the adhesion test 2 simulates the winding performance of the electrode plate.

[正極ペーストの作製]
上記合成例で合成した表2に示す共重合体、並びに正極活物質、導電剤、結着剤及び非水系分散媒を用いて実施例1〜7及び比較例1の各ペーストを作製した。正極活物質はLiNi1/3Mn1/3Co1/3、導電剤はアセチレンブラック(BET比表面積:68m/g)、結着剤はPVDF(クレハ社の「#1100」の12%NMP溶液)、非水系分散媒はNMPを用いた。また、正極活物質(活物質)、結着剤、導電剤及び共重合体の質量比率(固形分中の含有量)は表2に示す通りとした。正極ペーストは、上記非水系溶媒の量を調整することにより、固形分を調整し、マルチブレンダーミルを用いた混練工程を経て作製した。この実施例及び比較例において、正極ペーストの固形分とは、正極ペーストが含有する、正極活物質、結着剤、導電剤及び共重合体からなる材料、すなわち非水系分散媒以外の材料をいう。
[Preparation of positive electrode paste]
The pastes of Examples 1 to 7 and Comparative Example 1 were prepared using the copolymer shown in Table 2 synthesized in the above synthesis example, the positive electrode active material, the conductive agent, the binder, and the non-aqueous dispersion medium. The positive electrode active material is LiNi 1/3 Mn 1/3 Co 1/3 O 2 , the conductive agent is acetylene black (BET specific surface area: 68 m 2 / g), and the binder is PVDF (Kureha's “# 1100” 12 % NMP solution) and NMP was used as the non-aqueous dispersion medium. Further, the mass ratio (content in the solid content) of the positive electrode active material (active material), the binder, the conductive agent, and the copolymer was as shown in Table 2. The positive electrode paste was prepared through a kneading step using a multi-blender mill by adjusting the solid content by adjusting the amount of the non-aqueous solvent. In this example and comparative example, the solid content of the positive electrode paste refers to a material made of the positive electrode active material, a binder, a conductive agent, and a copolymer, that is, a material other than a non-aqueous dispersion medium. .

[正極板の作製]
得られた上記各正極ペーストを、ドクターブレードを用いて、基材としての厚さ20μmのアルミニウム箔の片面に塗工し、十分に乾燥することで正極ペーストからなる合材層(正極合材層)を有した正極板を作製した。乾燥後の正極板の塗工質量は17mg/cmであった。
[Production of positive electrode plate]
Each of the obtained positive electrode pastes was applied to one side of a 20 μm-thick aluminum foil as a base material using a doctor blade, and sufficiently dried to form a composite material layer (positive electrode composite material layer made of positive electrode paste) The positive electrode plate which has) was produced. The coating mass of the positive electrode plate after drying was 17 mg / cm 2 .

[密着性試験1]
上記乾燥後の正極板の合材層塗工部分を、裁断機を使用して30mm×60mmの長さに切断し、切断部の合材層を観察した。切断部において、合材層の幅1mm以上の脱落・剥離が生じたものを密着性不良、そうでない正極板は問題なしと判断した。密着性の結果を、密着性不良となった正極板は「B」、問題なしの正極板は「A」として、表2に示す。
[Adhesion test 1]
The mixture layer coating portion of the positive electrode plate after the drying was cut into a length of 30 mm × 60 mm using a cutting machine, and the mixture layer of the cut portion was observed. In the cut part, it was judged that a material layer with a width of 1 mm or more dropped and peeled was poor in adhesion, and a positive electrode plate that did not have no problem. The results of adhesion are shown in Table 2 as “B” for the positive electrode plate having poor adhesion and “A” for the positive electrode plate having no problem.

[密着性試験2]
密着性試験1と同じ様に、上記乾燥後の正極板の合材層塗工部分を、裁断機を使用して30mm×60mmの長さに切断した。切断した正極板を長辺方向の中間地点を中心に2回折り曲げた。1回目は未塗工面同士が接触するように180°折り曲げた後、折り曲げる前の状態に戻した。2回目は塗工面同士が接触するように180°折り曲げた後、折り曲げる前の状態に戻した。1回目の折り曲げ終了時(折り曲げる前に戻した状態)と、2回目の折り曲げ終了時(折り曲げる前に戻した状態)に、合材層の脱落状態を確認した。折り曲げた部分(長辺方向の中間地点)における正極板の短辺方向において、合材層が脱落・剥離した幅を計測した。そして、以下の式により合材層脱落率を算出した。
合材層脱落率(%)={合材層が脱落した幅(mm)/30(mm)}×100
この合材層脱落率を表2に示す。
[Adhesion test 2]
In the same manner as in the adhesion test 1, the mixture layer coating portion of the positive electrode plate after the drying was cut into a length of 30 mm × 60 mm using a cutting machine. The cut positive electrode plate was bent twice around an intermediate point in the long side direction. The first time, after bending 180 degrees so that the uncoated surfaces were in contact with each other, it was returned to the state before bending. The second time, after bending 180 ° so that the coated surfaces were in contact with each other, it was returned to the state before bending. At the end of the first bending (returned before bending) and at the end of the second bending (returned before bending), the falling state of the composite layer was confirmed. In the short side direction of the positive electrode plate at the bent portion (intermediate point in the long side direction), the width at which the composite material layer dropped and peeled was measured. And the composite-material layer drop-off rate was computed with the following formula | equation.
Compound layer drop-off rate (%) = {width (mm) / 30 (mm) from which the compound layer was dropped} × 100
Table 2 shows the drop rate of the composite material layer.

Figure 2018170218
Figure 2018170218

[結果]
密着性試験1の結果から、正極ペーストに共重合体とは別に結着剤を使用しない比較例1の場合は、密着性不良が生じることが判った。この様に、共重合体を含有し、結着剤を用いない正極ペーストは、リチウム電池等の電池には適していないと言える。
[result]
From the result of the adhesion test 1, it was found that in the case of Comparative Example 1 in which a binder is not used in the positive electrode paste separately from the copolymer, poor adhesion occurs. Thus, it can be said that the positive electrode paste containing a copolymer and not using a binder is not suitable for a battery such as a lithium battery.

また、密着性試験2から、正極ペーストの固形分中の共重合体の含有量が2質量%を超える実施例7では、正極板の折り曲げ時に合材層の脱落・剥離が起こりうることが判った。長尺な帯状形状を有する正極、第1のセパレータ、負極及び第2のセパレータが重ね合わされ、巻回軸を中心に扁平状に巻回される電極体では、巻回軸と直交する方向の両端の湾曲部の極板は、比較的鋭角に曲がっており、ケースへの挿入時等には一時的に折り曲げられるような形状になることもある。実施例7の様に、極板の折り曲げ時に合材層の脱落・剥離が起こるものは、巻回型電極体では合材層の脱落・剥離が生じる可能性がある。よって、正極ペーストの固形分中の共重合体の含有量は2質量%以下が好ましい。   Further, from the adhesion test 2, it was found that in Example 7 in which the content of the copolymer in the solid content of the positive electrode paste exceeds 2% by mass, the mixture layer can be detached and peeled when the positive electrode plate is bent. It was. In the electrode body in which the positive electrode, the first separator, the negative electrode, and the second separator having a long strip shape are overlapped and wound in a flat shape around the winding axis, both ends in the direction orthogonal to the winding axis The electrode plate of the curved portion is bent at a relatively acute angle, and may be temporarily bent when inserted into the case. As in Example 7, when the electrode plate is bent, the composite material layer is dropped and peeled off. In the wound electrode body, the composite material layer may be dropped and peeled off. Therefore, the content of the copolymer in the solid content of the positive electrode paste is preferably 2% by mass or less.

本発明は、二次電池等の電池用正極ペーストとして好適に用いることができる。   The present invention can be suitably used as a positive electrode paste for a battery such as a secondary battery.

Claims (5)

正極活物質、導電剤、結着剤、共重合体及び分散媒を含み、
上記共重合体が、下記式(1)で表される構成単位(a)、下記式(2)で表される構成単位(b)及び下記式(3)で表される構成単位(c)を含有し、
上記共重合体中の上記構成単位(c)の含有量が、15質量%以上45質量%以下である電池用正極ペースト。
Figure 2018170218
(式(1)〜(3)中、R、R、R、R、R、R、R、R10、R11、及びR12は、それぞれ独立して、水素原子、メチル基又はエチル基である。Rは、炭素数8〜30の1価の炭化水素基である。Rは、炭素数2〜4の直鎖状又は分岐状のアルキレン基である。pは、1〜50の数である。)
Including a positive electrode active material, a conductive agent, a binder, a copolymer and a dispersion medium,
The copolymer is a structural unit (a) represented by the following formula (1), a structural unit (b) represented by the following formula (2), and a structural unit (c) represented by the following formula (3). Containing
The battery positive electrode paste whose content of the said structural unit (c) in the said copolymer is 15 to 45 mass%.
Figure 2018170218
(In the formulas (1) to (3), R 1 , R 2 , R 3 , R 5 , R 6 , R 7 , R 9 , R 10 , R 11 , and R 12 are each independently a hydrogen atom. R 4 is a monovalent hydrocarbon group having 8 to 30 carbon atoms, and R 8 is a linear or branched alkylene group having 2 to 4 carbon atoms. p is a number from 1 to 50.)
上記共重合体の構成単位(a)と構成単位(b)との質量比(構成単位(a)/構成単位(b))が、0.5以上5以下である請求項1に記載の電池用正極ペースト。   2. The battery according to claim 1, wherein the mass ratio of the structural unit (a) and the structural unit (b) of the copolymer (structural unit (a) / structural unit (b)) is 0.5 or more and 5 or less. Positive electrode paste. 上記共重合体の重量平均分子量が、15,000以上100,000以下である請求項1又は請求項2に記載の電池用正極ペースト。   The battery positive electrode paste according to claim 1 or 2, wherein the copolymer has a weight average molecular weight of 15,000 or more and 100,000 or less. 上記共重合体の含有量が、上記導電剤100質量部に対して、0.5質量部以上30質量部以下である請求項1、請求項2又は請求項3に記載の電池用正極ペースト。   4. The positive electrode paste for a battery according to claim 1, wherein the content of the copolymer is 0.5 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the conductive agent. 上記分散媒が、非水系分散媒である請求項1から請求項4のいずれか1項に記載の電池用正極ペースト。   The battery positive electrode paste according to any one of claims 1 to 4, wherein the dispersion medium is a non-aqueous dispersion medium.
JP2017068390A 2017-03-30 2017-03-30 Positive electrode paste for batteries Active JP6889002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017068390A JP6889002B2 (en) 2017-03-30 2017-03-30 Positive electrode paste for batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017068390A JP6889002B2 (en) 2017-03-30 2017-03-30 Positive electrode paste for batteries

Publications (2)

Publication Number Publication Date
JP2018170218A true JP2018170218A (en) 2018-11-01
JP6889002B2 JP6889002B2 (en) 2021-06-18

Family

ID=64020548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017068390A Active JP6889002B2 (en) 2017-03-30 2017-03-30 Positive electrode paste for batteries

Country Status (1)

Country Link
JP (1) JP6889002B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170219A (en) * 2017-03-30 2018-11-01 株式会社Gsユアサ Positive electrode for battery, method for manufacturing the same, and battery
JPWO2020208881A1 (en) * 2019-04-12 2020-10-15
CN113748143A (en) * 2019-04-12 2021-12-03 花王株式会社 Dispersant composition for carbon nanotube
WO2022138613A1 (en) * 2020-12-25 2022-06-30 東亞合成株式会社 Secondary battery electrode binder and use of same
WO2022234827A1 (en) 2021-05-06 2022-11-10 花王株式会社 Dispersant for power storage device positive electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150778A1 (en) * 2012-04-03 2013-10-10 株式会社Gsユアサ Positive electrode for cell, and cell
JP2015072788A (en) * 2013-10-02 2015-04-16 株式会社Gsユアサ Positive electrode paste for nonaqueous secondary battery, positive electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2015153530A (en) * 2014-02-12 2015-08-24 日本ゼオン株式会社 Slurry composition for lithium ion secondary battery positive electrode, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018170219A (en) * 2017-03-30 2018-11-01 株式会社Gsユアサ Positive electrode for battery, method for manufacturing the same, and battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150778A1 (en) * 2012-04-03 2013-10-10 株式会社Gsユアサ Positive electrode for cell, and cell
JP2015072788A (en) * 2013-10-02 2015-04-16 株式会社Gsユアサ Positive electrode paste for nonaqueous secondary battery, positive electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2015153530A (en) * 2014-02-12 2015-08-24 日本ゼオン株式会社 Slurry composition for lithium ion secondary battery positive electrode, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018170219A (en) * 2017-03-30 2018-11-01 株式会社Gsユアサ Positive electrode for battery, method for manufacturing the same, and battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170219A (en) * 2017-03-30 2018-11-01 株式会社Gsユアサ Positive electrode for battery, method for manufacturing the same, and battery
JPWO2020208881A1 (en) * 2019-04-12 2020-10-15
WO2020208881A1 (en) * 2019-04-12 2020-10-15 花王株式会社 Dispersant for power storage device positive electrode
CN113678282A (en) * 2019-04-12 2021-11-19 花王株式会社 Dispersant for positive electrode of electricity storage device
CN113748143A (en) * 2019-04-12 2021-12-03 花王株式会社 Dispersant composition for carbon nanotube
JP7317105B2 (en) 2019-04-12 2023-07-28 花王株式会社 Dispersant for positive electrode of power storage device
CN113748143B (en) * 2019-04-12 2023-12-08 花王株式会社 Dispersant composition for carbon nanotubes
US11894559B2 (en) 2019-04-12 2024-02-06 Kao Corporation Dispersant composition for carbon nanotube
US11891502B2 (en) 2019-04-12 2024-02-06 Kao Corporation Dispersant for power storage device positive electrode
WO2022138613A1 (en) * 2020-12-25 2022-06-30 東亞合成株式会社 Secondary battery electrode binder and use of same
WO2022234827A1 (en) 2021-05-06 2022-11-10 花王株式会社 Dispersant for power storage device positive electrode

Also Published As

Publication number Publication date
JP6889002B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
EP3154113B1 (en) Binder composition for lithium ion secondary battery electrode-use, slurry composition for lithium ion secondary cell electrode-use, electroe for lithium secondary cell electrode-use, and lithium ion secondary cell
JP6889002B2 (en) Positive electrode paste for batteries
CN105247716B (en) Lithium ion secondary battery positive electrode binding material composition, lithium ion secondary battery positive electrode paste compound and its manufacture method, the manufacture method of lithium ion secondary battery anode and lithium rechargeable battery
TWI359171B (en)
EP3386016B1 (en) Composition for non-aqueous secondary battery adhesive layer, non-aqueous secondary battery adhesive layer, and non-aqueous secondary battery
JP6809466B2 (en) Composition for non-aqueous secondary battery functional layer, non-aqueous secondary battery functional layer and non-aqueous secondary battery
KR102674226B1 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP7476801B2 (en) Binder for secondary battery electrodes and its use
KR102493659B1 (en) Composition for nonaqueous secondary battery functional layers, functional layer for nonaqueous secondary batteries, and nonaqueous secondary battery
JP6287830B2 (en) Battery positive electrode and battery
JP2017069108A (en) Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery electrode and lithium ion secondary battery
WO2016152164A1 (en) Method for producing slurry composition for secondary battery positive electrode, positive electrode for secondary battery, and secondary battery
EP4036133A1 (en) Slurry composition for heat-resistant layer of nonaqueous secondary battery, heat-resistant layer for nonaqueous secondary battery and nonaqueous secondary battery
JP6285857B2 (en) Positive electrode paste for batteries
US12100840B2 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2015072788A (en) Positive electrode paste for nonaqueous secondary battery, positive electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2021039673A1 (en) Binder composition for heat-resistant layer of non-aqueous secondary battery, slurry composition for heat-resistant layer of non-aqueous secondary battery, heat-resistant layer of non-aqueous secondary battery, and non-aqueous secondary battery
JP6900735B2 (en) Battery positive electrode, battery positive electrode manufacturing method and battery
CN114097117B (en) Binder composition for heat-resistant layer of nonaqueous secondary battery, slurry composition for heat-resistant layer of nonaqueous secondary battery, heat-resistant layer for nonaqueous secondary battery, and nonaqueous secondary battery
JP6237306B2 (en) Slurry composition for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2021065187A1 (en) Binder composition for non-aqueous secondary battery and method for assessing same, slurry composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, battery member for non-aqueous secondary battery, and non-aqueous secondary battery
JP7207311B2 (en) Composition for electrochemical element functional layer, functional layer for electrochemical element, and electrochemical element
TW202201830A (en) Slurry composition for flexible electrode in secondary battery
WO2021200350A1 (en) Binder composition for non-aqueous secondary battery, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2020213722A1 (en) Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery positive electrode, positive electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210520

R150 Certificate of patent or registration of utility model

Ref document number: 6889002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250