JP2018166379A - Distributed power supply system - Google Patents

Distributed power supply system Download PDF

Info

Publication number
JP2018166379A
JP2018166379A JP2017063469A JP2017063469A JP2018166379A JP 2018166379 A JP2018166379 A JP 2018166379A JP 2017063469 A JP2017063469 A JP 2017063469A JP 2017063469 A JP2017063469 A JP 2017063469A JP 2018166379 A JP2018166379 A JP 2018166379A
Authority
JP
Japan
Prior art keywords
power
facility
power supply
load
target received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017063469A
Other languages
Japanese (ja)
Other versions
JP6832769B2 (en
Inventor
岳明 松尾
Takeaki Matsuo
岳明 松尾
尚克 秋岡
Naokatsu Akioka
尚克 秋岡
鈴木 智之
Tomoyuki Suzuki
智之 鈴木
将輝 ▲高▼溝
将輝 ▲高▼溝
Masaki Takamizo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2017063469A priority Critical patent/JP6832769B2/en
Publication of JP2018166379A publication Critical patent/JP2018166379A/en
Application granted granted Critical
Publication of JP6832769B2 publication Critical patent/JP6832769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a distributed power supply system in which sharp fluctuation of received power in accordance with fluctuation of generated power of a photovoltaic power generation device is coped with.SOLUTION: A distributed power supply system is provided with a controller 14 which controls an operation of a power supply device 13, in which the controller 14 is constituted to determine target received power for every set period to adjust output power from the power supply device 13 to a power line 15 so that received power from a power system 1 to the power line 15 becomes the target received power, the controller 14 determines the target received power as zero when an average value of differential power obtained by subtracting photovoltaic generation power to be supplied to the power line 15 by a photovoltaic power generation device 11 from load power of a power load device 12 in a predetermined period in the past is zero or more, and determines the target received power as the same as the average value of the differential power when the average value of the differential power in the predetermined period in the past is less than zero.SELECTED DRAWING: Figure 1

Description

本発明は、電力系統に接続される電力線と、その電力線に接続される太陽光発電装置及び電源装置及び電力負荷装置を備える分散型電源システムに関する。   The present invention relates to a distributed power supply system including a power line connected to an electric power system, a solar power generation device connected to the power line, a power supply device, and a power load device.

特許文献1には、受電電力の削減を行うことと目的とした分散型電源システムが記載されている。具体的には、この分散型電源システムは、電力系統(1)に接続される電力線(2)と、その電力線(2)に接続される太陽光発電装置(5)及び電源装置(G)及び電力負荷装置(L)を備えている。そして、例えば30分間での受電電力が目標デマンドを超えそうになると、負荷遮断や電源装置などを用いたデマンド調整を行って、30分間での受電電力が目標デマンド以下になるような制御が行われる。   Patent Document 1 describes a distributed power supply system intended to reduce received power. Specifically, this distributed power supply system includes a power line (2) connected to the power system (1), a solar power generation device (5) and a power supply device (G) connected to the power line (2), and A power load device (L) is provided. Then, for example, when the received power in 30 minutes is likely to exceed the target demand, the demand adjustment using a load cutoff or a power supply device is performed so that the received power in 30 minutes becomes less than the target demand. Is called.

特開2009−247188号公報JP 2009-247188 A

太陽光発電装置の発電電力は、例えば雲による日射量の増減に伴って急激に増減することがある。そして、太陽光発電装置の発電電力が急激に増減すると、電力系統から電力線への受電電力も急激に増減するため、電力系統での電力の需給バランスが崩れる可能性がある。   The power generated by the solar power generation device may increase or decrease rapidly as the amount of solar radiation increases or decreases due to, for example, clouds. And if the generated power of the solar power generation device suddenly increases or decreases, the received power from the power system to the power line also increases or decreases rapidly, which may disrupt the power supply-demand balance in the power system.

特に、今後は、ZEH(ゼロ・エネルギー・ハウス)の推進に伴い、太陽光発電装置の普及率が更に向上することが考えられる。その場合、ある地域での日射量の増減に伴って、その地域に設置された数多くの太陽光発電装置の発電電力は同期して増減するため、その地域での電力系統の電力の需給バランスが大きく崩れる可能性があるという問題がある。   In particular, in the future, with the promotion of ZEH (Zero Energy House), it is conceivable that the penetration rate of photovoltaic power generation devices will further improve. In that case, as the amount of solar radiation in a certain area increases and decreases, the generated power of many photovoltaic power generation devices installed in that area increases and decreases synchronously. There is a problem that it may collapse greatly.

ところが、従来の分散型電源システムでは、太陽光発電装置の発電電力が変動することに伴って受電電力が急激に変動することへの対処がなされていない。   However, in the conventional distributed power supply system, no measures are taken against the sudden fluctuation of the received power as the generated power of the photovoltaic power generator fluctuates.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、太陽光発電装置の発電電力が変動することに伴って受電電力が急激に変動することへの対処がなされた分散型電源システムを提供する点にある。   The present invention has been made in view of the above-described problems, and the object thereof is a distributed type in which a countermeasure is taken to cope with a sudden change in received power as the generated power of the photovoltaic power generator fluctuates. The point is to provide a power supply system.

上記目的を達成するための本発明に係る分散型電源システムの特徴構成は、電力系統に接続される電力線と、前記電力線に接続される太陽光発電装置及び電源装置及び電力負荷装置を備える分散型電源システムであって、
前記電源装置の動作を制御する制御装置を備え、
前記制御装置は、設定期間毎に目標受電電力を決定して、前記電力系統から前記電力線への受電電力が前記目標受電電力となるように、前記電源装置から前記電力線への出力電力を調節するように構成され、過去の所定期間での、前記電力負荷装置の負荷電力から前記太陽光発電装置が前記電力線に供給する太陽光発電電力を減算した差分電力の平均値がゼロ以上のとき、前記目標受電電力をゼロに決定し、及び、前記過去の所定期間での前記差分電力の平均値がゼロ未満のとき、前記目標受電電力を当該差分電力の平均値と同じに決定する点にある。
In order to achieve the above object, the distributed power supply system according to the present invention is characterized by a distributed configuration comprising a power line connected to a power system, a photovoltaic power generation device connected to the power line, a power supply device, and a power load device. A power system,
A control device for controlling the operation of the power supply device;
The control device determines a target received power for each set period, and adjusts the output power from the power supply device to the power line so that the received power from the power system to the power line becomes the target received power. When the average value of the difference power obtained by subtracting the photovoltaic power supplied from the load power of the power load device to the power line from the load power of the power load device in the past predetermined period is zero or more, The target received power is determined to be zero, and when the average value of the differential power in the past predetermined period is less than zero, the target received power is determined to be the same as the average value of the differential power.

上記特徴構成によれば、過去の所定期間での差分電力の平均値がゼロ以上のとき、その所定期間では電力負荷装置の負荷電力が太陽光発電装置の太陽光発電電力に比べて相対的に大きい傾向にあり、電力線から電力系統へ太陽光発電電力を供給できない状態(売電不可能状態)であったと判定できる。この場合、本特徴構成では、目標受電電力をゼロに決定して、電力系統から電力線への受電電力がゼロ(目標受電電力)となるように、電源装置から電力線への出力電力を調節する。つまり、電力系統からの受電電力がゼロになり且つゼロで安定するように、電源装置から電力線への出力電力を調節する。その結果、分散型電源システムは、太陽光発電装置の発電電力が急激に増減するようなときにも、電力系統での電力の需給バランスを悪化させることを回避しながら、電力系統からの購入電力を安定して少なくさせることができる。   According to the above characteristic configuration, when the average value of the differential power in the past predetermined period is zero or more, the load power of the power load device is relatively smaller than the solar power generated by the solar power generator in the predetermined period. It tends to be large, and it can be determined that the solar power generation power cannot be supplied from the power line to the power system. In this case, in this feature configuration, the target received power is determined to be zero, and the output power from the power supply apparatus to the power line is adjusted so that the received power from the power system to the power line becomes zero (target received power). That is, the output power from the power supply device to the power line is adjusted so that the received power from the power system becomes zero and stabilizes at zero. As a result, the distributed power supply system avoids degrading the supply and demand balance of power in the power system even when the power generated by the photovoltaic power generator suddenly increases or decreases, while purchasing power from the power system. Can be stably reduced.

それに対して、過去の所定期間での差分電力の平均値がゼロ未満のとき、その所定期間では電力負荷装置の負荷電力が太陽光発電装置の太陽光発電電力に比べて相対的に小さい傾向にあり、余剰電力が発生していた、即ち、電力線から電力系統へ太陽光発電電力の少なくとも一部を供給(逆潮流)できる状態(売電可能状態)であったと判定できる。この場合、本特徴構成では、目標受電電力を上記差分電力の平均値と同じに決定して、上記差分電力の平均値(目標受電電力)と同じ大きさの電力が電力線から電力系統へと供給されるように、電源装置から電力線への出力電力を調節する。つまり、電力線から電力系統への供給電力が安定するように、電源装置から電力線への出力電力を調節する。その結果、分散型電源システムは、太陽光発電装置の発電電力が急激に増減するようなときにも、電力系統での電力の需給バランスを悪化させることを回避しながら、電力系統へと太陽光発電電力の少なくとも一部を安定して供給できる。
従って、太陽光発電装置の発電電力が変動することに伴って受電電力が急激に変動することへの対処がなされた分散型電源システムを提供できる。
On the other hand, when the average value of the differential power in the past predetermined period is less than zero, the load power of the power load device tends to be relatively small in comparison with the solar power generated by the solar power generator in the predetermined period. Yes, it can be determined that surplus power has been generated, that is, a state in which at least part of the photovoltaic power is supplied (reverse power flow) from the power line to the power system (a state in which power can be sold). In this case, in this feature configuration, the target received power is determined to be the same as the average value of the differential power, and power having the same magnitude as the average value of the differential power (target received power) is supplied from the power line to the power system. The output power from the power supply to the power line is adjusted. That is, the output power from the power supply device to the power line is adjusted so that the power supplied from the power line to the power system is stabilized. As a result, the distributed power supply system avoids deteriorating the power supply-demand balance in the power system even when the power generated by the photovoltaic power generator suddenly increases or decreases. At least a part of the generated power can be stably supplied.
Therefore, it is possible to provide a distributed power supply system that can cope with a sudden change in the received power as the generated power of the photovoltaic power generator fluctuates.

本発明に係る分散型電源システムの別の特徴構成は、電力系統に接続される複数の電力線のそれぞれが引き込まれる複数の施設にまたがって設置される分散型電源システムであって、
複数の前記施設は、引き込まれる前記電力線に接続される太陽光発電装置及び電源装置及び電力負荷装置を備える一つ以上の第1施設と、引き込まれる前記電力線に接続される前記電力負荷装置を備え且つ前記電源装置を備えない一つ以上の第2施設とで構成され、
前記電源装置の動作を制御する制御装置を備え、
前記制御装置は、前記第1施設において、設定期間毎に目標受電電力を決定して、前記電力系統から当該第1施設の前記電力線への受電電力が前記目標受電電力となるように、当該第1施設が備える前記電源装置から前記電力線への出力電力を調節するように構成され、前記第1施設において、過去の所定期間での、当該第1施設の前記電力負荷装置の負荷電力から当該第1施設の前記太陽光発電装置が前記電力線に供給する太陽光発電電力を減算した差分電力の平均値がゼロ以上のとき、前記第2施設が備える前記電力負荷装置の前記過去の所定期間での負荷電力の平均値を一つ以上の前記第1施設の数で割ることで導出された調整電力値をゼロから減算した値を前記目標受電電力に決定し、及び、前記過去の所定期間での、前記差分電力の平均値がゼロ未満のとき、当該差分電力の平均値から前記調整電力値を減算した値を前記目標受電電力に決定する点にある。
Another characteristic configuration of the distributed power supply system according to the present invention is a distributed power supply system installed across a plurality of facilities into which each of a plurality of power lines connected to the power system is drawn,
The plurality of facilities includes one or more first facilities including a solar power generation device, a power supply device, and a power load device connected to the power line to be drawn in, and the power load device connected to the power line to be drawn in. And one or more second facilities not equipped with the power supply device,
A control device for controlling the operation of the power supply device;
The control device determines a target received power for each set period in the first facility, and the received power from the power system to the power line of the first facility becomes the target received power. It is comprised so that the output electric power to the said power line from the said power supply device with which 1 facility may be equipped, In the said 1st facility, it is the said 1st from the load electric power of the said power load apparatus of the said 1st facility in the past predetermined period When the average value of the differential power obtained by subtracting the photovoltaic power supplied to the power line by the photovoltaic power generation device of one facility is zero or more, the power load device included in the second facility in the past predetermined period A value obtained by subtracting an adjusted power value derived by dividing an average value of load power by the number of one or more first facilities from zero is determined as the target received power, and in the past predetermined period , The differential power When the average value is less than zero, there a value obtained by subtracting the regulated power value from the average value of the power difference in the point of determining the target received power.

上記特徴構成によれば、第1施設において、過去の所定期間での差分電力の平均値がゼロ以上のとき、その所定期間では電力負荷装置の負荷電力が太陽光発電装置の太陽光発電電力に比べて相対的に大きい傾向にあり、その第1施設の電力線から電力系統へ太陽光発電電力を供給できない状態(売電不可能状態)であったと判定できる。この場合、本特徴構成では、第2施設が備える電力負荷装置の上記過去の所定期間での負荷電力の平均値を一つ以上の第1施設の数で割ることで導出された調整電力値をゼロから減算した値を目標受電電力に決定して、電力系統から電力線への受電電力がその目標受電電力となるように、電源装置から電力線への出力電力を調節する。つまり、太陽光発電装置の発電電力が急激に増減したとしても、第1施設での受電電力は、上記調整電力値をゼロから減算した値(目標受電電力)で安定する。加えて、第2施設では、一つ以上の第1施設から電力系統へと供給される電力の合計が、その第2施設の受電電力(即ち、電力負荷装置の負荷電力)に充当される。その結果、分散型電源システムは、太陽光発電装置の発電電力が急激に増減するようなときにも、電力系統での電力の需給バランスを悪化させることを回避しながら、各施設での電力系統からの購入電力を安定して少なくさせることができる。   According to the above characteristic configuration, when the average value of the differential power in the past predetermined period is zero or more in the first facility, the load power of the power load device is converted into the solar power generated by the solar power generation device in the predetermined period. It can be determined that the solar power generation power is in a state that cannot be supplied from the power line of the first facility to the power system (non-power sale state). In this case, in this characteristic configuration, the adjusted power value derived by dividing the average value of the load power of the power load device included in the second facility in the past predetermined period by the number of one or more first facilities is obtained. A value subtracted from zero is determined as the target received power, and the output power from the power supply apparatus to the power line is adjusted so that the received power from the power system to the power line becomes the target received power. In other words, even if the generated power of the photovoltaic power generator suddenly increases or decreases, the received power at the first facility is stabilized at a value (target received power) obtained by subtracting the adjusted power value from zero. In addition, in the second facility, the total power supplied from the one or more first facilities to the power system is applied to the received power of the second facility (that is, the load power of the power load device). As a result, the distributed power supply system avoids deteriorating the power supply-demand balance in the power system even when the power generated by the photovoltaic power generator suddenly increases or decreases. Power consumption from can be reduced stably.

それに対して、第1施設において、過去の所定期間での差分電力の平均値がゼロ未満のとき、その所定期間では電力負荷装置の負荷電力が太陽光発電装置の太陽光発電電力に比べて相対的に小さい傾向にあり、余剰電力が発生していた、即ち、その第1施設の電力線から電力系統へ太陽光発電電力の少なくとも一部を供給(逆潮流)できる状態(売電可能状態)であったと判定できる。この場合、本特徴構成では、上記差分電力の平均値から上記調整電力値を減算した値を目標受電電力に決定して、その目標受電電力と同じ大きさの電力が電力線から電力系統へと供給されるように、電源装置から電力線への出力電力を調節する。つまり、太陽光発電装置の発電電力が急激に増減したとしても、第1施設での受電電力は、上記差分電力の平均値から上記調整電力値を減算した値(目標受電電力)で安定する。加えて、第2施設では、一つ以上の第1施設から電力系統へと供給される電力の合計が、その第2施設の受電電力(即ち、電力負荷装置の負荷電力)に充当される。その結果、分散型電源システムは、太陽光発電装置の発電電力が急激に増減するようなときにも、電力系統での電力の需給バランスを悪化させることを回避しながら、電力系統へと太陽光発電電力の少なくとも一部を安定して供給できる。
従って、太陽光発電装置の発電電力が変動することに伴って受電電力が急激に変動することへの対処がなされた分散型電源システムを提供できる。
On the other hand, in the first facility, when the average value of the differential power in the past predetermined period is less than zero, the load power of the power load device is relative to the solar power generation power of the solar power generator in the predetermined period. In a state where surplus power has been generated, that is, in a state where at least a part of the photovoltaic power is supplied (reverse power flow) from the power line of the first facility to the power system (power sale possible state) It can be determined that there was. In this case, in this feature configuration, a value obtained by subtracting the adjusted power value from the average value of the differential power is determined as the target received power, and power having the same magnitude as the target received power is supplied from the power line to the power system. The output power from the power supply to the power line is adjusted. In other words, even if the generated power of the photovoltaic power generation device suddenly increases or decreases, the received power at the first facility is stabilized at a value (target received power) obtained by subtracting the adjusted power value from the average value of the differential power. In addition, in the second facility, the total power supplied from the one or more first facilities to the power system is applied to the received power of the second facility (that is, the load power of the power load device). As a result, the distributed power supply system avoids deteriorating the power supply-demand balance in the power system even when the power generated by the photovoltaic power generator suddenly increases or decreases. At least a part of the generated power can be stably supplied.
Therefore, it is possible to provide a distributed power supply system that can cope with a sudden change in the received power as the generated power of the photovoltaic power generator fluctuates.

本発明に係る分散型電源システムの更に別の特徴構成は、前記電源装置は充放電装置を有し、その充電電力及び放電電力を調節することで前記出力電力を調節する点にある。   Still another characteristic configuration of the distributed power supply system according to the present invention is that the power supply device includes a charge / discharge device, and the output power is adjusted by adjusting the charge power and the discharge power.

上記特徴構成によれば、電源装置としての充放電装置を用いて、太陽光発電装置の発電電力が急激に増減するようなときにも、電力系統での電力の需給バランスが悪化することを回避できる。   According to the above characteristic configuration, the power supply / demand balance in the power system is prevented from deteriorating even when the generated power of the solar power generation device suddenly increases or decreases by using the charging / discharging device as the power supply device. it can.

本発明に係る分散型電源システムの更に別の特徴構成は、前記電源装置は発電装置を有し、その発電電力を増減することで前記出力電力を調節する点にある。   Still another characteristic configuration of the distributed power supply system according to the present invention is that the power supply device includes a power generation device, and the output power is adjusted by increasing or decreasing the generated power.

上記特徴構成によれば、電源装置としての発電装置を用いて、太陽光発電装置の発電電力が急激に増減するようなときにも、電力系統での電力の需給バランスが悪化することを回避できる。   According to the above characteristic configuration, it is possible to avoid deterioration of the power supply / demand balance in the power system even when the generated power of the solar power generation device suddenly increases or decreases by using the power generation device as the power supply device. .

第1実施形態の分散型電源システムの構成を示す図である。It is a figure which shows the structure of the distributed power supply system of 1st Embodiment. 第1実施形態の電源装置の出力制御を説明するフローチャートである。It is a flowchart explaining the output control of the power supply device of 1st Embodiment. 第2実施形態の分散型電源システムの構成を示す図である。It is a figure which shows the structure of the distributed power supply system of 2nd Embodiment. 第2実施形態の電源装置の出力制御を説明するフローチャートである。It is a flowchart explaining the output control of the power supply device of 2nd Embodiment.

<第1実施形態>
以下に図面を参照して本発明の第1実施形態に係る分散型電源システムについて説明する。
図1は第1実施形態の分散型電源システムの構成を示す図である。図示するように、分散型電源システムは、電力系統1に接続される電力線15が引き込まれている施設10に設置されている。そして、分散型電源システムは、電力系統1に接続される電力線15と、電力線15に接続される太陽光発電装置11及び電源装置13及び電力負荷装置12を備える。また、分散型電源システムは、電源装置13の動作を制御する制御装置14を備える。
<First Embodiment>
A distributed power supply system according to a first embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram illustrating a configuration of a distributed power supply system according to the first embodiment. As shown in the figure, the distributed power supply system is installed in a facility 10 into which a power line 15 connected to the power system 1 is drawn. The distributed power supply system includes a power line 15 connected to the power system 1, a solar power generation device 11, a power supply device 13, and a power load device 12 connected to the power line 15. The distributed power supply system also includes a control device 14 that controls the operation of the power supply device 13.

電力系統1から電力線15に供給される受電電力P0は、電力系統1から電力線15に向かう方向を正としている。よって、電力線15から電力系統1へ電力が向かう場合(即ち、逆潮流の場合)には、受電電力P0は負の電力となる。また、電力計測器(図示せず)などによって測定される受電電力P0の値は制御装置14に伝達される。   The received power P0 supplied from the power system 1 to the power line 15 is positive in the direction from the power system 1 to the power line 15. Therefore, when power is directed from the power line 15 to the power system 1 (that is, in the case of reverse power flow), the received power P0 is negative power. In addition, the value of the received power P 0 measured by a power meter (not shown) or the like is transmitted to the control device 14.

太陽光発電装置11で発電された電力はインバータなどの電力変換器(図示せず)を介して電力線15に供給される。太陽光発電装置11が電力線15に供給する太陽光発電電力P1は、太陽光発電装置11から電力線15に向かう方向を正としている。また、電力計測器(図示せず)などによって測定される太陽光発電電力P1の値は制御装置14に伝達される。   The electric power generated by the solar power generation device 11 is supplied to the power line 15 via a power converter (not shown) such as an inverter. The photovoltaic power generation P <b> 1 that the solar power generation device 11 supplies to the power line 15 has a positive direction from the solar power generation device 11 toward the power line 15. Further, the value of the photovoltaic power generation P <b> 1 measured by a power meter (not shown) or the like is transmitted to the control device 14.

電源装置13は、電力線15への出力電力Pxを自在に調節できる充放電装置や発電装置などを有する。例えば、充放電装置としては、リチウムイオン電池、ニッケル水素電池、鉛電池などの蓄電池(化学電池)や、キャパシタ、フライホイールなどの様々な装置を用いることができる。発電装置としては、燃料電池を備える装置や、エンジンとそのエンジンによって駆動される発電機とを備える装置などの様々な装置を用いることができる。電源装置13から電力線15への出力電力Pxは、電源装置13から電力線15へ向かう方向を正としている。電源装置13が充放電装置を有する場合、電力線15から電源装置13への充電電力及び電源装置13から電力線15への放電電力を調節することで出力電力Pxを調節できる。電源装置13が発電装置を有する場合、電力線15へ供給する発電電力を増減することで出力電力Pxを調節できる。   The power supply device 13 includes a charge / discharge device and a power generation device that can freely adjust the output power Px to the power line 15. For example, as a charging / discharging device, various devices such as a storage battery (chemical battery) such as a lithium ion battery, a nickel metal hydride battery, and a lead battery, a capacitor, and a flywheel can be used. Various devices such as a device including a fuel cell and a device including an engine and a generator driven by the engine can be used as the power generation device. The output power Px from the power supply device 13 to the power line 15 is positive in the direction from the power supply device 13 to the power line 15. When the power supply device 13 includes a charge / discharge device, the output power Px can be adjusted by adjusting the charging power from the power line 15 to the power supply device 13 and the discharge power from the power supply device 13 to the power line 15. When the power supply device 13 includes a power generation device, the output power Px can be adjusted by increasing or decreasing the generated power supplied to the power line 15.

電力負荷装置12は、施設10に設置される照明機器、空調機器、情報機器など、電力を消費して動作する様々な機器である。電力負荷装置12の負荷電力P2は、電力線15から電力負荷装置12へ向かう方向を正としている。また、電力計測器(図示せず)などによって測定される負荷電力P2の値は制御装置14に伝達される。   The power load device 12 is various devices that operate by consuming electric power, such as lighting devices, air conditioning devices, and information devices installed in the facility 10. The load power P <b> 2 of the power load device 12 is positive in the direction from the power line 15 to the power load device 12. Further, the value of the load power P <b> 2 measured by a power meter (not shown) or the like is transmitted to the control device 14.

このような分散型電源システムにおいて、制御装置14は、設定期間毎に目標受電電力を決定して、電力系統1から電力線15への受電電力P0が目標受電電力となるように、電源装置13から電力線15への出力電力Pxを調節するように構成されている。
以下に、制御装置14が行う電源装置13の出力制御について説明する。
In such a distributed power supply system, the control device 14 determines the target received power for each set period, so that the received power P0 from the power system 1 to the power line 15 becomes the target received power. The output power Px to the power line 15 is adjusted.
The output control of the power supply device 13 performed by the control device 14 will be described below.

図2は第1実施形態の電源装置13の出力制御を説明するフローチャートである。
工程#10において制御装置14は、目標受電電力の決定タイミングであるか否かを判定する。例えば、制御装置14が、15分毎などのタイミングで目標受電電力を更新するように構成されている場合、15分毎に目標受電電力の決定タイミングであると判定して、工程#11に移行する。それに対して、制御装置14は、目標受電電力を更新してから次の決定タイミングまでの15分間は、目標受電電力の決定タイミングではないと判定して、先に決定されている目標受電電力の値を維持し、受電電力P0がその目標受電電力となるように電源装置13の出力電力Pxを調節し続ける(工程#15)。よって、その15分間の間は、太陽光発電装置11の発電電力が急激に増減するようなときにも、受電電力P0がその目標受電電力で安定することになる。
FIG. 2 is a flowchart illustrating output control of the power supply device 13 according to the first embodiment.
In step # 10, the control device 14 determines whether or not it is the target received power determination timing. For example, when the control device 14 is configured to update the target received power at a timing such as every 15 minutes, it is determined that the target received power is determined every 15 minutes, and the process proceeds to step # 11. To do. On the other hand, the control device 14 determines that 15 minutes from the update of the target received power to the next determination timing is not the target received power determination timing, and the previously determined target received power is determined. The value is maintained, and the output power Px of the power supply device 13 is continuously adjusted so that the received power P0 becomes the target received power (step # 15). Therefore, during the 15 minutes, the received power P0 is stabilized at the target received power even when the generated power of the solar power generation device 11 suddenly increases or decreases.

制御装置14は、目標受電電力の決定タイミングであると判定した場合、工程#11において、過去の所定期間(例えば10分間など)での、電力負荷装置12の負荷電力P2から太陽光発電装置11が電力線15に供給する太陽光発電電力P1を減算した差分電力:「P2−P1」の平均値を計算する。この差分電力により、施設10内で太陽光発電電力P1を負荷電力P2に充当した場合に余剰電力が発生するか否かを判定できる。例えば、過去の所定期間での差分電力の平均値がゼロ未満のとき、その所定期間では負荷電力P2が太陽光発電電力P1に比べて相対的に小さい傾向にあり、余剰電力が発生していた、即ち、施設10の電力線15から電力系統1へ太陽光発電電力P1の少なくとも一部を供給(逆潮流)できる状態(売電可能状態)であったと判定できる。それに対して、過去の所定期間での差分電力の平均値がゼロ以上のとき、その所定期間では負荷電力P2が太陽光発電電力P1に比べて相対的に大きい傾向にあり、施設10の電力線15から電力系統1へ太陽光発電電力P1を供給できない状態(売電不可能状態)であったと判定できる。   If the control device 14 determines that it is the timing for determining the target received power, the photovoltaic power generation device 11 from the load power P2 of the power load device 12 in the past predetermined period (for example, 10 minutes) in step # 11. Calculates the average value of difference power: “P2−P1” obtained by subtracting the photovoltaic power P1 supplied to the power line 15. Based on this differential power, it can be determined whether or not surplus power is generated when the photovoltaic power P1 is applied to the load power P2 in the facility 10. For example, when the average value of the differential power in the past predetermined period is less than zero, the load power P2 tends to be relatively smaller than the photovoltaic power P1 in the predetermined period, and surplus power is generated. That is, it can be determined that at least a part of the photovoltaic power P1 can be supplied (reverse power flow) from the power line 15 of the facility 10 to the power system 1 (power sale possible state). On the other hand, when the average value of the differential power in the past predetermined period is zero or more, the load power P2 tends to be relatively larger than the photovoltaic power P1 in the predetermined period, and the power line 15 of the facility 10 It can be determined that the solar power generation power P1 cannot be supplied from the power system 1 to the power system 1 (the power cannot be sold).

そして、制御装置14は、工程#12において過去の所定期間での差分電力の平均値がゼロ未満であると判定したとき、工程#13に移行して目標受電電力を差分電力の平均値と同じに決定し、受電電力P0がその目標受電電力となるように電源装置13の出力電力Pxを調節する(工程#15)。つまり、過去の所定期間での差分電力:「P2−P1」の平均値がゼロ未満というのは、負荷電力P2が太陽光発電電力P1に比べて相対的に小さいため売電が可能(売電可能状態)であり、電力系統1への電力の逆潮流を行える状態であると言える。このような状態のときは、売電電力が一定になるように(即ち、目標受電電力=過去の所定期間の差分電力:「P2−P1」の平均値となるように)、電源装置13の出力電力Pxを増減調節する。これにより、電力系統1への売電を行っている間に太陽光発電電力P1が天候に応じて変化しても、その売電電力が大きく変動することを回避できる。   When determining that the average value of the differential power in the past predetermined period is less than zero in step # 12, the control device 14 proceeds to step # 13 and sets the target received power to be the same as the average value of the differential power. And the output power Px of the power supply device 13 is adjusted so that the received power P0 becomes the target received power (step # 15). In other words, the average value of the difference power “P2-P1” in the past predetermined period is less than zero because the load power P2 is relatively smaller than the photovoltaic power P1 (the power sale is possible). It can be said that it is a state in which the reverse power flow to the power system 1 can be performed. In such a state, the power supply power of the power supply device 13 is set so that the sold power is constant (that is, the target received power = the difference power in the past predetermined period: the average value of “P2−P1”). Increase / decrease output power Px. Thereby, even if the photovoltaic power generation P1 changes according to the weather while selling power to the power system 1, it is possible to avoid the power selling power from fluctuating greatly.

それに対して、制御装置14は、工程#12において過去の所定期間での差分電力の平均値がゼロ以上であると判定したとき、工程#14に移行して目標受電電力をゼロに決定し、受電電力P0がその目標受電電力となるように電源装置13の出力電力Pxを調節する(工程#15)。つまり、過去の所定期間での差分電力:「P2−P1」の平均値がゼロ以上というのは、負荷電力P2が太陽光発電電力P1に比べて相対的に大きいため売電が不可能(売電不可能状態)であり、電力系統1から電力を買っている状態であると言える。このような状態のときは、買電電力が一定且つ小さくなるように(即ち、目標受電電力=0となるように)、電源装置13の出力電力Pxを増減調節する。これにより、電力系統1からの買電を行っている間に太陽光発電電力P1が天候に応じて変化しても、その買電電力が大きく変動することを回避できる。   In contrast, when the control device 14 determines in step # 12 that the average value of the differential power in the past predetermined period is zero or more, the control device 14 proceeds to step # 14 and determines the target received power to be zero. The output power Px of the power supply device 13 is adjusted so that the received power P0 becomes the target received power (step # 15). In other words, the average value of the difference power “P2-P1” in the past predetermined period is zero or more because the load power P2 is relatively larger than the photovoltaic power P1, and it is impossible to sell power (sell It can be said that it is a state in which power is purchased from the power system 1. In such a state, the output power Px of the power supply device 13 is increased or decreased so that the purchased power is constant and small (that is, the target received power = 0). Thereby, even if the photovoltaic power generation P1 changes according to the weather while purchasing power from the power system 1, it can be avoided that the purchased power greatly fluctuates.

<第2実施形態>
第2実施形態の分散型電源システムは、複数の施設10にまたがって設置される点で上記実施形態と異なっている。以下に第2実施形態の分散型電源システムについて説明するが、上記実施形態と同様の構成については説明を省略する。
Second Embodiment
The distributed power supply system of the second embodiment is different from the above-described embodiment in that it is installed across a plurality of facilities 10. Hereinafter, the distributed power supply system according to the second embodiment will be described, but the description of the same configuration as that of the above embodiment will be omitted.

図3は第2実施形態の分散型電源システムの構成を示す図である。図示するように、分散型電源システムは、電力系統1に接続される複数の電力線15のそれぞれが引き込まれる複数の施設10にまたがって設置されている。複数の施設10は、一つ以上の第1施設と、一つ以上の第2施設とで構成される。第1施設は、引き込まれる電力線15に接続される太陽光発電装置11及び電源装置13及び電力負荷装置12を備える。第2施設は、引き込まれる電力線15に接続される電力負荷装置12を備え且つ電源装置13を備えない。尚、第2施設は、太陽光発電装置11を備えていてもよい。   FIG. 3 is a diagram illustrating a configuration of a distributed power supply system according to the second embodiment. As shown in the figure, the distributed power supply system is installed across a plurality of facilities 10 into which a plurality of power lines 15 connected to the power system 1 are drawn. The plurality of facilities 10 includes one or more first facilities and one or more second facilities. The first facility includes a solar power generation device 11, a power supply device 13, and a power load device 12 connected to a power line 15 that is drawn. The second facility includes the power load device 12 connected to the drawn power line 15 and does not include the power supply device 13. Note that the second facility may include a solar power generation device 11.

図3に示す例では、施設10A及び施設10Bは第1施設であり、施設10Cは第2施設である。つまり、施設10A及び施設10Bのそれぞれは電源装置13を備えているため、その電源装置13の出力電力を調節して電力系統1からの受電電力を変化させることができる。つまり、上記第1実施形態と同様に、本実施形態でも、施設10A及び施設10Bに設けられる制御装置14は、設定期間毎に目標受電電力を決定して、電力系統1からそれ自身の電力線15への受電電力P0a,P0bが目標受電電力となるように、その電源装置13から電力線15への出力電力Pxa,Pxbを調節するように構成される。   In the example illustrated in FIG. 3, the facility 10A and the facility 10B are first facilities, and the facility 10C is a second facility. That is, since each of the facility 10A and the facility 10B includes the power supply device 13, the power received from the power system 1 can be changed by adjusting the output power of the power supply device 13. That is, similarly to the first embodiment, also in this embodiment, the control device 14 provided in the facility 10A and the facility 10B determines the target received power for each set period, and the power line 15 from the power system 1 itself. The output power Pxa, Pxb from the power supply device 13 to the power line 15 is adjusted so that the received power P0a, P0b to the power becomes the target received power.

第1施設としての施設10Aには、電力系統1に接続される電力線15と、電力線15に接続される太陽光発電装置11及び電源装置13及び電力負荷装置12が設けられる。また、施設10Aには、電源装置13の動作を制御する制御装置14が設けられる。施設10Aにおいて、電力計測器(図示せず)などによって測定される受電電力P0aの値、及び、電力計測器(図示せず)などによって測定される太陽光発電電力P1aの値、及び、電力計測器(図示せず)などによって測定される負荷電力P2aの値は、制御装置14に伝達される。   The facility 10 </ b> A as the first facility is provided with a power line 15 connected to the power system 1, a solar power generation device 11, a power supply device 13, and a power load device 12 connected to the power line 15. The facility 10 </ b> A is provided with a control device 14 that controls the operation of the power supply device 13. In facility 10A, the value of received power P0a measured by a power meter (not shown), the value of photovoltaic power P1a measured by a power meter (not shown), and power measurement The value of the load power P2a measured by a device (not shown) or the like is transmitted to the control device 14.

第1施設としての施設10Bには、電力系統1に接続される電力線15と、電力線15に接続される太陽光発電装置11及び電源装置13及び電力負荷装置12が設けられる。また、施設10Bには、電源装置13の動作を制御する制御装置14が設けられる。施設10Bにおいて、電力計測器(図示せず)などによって測定される受電電力P0bの値、及び、電力計測器(図示せず)などによって測定される太陽光発電電力P1bの値、及び、電力計測器(図示せず)などによって測定される負荷電力P2bの値は、制御装置14に伝達される。   The facility 10 </ b> B as the first facility is provided with a power line 15 connected to the power system 1, a solar power generation device 11, a power supply device 13, and a power load device 12 connected to the power line 15. The facility 10 </ b> B is provided with a control device 14 that controls the operation of the power supply device 13. In facility 10B, the value of received power P0b measured by a power meter (not shown), the value of photovoltaic power P1b measured by a power meter (not shown), and power measurement The value of the load power P2b measured by a device (not shown) or the like is transmitted to the control device 14.

第2施設としての施設10Bには、電力系統1に接続される電力線15と、電力線15に接続される電力負荷装置12が設けられる。電力計測器(図示せず)などによって測定される受電電力P0cの値は中央制御装置20に伝達される。中央制御装置20は、施設10A及び施設10B及び施設10Cとの間で通信回線を介して接続されるサーバー装置などを用いて構成される。   The facility 10 </ b> B as the second facility is provided with a power line 15 connected to the power system 1 and a power load device 12 connected to the power line 15. The value of the received power P0c measured by a power meter (not shown) or the like is transmitted to the central controller 20. The central control device 20 is configured using a server device or the like that is connected to the facility 10A, the facility 10B, and the facility 10C via a communication line.

中央制御装置20は、第2施設としての施設10Cから、過去の所定期間での負荷電力の平均値の伝達を受けており、及び、第1施設の数を把握している。そして、中央制御装置20は、第2施設が備える電力負荷装置12の過去の所定期間での負荷電力の平均値を第1施設の数で割ることで導出した調整電力値を導出し、その導出した調整電力値を第1施設としての施設10A,10Bのそれぞれに対して伝達する。尚、第2施設が複数存在している場合には、それら第2施設の負荷電力の平均値の合計を第1施設の数で割ることで上記調整電力値を導出すればよい。   The central controller 20 receives the average value of the load power in the past predetermined period from the facility 10C as the second facility, and grasps the number of the first facilities. Then, the central controller 20 derives an adjusted power value derived by dividing the average value of the load power in the past predetermined period of the power load device 12 included in the second facility by the number of the first facilities, and the derivation thereof. The adjusted power value is transmitted to each of the facilities 10A and 10B as the first facility. In addition, when there are a plurality of second facilities, the adjusted power value may be derived by dividing the total of the average values of the load power of the second facilities by the number of the first facilities.

第2実施形態において、本発明に係る分散型電源システムの制御装置の機能は、第1施設10A,10Bの夫々に設けられる制御装置14と、中央制御装置20とで実現される。   In the second embodiment, the function of the control device of the distributed power supply system according to the present invention is realized by the control device 14 and the central control device 20 provided in each of the first facilities 10A and 10B.

本実施形態において、施設10A及び施設10Bに設けられている各制御装置14は、過去の所定期間での、それ自身の第1施設(施設10A又は10B)の電力負荷装置12の負荷電力P2(P2a又はP2b)からその第1施設の太陽光発電装置11が電力線15に供給する太陽光発電電力P1(P1a又はP1b)を減算した差分電力:「P2−P1」の平均値がゼロ以上のとき、第2施設(施設10C)が備える電力負荷装置12の上記過去の所定期間での負荷電力P2(P2c)の平均値を一つ以上の第1施設の数で割ることで導出された調整電力値をゼロから減算した値を目標受電電力に決定する。   In the present embodiment, each control device 14 provided in the facility 10A and the facility 10B has the load power P2 of the power load device 12 of its own first facility (facility 10A or 10B) in the past predetermined period. Difference power obtained by subtracting the photovoltaic power generation P1 (P1a or P1b) supplied to the power line 15 from the solar power generation device 11 of the first facility from P2a or P2b): When the average value of “P2−P1” is zero or more The adjusted power derived by dividing the average value of the load power P2 (P2c) of the power load device 12 of the second facility (facility 10C) in the past predetermined period by the number of one or more first facilities A value obtained by subtracting the value from zero is determined as the target received power.

図4は第2実施形態の電源装置13の出力制御を説明するフローチャートである。施設10Aの制御装置14が行う処理と、施設10Bの制御装置14が行う処理とは同様であるので、以下の説明では施設10Aの制御装置14が行う処理のみを説明する。   FIG. 4 is a flowchart illustrating output control of the power supply device 13 according to the second embodiment. Since the process performed by the control device 14 of the facility 10A is the same as the process performed by the control device 14 of the facility 10B, only the process performed by the control device 14 of the facility 10A will be described below.

工程#20において制御装置14は、目標受電電力の決定タイミングであるか否かを判定する。例えば、制御装置14が、15分毎などのタイミングで目標受電電力を更新するように構成されている場合、15分毎に目標受電電力の決定タイミングであると判定して、工程#21に移行する。それに対して、制御装置14は、目標受電電力を更新してから次の決定タイミングまでの15分間は、目標受電電力の決定タイミングではないと判定して、先に決定されている目標受電電力の値を維持し、受電電力P0がその目標受電電力となるように電源装置13の出力電力Pxaを調節する(工程#27)。   In step # 20, the control device 14 determines whether or not it is the target received power determination timing. For example, if the control device 14 is configured to update the target received power at a timing such as every 15 minutes, it is determined that the target received power is determined every 15 minutes, and the process proceeds to step # 21. To do. On the other hand, the control device 14 determines that 15 minutes from the update of the target received power to the next determination timing is not the target received power determination timing, and the previously determined target received power is determined. The value is maintained, and the output power Pxa of the power supply device 13 is adjusted so that the received power P0 becomes the target received power (step # 27).

制御装置14は、目標受電電力の決定タイミングであると判定した場合、工程#21において、過去の所定期間での、自身の施設10Aの電力負荷装置12の負荷電力P2aから自身の施設10Aの太陽光発電装置11が電力線15に供給する太陽光発電電力P1aを減算した差分電力:「P2a−P1a」の平均値を計算する。この差分電力により、施設10A内で太陽光発電電力P1aを負荷電力P2aに充当した場合に余剰電力が発生するか否かを判定できる。例えば、過去の所定期間での差分電力の平均値がゼロ未満のとき、その所定期間では負荷電力P2aが太陽光発電電力P1aに比べて相対的に小さい傾向にあり、余剰電力が発生していた、即ち、施設10Aの電力線15から電力系統1へ太陽光発電電力P1aの少なくとも一部を供給(逆潮流)できる状態(売電可能状態)であったと判定できる。それに対して、過去の所定期間での差分電力の平均値がゼロ以上のとき、その所定期間では負荷電力P2aが太陽光発電電力P1aに比べて相対的に大きい傾向にあり、施設10Aの電力線15から電力系統1へ太陽光発電電力を供給できない状態(売電不可能状態)であったと判定できる。   If the control device 14 determines that it is the timing for determining the target received power, in step # 21, the control device 14 determines the solar power of the facility 10A from the load power P2a of the power load device 12 of the facility 10A in the past predetermined period. An average value of difference power: “P2a−P1a” obtained by subtracting the photovoltaic power generation power P1a supplied to the power line 15 by the photovoltaic power generation apparatus 11 is calculated. With this differential power, it is possible to determine whether or not surplus power is generated when the photovoltaic power P1a is applied to the load power P2a in the facility 10A. For example, when the average value of the difference power in the past predetermined period is less than zero, the load power P2a tends to be relatively smaller than the photovoltaic power generation P1a in the predetermined period, and surplus power is generated. That is, it can be determined that at least a part of the photovoltaic power P1a can be supplied (reverse power flow) from the power line 15 of the facility 10A to the power system 1 (power sale possible state). On the other hand, when the average value of the differential power in the past predetermined period is zero or more, the load power P2a tends to be relatively larger than the photovoltaic power P1a in the predetermined period, and the power line 15 of the facility 10A It can be determined that the solar power generation power cannot be supplied from the power system 1 to the power system 1 (the power cannot be sold).

そして、制御装置14は、工程#22において過去の所定期間での差分電力の平均値がゼロ未満であると判定したとき、工程#23及び工程#24において、導出した差分電力から、第2施設(施設10C)が備える電力負荷装置12の過去の所定期間での負荷電力(受電電力P0c)の平均値を第1施設の数で割ることで導出した調整電力値を減算した値を目標受電電力に決定する。具体的には、工程#23において制御装置14は、仮の目標受電電力を上記差分電力の平均値と同じに決定する。そして、工程#24において制御装置14は、仮の目標受電電力(差分電力の平均値)から、電源装置13なしの第2施設(施設10C)への託送分を減算した値を、目標受電電力に設定する。この場合、一つの第1施設から第2施設(施設10C)への託送分となる上記調整電力値は、第2施設(施設10C)が備える電力負荷装置12の過去の所定期間での負荷電力の平均値である「P0c」を第1施設(施設10A,10B)の数である「2」で割ることで導出される「P0c/2」となる。その後、工程#27において制御装置14は、受電電力P0aがその目標受電電力となるように電源装置13の出力電力Pxaを調節する。   And when it determines with the average value of the difference electric power in the past predetermined period being less than zero in the process # 22, the control apparatus 14 will be 2nd facilities from the difference electric power derived | led-out in process # 23 and process # 24. The target received power is a value obtained by subtracting the adjusted power value derived by dividing the average value of the load power (received power P0c) in the past predetermined period of the power load device 12 included in (facility 10C) by the number of first facilities. To decide. Specifically, in step # 23, the control device 14 determines the temporary target received power to be the same as the average value of the differential power. Then, in step # 24, the control device 14 subtracts the value obtained by subtracting the consignment to the second facility (facility 10C) without the power supply device 13 from the temporary target received power (average value of the differential power). Set to. In this case, the adjusted power value, which is consigned from one first facility to the second facility (facility 10C), is the load power in the past predetermined period of the power load device 12 provided in the second facility (facility 10C). “P0c / 2” derived by dividing “P0c”, which is the average value of, by “2”, which is the number of the first facilities (facility 10A, 10B). Thereafter, in step # 27, the control device 14 adjusts the output power Pxa of the power supply device 13 so that the received power P0a becomes the target received power.

工程#23及び工程#24及び工程#27で説明したような出力電力Pxaの調節を行うことで、太陽光発電装置11の発電電力が急激に増減したとしても、第1施設(施設10A)での受電電力P0aは、上記差分電力の平均値から上記調整電力値を減算した値(目標受電電力)で安定する。加えて、第2施設(施設10C)では、一つ以上の第1施設(施設10A,10B)のそれぞれから電力系統1へと供給される電力の合計(=「P0c/2」+「P0c/2」)が、電力系統1で託送されてその施設10Cの受電電力(即ち、電力負荷装置12の負荷電力)に充当される。その結果、分散型電源システムは、太陽光発電装置11の発電電力が急激に増減するようなときにも、電力系統1での電力の需給バランスを悪化せることを回避しながら、電力系統1へと太陽光発電電力P1aの少なくとも一部を安定して供給できる。   Even if the generated power of the solar power generation device 11 is increased or decreased rapidly by adjusting the output power Pxa as described in the process # 23, the process # 24, and the process # 27, the first facility (facility 10A). The received power P0a is stabilized at a value (target received power) obtained by subtracting the adjusted power value from the average value of the differential power. In addition, in the second facility (facility 10C), the total amount of power supplied from each of the one or more first facilities (facility 10A, 10B) to the power grid 1 (= “P0c / 2” + “P0c / 2 ") is entrusted by the power system 1 and applied to the received power of the facility 10C (that is, the load power of the power load device 12). As a result, the distributed power supply system avoids deteriorating the power supply / demand balance in the power system 1 even when the power generated by the solar power generation device 11 suddenly increases or decreases. And at least a part of the photovoltaic power generation power P1a can be stably supplied.

それに対して、制御装置14は、工程#22において過去の所定期間での差分電力の平均値がゼロ以上であると判定したとき、工程#25及び工程#26において、第2施設(施設10C)が備える電力負荷装置12の過去の所定期間での負荷電力の平均値を第1施設(施設10A,10B)の数で割ることで導出した調整電力値をゼロから減算した値を目標受電電力に決定する。具体的には、工程#25において制御装置14は、仮の目標受電電力をゼロに設定する。そして、工程#26において制御装置14は、仮の目標受電電力(ゼロ)から、電源装置13なしの第2施設(施設10C)への託送分を減算した値を、目標受電電力に設定する。その後、工程#27において制御装置14は、受電電力P0aがその目標受電電力となるように電源装置13の出力電力Pxaを調節する。   On the other hand, when the control device 14 determines in step # 22 that the average value of the differential power in the past predetermined period is zero or more, in step # 25 and step # 26, the second facility (facility 10C). The value obtained by subtracting the adjusted power value derived by dividing the average value of the load power of the power load device 12 in the past predetermined period by the number of first facilities (facility 10A, 10B) from zero is set as the target received power. decide. Specifically, in step # 25, the control device 14 sets the temporary target received power to zero. And in process # 26, the control apparatus 14 sets the value which subtracted the part for consignment to the 2nd facility (facility 10C) without the power supply device 13 from temporary target received power (zero) to target received power. Thereafter, in step # 27, the control device 14 adjusts the output power Pxa of the power supply device 13 so that the received power P0a becomes the target received power.

工程#25及び工程#26及び工程#27で説明したような出力電力Pxaの調節を行うことで、太陽光発電装置11の発電電力が急激に増減したとしても、第1施設(施設10A)での受電電力は、上記調整電力値をゼロから減算した値(目標受電電力)で安定する。加えて、第2施設(施設10C)では、一つ以上の第1施設(施設10A,10B)のそれぞれから電力系統1へと供給される電力の合計(=「P0c/2」+「P0c/2」)が、電力系統1で託送されてその施設10Cの受電電力(即ち、電力負荷装置12の負荷電力)に充当される。その結果、分散型電源システムは、太陽光発電装置11の発電電力が急激に増減するようなときにも、電力系統1での電力の需給バランスを悪化させることを回避しながら、各施設10での電力系統1からの購入電力を安定して少なくさせることができる。   Even if the generated power of the photovoltaic power generation apparatus 11 is increased or decreased sharply by adjusting the output power Pxa as described in the process # 25, the process # 26, and the process # 27, the first facility (facility 10A). The received power is stabilized at a value (target received power) obtained by subtracting the adjusted power value from zero. In addition, in the second facility (facility 10C), the total amount of power supplied from each of the one or more first facilities (facility 10A, 10B) to the power grid 1 (= “P0c / 2” + “P0c / 2 ") is entrusted by the power system 1 and applied to the received power of the facility 10C (that is, the load power of the power load device 12). As a result, the distributed power supply system avoids deteriorating the power supply / demand balance in the power system 1 even when the power generated by the solar power generation device 11 suddenly increases or decreases. The purchased power from the power system 1 can be reduced stably.

<別実施形態>
<1>
上記実施形態では、分散型電源システムの構成について具体例を挙げて説明したが、その構成については適宜変更可能である。
例えば、上記実施形態では、電源装置13が充放電装置や発電装置などである例を説明したが、電源装置13は複数の装置の組み合わせであってもよい。例えば、電源装置13が充放電装置と発電装置との組み合わせによって実現されてもよい。
他にも、図3には、2つの第1施設10A,10Bと1つの第2施設10Cとを描いたが、それらの数は適宜変更可能である。
また、図3には、本発明の制御装置が、第1施設10A,10Bの夫々に設けられる制御装置14と、中央制御装置20とで構成される例を記載したが、本発明はそのような構成に限定されない。例えば、分散型電源システムが例えばサーバー装置などの一つの制御装置を備え、その制御装置が、一つ以上の第1施設の電源装置13への動作指令や、一つ以上の第2施設での過去の所定期間での負荷電力に関する情報の収集などを行ってもよい。
<Another embodiment>
<1>
In the above embodiment, the configuration of the distributed power supply system has been described with a specific example, but the configuration can be changed as appropriate.
For example, in the above-described embodiment, an example in which the power supply device 13 is a charge / discharge device, a power generation device, or the like has been described, but the power supply device 13 may be a combination of a plurality of devices. For example, the power supply device 13 may be realized by a combination of a charge / discharge device and a power generation device.
In addition, FIG. 3 illustrates two first facilities 10A and 10B and one second facility 10C, but the number thereof can be changed as appropriate.
FIG. 3 shows an example in which the control device of the present invention is configured by the control device 14 provided in each of the first facilities 10A and 10B and the central control device 20, but the present invention does not have such a configuration. It is not limited to a simple configuration. For example, the distributed power supply system includes a single control device such as a server device, and the control device can provide an operation command to the power supply device 13 of one or more first facilities or one or more second facilities. You may collect the information regarding the load electric power in the past predetermined period.

<2>
上記第1実施形態において、電源装置13の出力電力が電力系統1へ逆潮流することを禁止してもよい。その場合、電源装置13の出力電力Pxが電力負荷装置12の負荷電力P2以下となるようにその出力電力Pxを調節すればよい。
<2>
In the first embodiment, the output power of the power supply device 13 may be prohibited from flowing backward to the power system 1. In that case, what is necessary is just to adjust the output electric power Px so that the output electric power Px of the power supply device 13 may become the load electric power P2 or less of the electric power load apparatus 12.

<3>
上記第2実施形態では、施設10Cの所定期間の受電電力P0cがリアルタイムで中央制御装置20に伝達される例を説明したが、その受電電力P0cはリアルタイムの値でなくてもよい。例えば、中央制御装置20は、所定期間での施設10Cの受電電力P0cの予測値を導出し、その受電電力P0cの予測値に基づいて上記調整電力値を決定してもよい。具体的には、中央制御装置20は、電気事業者等によって検針された施設10Cでの過去の受電電力の情報を入手し、その所定期間と同曜日且つ同時間帯の過去の受電電力の平均値と同じ値を、上記所定期間での受電電力P0cの平均値(即ち、予測値)として決定してもよい。
<3>
In the second embodiment, the example in which the received power P0c for the predetermined period of the facility 10C is transmitted to the central control device 20 in real time has been described. However, the received power P0c may not be a real time value. For example, the central controller 20 may derive a predicted value of the received power P0c of the facility 10C in a predetermined period and determine the adjusted power value based on the predicted value of the received power P0c. Specifically, the central controller 20 obtains information on past received power at the facility 10C measured by an electric power company or the like, and averages the past received power on the same day as that predetermined period and in the same time zone. The same value as the value may be determined as an average value (that is, a predicted value) of the received power P0c in the predetermined period.

<4>
上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用でき、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変できる。
<4>
The configurations disclosed in the above-described embodiments (including the other embodiments, the same applies hereinafter) can be applied in combination with the configurations disclosed in the other embodiments as long as no contradiction arises, and are disclosed in this specification. The embodiment is an exemplification, and the embodiment of the present invention is not limited to this, and can be appropriately modified without departing from the object of the present invention.

本発明は、太陽光発電装置の発電電力が変動することに伴って受電電力が急激に変動することへの対処がなされた分散型電源システムに利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a distributed power supply system in which a countermeasure is taken for a sudden change in received power as the generated power of a photovoltaic power generator fluctuates.

1 電力系統
10(10A,10B,10C) 施設
11 太陽光発電装置
12 電力負荷装置
13 電源装置
14 制御装置
15 電力線
20 中央制御装置
DESCRIPTION OF SYMBOLS 1 Electric power system 10 (10A, 10B, 10C) Facility 11 Solar power generation device 12 Electric power load device 13 Power supply device 14 Control device 15 Power line 20 Central control device

Claims (4)

電力系統に接続される電力線と、前記電力線に接続される太陽光発電装置及び電源装置及び電力負荷装置を備える分散型電源システムであって、
前記電源装置の動作を制御する制御装置を備え、
前記制御装置は、
設定期間毎に目標受電電力を決定して、前記電力系統から前記電力線への受電電力が前記目標受電電力となるように、前記電源装置から前記電力線への出力電力を調節するように構成され、
過去の所定期間での、前記電力負荷装置の負荷電力から前記太陽光発電装置が前記電力線に供給する太陽光発電電力を減算した差分電力の平均値がゼロ以上のとき、前記目標受電電力をゼロに決定し、及び、前記過去の所定期間での前記差分電力の平均値がゼロ未満のとき、前記目標受電電力を当該差分電力の平均値と同じに決定する分散型電源システム。
A distributed power system comprising a power line connected to an electric power system, a solar power generation device connected to the power line, a power supply device, and a power load device,
A control device for controlling the operation of the power supply device;
The control device includes:
A target received power is determined for each set period, and the output power from the power supply device to the power line is adjusted so that the received power from the power system to the power line becomes the target received power,
When the average value of the differential power obtained by subtracting the solar power generated by the solar power generator supplied to the power line from the load power of the power load device in the past predetermined period is zero or more, the target received power is zero. And when the average value of the differential power in the past predetermined period is less than zero, the target received power is determined to be the same as the average value of the differential power.
電力系統に接続される複数の電力線のそれぞれが引き込まれる複数の施設にまたがって設置される分散型電源システムであって、
複数の前記施設は、引き込まれる前記電力線に接続される太陽光発電装置及び電源装置及び電力負荷装置を備える一つ以上の第1施設と、引き込まれる前記電力線に接続される前記電力負荷装置を備え且つ前記電源装置を備えない一つ以上の第2施設とで構成され、
前記電源装置の動作を制御する制御装置を備え、
前記制御装置は、
前記第1施設において、設定期間毎に目標受電電力を決定して、前記電力系統から当該第1施設の前記電力線への受電電力が前記目標受電電力となるように、当該第1施設が備える前記電源装置から前記電力線への出力電力を調節するように構成され、
前記第1施設において、過去の所定期間での、当該第1施設の前記電力負荷装置の負荷電力から当該第1施設の前記太陽光発電装置が前記電力線に供給する太陽光発電電力を減算した差分電力の平均値がゼロ以上のとき、前記第2施設が備える前記電力負荷装置の前記過去の所定期間での負荷電力の平均値を一つ以上の前記第1施設の数で割ることで導出された調整電力値をゼロから減算した値を前記目標受電電力に決定し、及び、前記過去の所定期間での、前記差分電力の平均値がゼロ未満のとき、当該差分電力の平均値から前記調整電力値を減算した値を前記目標受電電力に決定する分散型電源システム。
A distributed power supply system installed across a plurality of facilities into which a plurality of power lines connected to a power system are drawn,
The plurality of facilities includes one or more first facilities including a solar power generation device, a power supply device, and a power load device connected to the power line to be drawn in, and the power load device connected to the power line to be drawn in. And one or more second facilities not equipped with the power supply device,
A control device for controlling the operation of the power supply device;
The control device includes:
In the first facility, the first facility is provided so that the target received power is determined for each set period, and the received power from the power system to the power line of the first facility becomes the target received power. Configured to adjust output power from a power supply to the power line;
In the first facility, the difference obtained by subtracting the solar power generated by the solar power generation device supplied to the power line from the load power of the power load device of the first facility in the past predetermined period. When the average value of power is zero or more, it is derived by dividing the average value of the load power in the past predetermined period of the power load device provided in the second facility by the number of the one or more first facilities. A value obtained by subtracting the adjusted power value from zero is determined as the target received power, and when the average value of the differential power in the past predetermined period is less than zero, the adjustment from the average value of the differential power is performed. A distributed power supply system that determines a value obtained by subtracting a power value as the target received power.
前記電源装置は充放電装置を有し、その充電電力及び放電電力を調節することで前記出力電力を調節する請求項1又は2に記載の分散型電源システム。   The distributed power supply system according to claim 1, wherein the power supply device includes a charge / discharge device, and the output power is adjusted by adjusting charge power and discharge power thereof. 前記電源装置は発電装置を有し、その発電電力を増減することで前記出力電力を調節する請求項1又は2に記載の分散型電源システム。   The distributed power supply system according to claim 1, wherein the power supply device includes a power generation device, and the output power is adjusted by increasing or decreasing the generated power.
JP2017063469A 2017-03-28 2017-03-28 Distributed power system Active JP6832769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017063469A JP6832769B2 (en) 2017-03-28 2017-03-28 Distributed power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017063469A JP6832769B2 (en) 2017-03-28 2017-03-28 Distributed power system

Publications (2)

Publication Number Publication Date
JP2018166379A true JP2018166379A (en) 2018-10-25
JP6832769B2 JP6832769B2 (en) 2021-02-24

Family

ID=63922869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017063469A Active JP6832769B2 (en) 2017-03-28 2017-03-28 Distributed power system

Country Status (1)

Country Link
JP (1) JP6832769B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218191A1 (en) * 2019-04-26 2020-10-29 株式会社Gsユアサ Power control device, method of controlling power control device, and distributed power generation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071033A (en) * 2005-09-02 2007-03-22 Osaka Gas Co Ltd Cogeneration system and control device
JP2009268247A (en) * 2008-04-24 2009-11-12 Central Res Inst Of Electric Power Ind Power supply/demand control program, power supply/demand controller, and power supply/demand control system
JP2011125171A (en) * 2009-12-14 2011-06-23 Hitachi Engineering & Services Co Ltd Natural energy power station equipped with power storage apparatus
JP2015188286A (en) * 2014-03-27 2015-10-29 シャープ株式会社 Power control unit, photovoltaic power generation system, and power control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071033A (en) * 2005-09-02 2007-03-22 Osaka Gas Co Ltd Cogeneration system and control device
JP2009268247A (en) * 2008-04-24 2009-11-12 Central Res Inst Of Electric Power Ind Power supply/demand control program, power supply/demand controller, and power supply/demand control system
JP2011125171A (en) * 2009-12-14 2011-06-23 Hitachi Engineering & Services Co Ltd Natural energy power station equipped with power storage apparatus
JP2015188286A (en) * 2014-03-27 2015-10-29 シャープ株式会社 Power control unit, photovoltaic power generation system, and power control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218191A1 (en) * 2019-04-26 2020-10-29 株式会社Gsユアサ Power control device, method of controlling power control device, and distributed power generation system
US11929621B2 (en) 2019-04-26 2024-03-12 Gs Yuasa International Ltd. Power control apparatus, control method for power control apparatus, and distributed power generating system

Also Published As

Publication number Publication date
JP6832769B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP4698718B2 (en) Wind turbine generator group control device and control method
US9954370B2 (en) Electrical grid control system, electrical grid control method, and power conversion apparatus
JP5561058B2 (en) Power stabilization method, charge control method, charging device, and electric vehicle
WO2015022746A1 (en) Voltage monitoring control device and voltage control device
US10468888B2 (en) Control system for solar power plant
JP6618659B1 (en) POWER CONVERSION SYSTEM, ITS MANAGEMENT DEVICE, AND DISTRIBUTED POWER SUPPLY DEVICE
JP6410520B2 (en) Wide area system controller
JP5576826B2 (en) Wind power generator group control system and control method
JP2016182021A (en) Reactive power cooperative control device and power control system
JP6189092B2 (en) Multi-purpose control device for grid storage battery
CN112531773B (en) New energy power generation system and energy regulation and control method and device thereof
EP3261211B1 (en) Systems and methods for controlling performance parameters of an energy storage device
JP6440974B2 (en) Power consumption control device and power consumption control method
JP2018166379A (en) Distributed power supply system
JP2013118725A (en) Power consignment support apparatus
JP6422682B2 (en) Power control apparatus and power control method
US10355486B2 (en) Method of controlling an electrical production station
JP6670867B2 (en) Renewable energy generator system with storage battery
WO2012063576A1 (en) Device and method for controlling group of wind power generators
JP6391958B2 (en) Power system stabilizer
CN111614126A (en) Method for controlling a microgrid, power management system and energy management system
JP7412674B2 (en) Negawatt trading support device, Negawatt trading system and Negawatt trading method
JP2012205462A (en) Control device for power storage system
JP6563320B2 (en) Power control apparatus and power control method
US20220329069A1 (en) Method for operating an electrical storage station

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210202

R150 Certificate of patent or registration of utility model

Ref document number: 6832769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150