JP2018166635A - Respiration measuring apparatus - Google Patents

Respiration measuring apparatus Download PDF

Info

Publication number
JP2018166635A
JP2018166635A JP2017064767A JP2017064767A JP2018166635A JP 2018166635 A JP2018166635 A JP 2018166635A JP 2017064767 A JP2017064767 A JP 2017064767A JP 2017064767 A JP2017064767 A JP 2017064767A JP 2018166635 A JP2018166635 A JP 2018166635A
Authority
JP
Japan
Prior art keywords
pressure
oxygen
average
average pressure
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017064767A
Other languages
Japanese (ja)
Other versions
JP6893432B2 (en
Inventor
博大 平野
Hiroki Hirano
博大 平野
直之 飯田
Naoyuki Iida
直之 飯田
真一 峠
Shinichi Toge
真一 峠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Pharma Ltd
Original Assignee
Teijin Pharma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Pharma Ltd filed Critical Teijin Pharma Ltd
Priority to JP2017064767A priority Critical patent/JP6893432B2/en
Publication of JP2018166635A publication Critical patent/JP2018166635A/en
Application granted granted Critical
Publication of JP6893432B2 publication Critical patent/JP6893432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

To provide a PSA type oxygen concentration apparatus capable of acquiring respiration information while distinguishing between pressure fluctuation caused when forming concentrated oxygen gas and respiratory pressure.SOLUTION: A PSA type oxygen concentration apparatus includes an oxygen generation part 11 equipped with a cylinder 113 for generating concentrated oxygen gas and a pressure regulating valve 116 for regulating the pressure of the concentrated oxygen gas supplied from the cylinder, an oxygen flow rate control part 12 having a flow meter 122 and a control valve 121, and an oxygen supply port 13 for supplying the generated oxygen gas outside the apparatus. It also includes pressure adjusting means 14 for adjusting at least one of first average pressure and second average pressure so that a pressure difference between the first average pressure between the flow meter and the control valve, and the second average pressure at the oxygen supply port falls within a predetermined range, pressure comparing means 15 for calculating a difference between the first average pressure and the second average pressure after the adjustment by the pressure adjusting means, and respiration information calculation means for calculating respiration information from the difference.SELECTED DRAWING: Figure 2

Description

本発明は、PSA式酸素濃縮装置における呼吸情報取得装置に関する。   The present invention relates to a respiratory information acquisition device in a PSA type oxygen concentrator.

従来、呼吸器疾患の患者に対して酸素療法が行われている。近年では、自宅や施設等で酸素吸入をする在宅酸素療法(HOT:Home Oxygen Therapy)が一般的なものとなり、その多くで酸素濃縮装置が使用されている。   Conventionally, oxygen therapy is performed for patients with respiratory diseases. In recent years, home oxygen therapy (HOT: Home Oxygen Therapy) in which oxygen is inhaled at home or in facilities has become common, and many of them use oxygen concentrators.

酸素濃縮装置とは装置外部の空気(大気)を装置に取り込み、患者に濃縮酸素ガスを提供する医療機器のことである。酸素濃縮装置は用途や濃縮酸素ガスの生成方式、供給方式にさまざまな種類があるが、自宅や施設等での在宅酸素療法で使用される酸素濃縮装置の多くは据置型の酸素濃縮装置である。   An oxygen concentrator is a medical device that takes in air (atmosphere) outside the device and supplies the patient with concentrated oxygen gas. There are various types of oxygen concentrators, and there are various types of oxygen oxygen generation and supply methods. Most of the oxygen concentrators used in home oxygen therapy in homes and facilities are stationary oxygen concentrators. .

据置型の酸素濃縮装置の濃縮酸素ガス生成方式は圧力変動吸着式(以下、PSA式:Pressure Swing Adsorption)、供給方式は連続流が一般的に用いられる(以下、PSA式/連続流酸素供給の据置型酸素濃縮装置を単純に酸素濃縮装置と記す)。   The concentrated oxygen gas generation method of the stationary oxygen concentrator is generally a pressure fluctuation adsorption method (hereinafter referred to as PSA method), and the supply method is generally a continuous flow (hereinafter referred to as PSA method / continuous flow oxygen supply). A stationary oxygen concentrator is simply referred to as an oxygen concentrator).

PSA式とは、濃縮酸素ガスを生成する方式のひとつで、窒素ガスを選択的に吸着する吸着剤が充填されたシリンダーに空気を取り込み、加減圧を繰り返すことで濃縮酸素ガスを生成する方式である。シリンダーで生成された濃縮酸素ガスは調圧弁で圧力変動が減衰されるように調整された後、酸素流量制御部で酸素供給時の流量が制御される。連続流とは、濃縮酸素ガス供給方式のひとつで、連続的に一定流量の濃縮酸素ガスを供給する方式である。   The PSA method is a method of generating concentrated oxygen gas, which is a method of generating concentrated oxygen gas by taking air into a cylinder filled with an adsorbent that selectively adsorbs nitrogen gas and repeating the pressurization and depressurization. is there. The concentrated oxygen gas generated in the cylinder is adjusted so that the pressure fluctuation is attenuated by the pressure regulating valve, and then the flow rate at the time of supplying oxygen is controlled by the oxygen flow rate control unit. The continuous flow is one of concentrated oxygen gas supply methods, and is a method of continuously supplying a concentrated oxygen gas at a constant flow rate.

特開2001−286566号公報JP 2001-286666 A

在宅酸素療法を受ける患者の主疾患は慢性閉塞性肺疾患(以下、COPD:Chronic Obstructive Pulmonary Disease)である。COPDとは気管支の狭窄や肺胞壁の破壊により、咳・痰や労作時呼吸困難の症状を呈する不可逆性疾患である。   The main disease of patients who receive home oxygen therapy is chronic obstructive pulmonary disease (hereinafter referred to as COPD: Chronic Obstructive Pulsed Disease). COPD is an irreversible disease that presents with symptoms such as cough, sputum and difficulty breathing due to bronchial constriction and alveolar wall destruction.

COPDの症状が悪化すると息切れや呼吸数の増加が見られ、COPDの急性増悪と呼ばれる「安定期の治療の変更あるいは追加が必要な状態」まで症状が悪化することもある。COPDの急性増悪が起こると入院するケースが多く、呼吸不全に陥ることや生命の危機に直面することもある。また、退院できたとしても入院以前より安定期の症状が悪化し、入退院を繰り返すことも珍しくない。   When COPD symptoms worsen, shortness of breath and an increase in respiratory rate are observed, and the symptoms may worsen to “a state in which it is necessary to change or add treatment in the stable period” called acute exacerbation of COPD. Many patients are hospitalized for acute exacerbation of COPD, and may experience respiratory failure or face life threatening. Even if the patient can be discharged, it is not uncommon for symptoms in the stable period to worsen before hospitalization and to repeat hospitalization.

ゆえに、COPDの急性増悪の入院する程度まで症状が悪化する前に早期治療を施すことが重要であり、在宅酸素療法において患者の呼吸情報は患者の病態を把握するうえで有益な情報元となる。   Therefore, it is important to give early treatment before symptoms worsen to the extent of hospitalization for acute exacerbation of COPD, and patient breathing information is a useful source of information for understanding the patient's condition in home oxygen therapy .

また、患者は医師が診断した処方流量に従って濃縮酸素ガスの吸入することも重要である。しかし、睡眠時にカニューラがずれたり、作業中にチューブが外れたりすることで正しく酸素吸入できていないことはしばしば起こり、酸素濃縮装置が運転中であっても患者自身がなにかしらの理由で意図的にカニューラを外すこともある。いずれにしても、酸素濃縮装置が運転していても患者が酸素吸入できていない状況は患者の病態悪化を招く危険性がある。   It is also important that the patient inhales concentrated oxygen gas according to the prescription flow rate diagnosed by the doctor. However, it often happens that oxygen cannot be inhaled correctly because the cannula slips during sleep or the tube comes off during work, and the patient himself intends for some reason even when the oxygen concentrator is in operation. Sometimes the cannula is removed. In any case, even if the oxygen concentrator is operating, a situation in which the patient cannot inhale oxygen has a risk of deteriorating the patient's condition.

従って、酸素濃縮装置運転中に酸素濃縮器内部で患者の呼吸情報を取得できれば、従来の一般的な酸素濃縮装置と比較して使用感が変わらず患者の呼吸情報を取得できるだけなく、酸素濃縮装置と患者が酸素供給チューブで繋がれていることや患者の使用実態を確認できるため、非常に有用な手段である。特許文献1には、酸素濃縮装置の酸素流路内部に流体抵抗体を配設して差圧型流量計で測定される圧力で呼吸情報を取得できる方法が示されている。特許文献1によれば、濃縮酸素ガスの流量が一定のときは差圧測定系に圧力変動要因が付加されないため、差圧型流量計において検出される差圧データは一定の値を示し、患者の呼吸があるときは差圧測定系に圧力変動要因が付加されるため、差圧型流量計において検出される差圧データは変化する、すなわち呼吸に関する圧力変動が検出されることが示されている。   Therefore, if the patient's respiratory information can be acquired inside the oxygen concentrator during operation of the oxygen concentrator, the patient's breathing information can be acquired without changing the feeling of use compared to the conventional general oxygen concentrator. This is a very useful means because it is possible to confirm that the patient is connected by an oxygen supply tube and the actual usage of the patient. Patent Document 1 discloses a method in which a fluid resistor is provided inside an oxygen flow path of an oxygen concentrator and respiration information can be acquired with pressure measured by a differential pressure type flow meter. According to Patent Document 1, since the pressure fluctuation factor is not added to the differential pressure measurement system when the flow rate of the concentrated oxygen gas is constant, the differential pressure data detected by the differential pressure type flow meter shows a constant value, It is shown that when there is respiration, a pressure fluctuation factor is added to the differential pressure measurement system, so that the differential pressure data detected by the differential pressure type flow meter changes, that is, pressure fluctuation related to respiration is detected.

ところで、本願発明者らが鋭意検討を行った結果、差圧測定系に付加される圧力変動には濃縮酸素ガス生成時の加減圧に伴う圧力変動が含まれることが明らかとなった。図1は濃縮酸素ガスが一定流量で流れているときに酸素濃縮装置から使用者に酸素を供給する酸素供給口の圧力波形の一例である。図1が示すように、濃縮酸素ガス生成時の加減圧に伴う圧力変動は調圧弁を介した後でも変動要因として残しており、この圧力変動量は呼吸圧と同程度以上である。   By the way, as a result of intensive studies by the inventors of the present application, it has been clarified that the pressure fluctuation added to the differential pressure measurement system includes the pressure fluctuation accompanying the pressure increase / decrease when the concentrated oxygen gas is generated. FIG. 1 is an example of a pressure waveform at an oxygen supply port that supplies oxygen to the user from the oxygen concentrator when the concentrated oxygen gas flows at a constant flow rate. As shown in FIG. 1, the pressure fluctuation accompanying the pressure increase / decrease during the generation of concentrated oxygen gas remains as a fluctuation factor even after passing through the pressure regulating valve, and the amount of pressure fluctuation is equal to or higher than the respiratory pressure.

従って、特許文献1の構成では濃縮酸素ガス生成時に生じる圧力変動と呼吸圧力の区別が困難であり、呼吸情報を取得できない可能性があるという課題がある。本発明は、濃縮酸素ガス生成時に生じる圧力変動と呼吸圧力とを区別して呼吸情報を取得することができるPSA式酸素濃縮装置を提供することを目的とする。   Therefore, in the configuration of Patent Document 1, there is a problem that it is difficult to distinguish between pressure fluctuations and respiratory pressures that occur during the generation of concentrated oxygen gas, and respiratory information may not be acquired. An object of the present invention is to provide a PSA-type oxygen concentrator capable of acquiring respiration information by distinguishing between pressure fluctuations and respiration pressure that occur during the generation of concentrated oxygen gas.

上記課題を解決するため、本発明に係るPSA式酸素濃縮装置は、濃縮酸素ガスを生成する少なくとも1つのシリンダーと、前記シリンダーから供給する濃縮酸素ガスの圧力を調圧する調圧弁と、を備えた酸素生成部と、前記酸素生成部の下流に配置され、少なくとも流量計と、コントロールバルブと、を有する酸素流量制御部と、前記酸素流量制御部の下流に配置され、生成した酸素ガスを装置外に供給する酸素供給口と、を備えるPSA式酸素濃縮装置において、前記酸素生成部と前記酸素流量制御部の間または前記流量計と前記コントロールバルブとの間の平均圧力である第1平均圧力と、前記酸素供給口の平均圧力である第2平均圧力と、の圧力差が所定範囲内となるように、前記第1平均圧力と前記第2平均圧力の少なくとも一方を調整する圧力調整手段と、前記圧力調整手段で調整された後に、第1平均圧力と第2平均圧力との差分をとる圧力比較手段と、前記差分から呼吸情報を算出する呼吸情報算出手段と、を備えるPSA式酸素濃縮装置である。   In order to solve the above problems, a PSA oxygen concentrator according to the present invention includes at least one cylinder that generates concentrated oxygen gas, and a pressure regulating valve that regulates the pressure of the concentrated oxygen gas supplied from the cylinder. An oxygen generation unit, an oxygen flow control unit disposed downstream of the oxygen generation unit and having at least a flow meter and a control valve, and disposed downstream of the oxygen flow control unit, the generated oxygen gas is removed from the apparatus. A first average pressure that is an average pressure between the oxygen generation unit and the oxygen flow rate control unit or between the flow meter and the control valve; , At least one of the first average pressure and the second average pressure so that a pressure difference between the oxygen supply port and the second average pressure, which is an average pressure of the oxygen supply port, falls within a predetermined range. Pressure adjusting means for adjusting, pressure comparing means for taking a difference between the first average pressure and the second average pressure after being adjusted by the pressure adjusting means, and a breathing information calculating means for calculating breathing information from the difference; Is a PSA type oxygen concentrator.

ここで、酸素生成部のシリンダー、調圧弁は酸素流路順に各パーツが接続され、酸素流量制御部の流量計、コントロールバルブは酸素流路順を問わず各パーツが接続される。また、酸素生成部、酸素流量制御部、酸素供給口は酸素流路順に各部が接続される。前記構成部品および構成部以外が構成要素として含まれても本技術で対象とするPSA式酸素濃縮装置と同じ酸素濃縮装置とみなすことができる。   Here, each part is connected to the oxygen generation part cylinder and the pressure regulating valve in the order of the oxygen flow path, and each part is connected to the flow meter and control valve of the oxygen flow rate control part regardless of the order of the oxygen flow path. The oxygen generation unit, the oxygen flow rate control unit, and the oxygen supply port are connected to each other in the order of the oxygen flow path. Even if components other than the components and the components are included as components, they can be regarded as the same oxygen concentrator as the PSA oxygen concentrator that is the subject of the present technology.

酸素供給口の圧力とは、酸素濃縮装置の酸素流路において患者の呼吸圧の圧損が少ない酸素供給口に近しい酸素流路上の圧力を示している。   The pressure of the oxygen supply port indicates a pressure on the oxygen flow channel that is close to the oxygen supply port in the oxygen flow channel of the oxygen concentrator and in which the patient's respiratory pressure loss is small.

前記圧力調整手段は前記第1平均圧力を前記第2平均圧力まで減圧する手段であってもよい。
前記圧力比較手段は差圧センサであってもよい。
前記圧力調整手段は可変流量弁であってもよい。
The pressure adjusting means may be means for reducing the first average pressure to the second average pressure.
The pressure comparison means may be a differential pressure sensor.
The pressure adjusting means may be a variable flow valve.

前記可変流量弁の開度が、前記酸素生成部と前記酸素流量制御部の間または前記流量計と前記コントロールバルブとの間の前記第1平均圧力と前記酸素供給口の前記第2平均圧力の差圧が所定範囲内になるように調整されてもよい。
前記差圧センサはダイアフラム式差圧センサであってもよい。
The degree of opening of the variable flow valve is such that the first average pressure between the oxygen generator and the oxygen flow controller or between the flow meter and the control valve and the second average pressure of the oxygen supply port The differential pressure may be adjusted to be within a predetermined range.
The differential pressure sensor may be a diaphragm type differential pressure sensor.

前記酸素生成部と前記酸素流量制御部の間または前記流量計と前記コントロールバルブとの間の圧力を計測する第1の圧力センサと、前記酸素供給口の圧力を計測する第2の圧力センサを備え、前記圧力調整手段は、前記第1の圧力センサの出力から計算される第1平均圧力と、前記第2の圧力センサの出力から計算される第2平均圧力と、の圧力差が所定範囲内となるように、前記第1平均圧力と前記第2平均圧力の少なくとも一方を調整し、前記圧力調整手段で調整された後に、第1平均圧力と第2平均圧力との差分を計算する圧力比較手段と、前記差分から呼吸情報を算出する呼吸情報算出手段と、を備えていてもよい。   A first pressure sensor that measures a pressure between the oxygen generation unit and the oxygen flow rate control unit or between the flow meter and the control valve; and a second pressure sensor that measures the pressure of the oxygen supply port. The pressure adjusting means has a predetermined pressure difference between a first average pressure calculated from the output of the first pressure sensor and a second average pressure calculated from the output of the second pressure sensor. Pressure for adjusting the difference between the first average pressure and the second average pressure after adjusting at least one of the first average pressure and the second average pressure so as to be within, and being adjusted by the pressure adjusting means Comparing means and respiration information calculating means for calculating respiration information from the difference may be provided.

本発明によれば、濃縮酸素ガス生成時に生じる圧力変動と呼吸圧力とを区別して呼吸情報を取得することができる。   According to the present invention, respiration information can be acquired by distinguishing between pressure fluctuations and respiration pressure that occur during the generation of concentrated oxygen gas.

酸素供給口の圧力波形の一例を示す図である。It is a figure which shows an example of the pressure waveform of an oxygen supply port. 第1の実施形態のPSA式酸素濃縮装置の構成を示す図である。It is a figure which shows the structure of the PSA type oxygen concentrator of 1st Embodiment. 第1の実施形態の構成要素である圧力調整手段14の構成を示す図である。It is a figure which shows the structure of the pressure adjustment means 14 which is a component of 1st Embodiment. 第1の実施形態の酸素濃縮装置稼働中に圧力比較手段15が取得した圧力波形の一例を示す図である。It is a figure which shows an example of the pressure waveform which the pressure comparison means 15 acquired during the oxygen concentration apparatus operation | movement of 1st Embodiment. 第2の実施形態のPSA式酸素濃縮装置の構成を示す図である。It is a figure which shows the structure of the PSA type oxygen concentrator of 2nd Embodiment. 第2の実施形態の構成要素である圧力計測手段15の構成を示す図である。It is a figure which shows the structure of the pressure measurement means 15 which is a component of 2nd Embodiment.

以下に、発明の実施の形態を図面に基づき示す。   Embodiments of the invention will be described below with reference to the drawings.

[第1の実施形態]
図2を用いて本実施形態に係るPSA式酸素濃縮装置の構成を説明する。
PSA式酸素濃縮装置1は、PSA式酸素濃縮装置1の外部から空気を取り込んで濃縮酸素ガスを生成する酸素生成部11を備える。
[First Embodiment]
The configuration of the PSA type oxygen concentrator according to this embodiment will be described with reference to FIG.
The PSA type oxygen concentrator 1 includes an oxygen generator 11 that takes in air from the outside of the PSA type oxygen concentrator 1 and generates concentrated oxygen gas.

酸素装置外部から酸素生成部11に取り込まれた空気はコンプレッサー111で圧縮され、第1切替弁112を介してシリンダー113に送られる。第1切替弁112は、複数のシリンダー113のいずれかとコンプレッサー111を連通することでシリンダー113に圧縮空気を送り込むとともに、その他のシリンダーを大気に開放する。シリンダー113には窒素ガスを選択的に吸着する吸着剤が充填されている。シリンダー113を通過した圧縮空気は窒素ガス濃度が低下し、濃縮酸素ガスとなる。濃縮酸素ガスは第2切替弁114を介して濃縮酸素バッファタンク115に貯蔵される。第2切替弁114は複数のシリンダー113のいずれか濃縮酸素バッファタンク115とを連通または遮断する。   The air taken into the oxygen generator 11 from outside the oxygen device is compressed by the compressor 111 and sent to the cylinder 113 via the first switching valve 112. The first switching valve 112 communicates one of the plurality of cylinders 113 with the compressor 111 to send compressed air to the cylinder 113 and open the other cylinders to the atmosphere. The cylinder 113 is filled with an adsorbent that selectively adsorbs nitrogen gas. The compressed air that has passed through the cylinder 113 has a reduced nitrogen gas concentration and becomes a concentrated oxygen gas. The concentrated oxygen gas is stored in the concentrated oxygen buffer tank 115 via the second switching valve 114. The second switching valve 114 communicates or blocks any one of the plurality of cylinders 113 with the concentrated oxygen buffer tank 115.

酸素生成部11は、第1切替弁112によりコンプレッサー111と複数のシリンダー113のいずれかを連通させるとともに、第2切替弁114により該コンプレッサー111と連通したシリンダー113と濃縮酸素バッファタンク115を連通させる。したがって、コンプレッサー111と複数のシリンダー113のいずれかと濃縮酸素バッファタンク115が連通され、生成された濃縮酸素ガスが濃縮酸素バッファタンク115に供給される。他方、コンプレッサー111と連通しないシリンダー113は、第2切替弁114により濃縮酸素バッファタンク115からと遮断された状態で、第1切替弁112を介して大気開放される。これにより、シリンダー113内が減圧し、吸着剤に吸着された窒素ガスを酸素濃縮器外部に放出する。   The oxygen generator 11 causes the compressor 111 and any of the plurality of cylinders 113 to communicate with each other by the first switching valve 112, and causes the cylinder 113 and the concentrated oxygen buffer tank 115 to communicate with the compressor 111 by the second switching valve 114. . Therefore, the compressor 111 and any one of the plurality of cylinders 113 are connected to the concentrated oxygen buffer tank 115, and the generated concentrated oxygen gas is supplied to the concentrated oxygen buffer tank 115. On the other hand, the cylinder 113 that does not communicate with the compressor 111 is opened to the atmosphere via the first switching valve 112 while being blocked from the concentrated oxygen buffer tank 115 by the second switching valve 114. As a result, the pressure inside the cylinder 113 is reduced, and the nitrogen gas adsorbed by the adsorbent is released to the outside of the oxygen concentrator.

濃縮酸素生成に伴うシリンダー113内部の圧力変化は非常に大きいため、濃縮酸素バッファタンク115に貯蔵された濃縮酸素ガスは調圧弁116により該圧力変動が減衰されるように調整される。   Since the pressure change inside the cylinder 113 accompanying the generation of concentrated oxygen is very large, the concentrated oxygen gas stored in the concentrated oxygen buffer tank 115 is adjusted by the pressure regulating valve 116 so that the pressure fluctuation is attenuated.

酸素生成部11で圧力調整された濃縮酸素ガスは、コントロールバルブ121と流量計122から成る酸素流量制御部12で酸素流量が制御され、加湿器101を介して酸素供給口13より酸素濃縮装置外に供給される。通常、酸素供給口13より供給された濃縮酸素ガスはチューブや鼻カニューラを介して患者に供給される。なお、酸素流量制御部12においてコントロールバルブ121と流量計122はどちらが流路の上流に備えられていてもよく、また酸素流量制御部12にはその他の構成が含まれていても構わない。酸素濃縮器1は加湿器101を備えない構成とすることも可能である。   The oxygen flow rate of the concentrated oxygen gas whose pressure has been adjusted by the oxygen generation unit 11 is controlled by an oxygen flow rate control unit 12 including a control valve 121 and a flow meter 122, and is supplied from the oxygen supply port 13 to the outside of the oxygen concentrator via the humidifier 101. To be supplied. Usually, the concentrated oxygen gas supplied from the oxygen supply port 13 is supplied to the patient via a tube or a nasal cannula. In the oxygen flow control unit 12, either the control valve 121 or the flow meter 122 may be provided upstream of the flow path, and the oxygen flow control unit 12 may include other configurations. The oxygen concentrator 1 may be configured without the humidifier 101.

本願発明者らが鋭意検討を行った結果、酸素濃縮装置1が稼働中、酸素生成部11から酸素供給口13の酸素流路上の圧力には濃縮酸素ガス生成時に生じる圧力変動が生じており、酸素供給口13に接続されたチューブや鼻カニューラを介して伝達される患者の呼吸圧力を酸素流路上で検出することは困難であることが明らかになった。濃縮酸素ガス生成時に生じる圧力変動の振幅は呼吸圧力の振幅に比べて大きく、また呼吸圧力の振幅も酸素流路を通ることによる圧損で低下するため、呼吸圧力波形の計測が困難であることが理由として挙げられる。   As a result of intensive studies by the inventors of the present application, while the oxygen concentrator 1 is in operation, the pressure on the oxygen flow path from the oxygen generator 11 to the oxygen supply port 13 is subject to pressure fluctuations that occur during the generation of concentrated oxygen gas, It became clear that it was difficult to detect the respiratory pressure of the patient transmitted through the tube connected to the oxygen supply port 13 or the nasal cannula on the oxygen flow path. The amplitude of the pressure fluctuation that occurs during the generation of concentrated oxygen gas is larger than the amplitude of the respiratory pressure, and the amplitude of the respiratory pressure also decreases due to the pressure loss caused by passing through the oxygen flow path, which makes it difficult to measure the respiratory pressure waveform. It can be cited as a reason.

酸素濃縮装置1が稼働中、酸素生成部11から酸素供給口13の酸素流路上に生じる濃縮酸素ガス生成時に生じる圧力変動とは、シリンダー113で生じる圧力変化ではなく、調圧弁116で調整された圧力変動を意味する。前述のとおり、調圧弁116により圧力変動が減衰されるが、呼吸圧力と比べて十分に大きく圧力変動は残ってしまう。また、調圧弁116を通過する際に圧力変動パターンが変化する。そのため、調圧弁116から酸素供給口13まで測定される濃縮酸素ガス生成時に生じる圧力変動は同じ圧力変動パターンである。ゆえに、酸素生成部11から酸素供給口13の酸素流路上の2か所の圧力の差分を取ることで、濃縮酸素ガス生成時に生じる圧力変動を打ち消すことができる。なお一般的な酸素濃縮装置においては、この2か所の間で圧力変動の位相は大きく変わらない。   While the oxygen concentrator 1 is in operation, the pressure fluctuation generated when the concentrated oxygen gas is generated on the oxygen flow path from the oxygen generator 11 to the oxygen supply port 13 is not a pressure change generated in the cylinder 113 but is adjusted by the pressure regulating valve 116. It means pressure fluctuation. As described above, the pressure fluctuation is attenuated by the pressure regulating valve 116, but the pressure fluctuation remains sufficiently larger than the respiratory pressure. Further, the pressure fluctuation pattern changes when passing through the pressure regulating valve 116. Therefore, the pressure fluctuation that occurs when the concentrated oxygen gas is measured from the pressure regulating valve 116 to the oxygen supply port 13 has the same pressure fluctuation pattern. Therefore, by taking the difference between two pressures on the oxygen flow path of the oxygen supply port 13 from the oxygen generator 11, it is possible to cancel the pressure fluctuation that occurs when the concentrated oxygen gas is generated. In a general oxygen concentrator, the phase of pressure fluctuation does not change greatly between these two locations.

ところで、前述のとおり濃縮酸素ガス生成時に生じる圧力変動の振幅は呼吸圧力の振幅に比べて大きく、また呼吸圧力の振幅も酸素流路を上流方向に向かって通ることによる圧損で低下する。そこで、酸素生成部11の下流であって酸素流路上流側の呼吸圧力の影響をほぼ無視できる点の圧力と、酸素流路下流側の呼吸圧力の減衰量が小さい点の圧力との差分をとることで、呼吸情報の抽出を行う。具体的には、酸素生成部11と前記酸素流量制御部12の間または流量計122とコントロールバルブ121の間の圧力と、酸素供給口の圧力の差分を取ることで、濃縮酸素ガス生成時に生じる圧力変動を打消し、酸素供給口に重畳する呼吸圧力から呼吸情報の抽出を行う。なお、酸素流量制御部12より下流と酸素供給口13との圧力の差分をとると、酸素濃縮ガス生成時に生じる圧力変動だけでなく、呼吸圧力まで差し引かれる可能性があるため、前述の圧力を比較することとする。   By the way, as described above, the amplitude of the pressure fluctuation generated when the concentrated oxygen gas is generated is larger than the amplitude of the respiratory pressure, and the amplitude of the respiratory pressure also decreases due to the pressure loss caused by passing through the oxygen channel in the upstream direction. Therefore, the difference between the pressure at the point downstream of the oxygen generation unit 11 and the effect of the respiratory pressure on the upstream side of the oxygen channel can be substantially ignored, and the pressure at the point where the attenuation of the respiratory pressure on the downstream side of the oxygen channel is small. Extraction of respiratory information is performed. Specifically, the difference between the pressure between the oxygen generation unit 11 and the oxygen flow rate control unit 12 or between the flow meter 122 and the control valve 121 and the pressure of the oxygen supply port is generated to generate the concentrated oxygen gas. The pressure information is canceled and the respiratory information is extracted from the respiratory pressure superimposed on the oxygen supply port. Note that if the difference in pressure between the oxygen flow rate control unit 12 and the oxygen supply port 13 is taken, not only the pressure fluctuation that occurs during the generation of the oxygen-enriched gas but also the respiratory pressure may be subtracted. We will compare.

呼吸情報とは、例えば1分間あたりの呼吸数、吸気時間、呼気時間、IE比(吸気時間と呼気時間の比率)、吸気開始タイミング、呼気開始タイミング、一定時間における無呼吸低呼吸頻度である。これらは取得した呼吸情報の圧力波形が基線を通過するタイミングや波形の極値となるタイミングを取得し、それぞれの時間間隔を算出するソフトウェアにより実現することができる。取得した呼吸情報の圧力波形が基線を通過するタイミングとは、例えば基線が0である場合は計測信号の符号が変化するタイミング(零クロスタイミング)のことである。   The respiratory information is, for example, the number of breaths per minute, the inspiratory time, the expiratory time, the IE ratio (the ratio of the inspiratory time to the expiratory time), the inspiratory start timing, the expiratory start timing, and the apnea / hypopnea frequency in a certain time. These can be realized by software that acquires the timing at which the pressure waveform of the acquired respiratory information passes through the baseline and the timing at which the waveform becomes an extreme value, and calculates the respective time intervals. The timing at which the pressure waveform of the acquired respiratory information passes through the baseline is, for example, the timing at which the sign of the measurement signal changes (zero cross timing) when the baseline is zero.

本実施形態においては、圧力比較手段15の一方側が圧力調整手段14を介してコントロールバルブ121と流量計122の間に連結しており、圧力比較手段15の他方側が酸素供給口13と連結した状態である実施形態の一例を示している。ここで「圧力比較手段15の他方側が酸素供給口13と連結した状態」とは、酸素濃縮装置の酸素流路において患者の呼吸圧の圧損が少ない酸素供給口に近しい酸素流路上に接続している状態を含む。   In the present embodiment, one side of the pressure comparison unit 15 is connected between the control valve 121 and the flow meter 122 via the pressure adjustment unit 14, and the other side of the pressure comparison unit 15 is connected to the oxygen supply port 13. An example of an embodiment is shown. Here, “the state in which the other side of the pressure comparison means 15 is connected to the oxygen supply port 13” means that the oxygen flow channel of the oxygen concentrator is connected to an oxygen flow channel that is close to the oxygen supply port where the patient's respiratory pressure loss is small. Including the state.

圧力調整手段14を介した圧力比較手段15の連結箇所は、調圧弁116とコントロールバルブ121の間でもよい。また、コントロールバルブ121と流量計122の接続順序が図2と逆の酸素濃縮装置の場合は、調圧弁116と流量計122の間でもよい。すなわち、酸素濃縮装置1の酸素流路において調圧弁116から酸素流量制御部12の最も酸素供給口に近い構成部品までのいずれか1か所であればよい。   The connection location of the pressure comparison means 15 via the pressure adjustment means 14 may be between the pressure regulating valve 116 and the control valve 121. In the case of an oxygen concentrator in which the connection order of the control valve 121 and the flow meter 122 is the reverse of that in FIG. In other words, any one point from the pressure regulating valve 116 to the component closest to the oxygen supply port of the oxygen flow rate control unit 12 in the oxygen flow path of the oxygen concentrator 1 may be used.

圧力比較手段15は、その両端に接続された2か所の圧力からハードウェアで差圧を抽出し、該差圧を呼吸に関する圧力変動として検出する手段であり、例えば差圧センサである。差圧センサは、その両端に接続された圧力が互いに圧力干渉することなく差圧を計測できるセンサであって、例えば2つの圧力を、例えばU字管の両側からそれぞれ与え、その圧力差が液柱の高さに現れる液柱式差圧センサや、温度、重力、気体の種類によらず2か所の差圧を出力する機械式差圧センサを用いることができる。なかでも、ダイアフラムを用いた機械式差圧センサは1つの空間を2つに隔てる隔膜(ダイアフラム)があるため、2か所の気体が混ざり合うことはなく、特に好適である。以下本実施形態の説明においては圧力比較手段15を差圧センサ15とも称する。   The pressure comparison unit 15 is a unit that extracts a differential pressure with hardware from two pressures connected to both ends thereof, and detects the differential pressure as a pressure fluctuation related to respiration, for example, a differential pressure sensor. A differential pressure sensor is a sensor that can measure a differential pressure without causing pressure interference between the two ends of the pressure sensor. For example, two pressures are given from both sides of a U-shaped tube, for example, and the pressure difference is a liquid pressure difference. A liquid column type differential pressure sensor that appears at the height of the column, or a mechanical differential pressure sensor that outputs differential pressures at two locations regardless of the type of temperature, gravity, and gas can be used. Especially, since the mechanical differential pressure sensor using a diaphragm has a diaphragm (diaphragm) that divides one space into two, gas in two places does not mix and is particularly preferable. Hereinafter, the pressure comparison means 15 is also referred to as a differential pressure sensor 15 in the description of the present embodiment.

圧力調整手段14は、酸素流路上の圧力を調整して圧力比較手段15に供給する。酸素生成部11から酸素供給口13までの酸素流路上の圧力は上流ほど高い。一般的に差圧センサ15には仕様で定められた計測可能範囲があるため、圧力調整手段14は、酸素供給口13の平均圧力と、酸素生成部11と酸素流量制御部12の間または流量計122とコントロールバルブ121との間の平均圧力との圧力差が所定範囲内となるように一方あるいは両方の圧力を調整する。なお、所定範囲内とは差圧センサ15で計測される圧力の振幅が差圧センサ15の計測可能範囲内となるような範囲である。例えば、差圧センサ15の計測可能範囲が±100Paであり、計測される圧力の振幅が±30Paであるとすると、所定範囲とは±70Paの範囲となる。   The pressure adjusting means 14 adjusts the pressure on the oxygen flow path and supplies it to the pressure comparing means 15. The pressure on the oxygen flow path from the oxygen generator 11 to the oxygen supply port 13 is higher toward the upstream. In general, since the differential pressure sensor 15 has a measurable range determined by the specification, the pressure adjusting means 14 is configured so that the average pressure of the oxygen supply port 13, the oxygen generation unit 11 and the oxygen flow rate control unit 12, or the flow rate. One or both pressures are adjusted so that the pressure difference with the average pressure between the meter 122 and the control valve 121 falls within a predetermined range. The predetermined range is a range in which the pressure amplitude measured by the differential pressure sensor 15 falls within the measurable range of the differential pressure sensor 15. For example, if the measurable range of the differential pressure sensor 15 is ± 100 Pa and the measured pressure amplitude is ± 30 Pa, the predetermined range is a range of ± 70 Pa.

図3を用いて圧力調整手段14と圧力比較手段15の実施形態の一例を説明する。本実施形態に係る圧力調整手段14としては、図3(a)ないし(c)に示す構成を例示することができる。なお、共通の部品、装置については同一の番号を付する。   An example of an embodiment of the pressure adjusting means 14 and the pressure comparing means 15 will be described with reference to FIG. As the pressure adjusting means 14 according to the present embodiment, the configuration shown in FIGS. 3A to 3C can be exemplified. In addition, the same number is attached | subjected about a common component and apparatus.

図3(a)に係る圧力調整手段14は、酸素流路および差圧センサ15に接続される通り絞り手段141と、差圧センサ15と通り絞り手段141との間に設置される排気量調整手段142と、差圧センサ15の検出値に基づいて絞り手段141を制御するとともに、差圧センサ15の検出値から呼吸情報を算出するCPU16と、を備える。通り絞り手段141は可変流量弁であることが好ましい。排気量調整手段142はオリフィスや細長いチューブなどであることが好ましい。   The pressure adjusting means 14 according to FIG. 3A is a throttle means 141 that is connected to the oxygen flow path and the differential pressure sensor 15, and an exhaust amount adjustment that is installed between the differential pressure sensor 15 and the throttle means 141. Means 142 and a CPU 16 that controls the throttle means 141 based on the detection value of the differential pressure sensor 15 and calculates respiration information from the detection value of the differential pressure sensor 15. The passage throttling means 141 is preferably a variable flow valve. The displacement adjusting means 142 is preferably an orifice, an elongated tube, or the like.

CPU16は差圧センサ15の検出値を読み取り、2つの圧力の差が差圧センサの計測可能範囲内に収まるように通り絞り手段141を制御する。可変流量弁の調整頻度はノイズによる誤作動の防止と、可変流量弁調整後の安定化の時間を考慮し、0.5〜10Hzの範囲で調整することが好ましく、例えば、呼吸周期に近しい4秒ごとに可変流量弁を調整することで安定しやすくなる。また、差圧センサの値は瞬時値ではなく、調整間隔の平均値を用いることが好ましい。   The CPU 16 reads the detection value of the differential pressure sensor 15 and controls the throttle means 141 so that the difference between the two pressures falls within the measurable range of the differential pressure sensor. The adjustment frequency of the variable flow valve is preferably adjusted in the range of 0.5 to 10 Hz in consideration of prevention of malfunction due to noise and stabilization time after adjustment of the variable flow valve. It becomes easier to stabilize by adjusting the variable flow valve every second. Further, it is preferable to use the average value of the adjustment interval as the value of the differential pressure sensor instead of the instantaneous value.

排気量調整手段142では、通り絞り手段141で減圧された濃縮酸素ガスを大気開放する。排気量調整手段142での排気量が大きい場合、酸素供給口13から使用者に提供される酸素濃度が低下するため、排気量はできるだけ少なくし、酸素供給口から酸素濃縮装置外に提供される濃縮酸素ガスの酸素濃度が酸素濃縮装置で定められた仕様範囲を外れないように調整する必要がある。なお、排気量調整手段142を可変流量弁などの流量を調整可能である弁とし、CPU16は通り絞り手段141に加えて排気量調整手段142の開度を制御する構成としてもよい。この場合は、排気量調整手段142の開度は、通り絞り手段141の可変流量弁の開度の1/4、あるいは排気量調整手段142の開度が0の時の酸素供給口から酸素濃縮装置外に提供される濃縮酸素ガスの酸素濃度に比べて酸素濃度が−5%以内に収まる範囲、濃縮酸素ガスの酸素濃度が酸素濃縮装置で定められた仕様範囲を外れない範囲、で排気量調整手段142の可変流量弁を開放する。   The exhaust amount adjusting means 142 releases the concentrated oxygen gas decompressed by the passage restricting means 141 to the atmosphere. When the exhaust amount in the exhaust amount adjusting means 142 is large, the oxygen concentration provided to the user from the oxygen supply port 13 decreases, so the exhaust amount is reduced as much as possible and provided from the oxygen supply port to the outside of the oxygen concentrator. It is necessary to adjust so that the oxygen concentration of the concentrated oxygen gas does not deviate from the specification range determined by the oxygen concentrator. Note that the exhaust amount adjusting means 142 may be a valve capable of adjusting the flow rate such as a variable flow valve, and the CPU 16 may be configured to control the opening degree of the exhaust amount adjusting means 142 in addition to the throttling means 141. In this case, the opening degree of the exhaust amount adjusting means 142 is 1/4 of the opening degree of the variable flow valve of the throttle means 141 or the oxygen concentration from the oxygen supply port when the opening amount of the exhaust amount adjusting means 142 is 0. Emissions in a range where the oxygen concentration falls within -5% compared to the oxygen concentration of the concentrated oxygen gas provided outside the device, and in a range where the oxygen concentration of the concentrated oxygen gas does not deviate from the specification range defined by the oxygen concentrator. The variable flow valve of the adjusting means 142 is opened.

図3(b)に係る圧力調整手段14は、CPU16が差圧センサ15の検出値に基づいて排気量調整手段142を制御する点で図3(a)に係る圧力調整手段と相違する。この場合は、通り絞り手段141はオリフィスや細長いチューブなどであることが好ましい。また排気量調整手段142は可変流量弁であることが好ましい。CPU16は差圧センサ15の検出値を読み取り、2つの圧力の差が差圧センサの計測可能範囲内に収まるように排気量調整手段142を制御する。   The pressure adjusting means 14 according to FIG. 3B is different from the pressure adjusting means according to FIG. 3A in that the CPU 16 controls the exhaust amount adjusting means 142 based on the detection value of the differential pressure sensor 15. In this case, the passage means 141 is preferably an orifice, an elongated tube, or the like. Further, it is preferable that the exhaust amount adjusting means 142 is a variable flow valve. The CPU 16 reads the detection value of the differential pressure sensor 15 and controls the exhaust amount adjusting means 142 so that the difference between the two pressures is within the measurable range of the differential pressure sensor.

図3(c)に係る圧力調整手段14は、図3(b)に係る圧力調整手段において通り絞り手段141を用いない構成としたものである。排気量調整手段142はコントロールバルブであることが好ましい。CPU16は図3(b)に係る圧力調整手段と同様に排気量調整手段142を制御する。   The pressure adjusting means 14 according to FIG. 3C is configured such that the throttle means 141 is not used as in the pressure adjusting means according to FIG. The displacement adjusting means 142 is preferably a control valve. The CPU 16 controls the exhaust amount adjusting means 142 in the same manner as the pressure adjusting means according to FIG.

図4(a)、(b)は、図3(a)の実施形態において差圧センサ15が取得した圧力波形の経時変化を示している。図4(a)は、濃縮酸素ガスが一定流量で流れているときの経時変化を示している。2〜3[Pa]程度の変動が見られるものの、図1に示した圧力波形に比べて、濃縮酸素ガス生成時に生じる圧力変動を大きく除外できていることが示されている。図5(b)は、濃縮酸素ガスが一定流量で流れているときに、鼻カニューラ経由で患者の呼吸を加えたときの経時変化を示している。図5(a)の呼吸がない状態と比較して、明らかに圧力が変動していること、すなわち呼吸に関する圧力が測定できていることが示されている。   4 (a) and 4 (b) show changes over time in the pressure waveform acquired by the differential pressure sensor 15 in the embodiment of FIG. 3 (a). FIG. 4A shows a change with time when the concentrated oxygen gas flows at a constant flow rate. Although a fluctuation of about 2 to 3 [Pa] is observed, it is shown that the pressure fluctuation generated when the concentrated oxygen gas is generated can be largely excluded as compared with the pressure waveform shown in FIG. FIG. 5B shows a change with time when the patient's breath is applied via the nasal cannula when the concentrated oxygen gas flows at a constant flow rate. It is shown that the pressure clearly fluctuates, that is, the pressure related to respiration can be measured as compared with the state where there is no respiration in FIG.

CPU16は差圧センサ15で取得した圧力波形から、所定の呼吸情報を算出する。なお、圧力波形から呼吸情報を算出する方法については公知の手段を適宜用いることができ、ここでは説明は省略する。   The CPU 16 calculates predetermined respiration information from the pressure waveform acquired by the differential pressure sensor 15. In addition, about the method of calculating respiration information from a pressure waveform, a well-known means can be used suitably and description is abbreviate | omitted here.

以上示したように、本実施形態によれば、濃縮酸素ガス生成時に生じる圧力変動と呼吸圧力とを区別して呼吸情報を取得することができる。   As described above, according to the present embodiment, the respiratory information can be acquired by distinguishing the pressure fluctuation and the respiratory pressure that are generated when the concentrated oxygen gas is generated.

[第2の実施形態]
図5を用いて第2の実施形態に係るPSA式酸素濃縮装置の構成を説明する。なお、第1の実施形態と重複する部分については同一の番号を付し、説明は省略する。
[Second Embodiment]
The configuration of the PSA type oxygen concentrator according to the second embodiment will be described with reference to FIG. In addition, the same number is attached | subjected about the part which overlaps with 1st Embodiment, and description is abbreviate | omitted.

第2の実施形態では、酸素生成部11と前記酸素流量制御部12の間または流量計122とコントロールバルブ121の間の圧力と、酸素供給口13の圧力をそれぞれ圧力計測手段17で計測する。そして、計測された2つの圧力情報の一方あるいは両方をデータ処理により調整した後に差分を計算する点で第1の実施形態と相違する。   In the second embodiment, the pressure measuring means 17 measures the pressure between the oxygen generator 11 and the oxygen flow rate controller 12 or between the flow meter 122 and the control valve 121 and the pressure of the oxygen supply port 13. The difference from the first embodiment is that the difference is calculated after adjusting one or both of the two measured pressure information by data processing.

図6は圧力計測手段17の実施形態の一例を模式的に示したものであり、患者の呼吸情報を取得する形態の一例である。圧力計測手段17は、通り絞り手段171と通り絞り手段を介さない2つの圧力の差を差圧センサ172で計測する。   FIG. 6 schematically shows an example of an embodiment of the pressure measuring means 17 and is an example of a form for acquiring patient respiratory information. The pressure measuring means 17 measures the difference between the two pressures not passing through the passage restricting means 171 and the passage restricting means with the differential pressure sensor 172.

計測された2つの圧力情報は、CPU16で処理される。CPU16は、計測された2つの圧力情報の一方あるいは両方の圧力情報を調整した後、その差分を計算することで使用者の呼吸圧力波形を算出する。さらにCPU16は、取得した圧力波形から、所定の呼吸情報を算出する。   The two pieces of pressure information measured are processed by the CPU 16. The CPU 16 adjusts the pressure information of one or both of the two measured pressure information, and then calculates the difference between them to calculate the respiratory pressure waveform of the user. Further, the CPU 16 calculates predetermined respiration information from the acquired pressure waveform.

CPU16は、2つの圧力情報の一方あるいは両方を調整する。例えば、60秒の時間窓における絶対値の最大値をそれぞれの圧力から抽出し、2つの圧力の絶対値の最大値が等しくなるように、2つの圧力の一方あるいは両方の圧力に乗算処理をする圧力調整処理を実行する。圧力調整処理は、2つの圧力の両方にそれぞれ60秒の時間窓で正規化、あるいは標準化処理をすることでもよい。60秒の時間窓は1分間呼吸数を算出する処理を簡略化するためであるが、60秒でない時間窓でも良い。また、時間窓はオーバーラップして前記処理をしても良い。   The CPU 16 adjusts one or both of the two pieces of pressure information. For example, the maximum value of the absolute value in the time window of 60 seconds is extracted from each pressure, and one or both of the two pressures are multiplied so that the maximum value of the absolute value of the two pressures is equal. Execute pressure adjustment processing. The pressure adjustment processing may be performed by normalizing or standardizing each of the two pressures with a time window of 60 seconds. The time window of 60 seconds is for simplifying the process of calculating the respiratory rate for 1 minute, but it may be a time window other than 60 seconds. Further, the processing may be performed with overlapping time windows.

CPU16は、上述のように電子的に調整された2つの圧力情報の差分を計算することで、呼吸圧力波形を取得する圧力比較処理を実行する。さらにCPU16は、圧力比較処理によって取得した圧力波形から、所定の呼吸情報を算出する呼吸情報算出処理を実行する。   CPU16 performs the pressure comparison process which acquires a respiration pressure waveform by calculating the difference of the two pressure information electronically adjusted as mentioned above. Further, the CPU 16 executes a respiration information calculation process for calculating predetermined respiration information from the pressure waveform acquired by the pressure comparison process.

なお、ここでは単一のCPU16により圧力調整処理、圧力比較処理、呼吸情報算出処理が実行される例を説明したが、CPUの数はこれに限るものではなく、例えば各処理毎に別のCPUによって実行されてもよい。   Here, the example in which the pressure adjustment process, the pressure comparison process, and the respiration information calculation process are executed by the single CPU 16 has been described. However, the number of CPUs is not limited to this, and for example, a different CPU is used for each process. May be executed by

以上示したように、本実施形態によれば、濃縮酸素ガス生成時に生じる圧力変動と呼吸圧力とを区別して呼吸情報を取得することができる。   As described above, according to the present embodiment, the respiratory information can be acquired by distinguishing the pressure fluctuation and the respiratory pressure that are generated when the concentrated oxygen gas is generated.

11: 酸素生成部
12: 酸素流量調整部
13: 酸素供給口
14: 圧力調整手段
141: 通り絞り手段
142: 排気量調整手段
15: 圧力比較手段
16: CPU
111: コンプレッサー
112: 第1切替弁
113: シリンダー
114: 第2切替弁
115: 濃縮酸素バッファタンク
116: 調圧弁
121: コントロールバルブ
122: 流量計
101: 加湿器
17: 圧力計測手段
171: 通り絞り手段
172: 差圧センサ


11: Oxygen generating unit 12: Oxygen flow rate adjusting unit 13: Oxygen supply port 14: Pressure adjusting unit 141: Passage restricting unit 142: Exhaust amount adjusting unit 15: Pressure comparing unit 16: CPU
111: Compressor 112: First switching valve 113: Cylinder 114: Second switching valve 115: Concentrated oxygen buffer tank 116: Pressure regulating valve 121: Control valve 122: Flow meter 101: Humidifier 17: Pressure measuring means 171: Pass throttle means 172: Differential pressure sensor


Claims (7)

濃縮酸素ガスを生成する少なくとも1つのシリンダーと、
前記シリンダーから供給する濃縮酸素ガスの圧力を調圧する調圧弁と、を備えた酸素生成部と、
前記酸素生成部の下流に配置され、少なくとも流量計と、コントロールバルブと、を有する酸素流量制御部と、
前記酸素流量制御部の下流に配置され、生成した酸素ガスを装置外に供給する酸素供給口と、
を備えるPSA式酸素濃縮装置において、
前記酸素生成部と前記酸素流量制御部の間または前記流量計と前記コントロールバルブとの間の平均圧力である第1平均圧力と、前記酸素供給口の平均圧力である第2平均圧力と、の圧力差が所定範囲内となるように、前記第1平均圧力と前記第2平均圧力の少なくとも一方を調整する圧力調整手段と、
前記圧力調整手段で調整された後に、第1平均圧力と第2平均圧力との差分をとる圧力比較手段と、
前記差分から呼吸情報を算出する呼吸情報算出手段と、
を備えるPSA式酸素濃縮装置。
At least one cylinder producing concentrated oxygen gas;
A pressure regulating valve that regulates the pressure of the concentrated oxygen gas supplied from the cylinder, and an oxygen generator,
An oxygen flow rate control unit disposed downstream of the oxygen generation unit and having at least a flow meter and a control valve;
An oxygen supply port that is arranged downstream of the oxygen flow rate control unit and supplies the generated oxygen gas to the outside of the apparatus;
In the PSA type oxygen concentrator comprising:
A first average pressure that is an average pressure between the oxygen generation unit and the oxygen flow rate control unit or between the flow meter and the control valve, and a second average pressure that is an average pressure of the oxygen supply port. Pressure adjusting means for adjusting at least one of the first average pressure and the second average pressure so that the pressure difference falls within a predetermined range;
A pressure comparing means for taking a difference between the first average pressure and the second average pressure after being adjusted by the pressure adjusting means;
Respiration information calculating means for calculating respiration information from the difference;
A PSA-type oxygen concentrator.
前記圧力調整手段は前記第1平均圧力を前記第2平均圧力まで減圧する手段である、請求項1に記載のPSA式酸素濃縮装置。   The PSA type oxygen concentrator according to claim 1, wherein the pressure adjusting means is means for reducing the first average pressure to the second average pressure. 前記圧力比較手段は差圧センサである、請求項1または2に記載のPSA式酸素濃縮装置。   The PSA type oxygen concentrator according to claim 1 or 2, wherein the pressure comparison means is a differential pressure sensor. 前記圧力調整手段は可変流量弁である、請求項1から3のいずれかに記載のPSA式酸素濃縮装置。   The PSA type oxygen concentrator according to any one of claims 1 to 3, wherein the pressure adjusting means is a variable flow valve. 前記可変流量弁の開度が、前記第1平均圧力と前記第2平均圧力の差圧が所定範囲内になるように調整される、請求項4に記載のPSA式酸素濃縮装置。   The PSA oxygen concentrator according to claim 4, wherein the opening of the variable flow valve is adjusted such that a differential pressure between the first average pressure and the second average pressure is within a predetermined range. 前記差圧センサはダイアフラム式差圧センサである、請求項3から5のいずれかに記載のPSA式酸素濃縮装置。   The PSA type oxygen concentrator according to any one of claims 3 to 5, wherein the differential pressure sensor is a diaphragm type differential pressure sensor. 前記酸素生成部と前記酸素流量制御部の間または前記流量計と前記コントロールバルブとの間の圧力を計測する第1の圧力センサと、
前記酸素供給口の圧力を計測する第2の圧力センサを備え、
前記圧力調整手段は、前記第1の圧力センサの出力から計算される第1平均圧力と、前記第2の圧力センサの出力から計算される第2平均圧力と、の圧力差が所定範囲内となるように、前記第1平均圧力と前記第2平均圧力の少なくとも一方を調整し、
前記圧力調整手段で調整された後に、第1平均圧力と第2平均圧力との差分を計算する圧力比較手段と、
前記差分から呼吸情報を算出する呼吸情報算出手段と、を備える請求項1に記載のPSA式酸素濃縮装置。
A first pressure sensor for measuring a pressure between the oxygen generation unit and the oxygen flow rate control unit or between the flow meter and the control valve;
A second pressure sensor for measuring the pressure of the oxygen supply port;
The pressure adjusting means has a pressure difference between a first average pressure calculated from the output of the first pressure sensor and a second average pressure calculated from the output of the second pressure sensor within a predetermined range. Adjusting at least one of the first average pressure and the second average pressure,
Pressure adjusting means for calculating a difference between the first average pressure and the second average pressure after being adjusted by the pressure adjusting means;
The PSA type oxygen concentrator according to claim 1, further comprising: a respiration information calculation unit that calculates respiration information from the difference.
JP2017064767A 2017-03-29 2017-03-29 Respiratory measuring device Active JP6893432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017064767A JP6893432B2 (en) 2017-03-29 2017-03-29 Respiratory measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017064767A JP6893432B2 (en) 2017-03-29 2017-03-29 Respiratory measuring device

Publications (2)

Publication Number Publication Date
JP2018166635A true JP2018166635A (en) 2018-11-01
JP6893432B2 JP6893432B2 (en) 2021-06-23

Family

ID=64018187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017064767A Active JP6893432B2 (en) 2017-03-29 2017-03-29 Respiratory measuring device

Country Status (1)

Country Link
JP (1) JP6893432B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021052911A (en) * 2019-09-27 2021-04-08 ダイキン工業株式会社 Respiration detector and oxygen concentrator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286566A (en) * 2000-02-14 2001-10-16 Fukuda Sangyo:Kk Medical concentrated oxygen gas feeder
US20150231350A1 (en) * 2014-02-14 2015-08-20 Breathe Technologies, Inc. Detection of Patient Interface Disconnect for Controlling Continuous Positive Airway Pressure Therapy
WO2016170087A1 (en) * 2015-04-22 2016-10-27 Chiesi Farmaceutici S.P.A Method and system for effective breath-synchronized delivery of medicament to the lungs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286566A (en) * 2000-02-14 2001-10-16 Fukuda Sangyo:Kk Medical concentrated oxygen gas feeder
US20150231350A1 (en) * 2014-02-14 2015-08-20 Breathe Technologies, Inc. Detection of Patient Interface Disconnect for Controlling Continuous Positive Airway Pressure Therapy
WO2016170087A1 (en) * 2015-04-22 2016-10-27 Chiesi Farmaceutici S.P.A Method and system for effective breath-synchronized delivery of medicament to the lungs

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021052911A (en) * 2019-09-27 2021-04-08 ダイキン工業株式会社 Respiration detector and oxygen concentrator
JP7343762B2 (en) 2019-09-27 2023-09-13 ダイキン工業株式会社 Breathing detection device and oxygen concentrator

Also Published As

Publication number Publication date
JP6893432B2 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
US11235114B2 (en) Methods and systems for leak estimation
AU2010217315B2 (en) Automatic pressure titration
US20130125892A1 (en) Servo ventilation using pressure drop from baseline
JPH07507466A (en) Breathing assistance devices specifically to treat sleep apnea
EP2571423B1 (en) System for estimating upper airway resistance and lung compliance employing induced central apneas
US9526854B2 (en) Inductance compensation in a pressure support system
EP2758112A1 (en) Upper airway resistance measurement device
JP6808020B2 (en) Respiratory information acquisition device and respiration information acquisition method
AU2023285734A1 (en) Gas therapy system
JP6893432B2 (en) Respiratory measuring device
CN112739404A (en) Respiration monitoring device
JP6952909B2 (en) Respiratory information acquisition device
JP7343762B2 (en) Breathing detection device and oxygen concentrator
Ventilation Ventilators, Chapter Alarms, and Safety Features
CN112739403A (en) Respiratory frequency measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210601

R150 Certificate of patent or registration of utility model

Ref document number: 6893432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350