JP2018165532A - Gear speed reducer - Google Patents

Gear speed reducer Download PDF

Info

Publication number
JP2018165532A
JP2018165532A JP2017062865A JP2017062865A JP2018165532A JP 2018165532 A JP2018165532 A JP 2018165532A JP 2017062865 A JP2017062865 A JP 2017062865A JP 2017062865 A JP2017062865 A JP 2017062865A JP 2018165532 A JP2018165532 A JP 2018165532A
Authority
JP
Japan
Prior art keywords
eccentric
gear
shaft core
input gear
tooth portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017062865A
Other languages
Japanese (ja)
Other versions
JP6869465B2 (en
Inventor
勝弘 辻本
Katsuhiro Tsujimoto
勝弘 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2017062865A priority Critical patent/JP6869465B2/en
Publication of JP2018165532A publication Critical patent/JP2018165532A/en
Application granted granted Critical
Publication of JP6869465B2 publication Critical patent/JP6869465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Retarders (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a speed reducer capable of improving transmission efficiency by reducing backlash of a tooth portion of an internal tooth type output gear and a tooth portion of an external tooth type input gear without degrading effectiveness of a spring.SOLUTION: An internal tooth portion 25A of an internal tooth-type output gear 25 coaxial with a rotation shaft core X and an external tooth portion 30A of an input gear 30 coaxial with an eccentric shaft core Y are partially engaged, and an eccentric member 26 provided with an eccentric bearing face 26E supporting the input gear 30 rotatably on the eccentric shaft core Y, is disposed. An energization member 27 for applying energization force to engage the external tooth portion 30A of the input gear 30 with the internal tooth portion 25A of the output gear 25 is composed of a flat spring material in which an angle from an action point P in which the energization force is acted to a supporting portion PB, is over 90 degrees on the eccentric shaft core Y as a center.SELECTED DRAWING: Figure 2

Description

本発明は、内歯型ギヤと、これより歯数が少ない外歯型ギヤとを咬合させ、歯数差による減速を実現するギヤ減速装置に関する。   The present invention relates to a gear reduction device that engages an internal gear and an external gear having a smaller number of teeth to realize a reduction due to a difference in the number of teeth.

上記構成のギヤ減速機構は、内接式遊星減速機構、あるいは、ハイポサイクロイド減速機構等と称せられるものである。   The gear reduction mechanism having the above configuration is called an inscribed planetary reduction mechanism or a hypocycloid reduction mechanism.

このギヤ減速装置の具体構成として特許文献1には、内歯型ギヤ(文献ではリングギヤ)を回転軸芯と同軸芯に配置し、外歯型ギヤ(文献ではインナギヤ)を回転軸芯に平行する偏心軸芯と同軸芯に配置し、偏心軸芯を中心に外歯型ギヤを回転自在に支持する偏心部材(文献では偏心リング)を備えた技術が示されている。   As a specific configuration of this gear reduction device, Patent Document 1 discloses that an internal gear (a ring gear in the literature) is arranged coaxially with a rotary shaft, and an external gear (an inner gear in the literature) is parallel to the rotary shaft. A technique is shown that includes an eccentric member (an eccentric ring in the literature) that is arranged on an eccentric shaft core and a coaxial core and rotatably supports an external gear around the eccentric shaft core.

この特許文献1では、外歯型ギヤを偏心方向に突出付勢するバネ部材を備えることにより、内歯型ギヤの歯部に外歯型ギヤの歯部が咬合する状態を維持し、バックラッシュに起因した打音を抑制している。   In this patent document 1, by providing a spring member that protrudes and biases the external gear in the eccentric direction, the tooth portion of the external gear is engaged with the tooth portion of the internal gear, and the backlash is maintained. The beating sound caused by the sound is suppressed.

尚、特許文献1では、回転軸芯を中心に偏心部材を駆動回転することで回転軸芯を中心に偏心軸芯を公転させ、この公転に伴い外歯型ギヤが内歯型ギヤに咬合する状態で、外歯型ギヤを内歯型ギヤの内周に沿って自転する状態で移動させる。これにより外歯型ギヤが1回転したタイミングでは、内歯型ギヤと外歯型ギヤの歯数差に相当する角度だけ内歯型ギヤと外歯型ギヤとが相対回転し、大きい減速比での減速を実現している。   In Patent Document 1, the eccentric member is driven to rotate around the rotation axis to cause the eccentric shaft to revolve around the rotation axis, and the external gear engages with the internal gear along with this revolution. In this state, the external gear is moved while rotating along the inner periphery of the internal gear. As a result, at the timing when the external gear is rotated once, the internal gear and the external gear rotate relative to each other by an angle corresponding to the difference in the number of teeth between the internal gear and the external gear, and a large reduction ratio is obtained. Realization of slowdown.

特開2016−44627号公報JP 2016-44627 A

この構成のギヤ減速装置では、内歯型ギヤと外歯型ギヤを確実に咬合状に維持することが重要である。このような理由から、例えば特許文献1に記載されるバネ部材にバネ定数の大きいものを用いることも考えられる。しかしながら、バネ定数が大きいバネ部材を用いた場合には、内歯型ギヤの歯部と外歯型ギヤの歯部とが強く圧接するため、伝動時に摩擦ロスから伝動効率の低下を招き易いものとなる。   In the gear reduction device having this configuration, it is important to reliably maintain the internal gear and the external gear in an occlusal shape. For this reason, for example, it is conceivable to use a spring member having a large spring constant described in Patent Document 1. However, when a spring member with a large spring constant is used, the tooth part of the internal gear and the tooth part of the external gear are in strong pressure contact, and therefore the transmission efficiency is likely to decrease due to friction loss during transmission. It becomes.

これとは逆に、バネ部材にバネ定数の小さいものを用いた場合には、外部から伝わる振動により内歯型ギヤの歯部と外歯型ギヤの歯部とが互いに擦れ動き、歯面の摩耗も招き易いものとなる。しかも、このようにバネ部材が大きく変形するものでは、繰り返して作用する荷重によってバネの折損に繋がるものであった。   On the other hand, when a spring member having a small spring constant is used, the tooth portion of the internal gear and the tooth portion of the external gear are rubbed with each other due to vibration transmitted from the outside, and the tooth surface Wear is also likely to occur. In addition, in the case where the spring member is greatly deformed in this way, the spring is broken by a load that repeatedly acts.

このような理由から、バネの付勢力により内歯型の出力ギヤの歯部と、外歯型の入力ギヤの歯部とのバックラッシュを小さくすることが可能で、伝動効率の上昇が可能な減速装置が求められる。   For this reason, it is possible to reduce the backlash between the tooth portion of the internal gear type output gear and the tooth portion of the external gear type input gear by the biasing force of the spring, and the transmission efficiency can be increased. A reduction gear is required.

本発明の特徴は、回転軸芯と同軸芯に配置される内歯型の出力ギヤと、前記出力ギヤより歯数が少なく前記回転軸芯と平行姿勢の偏心軸芯と同軸芯に配置されることで前記出力ギヤに咬合する外歯型の入力ギヤと、前記偏心軸芯を中心に前記入力ギヤを自転自在に支持する偏心軸受面を有し前記回転軸芯を中心に公転自在に支持される偏心部材と、前記入力ギヤの歯部を前記出力ギヤの歯部に咬合させる付勢力を作用させるため前記偏心部材に支持される付勢部材と、を備え、
前記付勢部材が、前記入力ギヤの内周側のうち前記回転軸芯を基準に前記偏心軸芯が偏心する偏心方向となる領域に付勢力を作用させる作用点と、前記偏心部材に形成された支持体に接触する支持点とを有すると共に、前記偏心軸芯を中心にして前記作用点から前記支持点に亘る角度が90度を超える板状バネ材で構成されている点にある。
The feature of the present invention is that the internal gear type output gear is arranged on the rotating shaft core and the coaxial core, and the eccentric shaft core is arranged coaxially with the eccentric shaft core having a smaller number of teeth than the output gear and parallel to the rotating shaft core. Thus, an external gear type input gear that meshes with the output gear and an eccentric bearing surface that rotatably supports the input gear around the eccentric shaft core are supported to revolve around the rotary shaft core. An eccentric member, and an urging member supported by the eccentric member for applying an urging force for engaging the tooth portion of the input gear with the tooth portion of the output gear,
The biasing member is formed on the eccentric member, and an operating point for applying a biasing force to a region in an eccentric direction in which the eccentric shaft core is eccentric with respect to the rotation shaft core on the inner peripheral side of the input gear. And a support point in contact with the support, and an angle from the action point to the support point with respect to the eccentric shaft center is more than 90 degrees.

この特徴構成によると、付勢部材の付勢力が、出力ギヤの歯部と入力ギヤの歯部とを咬合させる方向に作用するためバックラッシュの抑制が可能となる。また、この特徴構成では付勢部材として長寸の板状バネ材を使用できるため、例えば、出力ギヤの歯部と入力ギヤの歯部とを咬合させために必要なバネ定数を板状バネ材に設定しても、板状バネ材が全体的に弾性変形することになり、局部的な応力の作用による折損を招くこともない。
従って、バネの付勢力により内歯型の出力ギヤの歯部と、外歯型の入力ギヤの歯部とのバックラッシュを小さくすることが可能で、伝動効率の上昇が可能な減速装置が構成された。
According to this characteristic configuration, since the urging force of the urging member acts in a direction in which the tooth portion of the output gear and the tooth portion of the input gear are engaged, backlash can be suppressed. Further, in this characteristic configuration, since a long plate-shaped spring material can be used as the urging member, for example, a plate-shaped spring material having a spring constant necessary for engaging the tooth portion of the output gear and the tooth portion of the input gear is used. Even if it is set, the plate-like spring material will be elastically deformed as a whole, and there will be no breakage due to the action of local stress.
Therefore, a reduction gear that can reduce backlash between the tooth portion of the internal gear type output gear and the tooth portion of the external gear type input gear by the biasing force of the spring and can increase the transmission efficiency is configured. It was.

他の構成として、前記支持体が、前記回転軸芯を挟んで前記偏心方向と反対側に備えられても良い。   As another configuration, the support may be provided on a side opposite to the eccentric direction across the rotation axis.

これによると、偏心部材に支持体を形成することにより、偏心軸芯を挟んで対向する位置に亘る領域に配置される長寸の板状バネ材の使用が可能となる。   According to this, by forming the support body on the eccentric member, it is possible to use a long plate-shaped spring material arranged in a region extending across the position facing the eccentric shaft core.

他の構成として、前記支持体の外周面によって前記偏心軸受面の一部が形成されても良い。   As another configuration, a part of the eccentric bearing surface may be formed by the outer peripheral surface of the support.

これによると、偏心部材のうち偏心軸受面を形成する部位の一部を支持体に兼用することが可能となる。また、付勢部材としてU字状に湾曲する板状バネ材を用い、この板状バネ材の両端を支持体に当接させ、この板状バネ材の中央の最も突出した位置を作用点とすることも可能となる。   According to this, it becomes possible to share a part of the part forming the eccentric bearing surface of the eccentric member as the support. Further, a plate-shaped spring material curved in a U-shape is used as the urging member, both ends of the plate-shaped spring material are brought into contact with the support, and the most projecting position in the center of the plate-shaped spring material is defined as an action point. It is also possible to do.

他の構成として、前記偏心部材は、前記入力ギヤの歯部が前記出力ギヤの歯部から離間する方向への変位を規制するための規制部を前記偏心方向の領域に形成しても良い。   As another configuration, the eccentric member may be formed with a restricting portion in the eccentric direction region for restricting displacement of the tooth portion of the input gear in a direction away from the tooth portion of the output gear.

これによると、出力ギヤの歯部と入力ギヤの歯部とが咬合する領域において、これらの歯部が離間する方向に入力ギヤを変位させる外力が作用した場合には規制部材が変位を規制するため歯部同士が離間する不都合を抑制できる。   According to this, in the region where the tooth portion of the output gear and the tooth portion of the input gear mesh, when the external force that displaces the input gear acts in the direction in which these tooth portions are separated, the restricting member restricts the displacement. Therefore, the inconvenience that the tooth portions are separated can be suppressed.

他の構成として、前記規制部が、前記偏心軸芯を基準に外方に膨らむ円弧状の規制面を備えており、前記付勢部材が前記偏心軸芯を基準に外方に膨らむことで前記規制面の曲率半径より小さい曲率半径となる膨出領域に前記作用点を形成しており、
前記作用点が前記規制面の外周側に配置されるように、前記付勢部材を前記規制部と前記入力ギヤとの間に配置しても良い。
As another configuration, the restricting portion includes an arc-shaped restricting surface that bulges outward with respect to the eccentric shaft core, and the biasing member bulges outward with respect to the eccentric shaft core as described above. The action point is formed in a bulging region having a radius of curvature smaller than the radius of curvature of the restriction surface,
The biasing member may be disposed between the restricting portion and the input gear so that the action point is disposed on the outer peripheral side of the restricting surface.

これによると、付勢部材を構成する板状バネ材を、規制部と入力ギヤの内周側との間に配置した場合には、板状バネ材の膨出領域と規制面との間に隙間を作り出すことになり、膨出領域に形成される作用点を入力ギヤの内周側に当接させ、付勢部材の付勢力を作用させることが可能となる。特に、この構成では外力等の作用により入力ギヤが回転軸芯の方向に変位する場合には、規制部の規制面に付勢部材が当接する状態に達することで入力ギヤの変位を規制し、入力ギヤの歯部が出力ギヤの歯部から離間する不都合を抑制する。   According to this, when the plate-shaped spring material constituting the urging member is disposed between the restricting portion and the inner peripheral side of the input gear, the plate-shaped spring material is disposed between the bulging area and the regulating surface. A gap is created, and the point of action formed in the bulging region is brought into contact with the inner peripheral side of the input gear, so that the urging force of the urging member can be applied. In particular, in this configuration, when the input gear is displaced in the direction of the rotation axis due to the action of an external force or the like, the displacement of the input gear is restricted by reaching a state where the urging member comes into contact with the restriction surface of the restriction part, The inconvenience that the tooth part of the input gear is separated from the tooth part of the output gear is suppressed.

弁開閉時期制御装置の断面図である。It is sectional drawing of a valve opening / closing timing control apparatus. 図1のII−II線断面図である。It is the II-II sectional view taken on the line of FIG. 図1のIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 出力ギヤと入力ギヤと偏心部材とを示す分解斜視図である。It is a disassembled perspective view which shows an output gear, an input gear, and an eccentric member. 別実施形態(a)のバネ体の形状を示す断面図である。It is sectional drawing which shows the shape of the spring body of another embodiment (a). 別実施形態(b)のバネ体の形状を示す断面図である。It is sectional drawing which shows the shape of the spring body of another embodiment (b).

以下、本発明の実施形態を図面に基づいて説明する。
〔基本構成〕
図1に示すように、エンジンEのクランクシャフト1と同期回転する駆動側回転体Aと、回転軸芯Xを中心にして吸気カムシャフト2と一体回転する従動側回転体Bと、位相制御モータMの駆動力により駆動側回転体Aと従動側回転体Bとの相対回転位相を設定するようにギヤ減速装置で成る位相調節部Cとを備えて弁開閉時期制御装置100が構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Basic configuration]
As shown in FIG. 1, a drive-side rotator A that rotates synchronously with the crankshaft 1 of the engine E, a driven-side rotator B that rotates integrally with the intake camshaft 2 around the rotation axis X, and a phase control motor The valve opening / closing timing control device 100 is configured to include a phase adjustment unit C formed of a gear reduction device so as to set the relative rotation phase between the driving side rotating body A and the driven side rotating body B by the driving force of M. .

エンジンEは、シリンダブロックに形成された複数のシリンダ3にピストン4を収容し、そのピストン4をコネクティングロッド5によりクランクシャフト1に連結した4サイクル型に構成されている。このエンジンEのクランクシャフト1の出力スプロケット1Sと、駆動側回転体Aの駆動スプロケット11Sとに亘ってタイミングベルト6(タイミングチェーン等でも良い)が巻回されている。   The engine E is configured as a four-cycle type in which pistons 4 are accommodated in a plurality of cylinders 3 formed in a cylinder block, and the pistons 4 are connected to a crankshaft 1 by connecting rods 5. A timing belt 6 (or a timing chain or the like) is wound around the output sprocket 1S of the crankshaft 1 of the engine E and the drive sprocket 11S of the drive side rotator A.

これによりエンジンEの稼働時には弁開閉時期制御装置100の全体が回転軸芯Xを中心に回転する。また、位相制御モータMの駆動により位相調節部Cが駆動側回転体Aに対して従動側回転体Bを回転方向と同方向又は逆方向に変位させる相対回転位相の変位が実現する(この作動形態については後述する)。この相対回転位相の変位により、吸気カムシャフト2のカム部2Aによる吸気バルブ2Bの開閉時期(開閉タイミング)の制御が実現する。   As a result, when the engine E is in operation, the entire valve opening / closing timing control device 100 rotates about the rotation axis X. In addition, the phase control motor M drives the phase adjustment unit C to achieve a relative rotational phase displacement that causes the driven-side rotator A to displace the driven-side rotator B in the same or opposite direction as the rotation direction (this operation) The form will be described later). Due to the displacement of the relative rotational phase, the control of the opening / closing timing (opening / closing timing) of the intake valve 2B by the cam portion 2A of the intake camshaft 2 is realized.

尚、従動側回転体Bが駆動側回転体Aの回転方向と同方向に変位する作動を進角作動と称し、この進角作動により吸気圧縮比が増大する。また、従動側回転体Bが駆動側回転体Aと逆方向に変位する作動(前述と逆方向への作動)を遅角作動と称し、この遅角作動により吸気圧縮比が低減する。   The operation in which the driven-side rotator B is displaced in the same direction as the rotational direction of the drive-side rotator A is referred to as an advance angle operation, and the intake air compression ratio is increased by the advance angle operation. In addition, an operation in which the driven-side rotator B is displaced in the direction opposite to the drive-side rotator A (an operation in the direction opposite to that described above) is referred to as retarded angle operation, and the intake air compression ratio is reduced by this retarded angle operation.

〔弁開閉時期制御装置〕
図1〜図3に示すように、駆動側回転体Aは、外周に駆動スプロケット11Sが形成されたアウタケース11と、フロントプレート12とを複数の締結ボルト13で締結して構成されている。アウタケース11は、底部に開口を有する有底筒状型である。
[Valve opening / closing timing control device]
As shown in FIGS. 1 to 3, the drive-side rotator A is configured by fastening an outer case 11 having a drive sprocket 11 </ b> S formed on the outer periphery and a front plate 12 with a plurality of fastening bolts 13. The outer case 11 is a bottomed cylindrical mold having an opening at the bottom.

アウタケース11の内部空間に従動側回転体Bとしての中間部材20と、位相調節部Cとが収容されている。   An intermediate member 20 as a driven-side rotator B and a phase adjusting unit C are accommodated in the inner space of the outer case 11.

従動側回転体Bを構成する中間部材20は、回転軸芯Xに直交する姿勢で吸気カムシャフト2に連結する支持壁部21と、回転軸芯Xを中心とする筒状で吸気カムシャフト2から離間する方向に突出する筒状壁部22とが一体形成されている。   The intermediate member 20 constituting the driven side rotating body B includes a support wall portion 21 connected to the intake camshaft 2 in a posture orthogonal to the rotation axis X, and a cylindrical intake camshaft 2 centered on the rotation axis X. A cylindrical wall portion 22 that protrudes in a direction away from is integrally formed.

この中間部材20は、筒状壁部22の外周面がアウタケース11の内周面に接触する状態で相対回転自在に嵌め込まれ、支持壁部21の中央の貫通孔に挿通する連結ボルト23により吸気カムシャフト2の端部に固定される。   The intermediate member 20 is fitted in a relatively rotatable manner in a state where the outer peripheral surface of the cylindrical wall portion 22 is in contact with the inner peripheral surface of the outer case 11, and is connected by a connecting bolt 23 that is inserted into the central through hole of the support wall portion 21. It is fixed to the end of the intake camshaft 2.

位相制御モータM(電動モータ)は、その出力軸Maを回転軸芯Xと同軸芯上に配置するように支持フレーム7によりエンジンEに支持されている。出力軸Maには回転軸芯Xに対して直交する姿勢の一対の係合ピン8が設けられている。   The phase control motor M (electric motor) is supported by the engine E by the support frame 7 so that the output shaft Ma is disposed coaxially with the rotary shaft X. The output shaft Ma is provided with a pair of engagement pins 8 in a posture orthogonal to the rotation axis X.

〔位相調節部〕
図1〜図4に示すように位相調節部Cは、中間部材20と、中間部材20の筒状壁部22の内周面に形成される出力ギヤ25と、偏心部材26と、第1軸受28と、第2軸受29と、入力ギヤ30と、オルダム継手Cxとを備えて構成されている。
[Phase adjuster]
As shown in FIGS. 1 to 4, the phase adjuster C includes an intermediate member 20, an output gear 25 formed on the inner peripheral surface of the cylindrical wall portion 22 of the intermediate member 20, an eccentric member 26, and a first bearing. 28, a second bearing 29, an input gear 30, and an Oldham coupling Cx.

出力ギヤ25は、回転軸芯Xを中心とする環状体の内周に複数の内歯部25Aを形成した内歯型に構成されている。入力ギヤ30は回転軸芯Xに平行する姿勢の偏心軸芯Yを中心に複数の外歯部30Aを形成した外歯型に構成されている。   The output gear 25 is configured as an internal tooth type in which a plurality of internal tooth portions 25A are formed on the inner periphery of an annular body centered on the rotation axis X. The input gear 30 is configured as an external tooth type in which a plurality of external tooth portions 30A are formed around an eccentric shaft core Y in a posture parallel to the rotation shaft core X.

この位相調節部Cでは、入力ギヤ30の外歯部30Aの歯数が、出力ギヤ25の内歯部25Aの歯数より1歯だけ少ない。そして、位相調節部Cは後述するように入力ギヤ30が偏心軸芯Yを中心に回転自在に支持されることにより、入力ギヤ30の外歯部30Aの一部が出力ギヤ25の内歯部25Aの一部に咬合する。   In this phase adjustment unit C, the number of teeth of the external tooth portion 30A of the input gear 30 is smaller by one than the number of teeth of the internal tooth portion 25A of the output gear 25. As will be described later, the phase adjustment unit C is supported by the input gear 30 so as to be rotatable about the eccentric shaft core Y, so that a part of the external gear portion 30A of the input gear 30 becomes the internal gear portion of the output gear 25. It bites into a part of 25A.

偏心部材26は、回転軸芯Xに沿う方向での外端側(吸気カムシャフト2から遠い側)に回転軸芯Xを中心とする中心軸受面26Sが形成され、内端側(吸気カムシャフト2に近い側)には回転軸芯Xに平行となる姿勢で偏心する偏心軸芯Yを中心とする外周面の偏心軸受面26Eが形成されている。   The eccentric member 26 is formed with a center bearing surface 26S centering on the rotation axis X on the outer end side (the side far from the intake camshaft 2) in the direction along the rotation axis X, and the inner end side (intake camshaft). An eccentric bearing surface 26E is formed on the outer peripheral surface centering on the eccentric shaft core Y that is eccentric in a posture parallel to the rotation shaft core X.

偏心部材26には、出力ギヤ25の内歯部25Aに入力ギヤ30の外歯部30Aを咬合させる付勢力を得る付勢部材としてのバネ体27が取り付けられている。このバネ体27はバネ鋼等の板状バネ材を湾曲させることで一部が開いた環状に成形され、周方向での中間位置に付勢力を作用させるための作用点PAが形成され、両端に支持点PBが形成されている。特に、バネ体27は、図2に示すように偏心軸芯Yを中心にして、作用点PAから支持点PBに亘る角度が90度を超えるものが用いられている。   A spring body 27 is attached to the eccentric member 26 as an urging member for obtaining an urging force for engaging the outer tooth portion 30A of the input gear 30 with the inner tooth portion 25A of the output gear 25. This spring body 27 is formed into an annular shape with a part opened by curving a plate spring material such as spring steel, and an action point PA for applying a biasing force to an intermediate position in the circumferential direction is formed. A support point PB is formed on the surface. In particular, as shown in FIG. 2, the spring body 27 having an eccentric axis Y as a center and an angle from the action point PA to the support point PB exceeding 90 degrees is used.

偏心軸受面26Eは、回転軸芯Xを基準に偏心軸芯Yが偏心する偏心方向と逆側となる領域に形成され、この領域が支持体26Qとなる。特に、この支持体26Qに兼用される偏心軸受面26Eは、入力ギヤ30の偏心方向への変位を許すように、僅かに偏心方向に変位した位置に形成されている。尚、偏心方向と逆側の偏心軸受面26Eと第2軸受29の内周と間隙は僅かであるが、図1、図2では間隔を誇張して示している。   The eccentric bearing surface 26E is formed in a region opposite to the eccentric direction in which the eccentric shaft core Y is eccentric with respect to the rotation shaft core X, and this region serves as the support body 26Q. In particular, the eccentric bearing surface 26E also used as the support 26Q is formed at a position slightly displaced in the eccentric direction so as to allow the input gear 30 to be displaced in the eccentric direction. Although the eccentric bearing surface 26E opposite to the eccentric direction and the inner circumference and the gap of the second bearing 29 are slight, the intervals are exaggerated in FIGS.

偏心部材26の偏心方向に規制部26Rが形成されている。この規制部26Rの外周側には偏心軸受面26Eと同軸芯であるが偏心軸受面26Eより小径の円弧状となる規制面26Rsが成形され、周方向の両端に当接面26Rpが形成されている。特に、規制部26Rは、入力ギヤ30の外歯部30Aが、出力ギヤ25の内歯部25Aから離間する方向への変位を規制するものであり、規制面26Rsと第2軸受29の内周との間には、バネ体27の配置に充分な間隔が設定される。   A restricting portion 26 </ b> R is formed in the eccentric direction of the eccentric member 26. A regulating surface 26Rs that is coaxial with the eccentric bearing surface 26E but has a smaller diameter than the eccentric bearing surface 26E is formed on the outer peripheral side of the regulating portion 26R, and contact surfaces 26Rp are formed at both ends in the circumferential direction. Yes. In particular, the restricting portion 26 </ b> R restricts the displacement of the external gear portion 30 </ b> A of the input gear 30 in the direction away from the internal gear portion 25 </ b> A of the output gear 25, and the restricting surface 26 </ b> Rs and the inner periphery of the second bearing 29. A sufficient interval for the arrangement of the spring body 27 is set between the two.

図2に示すように、規制部26Rの外周面側(規制面26Rsより外側)に作用点PAを配置し、両端の支持点PBを支持体26Qに当接する位置関係でバネ体27が配置される。特に、このように配置される際にはバネ体27を予め所定量だけ弾性変形させることで作用点PAから偏心方向に向けて付勢力を作用させている。   As shown in FIG. 2, the action point PA is arranged on the outer peripheral surface side (outside the regulation surface 26Rs) of the regulating portion 26R, and the spring body 27 is arranged in a positional relationship in which the support points PB at both ends abut against the support body 26Q. The In particular, when arranged in this manner, the spring body 27 is elastically deformed in advance by a predetermined amount to apply an urging force from the action point PA toward the eccentric direction.

前述したように、規制面26Rsは偏心軸受面26Eと同軸芯の円弧状に形成され、バネ体27のうち、規制面26Rsより径方向外方に配置される部位は、規制面26Rsの曲率半径より小さい曲率半径となる膨出領域として形成される。これにより膨出領域と規制面26Rsとの間に間隙が形成される。   As described above, the regulation surface 26Rs is formed in a circular arc shape coaxial with the eccentric bearing surface 26E, and a portion of the spring body 27 that is disposed radially outward from the regulation surface 26Rs is a radius of curvature of the regulation surface 26Rs. It is formed as a bulging region with a smaller radius of curvature. Thereby, a gap is formed between the bulging area and the regulation surface 26Rs.

偏心部材26の内周には、位相制御モータMの一対の係合ピン8の各々が係合可能な一対の係合溝26Tが回転軸芯Xと平行姿勢で形成されている。   On the inner periphery of the eccentric member 26, a pair of engagement grooves 26 </ b> T that can be engaged with each of the pair of engagement pins 8 of the phase control motor M are formed in a posture parallel to the rotational axis X.

第1軸受28と第2軸受29とにはボールベアリングが用いられ、第1軸受28の内周(インナーレース)を中心軸受面26Sに外嵌し、この第1軸受28の外周(アウターレース)をフロントプレート12の中央部分の保持空間に嵌め込むことにより、偏心部材26が回転軸芯Xを中心に回転自在に支持される。   Ball bearings are used for the first bearing 28 and the second bearing 29, and the inner periphery (inner race) of the first bearing 28 is externally fitted to the center bearing surface 26S. The outer periphery (outer race) of the first bearing 28 Is fitted into the holding space in the central portion of the front plate 12 so that the eccentric member 26 is supported to be rotatable about the rotation axis X.

また、第2軸受29の内周(インナーレース)を偏心軸受面26Eに外嵌し、この第2軸受29の外周(アウターレース)を入力ギヤ30の内周に嵌め込んでいる。これにより入力ギヤ30は、偏心軸芯Yを中心に回転自在(自転自在)に支持される。このように入力ギヤ30が偏心位置に配置される結果、入力ギヤ30の外歯部30Aの一部が出力ギヤ25の内歯部25Aの一部に咬合する。また、第2軸受29は固定リング31により位置が固定されている。   Further, the inner circumference (inner race) of the second bearing 29 is fitted on the eccentric bearing surface 26 </ b> E, and the outer circumference (outer race) of the second bearing 29 is fitted on the inner circumference of the input gear 30. As a result, the input gear 30 is supported so as to be rotatable (rotatable) about the eccentric axis Y. As a result of the input gear 30 being arranged at the eccentric position in this way, a part of the external tooth portion 30A of the input gear 30 is engaged with a part of the internal tooth portion 25A of the output gear 25. The position of the second bearing 29 is fixed by a fixing ring 31.

尚、第1軸受28と第2軸受29とにはボールベアリングが使用されるが、ブッシュを用いても良い。更に、偏心軸受面26Eに対し軸受を介さずに入力ギヤ30を回転自在に直接支持する構成を採用しても良い。   Ball bearings are used for the first bearing 28 and the second bearing 29, but bushes may be used. Furthermore, a configuration in which the input gear 30 is directly supported rotatably with respect to the eccentric bearing surface 26E without using a bearing may be employed.

〔位相調節部:オルダム継手〕
図1、図3に示すように、オルダム継手Cxは、中央の環状部41と、この環状部41から第1方向(図3では左右方向)に沿って径方向外方に突出する一対の外部係合アーム42と、環状部41から第1方向に直交する方向(図3では上下方向)に沿って径方向外方に突出する内部係合アーム43とを一体形成した板状の継手部材40で構成されている。一対の内部係合アーム43の各々には環状部41の開口に連なる係合凹部43aが形成されている。
[Phase adjuster: Oldham coupling]
As shown in FIGS. 1 and 3, the Oldham coupling Cx includes a central annular portion 41 and a pair of external parts projecting radially outward from the annular portion 41 along a first direction (left-right direction in FIG. 3). A plate-like joint member 40 in which an engagement arm 42 and an internal engagement arm 43 that protrudes radially outward along a direction (vertical direction in FIG. 3) orthogonal to the first direction from the annular portion 41 are integrally formed. It consists of Each of the pair of internal engagement arms 43 is formed with an engagement recess 43 a that is continuous with the opening of the annular portion 41.

アウタケース11のうち、フロントプレート12が当接する開口縁部にはアウタケース11の内部空間から外部空間に亘り、回転軸芯Xを中心に半径方向に伸びる一対の案内溝部11aが貫通溝状に形成されている。この案内溝部11aの溝幅が外部係合アーム42の幅より僅かに広く設定されている。   In the outer case 11, a pair of guide groove portions 11 a extending in the radial direction about the rotation axis X from the inner space to the outer space of the outer case 11 is formed in a through groove shape at the opening edge portion where the front plate 12 contacts. Is formed. The groove width of the guide groove portion 11 a is set to be slightly wider than the width of the external engagement arm 42.

また、入力ギヤ30のうちフロントプレート12に対向する端面には一対の係合突起30Tが一体形成されている。この係合突起30Tの係合幅が内部係合アーム43の係合凹部43aの係合幅より僅かに狭く設定されている。   A pair of engaging projections 30T are integrally formed on the end face of the input gear 30 that faces the front plate 12. The engagement width of the engagement protrusion 30T is set slightly narrower than the engagement width of the engagement recess 43a of the internal engagement arm 43.

尚、継手部材40がアウタケース11に対して外部係合アーム42が伸びる第1方向(図3で左右方向)に変位可能となり、この継手部材40に対して内部係合アーム43の係合凹部43aの形成方向に沿う第2方向(図3では上下方向)に入力ギヤ30が変位自在となる。   The joint member 40 can be displaced in the first direction (left and right direction in FIG. 3) in which the external engagement arm 42 extends with respect to the outer case 11, and the engagement concave portion of the internal engagement arm 43 with respect to the joint member 40. The input gear 30 is displaceable in a second direction (vertical direction in FIG. 3) along the formation direction of 43a.

〔弁開閉時期制御装置の各部の配置〕
組み立て状態の弁開閉時期制御装置100は、図1に示すように吸気カムシャフト2の端部に中間部材20の支持壁部21が連結ボルト23により連結しており、これらは一体回転する。偏心部材26は第1軸受28によりフロントプレート12に対し回転軸芯Xを中心に相対回転自在に支持される。図1、図2、図4に示すように、この偏心部材26の偏心軸受面26Eに対し第2軸受29を介して入力ギヤ30が支持されている。これにより入力ギヤ30は偏心軸芯Yを中心に回転自在に支持されると共に、外歯部30Aの一部が出力ギヤ25の内歯部25Aの一部に咬み合う。
[Arrangement of each part of valve timing control device]
In the assembled valve opening / closing timing control device 100, as shown in FIG. 1, a support wall portion 21 of the intermediate member 20 is connected to an end portion of the intake camshaft 2 by a connecting bolt 23, and these rotate integrally. The eccentric member 26 is supported by the first bearing 28 so as to be rotatable relative to the front plate 12 about the rotational axis X. As shown in FIGS. 1, 2, and 4, the input gear 30 is supported via the second bearing 29 on the eccentric bearing surface 26 </ b> E of the eccentric member 26. As a result, the input gear 30 is supported so as to be rotatable about the eccentric axis Y, and a part of the outer tooth part 30A is engaged with a part of the inner tooth part 25A of the output gear 25.

また、図3に示すようにオルダム継手Cxの外部係合アーム42がアウタケース11の一対の案内溝部11aに係合し、オルダム継手Cxの内部係合アーム43の係合凹部43aに入力ギヤ30の係合突起30Tが係合する。   Further, as shown in FIG. 3, the external engagement arm 42 of the Oldham joint Cx engages with the pair of guide groove portions 11a of the outer case 11, and the input gear 30 enters the engagement recess 43a of the internal engagement arm 43 of the Oldham joint Cx. The engaging protrusions 30T are engaged.

更に、図1、図3に示すように、位相制御モータMの出力軸Maに形成された一対の係合ピン8が、偏心部材26の係合溝26Tに係合する。   Further, as shown in FIGS. 1 and 3, the pair of engagement pins 8 formed on the output shaft Ma of the phase control motor M engages with the engagement groove 26 </ b> T of the eccentric member 26.

そして、図2に示すように、規制部26Rの外周面側(規制面26Rsより外側)に作用点PAを配置し、両端の支持点PBを支持体26Qに当接する位置関係でバネ体27が配置される。このバネ体27のうち、規制部26Rの外周に配置される部位は、固定リング31により回転軸芯Xに沿う方向での位置が規制される。   Then, as shown in FIG. 2, the action point PA is disposed on the outer peripheral surface side (outside the restriction surface 26Rs) of the restricting portion 26R, and the spring body 27 is in a positional relationship in which the support points PB at both ends abut against the support member 26Q. Be placed. Of the spring body 27, the position of the portion disposed on the outer periphery of the restricting portion 26 </ b> R is restricted in the direction along the rotational axis X by the fixing ring 31.

〔位相調節部の作動形態〕
図面には示していないが位相制御モータMはECUとして構成される制御装置によって制御される。エンジンEにはクランクシャフト1と吸気カムシャフト2との回転速度(単位時間あたりの回転数)と、各々の回転位相とを検知可能なセンサを備えており、これらのセンサの検知信号が制御装置に入力する。
[Operation mode of phase adjuster]
Although not shown in the drawing, the phase control motor M is controlled by a control device configured as an ECU. The engine E is provided with sensors capable of detecting the rotation speed (the number of rotations per unit time) of the crankshaft 1 and the intake camshaft 2 and the respective rotation phases, and the detection signals of these sensors are control devices. To enter.

制御装置は、エンジンEの稼動時において位相制御モータMを吸気カムシャフト2の回転速度と等しい速度で駆動することで相対回転位相を維持する。これに対して位相制御モータMの回転速度を吸気カムシャフト2の回転速度を基準に増大する又は低減することにより相対回転位相の変位が実現する。   The control device maintains the relative rotational phase by driving the phase control motor M at a speed equal to the rotational speed of the intake camshaft 2 when the engine E is in operation. On the other hand, the relative rotational phase displacement is realized by increasing or decreasing the rotational speed of the phase control motor M with reference to the rotational speed of the intake camshaft 2.

位相制御モータMがアウタケース11と等速(吸気カムシャフト2と等速)で回転する場合には、出力ギヤ25の内歯部25Aに対する入力ギヤ30の外歯部30Aの咬み合い位置が変化しないため、駆動側回転体Aに対する従動側回転体Bの相対回転位相は維持される。   When the phase control motor M rotates at the same speed as the outer case 11 (the same speed as that of the intake camshaft 2), the meshing position of the external tooth portion 30A of the input gear 30 with respect to the internal tooth portion 25A of the output gear 25 changes. Therefore, the relative rotational phase of the driven side rotator B with respect to the drive side rotator A is maintained.

これに対してアウタケース11の回転速度より高速又は低速で位相制御モータMの出力軸Maを駆動回転することにより、位相調節部Cでは偏心軸芯Yが回転軸芯Xを中心に公転する。この公転により出力ギヤ25の内歯部25Aに対する入力ギヤ30の外歯部30Aに対する咬み合い位置が出力ギヤ25の内周に沿って変位し、この変位に伴い入力ギヤ30と出力ギヤ25との間には回転力が作用する。つまり、出力ギヤ25には回転軸芯Xを中心とする回転力が作用し、入力ギヤ30には偏心軸芯Yを中心に自転させようとする回転力が作用する。   On the other hand, by driving and rotating the output shaft Ma of the phase control motor M at a speed higher or lower than the rotational speed of the outer case 11, the eccentric shaft core Y revolves around the rotation shaft core X in the phase adjustment unit C. Due to this revolution, the meshing position of the input gear 30 with respect to the inner tooth portion 25A of the output gear 25 with respect to the outer tooth portion 30A is displaced along the inner periphery of the output gear 25, and the displacement between the input gear 30 and the output gear 25 is accompanied by this displacement. A rotational force acts between them. That is, a rotational force centered on the rotational axis X acts on the output gear 25, and a rotational force that attempts to rotate about the eccentric shaft core Y acts on the input gear 30.

前述したように入力ギヤ30の外歯部30Aの歯数が、出力ギヤ25の内歯部25Aの歯数より1歯だけ少なく設定されているため、入力ギヤ30の偏心軸芯Yが回転軸芯Xを中心に1回転だけ公転した場合でも、出力ギヤ25は入力ギヤ30に対して1歯の角度だけ回転するに過ぎず大きい減速比での伝動が実現する。   As described above, the number of teeth of the external gear portion 30A of the input gear 30 is set to be one less than the number of teeth of the internal gear portion 25A of the output gear 25. Even when only one revolution is made around the core X, the output gear 25 rotates only by one tooth angle with respect to the input gear 30, and transmission with a large reduction ratio is realized.

入力ギヤ30は、その係合突起30Tが継手部材40の内部係合アーム43の係合凹部43aに係合するためアウタケース11に対して自転することはなく、回転力が出力ギヤ25に作用する。この回転力の作用により出力ギヤ25と共に中間部材20が、アウタケース11に対し回転軸芯Xを中心に回転する。その結果、駆動側回転体Aと従動側回転体Bとの相対回転位相を変位させ、吸気カムシャフト2による開閉時期を設定する。   The input gear 30 does not rotate with respect to the outer case 11 because its engaging protrusion 30T engages with the engaging recess 43a of the internal engaging arm 43 of the joint member 40, and rotational force acts on the output gear 25. To do. Due to the action of the rotational force, the intermediate member 20 together with the output gear 25 rotates about the rotation axis X with respect to the outer case 11. As a result, the relative rotational phase between the driving side rotating body A and the driven side rotating body B is displaced, and the opening / closing timing by the intake camshaft 2 is set.

尚、入力ギヤ30の偏心軸芯Yが回転軸芯Xを中心に公転する際には、入力ギヤ30の変位に伴い、オルダム継手Cxの継手部材40は、アウタケース11に対して外部係合アーム42が伸びる方向(第1方向)に変位し、入力ギヤ30は、内部係合アーム43が伸びる方向(第2方向)へ変位する。   When the eccentric shaft core Y of the input gear 30 revolves around the rotation shaft core X, the joint member 40 of the Oldham joint Cx is externally engaged with the outer case 11 as the input gear 30 is displaced. The arm 42 is displaced in the extending direction (first direction), and the input gear 30 is displaced in the extending direction (second direction) of the internal engagement arm 43.

バネ体27は、図2に示す姿勢で配置された状態で一対の支持点PBを基準にして、単一の作用点PAが偏心方向に変位する方向に付勢力を与えるため、出力ギヤ25の内歯部25Aに入力ギヤ30の外歯部30Aを咬合させる状態が維持される。   The spring body 27 applies an urging force in the direction in which the single action point PA is displaced in the eccentric direction with reference to the pair of support points PB in the state of being arranged in the posture shown in FIG. The state where the external tooth portion 30A of the input gear 30 is engaged with the internal tooth portion 25A is maintained.

また、このバネ体27は板状バネ材を緩やかに湾曲させて成形されているため、例えば、このバネ体27より小型で、同じバネ定数の板バネを想定すると、小型の板バネでは弾性変形する場合に、全体での変形量が大きく折損に繋がることもある。特に、特定の部位を弾性変形させる構成では、特定部位に応力が集中する結果、折損に繋がり易いものであった。これに対して、この実施形態のバネ体27では、弾性変形する場合には全体が緩やかに撓むため折損等の不都合を招かず耐久性が向上する。   Further, since the spring body 27 is formed by gently curving a plate spring material, for example, assuming a leaf spring having a smaller spring size and the same spring constant as the spring body 27, the small leaf spring is elastically deformed. In such a case, the overall deformation amount may be large, leading to breakage. In particular, in a configuration in which a specific part is elastically deformed, stress concentrates on the specific part, and as a result, breakage easily occurs. On the other hand, in the spring body 27 of this embodiment, when the elastic body 27 is elastically deformed, the entire body is gently bent, so that the durability is improved without causing inconvenience such as breakage.

このバネ体27では、必要とする付勢力を得るようにバネ定数を設定することにより、出力ギヤ25の内歯部25Aに入力ギヤ30の外歯部30Aを適正に咬合させ、バックラッシュを小さくすることで、応答性の向上を図り、良好な効率での伝動を可能にする。   In this spring body 27, by setting a spring constant so as to obtain a required urging force, the outer tooth portion 30A of the input gear 30 is properly engaged with the inner tooth portion 25A of the output gear 25, and the backlash is reduced. By doing so, responsiveness is improved and transmission with good efficiency is enabled.

また、出力ギヤ25の内歯部25Aから入力ギヤ30の外歯部30Aを離間させる方向に大きい力が作用した場合には、バネ体27が規制部26Rの一対の当接面26Rpに当接することによりバネ体27の撓み量を小さくして、入力ギヤ30の変位を強力に抑制できる。これより大きい力が作用した場合には、入力ギヤ30の変位に伴い、バネ体27の作用点PAの部位を規制部26Rの規制面26Rsに当接させる形態となり、入力ギヤ30の変位を確実に阻止する。   In addition, when a large force is applied in the direction of separating the external tooth portion 30A of the input gear 30 from the internal tooth portion 25A of the output gear 25, the spring body 27 contacts the pair of contact surfaces 26Rp of the restricting portion 26R. As a result, the amount of bending of the spring body 27 can be reduced, and the displacement of the input gear 30 can be strongly suppressed. When a force larger than this is applied, the portion of the operating point PA of the spring body 27 is brought into contact with the restricting surface 26Rs of the restricting portion 26R as the input gear 30 is displaced, and the input gear 30 is reliably displaced. To stop.

〔別実施形態〕
本発明は、上記した実施形態以外に以下のように構成しても良い(実施形態と同じ機能を有するものには、実施形態と共通の番号、符号を付している)。
[Another embodiment]
In addition to the above-described embodiments, the present invention may be configured as follows (the components having the same functions as those of the embodiments are given the same numbers and symbols as those of the embodiments).

(a)図5に示すように、バネ体27をC字状に成形し、両端近くの一方に作用点PAを備え、他方に支持点PBを設定する。 (A) As shown in FIG. 5, the spring body 27 is formed in a C-shape, and an action point PA is provided on one side near both ends, and a support point PB is set on the other side.

この別実施形態(a)ではバネ体27を除く他の構成は実施形態と共通しており、出力ギヤ25の内歯部25Aから入力ギヤ30の外歯部30Aを離間させる方向に力が作用した場合には、作用点PAが支持点PBの方向に向けて単純に変位する。これによりバックラッシュを小さくして、応答性の向上を図り、良好な効率での伝動を実現する。   In this other embodiment (a), the other configurations except for the spring body 27 are the same as in the embodiment, and a force acts in a direction to separate the outer tooth portion 30A of the input gear 30 from the inner tooth portion 25A of the output gear 25. In this case, the action point PA is simply displaced toward the support point PB. This reduces backlash, improves responsiveness, and achieves transmission with good efficiency.

(b)図6に示すように、バネ体27に楕円状となる環状材を用いると共に、楕円の長軸方向での一方に作用点PAを備え、他方に支持点PBを設定する。 (B) As shown in FIG. 6, an elliptical annular material is used for the spring body 27, and an action point PA is provided on one side in the major axis direction of the ellipse, and a support point PB is set on the other side.

この別実施形態(b)ではバネ体27を除く他の構成は実施形態と共通しており、出力ギヤ25の内歯部25Aから入力ギヤ30の外歯部30Aを離間させる方向に力が作用した場合には、楕円の短軸方向が膨れるようにバネ体27の全体が弾性変形し、作用点PAが支持点PBの方向に向けて変位する。これによりバックラッシュを小さくし、応答性の向上を図り、良好な効率での伝動を実現する。   In this other embodiment (b), the configuration other than the spring body 27 is the same as that of the embodiment, and a force acts in a direction to separate the outer tooth portion 30A of the input gear 30 from the inner tooth portion 25A of the output gear 25. In this case, the entire spring body 27 is elastically deformed so that the minor axis direction of the ellipse swells, and the action point PA is displaced toward the support point PB. This reduces backlash, improves responsiveness, and achieves transmission with good efficiency.

(c)バネ体27の形状は、実施形態に示す形状や、別実施形態(a)に示す形状に限るものではなく、例えば、一方の端部を偏心部材26に固定し、他方の端部を自由状態にするものでも良い。更に、バネ体27としてピアノ線等の線材を用いても良い。 (C) The shape of the spring body 27 is not limited to the shape shown in the embodiment or the shape shown in another embodiment (a). For example, one end is fixed to the eccentric member 26 and the other end is May be in a free state. Furthermore, a wire such as a piano wire may be used as the spring body 27.

(d)実施形態において位相調節部Cを構成するギヤ減速装置を、例えば、車両の運転座席等のシートのシートバックの傾斜姿勢を設定するための減速装置として用いる。このように減速装置と用いる部位は、車両のシートバックの傾斜姿勢の設定に限らず、例えば、ロボットアームの減速装置に利用することも考えられる。 (D) In the embodiment, the gear reduction device that constitutes the phase adjustment unit C is used as, for example, a reduction device for setting an inclination posture of a seat back of a seat such as a driver's seat of a vehicle. Thus, the part used with the reduction gear is not limited to the setting of the inclination posture of the seat back of the vehicle, but may be used for the reduction device of the robot arm, for example.

本発明は、内歯型ギヤと、これより歯数が少ない外歯型ギヤとを咬合させた構成のギヤ減速装置に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a gear reduction device having a configuration in which an internal gear and an external gear having a smaller number of teeth are engaged.

25 出力ギヤ
25A 内歯部(歯部)
26 偏心部材
26E 偏心軸受面
26S 中心軸受面
26Q 支持体
26R 規制部
26Rs 規制面
27 バネ体(付勢部材)
30 入力ギヤ
30A 外歯部(歯部)
X 回転軸芯
Y 偏心軸芯
PA 作用点
PB 支持点
25 Output gear 25A Internal teeth (tooth)
26 Eccentric member 26E Eccentric bearing surface 26S Center bearing surface 26Q Support body 26R Restricting portion 26Rs Restricting surface 27 Spring body (biasing member)
30 Input gear 30A External tooth part (tooth part)
X Rotating shaft core Y Eccentric shaft core PA Action point PB Support point

Claims (5)

回転軸芯と同軸芯に配置される内歯型の出力ギヤと、前記出力ギヤより歯数が少なく前記回転軸芯と平行姿勢の偏心軸芯と同軸芯に配置されることで前記出力ギヤに咬合する外歯型の入力ギヤと、前記偏心軸芯を中心に前記入力ギヤを自転自在に支持する偏心軸受面を有し前記回転軸芯を中心に公転自在に支持される偏心部材と、前記入力ギヤの歯部を前記出力ギヤの歯部に咬合させる付勢力を作用させるため前記偏心部材に支持される付勢部材と、を備え、
前記付勢部材が、前記入力ギヤの内周側のうち前記回転軸芯を基準に前記偏心軸芯が偏心する偏心方向となる領域に付勢力を作用させる作用点と、前記偏心部材に形成された支持体に接触する支持点とを有すると共に、前記偏心軸芯を中心にして前記作用点から前記支持点に亘る角度が90度を超える板状バネ材で構成されているギヤ減速装置。
An internal gear-type output gear disposed on the rotating shaft core and the coaxial core, and an eccentric shaft core having a smaller number of teeth than the output gear and parallel to the rotating shaft core, and disposed on the coaxial core to the output gear. An externally engaged input gear, an eccentric member having an eccentric bearing surface that supports the input gear so as to rotate about the eccentric shaft core, and an eccentric member supported to revolve about the rotating shaft core, An urging member supported by the eccentric member for applying an urging force for engaging a tooth portion of the input gear with a tooth portion of the output gear;
The biasing member is formed on the eccentric member, and an operating point for applying a biasing force to a region in an eccentric direction where the eccentric shaft core is eccentric with respect to the rotation shaft core on the inner peripheral side of the input gear. And a support point that comes into contact with the support, and a gear reduction device that is formed of a plate-shaped spring material having an angle from the action point to the support point that is greater than 90 degrees around the eccentric shaft core.
前記支持体が、前記回転軸芯を挟んで前記偏心方向と反対側に備えられている請求項1に記載のギヤ減速装置。   The gear reduction device according to claim 1, wherein the support body is provided on a side opposite to the eccentric direction across the rotation axis. 前記支持体の外周面によって前記偏心軸受面の一部が形成されている請求項2に記載のギヤ減速装置。   The gear reduction device according to claim 2, wherein a part of the eccentric bearing surface is formed by an outer peripheral surface of the support body. 前記偏心部材は、前記入力ギヤの歯部が前記出力ギヤの歯部から離間する方向への変位を規制するための規制部を前記偏心方向の領域に形成している請求項1〜3のいずれか一項に記載のギヤ減速装置。   The eccentric member has a restricting portion for restricting displacement in a direction in which the tooth portion of the input gear is separated from the tooth portion of the output gear in the region in the eccentric direction. A gear reduction device according to claim 1. 前記規制部が、前記偏心軸芯を基準に外方に膨らむ円弧状の規制面を備えており、前記付勢部材が前記偏心軸芯を基準に外方に膨らむことで前記規制面の曲率半径より小さい曲率半径となる膨出領域に前記作用点を形成しており、
前記作用点が前記規制面の外周側に配置されるように、前記付勢部材を前記規制部と前記入力ギヤとの間に配置している請求項4に記載のギヤ減速装置。
The restricting portion includes an arc-shaped restricting surface that bulges outward with reference to the eccentric shaft core, and the urging member bulges outward with respect to the eccentric shaft core to cause a radius of curvature of the restricting surface. Forming the point of action in a bulging region with a smaller radius of curvature;
The gear reduction device according to claim 4, wherein the urging member is disposed between the restriction portion and the input gear so that the action point is disposed on an outer peripheral side of the restriction surface.
JP2017062865A 2017-03-28 2017-03-28 Gear reducer Active JP6869465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017062865A JP6869465B2 (en) 2017-03-28 2017-03-28 Gear reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017062865A JP6869465B2 (en) 2017-03-28 2017-03-28 Gear reducer

Publications (2)

Publication Number Publication Date
JP2018165532A true JP2018165532A (en) 2018-10-25
JP6869465B2 JP6869465B2 (en) 2021-05-12

Family

ID=63921739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017062865A Active JP6869465B2 (en) 2017-03-28 2017-03-28 Gear reducer

Country Status (1)

Country Link
JP (1) JP6869465B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110645322A (en) * 2019-09-28 2020-01-03 于永利 Internal-meshing planetary gear type power machine
CN110701252A (en) * 2019-09-28 2020-01-17 于永利 External-engagement planetary gear type power machine
JP2020139535A (en) * 2019-02-27 2020-09-03 日本電産シンポ株式会社 Eccentric oscillation type transmission
DE102020102632A1 (en) 2020-02-03 2021-08-05 Pierburg Gmbh Device for phase shifting an angle of rotation of a drive part to a driven part
CN113574251A (en) * 2019-03-15 2021-10-29 株式会社电装 Valve timing adjusting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092721A (en) * 2010-10-26 2012-05-17 Denso Corp Variable valve timing device
JP2016023553A (en) * 2014-07-16 2016-02-08 株式会社日本自動車部品総合研究所 Valve timing adjustment device
JP2016044627A (en) * 2014-08-25 2016-04-04 アイシン精機株式会社 Valve opening/closing timing control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092721A (en) * 2010-10-26 2012-05-17 Denso Corp Variable valve timing device
JP2016023553A (en) * 2014-07-16 2016-02-08 株式会社日本自動車部品総合研究所 Valve timing adjustment device
JP2016044627A (en) * 2014-08-25 2016-04-04 アイシン精機株式会社 Valve opening/closing timing control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139535A (en) * 2019-02-27 2020-09-03 日本電産シンポ株式会社 Eccentric oscillation type transmission
CN113574251A (en) * 2019-03-15 2021-10-29 株式会社电装 Valve timing adjusting device
CN113574251B (en) * 2019-03-15 2023-05-23 株式会社电装 Valve timing adjusting device
CN110645322A (en) * 2019-09-28 2020-01-03 于永利 Internal-meshing planetary gear type power machine
CN110701252A (en) * 2019-09-28 2020-01-17 于永利 External-engagement planetary gear type power machine
DE102020102632A1 (en) 2020-02-03 2021-08-05 Pierburg Gmbh Device for phase shifting an angle of rotation of a drive part to a driven part
DE102020102632B4 (en) 2020-02-03 2023-11-09 Pierburg Gmbh Device for phase shifting an angle of rotation of a drive part to an output part

Also Published As

Publication number Publication date
JP6869465B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP2018165532A (en) Gear speed reducer
JP6790639B2 (en) Valve opening / closing timing control device
JP6911571B2 (en) Valve opening / closing timing control device
JP4442574B2 (en) Valve timing adjustment device
JP6838506B2 (en) Valve opening / closing timing control device
WO2018179484A1 (en) Gear transmission device
JP5888283B2 (en) Valve timing adjustment device
JP2016044627A (en) Valve opening/closing timing control device
WO2018092390A1 (en) Valve opening/closing timing control device
JP2010138736A (en) Valve timing control device for internal combustion engine
JP2009215954A (en) Valve timing adjusting device
JP7353789B2 (en) Wave gear unit, gear transmission and valve timing change device
JP5440474B2 (en) Variable valve timing device
JP6394222B2 (en) Valve timing control device
CN212803354U (en) Valve timing control device
JP4978627B2 (en) Valve timing adjustment device
JP5139209B2 (en) Variable valve timing device
US10655509B2 (en) Variable valve timing control device
JP2018162806A (en) Reduction gear
JP2015102064A (en) Valve opening/closing timing control device
CN113167140B (en) Valve timing adjusting device
JP7338289B2 (en) Valve timing control device
JP2021046844A (en) Valve timing adjustment device
JP2015102065A (en) Valve opening/closing timing control device
JP2016205205A (en) Valve timing adjusting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6869465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151