JP2018169203A - Apparatus and method for gas absorption spectroscopy - Google Patents

Apparatus and method for gas absorption spectroscopy Download PDF

Info

Publication number
JP2018169203A
JP2018169203A JP2017064902A JP2017064902A JP2018169203A JP 2018169203 A JP2018169203 A JP 2018169203A JP 2017064902 A JP2017064902 A JP 2017064902A JP 2017064902 A JP2017064902 A JP 2017064902A JP 2018169203 A JP2018169203 A JP 2018169203A
Authority
JP
Japan
Prior art keywords
vector
wavelength
gas
measurement target
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017064902A
Other languages
Japanese (ja)
Inventor
塁 加藤
Rui Kato
塁 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2017064902A priority Critical patent/JP2018169203A/en
Publication of JP2018169203A publication Critical patent/JP2018169203A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a method and an apparatus for gas absorption spectroscopy capable of measuring gas concentration or the like with high accuracy in high-speed measurements.SOLUTION: A measurement target gas is irradiated with laser light whose wavelength changes, and a spectral profile representing a change in intensity with respect to the wavelength of the laser light having passed through the measurement target gas is obtained. The spectrum profile is polynomially approximated by an approximate polynomial within a range of a predetermined wavelength modulation width (a) at each point of the wavelength, and based on coefficients of each term of the approximate polynomial at each point, an nth-order differential curve including the zero order of the spectral profile is created. Characteristic values (peak area, height, and so on) of the created nth-order differential curve including the zero order are calculated by a plurality of wavelength modulation widths a1, ..., an, and are regarded as unknown vectors. The unknown vector is compared with a vector of the known gas calculated in advance in the same manner and the physical quantity of the measurement target gas is determined from the nearest known vector.SELECTED DRAWING: Figure 1

Description

本発明は、測定対象ガスのレーザー光吸収スペクトルに基づき、該ガスの濃度や温度、圧力等を測定するガス吸収分光装置及び方法に関する。このガス吸収分光装置及び方法は、自動車産業において、ガス濃度をはじめ温度、圧力の非接触、高速測定に適用可能であり、その他、プラント炉内の燃焼ガスのような高温・高圧環境におけるガス計測など多岐の分野において応用可能である。   The present invention relates to a gas absorption spectroscopic apparatus and method for measuring the concentration, temperature, pressure, and the like of a gas based on a laser light absorption spectrum of a measurement target gas. This gas absorption spectroscopy device and method can be applied to non-contact, high-speed measurement of gas concentration, temperature and pressure in the automotive industry, and gas measurement in high-temperature and high-pressure environments such as combustion gas in plant furnaces. It can be applied in various fields.

レーザーを用いたガス吸収分光法には以下の3つの方法がある。
(1) DLAS(Direct Laser Absorption Spectroscopy、レーザー直接吸収分光法)
(2) WMS(Wavelength Modulated Spectroscopy、波長変調分光法)
(3) CRDS(Cavity Ring Down Spectroscopy、キャビティリングダウン分光法)
There are the following three methods of gas absorption spectroscopy using a laser.
(1) DLAS (Direct Laser Absorption Spectroscopy)
(2) WMS (Wavelength Modulated Spectroscopy)
(3) CRDS (Cavity Ring Down Spectroscopy)

このうち、産業用ガス吸収分光装置としては、感度・ロバスト性(測定容易性)にバランスのとれたWMSが好適とされる(特許文献1)。WMSでは得られた吸収スペクトルの強度から容易にガス濃度が算出される。加えて、温度・圧力が常に変化する環境で圧力もしくは温度を直接測定できない環境においても、2波長を用いて測定を行うことによって、ガス濃度や温度を測定するアプリケーションに利用可能である。   Among these, as an industrial gas absorption spectrometer, WMS balanced in sensitivity and robustness (easiness of measurement) is suitable (Patent Document 1). In WMS, the gas concentration is easily calculated from the intensity of the obtained absorption spectrum. In addition, even in an environment where the pressure or temperature cannot be measured directly in an environment where the temperature and pressure constantly change, it can be used for applications that measure gas concentration and temperature by measuring using two wavelengths.

しかし、WMSには下記問題点が存在する。
1.高速測定を行うためには、掃引周期を短くすると共に高い波長変調周波数を必要とする。しかしながら、波長可変型のレーザーとして一般的に最も普及している注入電流制御型波長可変ダイオードレーザーを使用した場合、変調周波数を高めると注入電流に対する波長変化率が低下し、十分な波長変調幅(modulation depth)が得られない(非特許文献1)。
2.特にMHzを超えるような高速な変調に対しては波長変調幅を正確に測定することは難しく、高速測定において正確な波長変調幅を確定できない。そのため、測定結果から算出されるガス濃度・温度等の情報の不確定性が高くなる。
However, WMS has the following problems.
1. In order to perform high-speed measurement, the sweep cycle is shortened and a high wavelength modulation frequency is required. However, when an injection current control type tunable diode laser, which is most widely used as a wavelength tunable laser, is used, if the modulation frequency is increased, the wavelength change rate with respect to the injection current decreases, and a sufficient wavelength modulation width ( modulation depth) cannot be obtained (Non-Patent Document 1).
2. In particular, it is difficult to accurately measure the wavelength modulation width for high-speed modulation exceeding MHz, and an accurate wavelength modulation width cannot be determined in high-speed measurement. Therefore, the uncertainty of information such as gas concentration and temperature calculated from the measurement result is increased.

以上の要因により、高速測定において、従来のWMSでは精度の良いガス濃度・温度等の測定の困難さが著しく増加するという問題があった。
それに対し、特許文献2には、
a) 光源の波長を連続的に変化させつつ、測定対象ガスを通過してきた該光源からの光である測定対象ガス通過光の強度を検出するステップと、
b) 前記光源波長の変化に伴う前記測定対象ガス通過光の強度の変化の曲線(吸収線)を、波長の各点において所定の波長変調幅aの範囲内で近似多項式により近似するステップと、
c) 前記各点の近似多項式の各項の係数に基づき、前記吸収線のゼロ次を含むk次微分曲線を作成するステップと、
d) 前記ゼロ次を含むk次微分曲線の特徴値(ピーク面積、ピーク高さ等)に基づき前記測定対象ガスの温度、濃度、及び圧力のうちの少なくとも1つを決定するステップと
を含む方法が開示されている(これを演算波長変調分光法=Numerical Wavelength Modulated Spectroscopy: NWMSと呼ぶ。)。
Due to the above factors, in the high-speed measurement, the conventional WMS has a problem that the difficulty of measuring the gas concentration, temperature, etc. with high accuracy is remarkably increased.
On the other hand, in Patent Document 2,
a) detecting the intensity of the measurement target gas passing light that is light from the light source that has passed through the measurement target gas while continuously changing the wavelength of the light source;
b) approximating a curve (absorption line) of a change in intensity of the light passing through the measurement target gas with a change in the light source wavelength by an approximation polynomial within a predetermined wavelength modulation width a at each wavelength point;
c) creating a k-th order differential curve including the zeroth order of the absorption line based on the coefficient of each term of the approximate polynomial of each point;
d) determining at least one of a temperature, a concentration, and a pressure of the measurement target gas based on a characteristic value (peak area, peak height, etc.) of the k-th order differential curve including the zeroth order. (This is referred to as “Numerical Wavelength Modulated Spectroscopy: NWMS”).

なお、上記「波長」は「波数」と一義的に対応するものであり、「波数」を用いて同様の構成を組み立てることももちろん可能である。   The “wavelength” uniquely corresponds to the “wave number”, and it is of course possible to assemble a similar configuration using the “wave number”.

上記演算波長変調分光法では、測定対象ガスに照射する光(通常はレーザー光を用いるが、必ずしもそれに限定されない)は、DLASと同様、波長を変化させる(波長掃引を行う)ものの、WMSのようにそれを変調することはない。なお、波長掃引は、所定の最低周波数と最高周波数の間で1回だけ変化させる(掃引する)だけでもよいし、掃引を複数回繰り返してもよい。   In the above-described operational wavelength modulation spectroscopy, the light irradiated to the gas to be measured (usually, but not necessarily limited to laser light) changes the wavelength (performs a wavelength sweep), similar to DLAS, but is similar to WMS. Don't modulate it. The wavelength sweep may be changed only once (sweep) between a predetermined minimum frequency and a maximum frequency, or the sweep may be repeated a plurality of times.

この光は、測定対象ガスを通過した後、光検出器により受光され、その強度変化が検出される。波長掃引を行う波長範囲は、予め、測定対象ガスの吸収波長が含まれる範囲としておくため、光検出器により検出された光のスペクトルプロファイル(上記「前記光源波長の変化に伴う前記測定対象ガス通過光の強度の変化の曲線(吸収線)」)には、測定対象ガスに固有の波長を中心とする吸収ピークが現れる。   This light passes through the measurement target gas and is then received by the photodetector, and the intensity change is detected. Since the wavelength range for performing the wavelength sweep is set in advance to include the absorption wavelength of the measurement target gas, the spectrum profile of the light detected by the photodetector (see above “the measurement target gas passage accompanying the change in the light source wavelength”). In the curve of the change in light intensity (absorption line) "), an absorption peak centered on the wavelength specific to the measurement target gas appears.

演算波長変調分光法では、この吸収ピークを含むスペクトルプロファイルに対し、WMS処理に類似の数学的演算を行う。具体的には、各波長ポイントを中心に、WMSの波長変調幅に相当する区間のスペクトルプロファイルに対してk次多項式近似を行い、フーリエ変換の原理に基づきk次多項式の係数を用いてWMS信号振幅を再現する。その原理は次の通りである。   In the calculation wavelength modulation spectroscopy, a mathematical calculation similar to the WMS processing is performed on the spectrum profile including the absorption peak. Specifically, a k-order polynomial approximation is performed on the spectral profile of the section corresponding to the wavelength modulation width of WMS, centering on each wavelength point, and the WMS signal is used using the coefficient of the k-order polynomial based on the principle of Fourier transform. Reproduce the amplitude. The principle is as follows.

一般にWMS処理では、同期検波して得られるk次の高調波のスペクトルプロファイルは、近似的に吸収スペクトルをk階微分した波形になることが知られている(非特許文献2:Equation 8)。したがって、波長掃引で得られたスペクトルをk階微分すれば、k次の同期検波に相当するスペクトルが得られると考えられる。しかし、k階微分をすると計測データのノイズの影響が大きく実用上問題がある。そのため演算波長変調分光法では、高調波信号を求めたい波長を中心としたある範囲に対してk次多項式近似を行う。得られる多項式の係数はWMS処理により得られる高調波信号となる。このとき多項式近似を行う範囲がWMS処理での変調振幅に相当する。   In general, in WMS processing, it is known that the spectrum profile of the k-th harmonic obtained by synchronous detection is a waveform obtained by approximately k-order differentiation of the absorption spectrum (Non-Patent Document 2: Equation 8). Therefore, it is considered that a spectrum corresponding to k-th order synchronous detection can be obtained by k-order differentiation of a spectrum obtained by wavelength sweeping. However, if k-th order differentiation is performed, the influence of measurement data noise is large, which causes a practical problem. Therefore, in the calculation wavelength modulation spectroscopy, k-th order polynomial approximation is performed for a certain range centering on a wavelength for which a harmonic signal is desired to be obtained. The polynomial coefficient obtained is a harmonic signal obtained by WMS processing. At this time, the range in which the polynomial approximation is performed corresponds to the modulation amplitude in the WMS process.

この近似多項式の次数kは、高い方がより精度の高い近似を行うことができるが、一般的には一次又は二次多項式近似で十分である。   The higher the order k of the approximate polynomial, the more accurate approximation can be performed, but in general, a first-order or second-order polynomial approximation is sufficient.

演算波長変調分光法では、光源においては数100kHz以下の波長掃引のみしか行わないため、光源の注入電流に対する発振波長は正確に決定される。そして、その波長情報に基づいて数学的演算によりWMS処理を行うため、光源駆動電源・光源自体の非線形性の影響も受けず、正確な波長変調幅での高次同期検出が可能となる。   In the calculation wavelength modulation spectroscopy, only the wavelength sweep of several hundred kHz or less is performed in the light source, and therefore the oscillation wavelength with respect to the injection current of the light source is accurately determined. Since WMS processing is performed by mathematical calculation based on the wavelength information, high-order synchronization detection with an accurate wavelength modulation width is possible without being affected by the nonlinearity of the light source driving power source and the light source itself.

また、数学的処理によることから、1つの光源を用いながら同時に複数の変調幅によるWMSスペクトルを取得可能であり、従来2つ以上の光源を用いなければ測定できなかった温度測定を1つの光源で実現することも容易になる。さらに、温度測定する際には測定温度の圧力依存性を最小にするために変調幅を事前に最適に調整する必要があるが、演算波長変調分光法では後解析で変調幅を調整することができる。   In addition, because of the mathematical processing, it is possible to acquire WMS spectra with multiple modulation widths simultaneously using one light source, and temperature measurement that could not be measured without using two or more light sources with one light source. It is also easy to realize. Furthermore, when measuring temperature, it is necessary to optimally adjust the modulation width in advance in order to minimize the pressure dependence of the measurement temperature. However, in calculation wavelength modulation spectroscopy, the modulation width can be adjusted by post-analysis. it can.

特開2011-106560号公報JP 2011-106560 A 国際公開WO2014/106940号公報International Publication WO2014 / 106940 Publication

J.T.C. Liu, "Near-infrared diode laser absorption diagnostics for temperature and species in engines," Ph.D. dissertation, Dept. Mechanical Engineering, Stanford Univ., Stanford, CA, 2004(Figure 3.12)J.T.C. Liu, "Near-infrared diode laser absorption diagnostics for temperature and species in engines," Ph.D. dissertation, Dept. Mechanical Engineering, Stanford Univ., Stanford, CA, 2004 (Figure 3.12) Reid, J. and Labrie, D., "Second-harmonic detection with tunable diode lasers-comparison of experiment and theory," Appl. Phys. B 26, 203-210 (1981)Reid, J. and Labrie, D., "Second-harmonic detection with tunable diode lasers-comparison of experiment and theory," Appl. Phys. B 26, 203-210 (1981) "Calculation of molecular spectra with the Spectral Calculator", [平成25年1月7日検索],インターネット<URL:http://www.spectralcalc.com/info/CalculatingSpectra.pdf>"Calculation of molecular spectra with the Spectral Calculator", [searched January 7, 2013], Internet <URL: http: //www.spectralcalc.com/info/CalculatingSpectra.pdf> 福里 克彦, 池田 裕二, 中島 健,「半導体レーザ分光システムを用いたCO2ガスの計測 (第2報)」,日本機械学会論文集 B編, 2002, 68, 2901-2907Katsuhiko Fukusato, Yuji Ikeda, Ken Nakajima, "Measurement of CO2 gas using semiconductor laser spectroscopy system (2nd report)", Transactions of the Japan Society of Mechanical Engineers, B, 2002, 68, 2901-2907 G. B. Rieker, J. B. Jeffries, and R. K. Hanson, "Calibration-free wavelength modulation spectroscopy for measurements of gas temperature and concentration in harsh environments," Appl. Opt., submitted 2009G. B. Rieker, J. B. Jeffries, and R. K. Hanson, "Calibration-free wavelength modulation spectroscopy for measurements of gas temperature and concentration in harsh environments," Appl. Opt., Submitted 2009

一般的に、測定対象ガスの温度が高くなり、圧力が高くなると、気体分子間の衝突等によってその吸収線のピークの幅が広がる。また、測定対象ガスの濃度が低い場合も、吸収線のピークが広がる。演算波長変調分光法で或る波長変調幅で演算を行っている際に、測定対象ガスの状態(温度、圧力等)が変化し、そのピーク幅が変化する。そのため、測定により得た吸収線の形状によって最適な波長変調幅の値が異なる場合が生じ、演算結果の信頼性が確保されないという問題がある。   In general, when the temperature of the gas to be measured is increased and the pressure is increased, the peak width of the absorption line is widened by collision between gas molecules. Also, the peak of the absorption line is widened when the concentration of the measurement target gas is low. When calculation is performed with a certain wavelength modulation width in the calculation wavelength modulation spectroscopy, the state (temperature, pressure, etc.) of the measurement target gas changes, and the peak width changes. For this reason, there is a case where the optimum value of the wavelength modulation width varies depending on the shape of the absorption line obtained by measurement, and there is a problem that the reliability of the calculation result cannot be ensured.

本発明が解決しようとする課題は、測定対象ガスの状態の変化にも拘わらず、常に信頼性の高い演算を行うことのできるガス吸収分光測定法及び装置を提供することである。   The problem to be solved by the present invention is to provide a gas absorption spectroscopic measurement method and apparatus capable of always performing a highly reliable calculation regardless of a change in the state of the measurement target gas.

上記課題を解決するために成された本発明に係るガス吸収分光法は、
a) 条件の異なるガスについての既知の複数の吸収線についてそれぞれ、演算波長変調分光法によりn(nは2以上の整数)個の波長変調幅を用いてn個のk(kは0以上の整数)次微分曲線特徴値から成るベクトルである既知ベクトルを算出するステップと、
b) 光源の波長を連続的に変化させつつ、測定対象ガスを通過してきた該光源からの光である測定対象ガス通過光の強度を検出するステップと、
c) 前記光源波長の変化に伴う、前記測定対象ガス通過光の強度の変化の曲線に基づき、前記同様の方法で得られるn個のk次微分曲線特徴値から成るベクトルである未知ベクトルを算出するステップと、
d) 前記複数の既知ベクトルのうち、前記未知ベクトルに最も近い既知ベクトルを検出するステップと
を有することを特徴とする。
The gas absorption spectroscopy according to the present invention, which has been made to solve the above problems,
a) For each of a plurality of known absorption lines for gases with different conditions, n (n is an integer of 2 or more) wavelength modulation widths are used to calculate n k (k is 0 or more). An integer) calculating a known vector, which is a vector composed of the second derivative curve feature values;
b) detecting the intensity of light passing through the measurement target gas that is light from the light source that has passed through the measurement target gas while continuously changing the wavelength of the light source;
c) Calculate an unknown vector, which is a vector composed of n k-th order differential curve characteristic values obtained by the same method, based on a curve of a change in intensity of the light passing through the measurement target gas with a change in the light source wavelength. And steps to
d) detecting a known vector closest to the unknown vector among the plurality of known vectors.

本発明に係るガス吸収分光法では、まず、条件の異なる、すなわち、ガスの種類、濃度、温度又は圧力が異なる、複数のガスの既知の吸収線について、それぞれ、演算波長変調分光法により次のようなベクトル(既知ベクトル)を算出しておく。なお、各既知ベクトル算出の基礎となるガスの吸収線は、実際のガスについて実測したものであってもよいし、既存のデータベース(例えばHITRANデータベース=high-resolution transmission molecular absorption database等)のデータに基づき生成した吸収線であってもよい。
演算波長変調分光法とは、前記特許文献2に記載の方法をいう。具体的には前記のとおり、
a) 光源の波長を連続的に変化させつつ、測定対象ガスを通過してきた該光源からの光である測定対象ガス通過光の強度を検出するステップと、
b) 前記光源波長の変化に伴う前記測定対象ガス通過光の強度の変化の曲線(吸収線)を、波長の各点において所定の波長変調幅aの範囲内で近似多項式により近似するステップと、
c) 前記各点の近似多項式の各項の係数に基づき、前記吸収線のゼロ次を含むk次微分曲線を作成するステップと、
d) 前記ゼロ次を含むk次微分曲線の特徴値(ピーク面積、ピーク高さ等)に基づき前記測定対象ガスの温度、濃度、及び圧力のうちの少なくとも1つを決定するステップと
を含む方法である。
In the gas absorption spectroscopy according to the present invention, first, known absorption lines of a plurality of gases having different conditions, that is, different gas types, concentrations, temperatures, or pressures, are respectively calculated by arithmetic wavelength modulation spectroscopy. Such a vector (known vector) is calculated. Note that the gas absorption line that is the basis for calculating each known vector may be an actual measurement of actual gas, or it may be stored in the data of an existing database (for example, HITRAN database = high-resolution transmission molecular absorption database). The absorption line produced | generated based on may be sufficient.
The arithmetic wavelength modulation spectroscopy is a method described in Patent Document 2. Specifically, as mentioned above,
a) detecting the intensity of the measurement target gas passing light that is light from the light source that has passed through the measurement target gas while continuously changing the wavelength of the light source;
b) approximating a curve (absorption line) of a change in intensity of the light passing through the measurement target gas with a change in the light source wavelength by an approximation polynomial within a predetermined wavelength modulation width a at each wavelength point;
c) creating a k-th order differential curve including the zeroth order of the absorption line based on the coefficient of each term of the approximate polynomial of each point;
d) determining at least one of a temperature, a concentration, and a pressure of the measurement target gas based on a characteristic value (peak area, peak height, etc.) of the k-th order differential curve including the zeroth order. It is.

本発明に係るガス吸収分光法では、複数の既知吸収線についてそれぞれ、この演算波長変調分光法によりk次微分曲線を算出し、特徴値(ピーク面積、ピーク高さ等)を求める。この特徴値は、測定対象ガスの種類、濃度、温度又は圧力を反映したものとなる。本発明に係るガス吸収分光法では、演算波長変調分光法で用いる上記波長変調幅aの2以上の相異なる値(これらをa1, …, an(n≧2)とする。)を用いて、各既知吸収線についてk次微分曲線を算出し、特徴値を求める。すると、1つの吸収線について、異なる波長変調幅a1, …, anにより算出されたk次微分曲線の特徴値fka1, …, fkanから成るベクトルa(fka1, …, fkan)が得られる。これが前記既知ベクトルである。後述の本発明に係るガス吸収分光装置では、これらの既知ベクトルは既知ベクトル収納部に収納される。なお、波長変調幅の異なるa1, …, an(n≧2)に関して、波長変調幅によりfka1, …, fkanの相対的な大きさが決定されるため、波長変調幅a1, …, an(n≧2)に対応するベクトル要素fka1, …, fkanに対してそれぞれ係数α1, …,αnによる重み付けを付しても良い。係数α1, …,αnについては、各波長変調幅anにおいて温度、圧力、濃度を変化させて得られる全てのfka(fka1, …, fkan)の平均値や最大値に対する比によって決定すると良い。また、特に測定対象の条件に合った波長変調幅axに対応するベクトル要素fxに対して感度が良くなるように、それに対応する重み付けの係数αxを大きくしてもよい。 In the gas absorption spectroscopy according to the present invention, for each of a plurality of known absorption lines, a k-th order differential curve is calculated by this operation wavelength modulation spectroscopy to obtain a characteristic value (peak area, peak height, etc.). This characteristic value reflects the type, concentration, temperature, or pressure of the measurement target gas. In the gas absorption spectroscopy according to the present invention, two or more different values of the wavelength modulation width a used in the calculation wavelength modulation spectroscopy (these are assumed to be a 1 ,..., An (n ≧ 2)). Then, a k-th order differential curve is calculated for each known absorption line to obtain a feature value. Then, for one absorption line, different wavelength modulation width a 1, ..., wherein values f ka1 of k order derivative curve calculated by a n, ..., vector a consisting of f kan (f ka1, ..., f kan) Is obtained. This is the known vector. In the gas absorption spectrometer according to the present invention described later, these known vectors are stored in a known vector storage unit. For a 1 ,..., An (n ≧ 2) having different wavelength modulation widths, since the relative sizes of f ka1 ,..., F kan are determined by the wavelength modulation widths, the wavelength modulation widths a 1 ,. ..., vector element f ka1 corresponding to a n (n ≧ 2), ..., respectively coefficients alpha 1 relative to f kan, ..., may be subjected to weighting by alpha n. Coefficient alpha 1, ..., for the alpha n, the ratio with respect to temperature, pressure, all f ka (f ka1, ..., f kan) obtained by changing the density average value or the maximum value of each wavelength modulation width a n It is good to decide by. Further, the weighting coefficient α x corresponding to the vector element f x corresponding to the wavelength modulation width a x suitable for the measurement target condition may be increased.

次に、濃度、温度又は圧力が未知の測定対象ガスについて、光源の波長を連続的に変化させつつ、該測定対象ガスを通過してきた該光源からの光である測定対象ガス通過光の強度を検出する。そして、その強度変化の曲線に基づき、前記同様の方法で、n個のk次微分曲線特徴値から成るベクトルである未知ベクトルb(bka1, …, bkan)を算出する。この未知ベクトルbを、前記算出しておいた複数の既知ベクトル(これらをa 1 , …, a m とする)とそれぞれ比較し、未知ベクトルに最も近い既知ベクトルapを検出する。2つのベクトルが最も近いとは、両ベクトル間の角度が最も小さく次式で表される値Rabが最も大きくなることをいう。
Rab = (ab)/(|a|・|b|)
ただし、(ab)はベクトルabの内積である。こうして検出された既知ベクトル(最近既知ベクトル)a p と未知ベクトルbの長さの比
Qb = |a p |/|b|
は、最近既知ベクトルに対応するガス(種類、温度、圧力)と未知ベクトルに対応する測定対象ガスの濃度比に等しいと考えられる。従って、最近既知ベクトルに対応するガスの濃度cpより、測定対象ガスの濃度
c = cp/(|a p |/|b|)
を算出することができる。また、測定対象ガスの温度、圧力は最近既知ベクトルに対応するガスの温度、圧力に等しいと考えられる。
Next, for the measurement target gas whose concentration, temperature, or pressure is unknown, the intensity of the measurement target gas passing light, which is the light from the light source that has passed through the measurement target gas, while continuously changing the wavelength of the light source. To detect. Based on the intensity change curve, an unknown vector b (b ka1 ,..., B kan ), which is a vector composed of n k-th order differential curve feature values, is calculated by the same method as described above. The unknown vector b, a plurality of known vectors that had been the calculated (these a 1, ..., and a m) is compared respectively, to detect the closest known vectors ap unknown vector. That two vectors are closest means that the angle between both vectors is the smallest and the value R ab expressed by the following equation is the largest.
R ab = ( ab ) / (| a | ・ | b |)
However, ( a · b ) is an inner product of vectors a and b . Ratio of length of known vector (recently known vector) a p and unknown vector b detected in this way
Q b = | a p | / | b |
Is considered to be equal to the concentration ratio of the gas (type, temperature, pressure) corresponding to the recently known vector and the gas to be measured corresponding to the unknown vector. Therefore, from the gas concentration c p corresponding to the recently known vector, the concentration of the gas to be measured
c = c p / (| a p | / | b |)
Can be calculated. The temperature and pressure of the measurement target gas are considered to be equal to the temperature and pressure of the gas corresponding to the recently known vector.

なお、温度又は圧力については、測定対象ガスについて上記透過光強度を測定する際に同時に測定しておき、その実測値により予め検出対象となる既知ベクトルの範囲を限定しておくことが、精度向上の点から望ましい。   Note that the temperature or pressure is measured at the same time that the transmitted light intensity is measured for the gas to be measured, and the range of known vectors to be detected is limited in advance by the actual measurement value. From the point of view is desirable.

また、光源についても、その光源光の強度変化を透過光強度測定と同時に測定しておき、測定対象ガス通過光の強度を正規化(補償)しておくことが望ましい。   For the light source, it is desirable to measure the intensity change of the light source light simultaneously with the transmitted light intensity measurement and normalize (compensate) the intensity of the measurement target gas passage light.

なお、そのような光源光の強度を実際に測定することなく、特許文献2の[0033]以降に記載された方法に従い、光源光の強度変化を演算により正規化することも可能である。   In addition, it is also possible to normalize the intensity change of light source light by calculation according to the method described in [0033] and after in Patent Document 2 without actually measuring the intensity of such light source light.

上記課題を解決するために成された本発明に係るガス吸収分光装置は、
a) 条件の異なるガスについての既知の複数の吸収線についてそれぞれ、演算波長変調分光法においてn(nは2以上の整数)個の波長変調幅を用いて得られたn個のk(kは0以上の整数)次微分曲線特徴値から成るベクトルである既知ベクトルを収納しておく既知ベクトル収納部と、
b) 波長可変の光源と、
c) 前記光源で生成される光の波長を変化させる光源制御部と、
d) 前記光源で生成され、測定対象ガスを通過してきた光の強度を検出する光検出器と、
e) 前記光源制御部による波長の変化に伴う、前記光検出器で検出された光強度の変化の曲線に基づき前記同様の方法で得られるn個のk次微分曲線特徴値から成るベクトルである未知ベクトルを生成する未知ベクトル生成部と、
f) 前記既知ベクトル収納部に収納されている複数の既知ベクトルのうち、前記未知ベクトルに最も近い既知ベクトルを検出する決定部と
を備えることを特徴とする。
In order to solve the above problems, a gas absorption spectrometer according to the present invention comprises:
a) For each of a plurality of known absorption lines for gases with different conditions, n k (where k is an integer equal to or larger than 2) wavelength modulation widths obtained in the operation wavelength modulation spectroscopy are used. An integer greater than or equal to 0) a known vector storage unit that stores a known vector that is a vector composed of a characteristic value of the second derivative curve;
b) a tunable light source;
c) a light source controller that changes the wavelength of light generated by the light source;
d) a photodetector that detects the intensity of light generated by the light source and passed through the measurement target gas;
e) A vector composed of n k-th order differential curve feature values obtained by the same method based on a curve of a change in light intensity detected by the light detector accompanying a change in wavelength by the light source control unit. An unknown vector generator for generating an unknown vector;
and f) a determination unit that detects a known vector closest to the unknown vector among a plurality of known vectors stored in the known vector storage unit.

本発明に係るガス吸収分光法又はガス吸収分光装置では、1回の、そして1箇所の吸収波長における、吸光度測定のみで未知ガスの濃度や温度、圧力を決定することができる。また、予め対応する既知ベクトルを用意しておくことにより、温度や圧力が変化する測定対象ガスにも対応することができる。   In the gas absorption spectroscopy or gas absorption spectrometer according to the present invention, the concentration, temperature, and pressure of the unknown gas can be determined only by measuring the absorbance at one time and at one absorption wavelength. In addition, by preparing a corresponding known vector in advance, it is possible to deal with a measurement target gas whose temperature and pressure change.

本発明に係るガス吸収分光装置の一実施例の概略構成図。1 is a schematic configuration diagram of an embodiment of a gas absorption spectrometer according to the present invention. 本発明に係るガス吸収分光方法の一実施例に関するフローチャート。The flowchart regarding one Example of the gas absorption spectroscopy method which concerns on this invention. 本実施例における測定条件設定画面の一例。An example of the measurement condition setting screen in a present Example. 本実施例において光源に供給する駆動電流の一例。An example of the drive current supplied to a light source in a present Example. 本実施例における光検出器の検出信号の一例。An example of the detection signal of the photodetector in a present Example. 本実施例における吸収スペクトルの一例。An example of the absorption spectrum in a present Example. スペクトルプロファイルの多項式近似について説明する図。The figure explaining the polynomial approximation of a spectrum profile. 本実施例における二次高調波のプロファイル一例。An example of the profile of the 2nd harmonic in a present Example. 本実施例における既知ガスのデータベースの構成を説明する図。The figure explaining the structure of the database of the known gas in a present Example. 本発明に係るガス吸収分光装置の変形例の概略構成図。The schematic block diagram of the modification of the gas absorption spectrometer which concerns on this invention.

本発明に係るガス吸収分光装置及びガス吸収分光方法の実施例について、以下、図面を参照して説明する。   Embodiments of a gas absorption spectroscopy apparatus and a gas absorption spectroscopy method according to the present invention will be described below with reference to the drawings.

本実施例のガス吸収分光装置1は、図1に示すようにガスセル11内を流れる測定対象ガスの濃度等を測定する装置であり、大別して測定部10と制御部20から構成される。測定部10は、ガスセル11を挟んで一方にレーザー光源12と入射側レンズ16を、他方に出射側レンズ17と光検出器13を備え、また、レーザー光源12を駆動するための電流を供給する電源部14、光検出器13からの出力信号をデジタル変換するA/D変換器15、レーザー光源12からの光の一部を参照光として取り出すビームスプリッタ18、及び参照光用の光検出器19とを備えている。本実施例のレーザー光源12は半導体レーザーダイオードであり、電源部14から供給される駆動電流の大きさに応じた波長及び強度の光を発する。   As shown in FIG. 1, the gas absorption spectroscopic device 1 of this embodiment is a device that measures the concentration of a measurement target gas flowing in the gas cell 11, and is roughly composed of a measurement unit 10 and a control unit 20. The measurement unit 10 includes a laser light source 12 and an incident side lens 16 on one side with a gas cell 11 interposed therebetween, and an emission side lens 17 and a photodetector 13 on the other side, and supplies a current for driving the laser light source 12. A power supply unit 14, an A / D converter 15 that digitally converts an output signal from the photodetector 13, a beam splitter 18 that extracts a part of light from the laser light source 12 as reference light, and a photodetector 19 for reference light And. The laser light source 12 of the present embodiment is a semiconductor laser diode, and emits light having a wavelength and intensity corresponding to the magnitude of the drive current supplied from the power supply unit 14.

制御部20は、記憶部21のほか、機能ブロックとして光源制御部22、スペクトルプロファイル取得部23、未知ベクトル生成部24、最近既知ベクトル決定部25、及び測定結果提示部26を備えている。制御部20の実体はパーソナルコンピュータであり、各機能ブロックはCPUによってガス吸収分光用プログラムを実行することにより具現化される。また、制御部20には入力部30及び表示部40が接続されている。   In addition to the storage unit 21, the control unit 20 includes a light source control unit 22, a spectrum profile acquisition unit 23, an unknown vector generation unit 24, a recently known vector determination unit 25, and a measurement result presentation unit 26 as functional blocks. The entity of the control unit 20 is a personal computer, and each functional block is embodied by executing a gas absorption spectroscopy program by the CPU. An input unit 30 and a display unit 40 are connected to the control unit 20.

本実施例において測定対象ガスの濃度、温度、圧力等を測定する手順を、図2のフローチャートを参照して説明する。   A procedure for measuring the concentration, temperature, pressure and the like of the measurement object gas in this embodiment will be described with reference to the flowchart of FIG.

使用者が測定開始を指示すると、図3に示すような測定条件設定画面が表示される。測定条件設定画面には、測定対象ガスの種類、後述する未知ベクトルの生成に用いる波長変調幅の数及び次数の選択欄と、測定対象ガスの濃度、温度、及び圧力という測定項目の選択欄が表示されている。使用者は各項目をそれぞれ選択入力し測定条件を決定する(ステップS1)。なお、本実施例における波長変調幅の単位は波数であるが、従来用いられていたWMSにおける波長変調幅に対応するものであることを鑑みて波長変調幅と呼ぶ。また波長を単位とする波長変調幅を用いてもよい。   When the user instructs the start of measurement, a measurement condition setting screen as shown in FIG. 3 is displayed. On the measurement condition setting screen, there are columns for selecting the type of gas to be measured, the number and order of wavelength modulation widths used to generate an unknown vector, which will be described later, and columns for measuring items such as the concentration, temperature, and pressure of the gas to be measured. It is displayed. The user selects and inputs each item to determine measurement conditions (step S1). The unit of the wavelength modulation width in this embodiment is a wave number, but it is called a wavelength modulation width in view of the fact that it corresponds to the wavelength modulation width in WMS that has been used conventionally. Further, a wavelength modulation width in units of wavelength may be used.

使用者により測定条件が決定されると、光源制御部22は、レーザー光源12より所定の最低波長のレーザー光を放射させ、その波長を順次変化させて最高波長まで掃引するという波長走査を周期Tで繰り返す(ステップS2、図4参照)。この所定の最低波長と最高波長は、それらの間に測定対象ガスにより吸収される光の波長が含まれるように予め決められている。レーザー光源12からの光はガスセル11中の測定対象ガスを通過し、そこでその測定対象ガスに応じた波長において吸収を受ける。測定対象ガスを通過したレーザー光は、光検出器13でその強度が検出される。光検出器13から出力される検出信号はA/D変換器15でデジタル化され、記憶部21に保存される(図5参照)。   When the measurement condition is determined by the user, the light source control unit 22 radiates laser light having a predetermined minimum wavelength from the laser light source 12, and sequentially changes the wavelength and sweeps the wavelength to the maximum wavelength T. (Step S2, see FIG. 4). The predetermined minimum wavelength and the maximum wavelength are determined in advance so that the wavelength of light absorbed by the measurement target gas is included between them. The light from the laser light source 12 passes through the measurement target gas in the gas cell 11 and is absorbed there at a wavelength corresponding to the measurement target gas. The intensity of the laser light that has passed through the measurement target gas is detected by the photodetector 13. The detection signal output from the photodetector 13 is digitized by the A / D converter 15 and stored in the storage unit 21 (see FIG. 5).

スペクトルプロファイル取得部23は、記憶部21に保存された検出信号と参照光強度から、図6に示すような測定対象ガスの吸収スペクトル(スペクトルプロファイル)を取得する(ステップS3)。吸収スペクトルのピーク深さは測定対象ガスの濃度を、ピーク幅は測定対象ガスの圧力や温度を反映している。   The spectrum profile acquisition unit 23 acquires the absorption spectrum (spectrum profile) of the measurement target gas as shown in FIG. 6 from the detection signal and the reference light intensity stored in the storage unit 21 (step S3). The peak depth of the absorption spectrum reflects the concentration of the measurement target gas, and the peak width reflects the pressure and temperature of the measurement target gas.

測定対象ガスのスペクトルプロファイルが得られると、未知ベクトル生成部24は、使用者により決定された波長変調幅の数(本実施例では4)の異なる波長変調幅a1〜a4(本実施例ではa1=0.1cm-1、a2=0.2cm-1、a3=0.4cm-1、a4=0.8cm-1)を用いてこのスペクトルプロファイルを多項式近似する(ステップS4)。波長変調幅の数と値は、予め対応付けられて記憶部21に保存されており、使用者がステップS1において波長変調幅の数を決定すると自動的にこれらの値が読み出される。 When the spectrum profile of the measurement target gas is obtained, the unknown vector generation unit 24 uses different wavelength modulation widths a 1 to a 4 (this embodiment) having different numbers of wavelength modulation widths (4 in this embodiment) determined by the user. Then, this spectral profile is approximated by a polynomial using (a 1 = 0.1 cm −1 , a 2 = 0.2 cm −1 , a 3 = 0.4 cm −1 , a 4 = 0.8 cm −1 ) (step S4). The number and value of the wavelength modulation width are associated with each other in advance and stored in the storage unit 21. When the user determines the number of wavelength modulation widths in step S1, these values are automatically read out.

ここで、未知ガススペクトル作成部24が行う多項式近似による演算波長変調分光法(NWMS: Numerical Wavelength Modulated Spectroscopy)について、従来のWMSで行われる方法と比較して説明する。   Here, a numerical wavelength modulation spectroscopy (NWMS) by polynomial approximation performed by the unknown gas spectrum creation unit 24 will be described in comparison with a method performed by a conventional WMS.

一般に、大気圧下の環境において吸収ピークは次のローレンツ関数で表わされることが知られている。

Figure 2018169203
ただし、νは波数、Aはピーク面積、νcはピーク波数、αLはローレンツ広がりの半値半幅である。 In general, it is known that an absorption peak is represented by the following Lorentz function in an environment under atmospheric pressure.
Figure 2018169203
Where ν is the wave number, A is the peak area, ν c is the peak wave number, and α L is the half-value half-width of the Lorentz broadening.

WMS法に基づき入射レーザー光に波長変調幅aの変調を与え、上記吸収プロファイルを有するガスを透過した光に対し、ロックインアンプによる同期検波を行った場合、そのn次の同期検波によるスペクトルは次式により得られる(非特許文献2)。

Figure 2018169203
ν:波数(なお、本願の本文中では、電子出願の制限により、上付線を下線で表現する。)、τ:透過スペクトルのプロファイル、a:波長変調幅 Based on the WMS method, modulation of wavelength modulation width a is applied to the incident laser light, and when synchronous detection with a lock-in amplifier is performed on the light transmitted through the gas having the above absorption profile, the spectrum by the n-th order synchronous detection is It is obtained by the following formula (Non-patent Document 2).
Figure 2018169203
ν : wave number (in the text of the present application, the superscript line is expressed as an underline due to limitations of electronic application), τ: profile of transmission spectrum, a: wavelength modulation width

式(2)のままでも数学的演算によりWMS相当の処理を行うことができるが、式の形が複雑であり実用的ではない。そこで、NWMSでは、これを多項式を用いて演算を行うことにより、高速且つ簡便にWMSの高次(ゼロ次を含む)検波処理相当の処理を行い、測定対象ガスの各種物理量を測定する。   Even with equation (2), processing equivalent to WMS can be performed by mathematical calculation. However, the form of the equation is complicated and not practical. Therefore, in NWMS, by performing calculations using polynomials, processing equivalent to WMS high-order (including zero-order) detection processing is performed at high speed and simply, and various physical quantities of the measurement target gas are measured.

本実施例では、得られたスペクトルプロファイルの、波数軸の各点νを中心とする幅2a'の範囲[ν−a'<ν<ν+a']を

Figure 2018169203
で近似する。これを図7に模式的に示す。式(3)のn次微分を求めると
Figure 2018169203
となる。一般に、WMS処理で同期検波して得られるn次の高調波のスペクトルプロファイルは、近似的に次式で示されることが知られている(非特許文献2:Equation 8)。
Figure 2018169203
したがって、式(4)、(5)より
Figure 2018169203
となる。したがって、DLASスペクトルにおいて波数νに対するWMS信号を算出するためには、[ν−a'<ν<ν+a']の波数の範囲を最小二乗法等によりフィッティングし、多項式の係数b0、b1、b2、b3…を求める。νを逐次変化させてフィッティングにより求めた係数b1とb2のプロファイルが、1f(一次)と2f(二次)のWMSプロファイルに相当するものとなる。なお、フィッティングの範囲を表す波長幅a'は、WMSにおける波長変調幅に相当する。 In this example, the range [ ν− a ′ <ν < ν + a ′] of the width 2a ′ around each point ν of the wavenumber axis of the obtained spectral profile is expressed as
Figure 2018169203
Approximate. This is schematically shown in FIG. Finding the nth derivative of equation (3)
Figure 2018169203
It becomes. In general, it is known that the spectrum profile of the n-th harmonic obtained by synchronous detection by WMS processing is approximately expressed by the following equation (Non-patent Document 2: Equation 8).
Figure 2018169203
Therefore, from equations (4) and (5)
Figure 2018169203
It becomes. Therefore, in order to calculate the WMS signal for the wave number ν in the DLAS spectrum, the wave number range of [ ν− a ′ <ν < ν + a ′] is fitted by the least square method or the like, and the coefficients b 0 and b 1 of the polynomial are obtained. , B 2 , b 3 ... The profiles of the coefficients b 1 and b 2 obtained by fitting by sequentially changing ν correspond to the WMS profiles of 1f (primary) and 2f (secondary). The wavelength width a ′ representing the fitting range corresponds to the wavelength modulation width in WMS.

本実施例では、測定対象ガスの測定により得られたスペクトルプロファイルに対し、複数(本実施例では4個)の波長変調幅(a1=0.1cm-1、a2=0.2cm-1、a3=0.4cm-1、a40.8cm-1)のそれぞれにより多項式近似する。これにより、4種類の多項式が得られる。図8に、波長変調幅が0.1cm-1、0.2cm-1、0.4cm-1、0.8cm-1のそれぞれについて得られた二次高調波のスペクトルプロファイルを示す。図8から分かるように、波長変調幅の値によって二次高調波のプロファイルの形状が異なる。 In the present embodiment, a plurality of (four in the present embodiment) wavelength modulation widths (a 1 = 0.1 cm −1 , a 2 = 0.2 cm −1 , a with respect to the spectrum profile obtained by measuring the measurement target gas. 3 = 0.4 cm -1 and a 4 0.8 cm -1 ) respectively. As a result, four types of polynomials are obtained. FIG. 8 shows spectral profiles of second harmonics obtained for wavelength modulation widths of 0.1 cm −1 , 0.2 cm −1 , 0.4 cm −1 , and 0.8 cm −1 , respectively. As can be seen from FIG. 8, the shape of the second harmonic profile differs depending on the value of the wavelength modulation width.

未知ベクトル生成部24は、続いて、吸収スペクトルのピーク波長νcにおける多項式のk次の項の係数を特徴値として取得し、各波長変調幅a1〜a4に関するk次の特徴値を成分とするベクトル(未知ベクトル)を生成する(ステップS5)。本実施例では、使用者により事前に決定された二次の項の係数を用いて4次元のベクトルb(b2a1, …, b2a4)を算出する。このベクトルb(b2a1, …, b2a4)は、測定対象ガスのスペクトルプロファイルにおける吸収ピークの深さ及び形状を反映したものとなる。より詳しくは、ベクトルbの方向は吸収ピークの形状を反映し、ベクトルbの大きさは測定対象ガスの濃度を反映する。 Subsequently, the unknown vector generation unit 24 obtains the coefficient of the k-th order term of the polynomial at the peak wavelength ν c of the absorption spectrum as the feature value, and the k-th order feature value relating to each of the wavelength modulation widths a 1 to a 4 as components. (Unknown vector) is generated (step S5). In the present embodiment, a four-dimensional vector b (b 2a1 ,..., B 2a4 ) is calculated using the coefficients of the second-order terms determined in advance by the user. This vector b (b 2a1 ,..., B 2a4 ) reflects the depth and shape of the absorption peak in the spectrum profile of the measurement target gas. More specifically, the direction of the vector b reflecting the shape of the absorption peak, the magnitude of the vector b reflects the concentration of the measured gas.

記憶部21には、複数のガスについて、それぞれ濃度、圧力、及び温度が異なるスペクトルプロファイルから上記同様の演算処理により求められた既知ベクトルの成分(各波長変調幅に対する値)が、濃度、圧力、及び温度といったガスのプロファイルと対応付けられデータベースとして保存されている(図9参照)。データベースに保存する既知ベクトルの成分は、実測データについて上記同様の演算処理を行って求めたものであってもよく、あるいはHITRANデータベース等のデータベースに保存されているスペクトルプロファイルに対して上記同様の演算処理を行って求めたものであってもよい。   In the storage unit 21, the components of known vectors (values corresponding to the respective wavelength modulation widths) obtained by the same calculation process from spectrum profiles having different concentrations, pressures, and temperatures for the plurality of gases are stored in the concentration, pressure, And stored as a database in association with gas profiles such as temperature (see FIG. 9). The known vector component stored in the database may be obtained by performing the same calculation process as above on the measured data, or the same calculation as described above for the spectrum profile stored in the database such as the HITRAN database. It may be obtained by performing processing.

最近既知ベクトル決定部25は、未知ベクトル生成部により算出された未知ベクトルb(b2a1, …, b2a4)に対応する波長変調幅の値を読み出し、それらを成分とする既知ベクトルを生成する。具体的には、測定対象ガスと同じ種類のガス(ガスA)について、圧力と温度の組み合わせ1〜mのそれぞれについて、波長変調幅が0.1cm-1、0.2cm-1、0.4cm-1、0.8cm-1である成分の値を読み出して4次元の既知ベクトルa 1 , …, a m を生成する。そして、これらを未知ベクトルと比較し、未知ベクトルに最も近い既知ベクトル(最近既知ベクトル)a p を決定する(ステップS6)。ここで、2つのベクトルが最も近いとは、両ベクトル間の角度が最も小さく次式で表される値Rabが最も大きくなることをいう。
Rab = (ab)/(|a|・|b|)
ただし、(ab)はベクトルabの内積である。
The recently known vector determination unit 25 reads out the value of the wavelength modulation width corresponding to the unknown vector b (b 2a1 ,..., B 2a4 ) calculated by the unknown vector generation unit, and generates a known vector having these as components. Specifically, the measurement target gas and the same type of gas (gas A), for each of the pressure and temperature combinations 1 to m, the wavelength modulation width is 0.1cm -1, 0.2cm -1, 0.4cm -1 , known vectors a 1 four-dimensional read the value of the component is 0.8 cm -1, ..., to generate a m. Then, these are compared with an unknown vector, and a known vector (most recently known vector) a p closest to the unknown vector is determined (step S6). Here, “the two vectors are closest” means that the angle between the two vectors is the smallest and the value R ab expressed by the following equation is the largest.
R ab = ( ab ) / (| a | ・ | b |)
However, ( a · b ) is an inner product of vectors a and b .

最近既知ベクトルが決定すると、続いて、最近既知ベクトルa p と未知ベクトルbの長さの比
Qb = |a p |/|b|
を求める。この値は、最近既知ベクトルに対応するガス(種類、温度、圧力)と未知ベクトルに対応する測定対象ガスの濃度比に相当する。従って、最近既知ベクトルに対応するガスの濃度cpから、測定対象ガスの濃度
c = cp/(|a p |/|b|)
が求められる。
Once the recently known vector is determined, the ratio of the length of the recently known vector a p to the unknown vector b
Q b = | a p | / | b |
Ask for. This value corresponds to the concentration ratio of the gas (type, temperature, pressure) corresponding to the recently known vector and the measurement target gas corresponding to the unknown vector. Therefore, from the gas concentration c p corresponding to the recently known vector, the concentration of the gas to be measured
c = c p / (| a p | / | b |)
Is required.

測定対象ガスの濃度が決定されると、測定結果提示部26は、その濃度を、最近既知ベクトルapに対応付けられた圧力及び温度とともに表示部40に表示する(ステップS7)。 When the concentration of the measurement target gas is determined, the measurement result presentation unit 26 displays the concentration on the display unit 40 together with the pressure and temperature associated with the recently known vector ap (step S7).

特許文献1に記載されているように、NWMS法自体は従来から用いられているが、従来のNWMS法は1つの波長変調幅を用いて多項式を求めていた。ガスの吸収スペクトル(スペクトルプロファイル)はガスの温度、圧力、及び濃度によって異なり、そのピーク形状によって最適な波長変調幅が異なる。そのため、例えば測定対象ガスに含まれる測定対象ガスの濃度等が時間的に変化して吸収スペクトルのピーク幅が変化すると、その形状に適さない波長変調幅を用いた演算処理によって測定対象ガスの濃度等を求めてしまい、正しい濃度等を得ることができない場合があった。これに対し、本実施例では、複数の波長変調幅のそれぞれについて多項式を求め、予め決められた次数の項の係数を用いて多次元の未知ベクトルを作成する。また、未知ベクトルを、濃度等が既知であるガスについて同様の方法で作成された既知ベクトルと比較することにより濃度等を求める。このように、複数の波長変調幅を用い、さらに既知ベクトルとの比較により濃度等を決定するため、測定対象ガスの状態の変化に関係なく、常に信頼性の高い演算を行うことができる。   As described in Patent Document 1, the NWMS method itself has been conventionally used, but the conventional NWMS method has obtained a polynomial using one wavelength modulation width. The absorption spectrum (spectral profile) of the gas varies depending on the temperature, pressure, and concentration of the gas, and the optimum wavelength modulation width varies depending on the peak shape. Therefore, for example, when the concentration of the measurement target gas contained in the measurement target gas changes with time and the peak width of the absorption spectrum changes, the concentration of the measurement target gas is determined by an arithmetic process using a wavelength modulation width that is not suitable for the shape. In some cases, the correct concentration or the like cannot be obtained. In contrast, in this embodiment, a polynomial is obtained for each of a plurality of wavelength modulation widths, and a multidimensional unknown vector is created using a coefficient of a term of a predetermined order. Further, the concentration or the like is obtained by comparing the unknown vector with a known vector created by a similar method for a gas whose concentration or the like is known. In this manner, since a concentration or the like is determined by using a plurality of wavelength modulation widths and comparing with a known vector, a highly reliable calculation can always be performed regardless of a change in the state of the measurement target gas.

上記実施例は一例であって、本発明の趣旨に沿って適宜に変更することができる。
上記実施例では、未知ベクトルと既知ベクトルを比較した結果から濃度、圧力、及び温度を決定したが、図10に示す変形例(図10では測定部10の構成のみ図示)のように、ガスセル11内の圧力と温度を測定する温度・圧力センサ50を用いて圧力や温度の値を求め、記憶部21に保存された既知ベクトルの成分データの中からそれらの値に近いもののみを抽出して未知ベクトルと比較するようにしてもよい。この場合、未知ベクトルと比較する既知ベクトルの数が減少し、演算処理に係る負荷が軽減されるため高速処理が可能になり、時々刻々と変化する測定対象ガスの濃度等の変化をほぼリアルタイムでモニタリングすることができる。また、圧力や温度は実測値であるため誤りが生じる心配がない。
The above-described embodiment is an example, and can be appropriately changed in accordance with the gist of the present invention.
In the above embodiment, the concentration, pressure, and temperature are determined from the result of comparing the unknown vector with the known vector. However, as in the modification shown in FIG. 10 (only the configuration of the measurement unit 10 is shown in FIG. 10), the gas cell 11 A pressure / temperature value is obtained by using a temperature / pressure sensor 50 for measuring the pressure and temperature in the inside, and only those close to those values are extracted from the component data of known vectors stored in the storage unit 21. You may make it compare with an unknown vector. In this case, the number of known vectors to be compared with the unknown vector is reduced, and the load related to the arithmetic processing is reduced, so that high-speed processing is possible. Can be monitored. In addition, since the pressure and temperature are actually measured values, there is no fear of errors.

上記実施例では、多項式の二次の項の係数をそのまま用いたが、これを正規化処理した値を用いるようにしても良い。ここでいう正規化処理とは、ガスセル11で使用している光学部品の汚れや劣悪環境下での振動による光軸変化等に起因する光強度の変化の影響を低減する処理である。特許文献1にその具体的な内容が記載されているため、ここでは詳細な説明を省略するが、例えば二次の項の係数(WMSにおける2f信号に相当する値)を一次の項の係数(WMSにおける1f信号に相当する値)あるいはゼロ次の項の係数で除することにより正規化処理を行うことができる。これにより、光強度に依存しないロバストなガス計測が可能となる。   In the above embodiment, the coefficient of the quadratic term of the polynomial is used as it is, but a value obtained by normalizing this may be used. Here, the normalization process is a process for reducing the influence of a change in light intensity caused by a change in the optical axis due to contamination of an optical component used in the gas cell 11 or vibration in a poor environment. Since the specific contents are described in Patent Document 1, detailed description is omitted here. For example, the coefficient of the second-order term (value corresponding to 2f signal in WMS) is changed to the coefficient of the first-order term ( Normalization processing can be performed by dividing by a coefficient of a zero-order term) (value corresponding to 1f signal in WMS). This makes it possible to perform robust gas measurement independent of light intensity.

10…測定部
12…レーザー光源
13…光検出器
14…電源部
15…A/D変換器
16…入射側レンズ
17…出射側レンズ
18…ビームスプリッタ
19…光検出器
50…圧力・温度センサ
20…制御部
21…記憶部
22…光源制御部
23…スペクトルプロファイル取得部
24…未知ベクトル生成部
25…最近既知ベクトル決定部
26…測定結果提示部
DESCRIPTION OF SYMBOLS 10 ... Measurement part 12 ... Laser light source 13 ... Photodetector 14 ... Power supply part 15 ... A / D converter 16 ... Incident side lens 17 ... Outlet side lens 18 ... Beam splitter 19 ... Optical detector 50 ... Pressure / temperature sensor 20 ... Control unit 21 ... Storage unit 22 ... Light source control unit 23 ... Spectral profile acquisition unit 24 ... Unknown vector generation unit 25 ... Recently known vector determination unit 26 ... Measurement result presentation unit

Claims (6)

a) 条件の異なるガスについての既知の複数の吸収線についてそれぞれ、演算波長変調分光法によりn(nは2以上の整数)個の波長変調幅を用いてn個のk(kは0以上の整数)次微分曲線特徴値から成るベクトルである既知ベクトルを算出するステップと、
b) 光源の波長を連続的に変化させつつ、測定対象ガスを通過してきた該光源からの光である測定対象ガス通過光の強度を検出するステップと、
c) 前記光源波長の変化に伴う、前記測定対象ガス通過光の強度の変化の曲線に基づき、前記同様の方法で得られるn個のk次微分曲線特徴値から成るベクトルである未知ベクトルを算出するステップと、
d) 前記複数の既知ベクトルのうち、前記未知ベクトルに最も近い既知ベクトルを検出するステップと
を有することを特徴とするガス吸収分光法。
a) For each of a plurality of known absorption lines for gases with different conditions, n (n is an integer of 2 or more) wavelength modulation widths are used to calculate n k (k is 0 or more). An integer) calculating a known vector, which is a vector composed of the second derivative curve feature values;
b) detecting the intensity of light passing through the measurement target gas that is light from the light source that has passed through the measurement target gas while continuously changing the wavelength of the light source;
c) Calculate an unknown vector, which is a vector composed of n k-th order differential curve characteristic values obtained by the same method, based on a curve of a change in intensity of the light passing through the measurement target gas with a change in the light source wavelength. And steps to
d) detecting a known vector closest to the unknown vector among the plurality of known vectors.
前記測定対象ガス通過光の強度を検出するステップにおいて測定対象ガスの温度又は圧力を測定し、前記既知ベクトルを検出するステップにおいて該温度又は圧力の測定値に基づき予め検出対象となる既知ベクトルの範囲を限定しておく請求項1に記載のガス吸収分光法。   In the step of detecting the intensity of the measurement target gas passing light, the temperature or pressure of the measurement target gas is measured, and in the step of detecting the known vector, a range of known vectors to be detected in advance based on the measured value of the temperature or pressure. The gas absorption spectroscopy according to claim 1. 前記測定対象ガス通過光の強度を検出するステップにおいて光源が発する光の強度を測定し、前記未知ベクトルを算出するステップにおいて該光の強度の測定値に基づき未知ベクトルを正規化しておく請求項1又は2に記載のガス吸収分光法。   2. The intensity of light emitted from a light source is measured in the step of detecting the intensity of the measurement target gas passing light, and the unknown vector is normalized based on the measured value of the light intensity in the step of calculating the unknown vector. Or the gas absorption spectroscopy of 2. 前記k次微分曲線特徴値が、k次微分曲線のピークの面積である請求項1〜3のいずれかに記載のガス吸収分光法。   The gas absorption spectroscopy according to any one of claims 1 to 3, wherein the k-th derivative curve characteristic value is a peak area of the k-th derivative curve. 前記kが2である請求項1〜4のいずれかに記載のガス吸収分光法。   The gas absorption spectroscopy according to any one of claims 1 to 4, wherein k is 2. a) 条件の異なるガスについての既知の複数の吸収線についてそれぞれ、演算波長変調分光法においてn(nは2以上の整数)個の波長変調幅を用いて得られたn個のk(kは0以上の整数)次微分曲線特徴値から成るベクトルである既知ベクトルを収納しておく既知ベクトル収納部と、
b) 波長可変の光源と、
c) 前記光源で生成される光の波長を変化させる光源制御部と、
d) 前記光源で生成され、測定対象ガスを通過してきた光の強度を検出する光検出器と、
e) 前記光源制御部による波長の変化に伴う、前記光検出器で検出された光強度の変化の曲線に基づき前記同様の方法で得られるn個のk次微分曲線特徴値から成るベクトルである未知ベクトルを生成する未知ベクトル生成部と、
f) 前記既知ベクトル収納部に収納されている複数の既知ベクトルのうち、前記未知ベクトルに最も近い既知ベクトルを検出する決定部と
を備えることを特徴とするガス吸収分光装置。
a) For each of a plurality of known absorption lines for gases with different conditions, n k (where k is an integer equal to or larger than 2) wavelength modulation widths obtained in the operation wavelength modulation spectroscopy are used. An integer greater than or equal to 0) a known vector storage unit that stores a known vector that is a vector composed of a characteristic value of the second derivative curve;
b) a tunable light source;
c) a light source controller that changes the wavelength of light generated by the light source;
d) a photodetector that detects the intensity of light generated by the light source and passed through the measurement target gas;
e) A vector composed of n k-th order differential curve feature values obtained by the same method based on a curve of a change in light intensity detected by the light detector accompanying a change in wavelength by the light source control unit. An unknown vector generator for generating an unknown vector;
f) A gas absorption spectrometer comprising: a determining unit that detects a known vector closest to the unknown vector among a plurality of known vectors stored in the known vector storage unit.
JP2017064902A 2017-03-29 2017-03-29 Apparatus and method for gas absorption spectroscopy Pending JP2018169203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017064902A JP2018169203A (en) 2017-03-29 2017-03-29 Apparatus and method for gas absorption spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017064902A JP2018169203A (en) 2017-03-29 2017-03-29 Apparatus and method for gas absorption spectroscopy

Publications (1)

Publication Number Publication Date
JP2018169203A true JP2018169203A (en) 2018-11-01

Family

ID=64020323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017064902A Pending JP2018169203A (en) 2017-03-29 2017-03-29 Apparatus and method for gas absorption spectroscopy

Country Status (1)

Country Link
JP (1) JP2018169203A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059452A1 (en) * 2018-09-20 2020-03-26 株式会社島津製作所 Gas measurement device and gas measurement method
WO2023013314A1 (en) * 2021-07-31 2023-02-09 株式会社フジキン Density measurement device
WO2023101193A1 (en) * 2021-11-30 2023-06-08 한국생산기술연구원 System and method for generating image of quantification of concentration of material in reaction area
JP7440866B2 (en) 2020-03-30 2024-02-29 国立研究開発法人産業技術総合研究所 Laser gas analyzer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059452A1 (en) * 2018-09-20 2020-03-26 株式会社島津製作所 Gas measurement device and gas measurement method
JP7440866B2 (en) 2020-03-30 2024-02-29 国立研究開発法人産業技術総合研究所 Laser gas analyzer
WO2023013314A1 (en) * 2021-07-31 2023-02-09 株式会社フジキン Density measurement device
JP7393753B2 (en) 2021-07-31 2023-12-07 株式会社フジキン concentration measuring device
TWI827148B (en) * 2021-07-31 2023-12-21 日商富士金股份有限公司 Concentration measuring device
WO2023101193A1 (en) * 2021-11-30 2023-06-08 한국생산기술연구원 System and method for generating image of quantification of concentration of material in reaction area

Similar Documents

Publication Publication Date Title
JP5983779B2 (en) Gas absorption spectroscopy apparatus and gas absorption spectroscopy method
US11953427B2 (en) Reconstruction of frequency registration for quantitative spectroscopy
EP3332231B1 (en) Determination and correction of frequency registration deviations for quantitative spectroscopy
EP3332230B1 (en) Reconstruction of frequency registration deviations for quantitative spectroscopy
EP3218695B1 (en) Target analyte detection and quantification in sample gases with complex background compositions
Rieker et al. Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments
JP2018169203A (en) Apparatus and method for gas absorption spectroscopy
Bain et al. Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—Part 2: Experimental investigation
Goldenstein et al. Wavelength-modulation spectroscopy near 2.5 μm for H 2 O and temperature in high-pressure and-temperature gases
JP6139327B2 (en) Terahertz wave spectroscopy measuring apparatus and method, non-linear optical crystal inspection apparatus and method
JP2013113664A (en) Laser gas analyzer
JP7135608B2 (en) Gas absorption spectroscopy device and gas absorption spectroscopy method
US20210033528A1 (en) Gas absorption spectroscopic device
EP3415881A1 (en) Arithmetic expression calculation method for correcting output of photo detector and output correction method of photo detector
KR20140032898A (en) Method for the laser spectroscopy of gases
JP2014206541A (en) Laser gas analyzer
CN107941467B (en) Method for directly obtaining current modulation wavelength response of distributed feedback semiconductor laser source
US11796468B2 (en) Gas measurement device and gas measurement method
JP5170034B2 (en) Gas analyzer
JP2013088135A (en) Laser gas analyzer
WO2021053804A1 (en) Gas absorption spectroscopy device and gas absorption spectroscopy method
JP7014701B2 (en) Optical analyzers, machine learning devices used in optical analyzers, and methods thereof
JP6128150B2 (en) Laser gas analyzer
Zakrevskyy et al. Quantitative calibration-and reference-free wavelength modulation spectroscopy
Bin et al. The Simulation and Analysis of Gas Detection System in Infrared Absorption Spectrum Based on LabVIEW