JP2018168858A - Continuously variable transmission - Google Patents

Continuously variable transmission Download PDF

Info

Publication number
JP2018168858A
JP2018168858A JP2017064132A JP2017064132A JP2018168858A JP 2018168858 A JP2018168858 A JP 2018168858A JP 2017064132 A JP2017064132 A JP 2017064132A JP 2017064132 A JP2017064132 A JP 2017064132A JP 2018168858 A JP2018168858 A JP 2018168858A
Authority
JP
Japan
Prior art keywords
shaft
continuously variable
variable transmission
movable sheave
side fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017064132A
Other languages
Japanese (ja)
Other versions
JP6830391B2 (en
Inventor
嘉之 蓬田
Yoshiyuki Yomogida
嘉之 蓬田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2017064132A priority Critical patent/JP6830391B2/en
Publication of JP2018168858A publication Critical patent/JP2018168858A/en
Application granted granted Critical
Publication of JP6830391B2 publication Critical patent/JP6830391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmissions By Endless Flexible Members (AREA)

Abstract

To suppress vibration of a continuously variable transmission, to reduce vibration noise occurring from the continuously variable transmission.SOLUTION: A continuously variable transmission has a movable sheave 23, and the movable sheave 23 has a hollow shaft part 23a and a movable sheave body part 23b. At an axial center part of the hollow shaft part 23a, provided is an engagement part 51 engaging to a rotational shaft so as to freely slide in an axis direction. At a base end part of the hollow shaft part 23a, provided is a base end side fitting part 52 fitted to an outer peripheral surface of the rotational shaft in a slidable manner. At a tip part of the hollow shaft part 23a, provided is a tip side fitting part 53 fitted to the outer peripheral surface of the rotational shaft in a slidable manner. A position of an anti-node of axial vibration on a secondary shaft 12, or the rotational shaft, is arranged at an axial center part of the tip side fitting part 53.SELECTED DRAWING: Figure 3

Description

本発明は、プライマリプーリとセカンダリプーリとこれらに巻き掛けられるチェーン等の動力伝達要素を有する無段変速機に関する。   The present invention relates to a continuously variable transmission having a primary pulley, a secondary pulley, and a power transmission element such as a chain wound around them.

車両用の無段変速機には、入力側のプライマリ軸に設けられた溝幅可変のプライマリプーリと、出力側のセカンダリ軸に設けられた溝幅可変のセカンダリプーリとを有し、これらのプーリにはチェーン等の動力伝達要素が巻き掛けられる。プライマリプーリはプライマリ軸に一体に設けられる固定シーブと、プライマリ軸に軸方向に摺動自在に装着されてプライマリ軸と一体に回転する可動シーブとを有し、固定シーブと可動シーブとの間の溝には動力伝達要素が巻き掛けられる。セカンダリプーリは、セカンダリ軸に一体に設けられる固定シーブと、セカンダリ軸に軸方向に摺動自在に装着されるとともに一体に回転する可動シーブとを有し、固定シーブと可動シーブとの間に形成される溝には動力伝達要素が巻き掛けられる。   A continuously variable transmission for a vehicle has a variable-width primary pulley provided on an input-side primary shaft and a variable-width secondary pulley provided on an output-side secondary shaft, and these pulleys A power transmission element such as a chain is wound around the frame. The primary pulley has a fixed sheave provided integrally with the primary shaft, and a movable sheave that is slidably mounted in the axial direction on the primary shaft and rotates integrally with the primary shaft, and is disposed between the fixed sheave and the movable sheave. A power transmission element is wound around the groove. The secondary pulley has a fixed sheave integrally provided on the secondary shaft and a movable sheave that is slidably mounted on the secondary shaft in the axial direction and rotates integrally, and is formed between the fixed sheave and the movable sheave. A power transmission element is wound around the groove.

特許文献1、2には、動力伝達要素としてチェーンが使用される無断変速機が記載されている。   Patent Documents 1 and 2 describe a continuously variable transmission in which a chain is used as a power transmission element.

特開2009−144751号公報JP 2009-144751 A 特開2011−112112号公報JP 2011-112112 A

特許文献1に記載された無段変速機は、変速応答性を高めるとともに騒音の発生を抑制するために、可動シーブと固定シーブはそれぞれプーリ本体とこれに固定された動力伝達面形成部材とを有し、プーリ本体の剛性が動力伝達面形成部材の剛性よりも高くされている。特許文献2に記載されたチェーン式無段変速機は、減速時に発生するチェーンのジャー音を低減するために、プライマリプーリの固定シーブと可動シーブのシーブ面間の中心位置と、セカンダリプーリの固定シーブと可動シーブのシーブ面間の中心位置との軸方向距離をミスアライメントとしている。これにより、デファレンシャル装置から出力ギヤへ加わるスラスト荷重に応じてセカンダリ軸は、所定の範囲内で軸方向移動可能に支持される。   In the continuously variable transmission described in Patent Document 1, the movable sheave and the fixed sheave each include a pulley body and a power transmission surface forming member fixed thereto in order to improve the shift response and suppress the generation of noise. And the rigidity of the pulley body is higher than the rigidity of the power transmission surface forming member. In the chain type continuously variable transmission described in Patent Document 2, the center position between the fixed sheave of the primary pulley and the sheave surface of the movable sheave and the fixing of the secondary pulley are reduced in order to reduce the chain jar noise generated during deceleration. The axial distance between the sheave and the center position between the sheave surfaces of the movable sheave is misaligned. Thus, the secondary shaft is supported so as to be movable in the axial direction within a predetermined range in accordance with the thrust load applied to the output gear from the differential device.

チェーンを動力伝達要素とする無段変速機においては、チェーンのピッチ間距離が大きいため、車両走行時にチェーンノイズが発生する。チェーンノイズの発生を抑制すべく、種々の実験結果がなされた結果、チェーンの起振力とプーリ固有の曲げモードとが重なると、軸受における振動が増大し、増大した振動がトランスミッションケースに伝搬されて、チェーンノイズが大きくなってしまうということが判明した。チェーンノイズを抑制するには、軸受を支持するトランスミッションケースの剛性を補強したり、ケースカバーを取り付けたりすることが考えられるが、このような対策では変速機の重量やコストを高めてしまう。また、変速機によっては、設計レイアウトの制約によりケースを補強したり、カバーを取り付けたりすることができない場合がある。   In a continuously variable transmission having a chain as a power transmission element, chain noise is generated when the vehicle travels because the distance between the pitches of the chain is large. As a result of various experimental results to suppress the occurrence of chain noise, if the vibration force of the chain and the bending mode unique to the pulley overlap, the vibration in the bearing increases and the increased vibration is propagated to the transmission case. It turned out that the chain noise becomes large. In order to suppress chain noise, it is conceivable to reinforce the rigidity of the transmission case that supports the bearing or to attach a case cover, but such measures increase the weight and cost of the transmission. Also, depending on the transmission, there are cases where the case cannot be reinforced or the cover cannot be attached due to restrictions on the design layout.

本発明の目的は、無段変速機の振動を抑制し、無段変速機から発生する振動騒音を低減することにある。   An object of the present invention is to suppress vibration of a continuously variable transmission and reduce vibration noise generated from the continuously variable transmission.

本発明の無段変速機は、回転軸に一体に設けられた固定シーブと、前記回転軸に軸方向に摺動して前記回転軸と一体回転する中空軸部および前記中空軸部の基端部に一体に設けられた可動シーブ本体部を有する可動シーブとからなるプーリとを備え、前記プーリの溝にチェーンが巻き掛けられる無段変速機において、前記中空軸部の軸方向中央部に設けられ、前記回転軸に軸方向に摺動自在に噛み合う噛み合い部と、前記中空軸部の基端部に設けられ、前記回転軸の外周面に摺動自在に嵌合する基端側嵌合部と、前記中空軸部の先端部に設けられ、前記回転軸の外周面に摺動自在に嵌合する先端側嵌合部と、を有し、回転軸の軸振動の腹の位置を、前記先端側嵌合部の軸方向中央部に配置した。   A continuously variable transmission according to the present invention includes a fixed sheave integrally provided on a rotating shaft, a hollow shaft portion that slides axially on the rotating shaft and rotates integrally with the rotating shaft, and a proximal end of the hollow shaft portion A continuously variable transmission in which a chain is wound around a groove of the pulley, and provided at a central portion in the axial direction of the hollow shaft portion. An engagement portion that is slidably engaged with the rotation shaft in the axial direction, and a proximal end fitting portion that is provided at a proximal end portion of the hollow shaft portion and is slidably fitted to the outer peripheral surface of the rotation shaft. And a distal end side fitting portion that is provided at the distal end portion of the hollow shaft portion and is slidably fitted to the outer peripheral surface of the rotating shaft, and the position of the antinode of the shaft vibration of the rotating shaft is It arrange | positioned in the axial direction center part of the front end side fitting part.

本発明の無段変速機においては、回転軸に発生する加振力がプーリの先端側嵌合部に集中的に加えられ、回転軸を支持する軸受からトランスミッションケースに伝搬される振動が抑制される。これにより、無段変速機から発生する振動騒音を低減することができる。   In the continuously variable transmission according to the present invention, the excitation force generated in the rotating shaft is concentratedly applied to the front end side fitting portion of the pulley, and the vibration propagated from the bearing supporting the rotating shaft to the transmission case is suppressed. The Thereby, the vibration noise generated from the continuously variable transmission can be reduced.

一実施の形態である無段変速機を示す断面図である。It is sectional drawing which shows the continuously variable transmission which is one embodiment. 無段変速機を回転させたときにおけるセカンダリ軸の曲げモードの発生状態を示す断面図である。It is sectional drawing which shows the generation | occurrence | production state of the bending mode of the secondary axis | shaft when rotating a continuously variable transmission. セカンダリ軸の一部を示す拡大断面図である。It is an expanded sectional view showing a part of a secondary axis. 本発明の無段変速機の先端側嵌合部の局所最大接触荷重と、比較例である先端側嵌合部の局所最大接触荷重とを示す荷重特性グラフである。It is a load characteristic graph which shows the local maximum contact load of the front end side fitting part of the continuously variable transmission of this invention, and the local maximum contact load of the front end side fitting part which is a comparative example. 本発明と比較例とについての振動方向と先端側嵌合部に加わる面圧の大きさと分布を概念的に示す面圧特性線図であり、(A)は本発明の特性を示し、(B)は比較例の特性を示す。It is a surface pressure characteristic diagram which shows notionally the size and distribution of surface pressure applied to the direction of vibration and the tip side fitting part about the present invention and a comparative example, (A) shows the characteristic of the present invention, (B ) Shows the characteristics of the comparative example. 無段変速機を回転駆動してチェーン音の発生状態を本発明と比較例とについて測定した結果を示す。The result of having measured the generation | occurrence | production state of chain noise about this invention and a comparative example by rotationally driving a continuously variable transmission is shown. プライマリプーリの一部を示す断面図である。It is sectional drawing which shows a part of primary pulley.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1に示されるように、無段変速機10は、それぞれ回転軸としてのプライマリ軸11とセカンダリ軸12とを有しており、それぞれの軸は相互に平行となって配置される。プライマリ軸11の両端部は軸受13a、13bにより図示しないトランスミッションケースに回転自在に支持され、セカンダリ軸12の両端部は軸受14a、14bによりトランスミッションケースに回転自在に支持される。プライマリ軸11にはエンジントルクが入力され、セカンダリ軸12は駆動輪に変速後のエンジントルクを出力する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the continuously variable transmission 10 has a primary shaft 11 and a secondary shaft 12 as rotating shafts, and the respective shafts are arranged in parallel to each other. Both ends of the primary shaft 11 are rotatably supported by a transmission case (not shown) by bearings 13a and 13b, and both ends of the secondary shaft 12 are rotatably supported by the transmission case by bearings 14a and 14b. Engine torque is input to the primary shaft 11, and the secondary shaft 12 outputs engine torque after shifting to the drive wheels.

プライマリ軸11にはプーリつまりプライマリプーリ15が設けられており、プライマリプーリ15は、プライマリ軸11に一体に設けられた固定シーブ16と、固定シーブ16に対向してプライマリ軸11に軸方向に摺動自在に装着される可動シーブ17とを有している。可動シーブ17は、プライマリ軸11に軸方向に摺動してプライマリ軸11と一体に回転する中空軸部17aと、中空軸部17aの基端部に一体に設けられた可動シーブ本体部17bとを有している。   The primary shaft 11 is provided with a pulley, that is, a primary pulley 15. The primary pulley 15 is slid in the axial direction on the primary shaft 11 so as to face the fixed sheave 16 integrally with the primary shaft 11 and the fixed sheave 16. And a movable sheave 17 that is movably mounted. The movable sheave 17 includes a hollow shaft portion 17a that slides in the axial direction on the primary shaft 11 and rotates integrally with the primary shaft 11, and a movable sheave body portion 17b that is integrally provided at the base end portion of the hollow shaft portion 17a. have.

セカンダリ軸12にはプーリつまりセカンダリプーリ21が設けられており、セカンダリプーリ21は、セカンダリ軸12に一体に設けられた固定シーブ22と、固定シーブ22に対向してセカンダリ軸12に軸方向に摺動自在に装着される可動シーブ23とを有している。可動シーブ23は、セカンダリ軸12に軸方向に摺動してセカンダリ軸12と一体回転する中空軸部23aと、中空軸部23aの基端部に一体に設けられた可動シーブ本体部23bとを有している。   The secondary shaft 12 is provided with a pulley, that is, a secondary pulley 21. The secondary pulley 21 is slid in the axial direction on the secondary shaft 12 so as to face the fixed sheave 22 integrally with the secondary shaft 12. And a movable sheave 23 that is movably mounted. The movable sheave 23 includes a hollow shaft portion 23a that slides in the axial direction on the secondary shaft 12 and rotates integrally with the secondary shaft 12, and a movable sheave body portion 23b that is integrally provided at the base end portion of the hollow shaft portion 23a. Have.

プライマリプーリ15における固定シーブ16の動力伝達面24aと可動シーブ本体部17bの動力伝達面24bとの間には、可動シーブ17の軸方向移動により幅が可変となった溝25aが形成される。セカンダリプーリ21における固定シーブ22の動力伝達面26aと可動シーブ本体部23bの動力伝達面26bとの間には、溝25bが形成される。両方のプーリの溝25a、25bにチェーン27が装着され、それぞれのプーリに巻き掛けられる。変速比が最低速側となったときには、プライマリプーリ15に対するチェーン27の巻き掛け径は最小となり、セカンダリプーリ21に対する巻き掛け径は最大となる。変速比が最高速側となったときには、プライマリプーリ15に対する巻き掛け径は最大となり、セカンダリプーリ21に対する巻き掛け径は最小となる。図1においては、セカンダリプーリ21に対するチェーン27の巻き掛け径が最大径となった状態が実線で示されている。このときのプライマリプーリ15に対して実線で示すチェーン27の位置は、最小巻き掛け径を示す。   Between the power transmission surface 24a of the fixed sheave 16 in the primary pulley 15 and the power transmission surface 24b of the movable sheave main body 17b, a groove 25a whose width is variable by the axial movement of the movable sheave 17 is formed. A groove 25b is formed between the power transmission surface 26a of the fixed sheave 22 in the secondary pulley 21 and the power transmission surface 26b of the movable sheave main body 23b. Chains 27 are mounted in the grooves 25a and 25b of both pulleys and wound around the respective pulleys. When the gear ratio is on the lowest speed side, the winding diameter of the chain 27 with respect to the primary pulley 15 is minimum, and the winding diameter with respect to the secondary pulley 21 is maximum. When the gear ratio is on the highest speed side, the winding diameter with respect to the primary pulley 15 is maximum, and the winding diameter with respect to the secondary pulley 21 is minimum. In FIG. 1, a state in which the winding diameter of the chain 27 around the secondary pulley 21 is the maximum diameter is indicated by a solid line. The position of the chain 27 indicated by a solid line with respect to the primary pulley 15 at this time indicates the minimum winding diameter.

図1においては、可動シーブ17の上半分が固定シーブ16に最接近した状態で示され、下半分が固定シーブ16から最も離れた状態で示されている。一方、可動シーブ23は上半分が固定シーブ22から最も離れた状態で示され、下半分が固定シーブ22に最接近した状態で示されている。   In FIG. 1, the upper half of the movable sheave 17 is shown closest to the fixed sheave 16, and the lower half is shown farthest from the fixed sheave 16. On the other hand, the movable sheave 23 is shown in a state where the upper half is farthest from the fixed sheave 22, and the lower half is shown in a state closest to the fixed sheave 22.

プライマリプーリ15の中空軸部17aには第1のシリンダ31が装着され、シリンダ31の円筒部31aの内周面には、可動シーブ17に設けられた隔壁部17cが摺動自在に接触している。プライマリ軸11には第2のシリンダ32が固定され、シリンダ32の先端はシリンダ31の外面に当接している。中空軸部17aには隔壁部33が固定され、隔壁部33はシリンダ32の円筒部32aの内周面に摺動自在に接触している。シリンダ31と可動シーブ17とにより第1のプライマリ油室34aが区画形成され、シリンダ32と隔壁部33とにより第2のプライマリ油室34bが区画形成される。   A first cylinder 31 is mounted on the hollow shaft portion 17 a of the primary pulley 15, and a partition wall portion 17 c provided on the movable sheave 17 is slidably in contact with the inner peripheral surface of the cylindrical portion 31 a of the cylinder 31. Yes. A second cylinder 32 is fixed to the primary shaft 11, and the tip of the cylinder 32 is in contact with the outer surface of the cylinder 31. A partition wall portion 33 is fixed to the hollow shaft portion 17a, and the partition wall portion 33 is slidably in contact with the inner peripheral surface of the cylindrical portion 32a of the cylinder 32. A first primary oil chamber 34 a is defined by the cylinder 31 and the movable sheave 17, and a second primary oil chamber 34 b is defined by the cylinder 32 and the partition wall 33.

プライマリ軸11の一端部には油路35が形成され、油路35はプライマリ軸11に形成された連通孔36と、中空軸部17aに形成された連通孔37を介して第1のプライマリ油室34aに連通している。プライマリ軸11の他端部には油路38が形成され、油路38はプライマリ軸11に形成された連通孔39を介して第2のプライマリ油室34bに連通している。両方のプライマリ油室34a、34bに供給される作動油により、プライマリプーリ15の可動シーブ17は固定シーブ16に接近する位置と離れる位置とに駆動され、溝25aの幅が調整される。   An oil passage 35 is formed at one end of the primary shaft 11, and the oil passage 35 is connected to the first primary oil via a communication hole 36 formed in the primary shaft 11 and a communication hole 37 formed in the hollow shaft portion 17 a. It communicates with the chamber 34a. An oil passage 38 is formed at the other end of the primary shaft 11, and the oil passage 38 communicates with the second primary oil chamber 34 b through a communication hole 39 formed in the primary shaft 11. The movable sheave 17 of the primary pulley 15 is driven by the hydraulic oil supplied to both primary oil chambers 34a and 34b to a position approaching and separating from the fixed sheave 16, and the width of the groove 25a is adjusted.

セカンダリ軸12にはプランジャ41が取り付けられており、プランジャ41は外径が相違した部分を有し、断面形状は段付きとなっている。可動シーブ23の円筒部23cの内周面は、プランジャ41の大径部41aに摺動自在に接触している。プランジャ41と可動シーブ23とによりセカンダリ油室42が区画形成される。プランジャ41と可動シーブ23との間にはコイルばね43が装着され、コイルばね43により可動シーブ23には固定シーブ22に向かう方向のばね力が付勢されている。   A plunger 41 is attached to the secondary shaft 12, and the plunger 41 has a portion with a different outer diameter, and the cross-sectional shape is stepped. The inner peripheral surface of the cylindrical portion 23 c of the movable sheave 23 is slidably in contact with the large diameter portion 41 a of the plunger 41. A secondary oil chamber 42 is defined by the plunger 41 and the movable sheave 23. A coil spring 43 is mounted between the plunger 41 and the movable sheave 23, and a spring force in a direction toward the fixed sheave 22 is biased to the movable sheave 23 by the coil spring 43.

セカンダリ軸12の一端部には油路44が形成され、油路44はセカンダリ軸12に形成された連通孔45を介してセカンダリ油室42に連通している。セカンダリ油室42に供給される作動油により、セカンダリプーリ21の可動シーブ23は固定シーブ22に接近する位置と離れる位置とに駆動され、溝25bの幅が調整される。可動シーブ23の円筒部23cにはカバー部材46が固定され、カバー部材46とプランジャ41とによりバランス油室47が形成され、バランス油室47にはトランスミッションケース内の潤滑油が流入する。   An oil passage 44 is formed at one end of the secondary shaft 12, and the oil passage 44 communicates with the secondary oil chamber 42 through a communication hole 45 formed in the secondary shaft 12. By the hydraulic oil supplied to the secondary oil chamber 42, the movable sheave 23 of the secondary pulley 21 is driven to a position approaching and separating from the fixed sheave 22, and the width of the groove 25b is adjusted. A cover member 46 is fixed to the cylindrical portion 23 c of the movable sheave 23, and a balance oil chamber 47 is formed by the cover member 46 and the plunger 41, and lubricating oil in the transmission case flows into the balance oil chamber 47.

セカンダリ軸12には出力歯車48が設けられており、プライマリ軸11に入力されるエンジントルクは、無段変速機10により変速されて出力歯車48から駆動輪に出力される。   The secondary shaft 12 is provided with an output gear 48, and the engine torque input to the primary shaft 11 is shifted by the continuously variable transmission 10 and output from the output gear 48 to the drive wheels.

プライマリプーリ15における可動シーブ17の中空軸部17aの軸方向中央部の内周面には、噛み合い部51が設けられており、この噛み合い部51は、プライマリ軸11に設けられたスプライン等からなる噛み合い部に軸方向に摺動自在に噛み合っている。可動シーブ本体部17bの内径部分を中空軸部17aの基端部とすると、中空軸部17aはチェーン27から離れる方向のプライマリ軸11の端部に向けて突出しており、突出端を中空軸部17aの先端部とする。中空軸部17aの基端部には、プライマリ軸11の外周面に摺動自在に嵌合する基端側嵌合部52が設けられている。一方、中空軸部17aの先端部には、プライマリ軸11の外周面に摺動自在に嵌合する先端側嵌合部53が設けられている。   A meshing portion 51 is provided on the inner peripheral surface of the axial direction central portion of the hollow shaft portion 17a of the movable sheave 17 in the primary pulley 15, and this meshing portion 51 is formed of a spline or the like provided on the primary shaft 11. It meshes with the meshing portion so as to be slidable in the axial direction. When the inner diameter portion of the movable sheave body portion 17b is the base end portion of the hollow shaft portion 17a, the hollow shaft portion 17a protrudes toward the end portion of the primary shaft 11 away from the chain 27, and the protruding end is the hollow shaft portion. The tip of 17a is used. A base end side fitting portion 52 that is slidably fitted to the outer peripheral surface of the primary shaft 11 is provided at the base end portion of the hollow shaft portion 17a. On the other hand, a distal end side fitting portion 53 that is slidably fitted to the outer peripheral surface of the primary shaft 11 is provided at the distal end portion of the hollow shaft portion 17a.

同様に、セカンダリプーリ21における可動シーブ23の中空軸部23aの軸方向中央部の内面には、噛み合い部51が設けられており、この噛み合い部51は、セカンダリ軸12に設けられたスプライン等からなる噛み合い部に軸方向に摺動自在に噛み合っている。可動シーブ本体部23bの内径部分を中空軸部23aの基端部とすると、中空軸部23aはチェーン27から離れる方向のセカンダリ軸12の端部に向けて突出しており、突出端を中空軸部23aの先端部とする。中空軸部23aの基端部には、セカンダリ軸12の外周面に摺動自在に嵌合する基端側嵌合部52が設けられている。一方、中空軸部23aの先端部には、セカンダリ軸12の外周面に摺動自在に嵌合する先端側嵌合部53が設けられている。   Similarly, a meshing portion 51 is provided on the inner surface of the central portion in the axial direction of the hollow shaft portion 23 a of the movable sheave 23 in the secondary pulley 21, and this meshing portion 51 is formed from a spline or the like provided on the secondary shaft 12. The meshing portion is slidably engaged in the axial direction. When the inner diameter portion of the movable sheave body portion 23b is the base end portion of the hollow shaft portion 23a, the hollow shaft portion 23a protrudes toward the end portion of the secondary shaft 12 away from the chain 27, and the protruding end is the hollow shaft portion. Let it be the tip of 23a. A base end side fitting portion 52 that is slidably fitted to the outer peripheral surface of the secondary shaft 12 is provided at the base end portion of the hollow shaft portion 23a. On the other hand, a distal end side fitting portion 53 that is slidably fitted to the outer peripheral surface of the secondary shaft 12 is provided at the distal end portion of the hollow shaft portion 23a.

図2は無段変速機10を回転させたときにおけるセカンダリ軸12に発生する曲げモードの状態を示す断面図である。曲げモードは、セカンダリ軸12とともに回転するチェーン27の起振力により発生する。   FIG. 2 is a cross-sectional view showing a state of a bending mode generated in the secondary shaft 12 when the continuously variable transmission 10 is rotated. The bending mode is generated by the exciting force of the chain 27 that rotates with the secondary shaft 12.

図2における破線は、チェーン27の起振力に起因したセカンダリ軸12の曲げモーメントを示している。図2に示されるように、セカンダリ軸12の曲げモードの振幅は、可動シーブ23の基端側嵌合部52の軸方向中央部が小さくなり、セカンダリ軸12の両端部に向けて増加し、ピーク点を経た後にセカンダリ軸12の両端面に僅かに小さくなる。セカンダリ軸12の両端部における軸振動は軸受14a、14bを介してトランスミッションケースに伝搬され、無段変速機10は振動騒音を発生する。   A broken line in FIG. 2 indicates a bending moment of the secondary shaft 12 due to the vibration force of the chain 27. As shown in FIG. 2, the amplitude of the bending mode of the secondary shaft 12 decreases toward the both end portions of the secondary shaft 12 with the axial center portion of the proximal end side fitting portion 52 of the movable sheave 23 being reduced, After passing through the peak point, both end surfaces of the secondary shaft 12 become slightly smaller. The shaft vibration at both ends of the secondary shaft 12 is propagated to the transmission case via the bearings 14a and 14b, and the continuously variable transmission 10 generates vibration noise.

セカンダリ軸12の曲げモードは、図2の破線で示すように、基端側嵌合部52の軸方向中央部が波形の節Aになり、ピーク点の位置が波形の腹Bになる。この腹Bの位置に先端側嵌合部53の軸方向中央部が接触するように、可動シーブ23の中空軸部23aの長さと先端側嵌合部53の長さとを設定すると、先端側嵌合部53の部分のセカンダリ軸12の腹Bに面圧がかかり、接触箇所の変形が増える。これによって接触箇所の剛性が高くなり、セカンダリ軸12の曲げモードの振幅が小さくなる。このように、セカンダリ軸12の曲げモードの腹Bの位置に先端側嵌合部53を設定すると、セカンダリプーリ21は振動抑制構造になり、軸受14aに伝搬される振動が抑制され、軸受14aからトランスミッションケースに伝搬される振動が抑制される。トランスミッションに伝搬される振動が抑制されるので、無段変速機10からチェーン27の起振力に起因して発生する振動騒音が低減される。   As shown by a broken line in FIG. 2, the bending mode of the secondary shaft 12 is a corrugated node A at the axial center of the base end side fitting portion 52, and the peak point is a corrugated antinode B. When the length of the hollow shaft portion 23a of the movable sheave 23 and the length of the distal end side fitting portion 53 are set so that the axial center portion of the distal end side fitting portion 53 contacts the position of the antinode B, the distal end side fitting is performed. Surface pressure is applied to the antinode B of the secondary shaft 12 at the joint portion 53, and deformation of the contact portion increases. As a result, the rigidity of the contact portion is increased, and the amplitude of the bending mode of the secondary shaft 12 is decreased. Thus, if the front end side fitting part 53 is set in the position of the antinode B of the bending mode of the secondary shaft 12, the secondary pulley 21 will be a vibration suppression structure, the vibration transmitted to the bearing 14a will be suppressed, and from the bearing 14a. Vibration transmitted to the transmission case is suppressed. Since vibration transmitted to the transmission is suppressed, vibration noise generated from the continuously variable transmission 10 due to the vibration force of the chain 27 is reduced.

なお、図2に示された振動波形は、セカンダリ軸12を4200〜4800rpmの間の回転数で回転させたときに現れる曲げモードを示す。   The vibration waveform shown in FIG. 2 indicates a bending mode that appears when the secondary shaft 12 is rotated at a rotational speed between 4200 and 4800 rpm.

図3はセカンダリ軸12の一部を示す拡大断面図であり、節Aの位置と腹Bの位置が拡大して示されており、節Aと腹Bとの間の距離はL0となっている。図3においては、チェーン27のセカンダリプーリ21に対する最大巻き掛け径がDmaxで示され、可動シーブ23の基端側嵌合部52の基端面52aと先端側嵌合部53の先端面53aとの間の軸方向長さがL1で示されている。図3に示されるように、可動シーブ23の軸方向長さL1は、最大巻き掛け径Dmaxよりも小さい値に設定されている(L1<Dmax)。   FIG. 3 is an enlarged cross-sectional view showing a part of the secondary shaft 12, in which the position of the node A and the position of the antinode B are shown enlarged, and the distance between the node A and the antinode B is L0. In FIG. 3, the maximum winding diameter of the chain 27 around the secondary pulley 21 is indicated by Dmax, and the base end surface 52 a of the base end side fitting portion 52 of the movable sheave 23 and the tip end surface 53 a of the tip end side fitting portion 53 are shown. The axial length between them is indicated by L1. As shown in FIG. 3, the axial length L1 of the movable sheave 23 is set to a value smaller than the maximum winding diameter Dmax (L1 <Dmax).

可動シーブ23が軸方向に移動しても、噛み合い部51がセカンダリ軸12の噛み合い部と噛み合った状態を維持するために、噛み合い部51の長さを所定値に設定する必要があり、噛み合い部51の長さを短くすることはできない。噛み合い部51と基端側嵌合部52の長さを維持しつつ、可動シーブ23の軸方向長さL1を、最大巻き掛け径Dmaxよりも短い値に設定すると、先端側嵌合部53の軸方向中央部がセカンダリ軸12の曲げモードの腹Bの位置に設定されるとともに、先端側嵌合部53に加わる面圧、つまりセカンダリ軸12と可動シーブ23との間の単位面積当たりの接触荷重が高められる。面圧が高くなることでセカンダリ軸12の接触部の変形が増えることで接触箇所の剛性が高まる。その結果、チェーン27の起振力に起因したセカンダリ軸12の曲げモードの腹Bの位置に先端側嵌合部53を配置することと相俟って、セカンダリ軸12の曲げモードの振幅が抑制される。   Even when the movable sheave 23 moves in the axial direction, the length of the meshing portion 51 needs to be set to a predetermined value in order to maintain the meshing portion 51 meshed with the meshing portion of the secondary shaft 12. The length of 51 cannot be shortened. If the axial length L1 of the movable sheave 23 is set to a value shorter than the maximum winding diameter Dmax while maintaining the lengths of the meshing part 51 and the base end side fitting part 52, The central portion in the axial direction is set to the position of the antinode B in the bending mode of the secondary shaft 12 and the surface pressure applied to the distal end side fitting portion 53, that is, the contact per unit area between the secondary shaft 12 and the movable sheave 23. The load is increased. As the surface pressure increases, the deformation of the contact portion of the secondary shaft 12 increases, and the rigidity of the contact portion increases. As a result, the bending mode amplitude of the secondary shaft 12 is suppressed in combination with the arrangement of the front end side fitting portion 53 at the position of the antinode B of the bending mode of the secondary shaft 12 caused by the vibration force of the chain 27. Is done.

特に、チェーン27の巻き掛け径が最大となる低速段の変速比のときに、セカンダリプーリ21の可動シーブ本体部23bには、溝25bを広げる方向に撓められるように大きな締結荷重が加わるので、先端側嵌合部53の面圧を高めることにより、セカンダリ軸12の振動抑制効果を高めることができる。   In particular, at a low speed gear ratio at which the winding diameter of the chain 27 is maximum, a large fastening load is applied to the movable sheave main body 23b of the secondary pulley 21 so as to bend in the direction of expanding the groove 25b. By increasing the surface pressure of the distal end side fitting portion 53, the vibration suppressing effect of the secondary shaft 12 can be enhanced.

図4は上述した本発明の無段変速機10の先端側嵌合部53の局所最大接触荷重と、比較例である先端側嵌合部の局所最大接触荷重とを示す荷重特性グラフである。本発明においてはL1/Dmaxを0.94とした。一方、比較例においてはL1/Dmaxを約1とした。図4に示されるように、本発明においては、局所最大接触荷重(面圧)を比較例よりも2倍以上に高められる。   FIG. 4 is a load characteristic graph showing the local maximum contact load of the front end side fitting portion 53 of the continuously variable transmission 10 of the present invention and the local maximum contact load of the front end side fitting portion which is a comparative example. In the present invention, L1 / Dmax is set to 0.94. On the other hand, L1 / Dmax was set to about 1 in the comparative example. As shown in FIG. 4, in the present invention, the local maximum contact load (surface pressure) can be increased more than twice as compared with the comparative example.

図5は上述した本発明と比較例とについての振動方向と先端側嵌合部に加わる面圧の大きさと分布を概念的に示す面圧特性線図であり、図5(A)は本発明の特性を示し、図5(B)は比較例の特性を示す。図5に示されるように、セカンダリ軸12の振動方向をV方向とすると、下側の受圧領域Eと上側の受圧領域Fとにそれぞれ径方向の接触荷重が加わる。本発明においては、図5(A)に示されるように、それぞれの受圧領域E、Fにおける接触荷重が、図5(B)に示した比較例の受圧領域E、Fにおける接触荷重よりも大きくなる。これにより、二点鎖線で示すように、セカンダリ軸12に発生する曲げモードが抑制され、その結果、軸受14aに加わる振動を低減することができる。下側の受圧領域Eの方が上側の受圧領域Fよりも接触荷重が大きくなる。   FIG. 5 is a surface pressure characteristic diagram conceptually showing the vibration direction and the size and distribution of the surface pressure applied to the distal end fitting portion of the present invention and the comparative example described above, and FIG. FIG. 5B shows the characteristics of the comparative example. As shown in FIG. 5, assuming that the vibration direction of the secondary shaft 12 is the V direction, a radial contact load is applied to the lower pressure receiving region E and the upper pressure receiving region F, respectively. In the present invention, as shown in FIG. 5A, the contact load in each of the pressure receiving regions E and F is larger than the contact load in the pressure receiving regions E and F of the comparative example shown in FIG. Become. Thereby, as shown with a dashed-two dotted line, the bending mode which generate | occur | produces in the secondary axis | shaft 12 is suppressed, As a result, the vibration added to the bearing 14a can be reduced. The lower pressure receiving region E has a larger contact load than the upper pressure receiving region F.

図6は無段変速機を回転駆動してチェーン音の発生状態を本発明と比較例とについて測定した結果を示す。図6において、横軸はセカンダリ軸12の回転数であり、縦軸はチェーン音である。実線は、本発明のチェーン音を示し、一点鎖線は、比較例のチェーン音を示す。本発明においては、チェーン音を低減することができ、図6に示されるように、回転数が4300〜4500rpmの範囲において特に顕著に低減されることが判明した。   FIG. 6 shows the result of measuring the state of occurrence of chain noise for the present invention and the comparative example by rotationally driving the continuously variable transmission. In FIG. 6, the horizontal axis represents the rotational speed of the secondary shaft 12, and the vertical axis represents the chain sound. The solid line indicates the chain sound of the present invention, and the alternate long and short dash line indicates the chain sound of the comparative example. In the present invention, it has been found that chain noise can be reduced, and as shown in FIG. 6, the rotational speed is particularly significantly reduced in the range of 4300 to 4500 rpm.

図7は、プライマリプーリ15の一部を示す断面図である。プライマリプーリ15についても、セカンダリプーリ21と同様であり、チェーン27の起振力に起因したプライマリ軸11の曲げモードの腹Bの位置に先端側嵌合部53を配置することで、セカンダリ軸12の曲げモードの振幅が低減し、軸受13aに伝搬される振動が抑制される。   FIG. 7 is a cross-sectional view showing a part of the primary pulley 15. The primary pulley 15 is the same as the secondary pulley 21, and the secondary shaft 12 is arranged by disposing the distal end fitting portion 53 at the position of the antinode B in the bending mode of the primary shaft 11 caused by the vibration force of the chain 27. The amplitude of the bending mode is reduced, and the vibration propagated to the bearing 13a is suppressed.

さらに、セカンダリプーリ21と同様に、プライマリプーリ15においても可動シーブ17の基端側嵌合部52の基端面52aと先端側嵌合部53の先端面53aとの間の軸方向長さL1は、チェーン27のプライマリプーリ15に対する最大巻き掛け径Dmaxよりも短く設定されている。   Further, similarly to the secondary pulley 21, the axial length L 1 between the proximal end surface 52 a of the proximal end fitting portion 52 of the movable sheave 17 and the distal end surface 53 a of the distal end fitting portion 53 is also the primary pulley 15. The maximum winding diameter Dmax of the chain 27 with respect to the primary pulley 15 is set shorter.

セカンダリプーリ21に加えて、プライマリプーリ15を振動抑制構造とすると、チェーンノイズの発生をより低減することができる。ただし、セカンダリプーリ21とプライマリプーリ15の少なくとも一方を振動抑制構造としても良い。   If the primary pulley 15 has a vibration suppressing structure in addition to the secondary pulley 21, the occurrence of chain noise can be further reduced. However, at least one of the secondary pulley 21 and the primary pulley 15 may have a vibration suppressing structure.

本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

11 プライマリ軸
12 セカンダリ軸
15 プライマリプーリ
16 固定シーブ
17 可動シーブ
17a 中空軸部
17b 可動シーブ本体部
21 セカンダリプーリ
22 固定シーブ
23 可動シーブ
23a 中空軸部
23b 可動シーブ本体部
27 チェーン
34a、34b プライマリ油室
42 セカンダリ油室
51 噛み合い部
52 基端側嵌合部
52a 基端面
53 先端側嵌合部
53a 先端面
11 Primary shaft 12 Secondary shaft 15 Primary pulley 16 Fixed sheave 17 Movable sheave 17a Hollow shaft portion 17b Movable sheave body portion 21 Secondary pulley 22 Fixed sheave 23 Movable sheave 23a Hollow shaft portion 23b Movable sheave body portion 27 Chain 34a, 34b Primary oil chamber 42 Secondary oil chamber 51 Engagement portion 52 Base end side fitting portion 52a Base end surface 53 Front end side fitting portion 53a Front end surface

Claims (3)

回転軸に一体に設けられた固定シーブと、前記回転軸に軸方向に摺動して前記回転軸と一体回転する中空軸部および前記中空軸部の基端部に一体に設けられた可動シーブ本体部を有する可動シーブとからなるプーリとを備え、前記プーリの溝にチェーンが巻き掛けられる無段変速機において、
前記中空軸部の軸方向中央部に設けられ、前記回転軸に軸方向に摺動自在に噛み合う噛み合い部と、
前記中空軸部の基端部に設けられ、前記回転軸の外周面に摺動自在に嵌合する基端側嵌合部と、
前記中空軸部の先端部に設けられ、前記回転軸の外周面に摺動自在に嵌合する先端側嵌合部と、
を有し、回転軸の軸振動の腹の位置を、前記先端側嵌合部の軸方向中央部に配置した、無段変速機。
A fixed sheave integrally provided on the rotary shaft, a hollow shaft portion that slides axially on the rotary shaft and rotates integrally with the rotary shaft, and a movable sheave integrally provided on the proximal end portion of the hollow shaft portion A continuously variable transmission including a pulley including a movable sheave having a main body, wherein a chain is wound around the groove of the pulley;
A meshing portion provided at a central portion in the axial direction of the hollow shaft portion and meshing slidably in the axial direction with the rotating shaft;
A proximal end fitting portion provided at a proximal end portion of the hollow shaft portion and slidably fitted to an outer peripheral surface of the rotating shaft;
A tip-side fitting portion that is provided at a tip portion of the hollow shaft portion and slidably fits on an outer peripheral surface of the rotating shaft;
A continuously variable transmission in which the position of the antinode of the shaft vibration of the rotating shaft is disposed at the axially central portion of the distal end side fitting portion.
請求項1記載の無段変速機において、前記基端側嵌合部の基端面と前記先端側嵌合部の先端面との間の軸方向長さを、前記チェーンの前記プーリに対する最大巻き掛け径よりも小さくした、無段変速機。   The continuously variable transmission according to claim 1, wherein an axial length between a proximal end surface of the proximal end side fitting portion and a distal end surface of the distal end side fitting portion is set to a maximum winding around the pulley of the chain. A continuously variable transmission that is smaller than the diameter. 請求項1または2記載の無段変速機において、前記回転軸はセカンダリ軸である、無段変速機。   The continuously variable transmission according to claim 1 or 2, wherein the rotating shaft is a secondary shaft.
JP2017064132A 2017-03-29 2017-03-29 Continuously variable transmission Active JP6830391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017064132A JP6830391B2 (en) 2017-03-29 2017-03-29 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017064132A JP6830391B2 (en) 2017-03-29 2017-03-29 Continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2018168858A true JP2018168858A (en) 2018-11-01
JP6830391B2 JP6830391B2 (en) 2021-02-17

Family

ID=64020029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017064132A Active JP6830391B2 (en) 2017-03-29 2017-03-29 Continuously variable transmission

Country Status (1)

Country Link
JP (1) JP6830391B2 (en)

Also Published As

Publication number Publication date
JP6830391B2 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
US9732824B2 (en) Damper device and starting device
JP6222164B2 (en) Vehicle power transmission structure
US20190323577A1 (en) Damper device
JP6583307B2 (en) Friction damper
JP5363426B2 (en) Power transmission device for vehicle
KR102073251B1 (en) Vehicular automatic transmission
JPWO2015046076A1 (en) Damper device and starting device
JP4670685B2 (en) Power transmission device
JP2006022949A (en) Torsional vibration damper
JP5862666B2 (en) Power transmission device for vehicle
JP6474296B2 (en) Transmission case for vehicle transmission
JP6176266B2 (en) Planetary gear unit
JP2018168858A (en) Continuously variable transmission
JP5030815B2 (en) Pulley structure and belt type continuously variable transmission
JP6534943B2 (en) Power transmission device of hybrid vehicle
US11867239B2 (en) Damper device and design method of damper device
JP4899073B2 (en) Conical pulley-type winding transmission, method for manufacturing the conical pulley-type winding transmission, and vehicle equipped with such a conical pulley-type winding transmission
JP2016080003A (en) Torsional damper
JP7024664B2 (en) Drive
JP6658101B2 (en) Pulley unit
JP6913512B2 (en) Vehicle power transmission device
JP2010151183A (en) Constantly meshed parallel shaft type transmission for vehicle
EP3369963A1 (en) Torsional vibration damper for automotive applications
JP2009275729A (en) Transmission
JP2000170859A (en) Variable pulley device for continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210126

R150 Certificate of patent or registration of utility model

Ref document number: 6830391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250