JP2018165470A - Connection structure of steel pipe - Google Patents

Connection structure of steel pipe Download PDF

Info

Publication number
JP2018165470A
JP2018165470A JP2018021885A JP2018021885A JP2018165470A JP 2018165470 A JP2018165470 A JP 2018165470A JP 2018021885 A JP2018021885 A JP 2018021885A JP 2018021885 A JP2018021885 A JP 2018021885A JP 2018165470 A JP2018165470 A JP 2018165470A
Authority
JP
Japan
Prior art keywords
steel pipe
connection structure
diameter
outer diameter
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018021885A
Other languages
Japanese (ja)
Inventor
阿形 淳
Atsushi Agata
淳 阿形
妙中 真治
Shinji Myonaka
真治 妙中
永田 誠
Makoto Nagata
誠 永田
橋本 徹
Toru Hashimoto
徹 橋本
陽介 谷
Yosuke Tani
陽介 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Hinode Ltd
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Hinode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp, Hinode Ltd filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JP2018165470A publication Critical patent/JP2018165470A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize prior work on steel pipes when connecting the steel pipes using mechanical fittings.SOLUTION: A connection structure 10 of steel pipes includes a first member 11 inserted into a steel pipe and a second member 12 inserted into the first member 11. The first member 11 has a friction surface 111 formed on an outer periphery and a pressed surface 112 formed on an inner periphery. The second member 12 has a pressing surface 122 formed on an outer periphery and expanding the outer diameter of the first member 11 beyond the inner diameter of the steel pipe by pressing the pressed surface 112.SELECTED DRAWING: Figure 1

Description

本発明は、鋼管の連結構造に関する。   The present invention relates to a steel pipe connection structure.

鋼管には多様な用途があるが、その1つに建築物や土木構造物の構造部材としての用途がある。例えば、杭のような長尺の構造部材を鋼管で構成する場合、短尺の鋼管を現場で連結して長尺の構造部材にすることによって、限られたスペースでの施工が可能になり、現場まで鋼管を運搬することも容易になる。例えば、直径50mm〜200mm程度の小径鋼管の場合、短尺であれば人力での取り扱いが可能である。   Steel pipes have a variety of uses, one of which is a use as a structural member of a building or a civil engineering structure. For example, when a long structural member such as a pile is composed of a steel pipe, construction in a limited space becomes possible by connecting the short steel pipe in the field to make a long structural member. It is also easy to transport the steel pipe up to. For example, in the case of a small-diameter steel pipe having a diameter of about 50 mm to 200 mm, if it is short, it can be handled manually.

このような場合において、最も一般的な鋼管の連結方法の1つは溶接である。しかしながら、溶接工程には比較的時間がかかり、また技能をもった溶接工が必要とされる。それゆえ、短尺の鋼管を現場で溶接して長尺の構造部材にする工程は、工期や要員計画の点で施工上のボトルネックになりやすい。そこで、現場での溶接工程を必要としない、機械式の継手を用いた鋼管の連結構造が種々提案されている。   In such a case, one of the most common methods for connecting steel pipes is welding. However, the welding process is relatively time consuming and requires a skilled welder. Therefore, the process of welding a short steel pipe on site to make a long structural member tends to be a construction bottleneck in terms of construction period and personnel planning. Therefore, various steel pipe connection structures using mechanical joints that do not require an on-site welding process have been proposed.

例えば、特許文献1には、それぞれの鋼管の端面に溶接された1対の連結部材を互いに嵌合させることによって、鋼管を機械的に連結する技術が記載されている。この場合、鋼管と連結部材とは工場で溶接できるため、現場での溶接工程は必要とされない。また、特許文献2には、それぞれの鋼管の端部に形成されたフランジに外側から連結部材を係合させることによって、鋼管を機械的に連結する技術が記載されている。   For example, Patent Document 1 describes a technique of mechanically connecting steel pipes by fitting a pair of connecting members welded to end faces of the respective steel pipes to each other. In this case, since the steel pipe and the connecting member can be welded at a factory, no on-site welding process is required. Patent Document 2 describes a technique of mechanically connecting steel pipes by engaging a connecting member from the outside with a flange formed at an end of each steel pipe.

特開2015−143466号公報Japanese Patent Laying-Open No. 2015-143466 特開2015−132106号公報Japanese Patent Laying-Open No. 2015-132106

上記のような従来の鋼管の連結構造は、現場での溶接工程を必要としない点で有利である。しかしながら、鋼管に対する事前の加工が必要である点で、従来の鋼管の連結構造には、なおも改善の余地があるといえる。鋼管に対する事前の加工を減らす、またはなくすことができれば、工場での工程を含む工程全体が簡略化されるだけではなく、連結構造をより広範囲に適用可能になるという点でも有利である。   The conventional steel pipe connection structure as described above is advantageous in that it does not require an on-site welding process. However, it can be said that there is still room for improvement in the conventional connection structure of steel pipes in that the steel pipe needs to be processed in advance. If the pre-processing on the steel pipe can be reduced or eliminated, not only the whole process including the factory process is simplified, but also it is advantageous in that the connection structure can be applied in a wider range.

そこで、本発明は、機械式の継手を用いて鋼管を連結するにあたり、鋼管に対する事前の加工を最小限に抑えることが可能な、新規かつ改良された鋼管の連結構造を提供することを目的とする。   Accordingly, an object of the present invention is to provide a new and improved steel pipe connection structure capable of minimizing the prior processing of a steel pipe when connecting the steel pipe using a mechanical joint. To do.

本発明のいくつかの観点によれば、以下が提供される。
[1]鋼管の内側に挿入される第1部材と、第1部材の内側に挿入される第2部材とを含み、
第1部材は、外周に形成される摩擦面と、内周に形成される被押圧面とを有し、
第2部材は、外周に形成され、被押圧面を押圧することによって第1部材の外径を鋼管の内径を超えて拡張させる押圧面を有する、鋼管の連結構造。
[2]第1部材は、周方向について複数の部分に分割され、複数の部分の間に隙間が設けられる、[1]に記載の鋼管の連結構造。
[3]押圧面および被押圧面は、互いに対応する形状を有するテーパー面である、[1]または[2]に記載の鋼管の連結構造。
[4]第1部材の内周、および第2部材の外周に、互いに対応するねじ形状が形成される、[1]〜[3]のいずれか1項に記載の鋼管の連結構造。
[5]押圧面と被押圧面との間に接着層が形成される、[1]〜[4]のいずれか1項に記載の鋼管の連結構造。
[6]摩擦面または鋼管の内周面が粗面化されている、[1]〜[5]のいずれか1項に記載の鋼管の連結構造。
[7]摩擦面または鋼管の内周面がブラスト処理または金属溶射処理されている、[6]に記載の鋼管の連結構造。
[8]第1部材は、摩擦面の一方の端部から外向きに立ち上がるフランジを有する、[1]〜[7]のいずれか1項に記載の鋼管の連結構造。
[9]第1部材の外径が鋼管の内径を超えて拡張されるときの鋼管の拡径量δが、鋼管の外径D、鋼管のヤング率E、鋼管の降伏強度σ、摩擦面と鋼管の内周面との間の静止摩擦係数μ、鋼管の軸方向での摩擦面の長さL、および係数α(0<α≦1)を用いて下記の式(i)によって表される範囲にある、[1]〜[8]のいずれか1項に記載の鋼管の連結構造。

Figure 2018165470
[10]第1部材の外径が鋼管の内径を超えて拡張されるときの鋼管の拡径量δが、鋼管の外径D、鋼管のヤング率E、および鋼管の降伏強度σを用いて下記の式(ii)によって表される範囲にある、[1]〜[9]のいずれか1項に記載の鋼管の連結構造。
Figure 2018165470
[11]第1部材の外径が鋼管の内径を超えて拡張されるときの鋼管の拡径量δが、鋼管の外径Dおよび鋼管の一様伸びA(%)を用いた下記の式(iii)、または鋼管の外径Dおよび鋼管の破断時全伸びA(%)を用いた下記の式(iv)によって表される範囲にある、[1]〜[9]のいずれか1項に記載の鋼管の連結構造。
Figure 2018165470
Figure 2018165470
According to some aspects of the invention, the following is provided.
[1] A first member inserted inside the steel pipe, and a second member inserted inside the first member,
The first member has a friction surface formed on the outer periphery and a pressed surface formed on the inner periphery,
The second member has a pressing surface that is formed on the outer periphery and has a pressing surface that extends the outer diameter of the first member beyond the inner diameter of the steel pipe by pressing the pressed surface.
[2] The steel pipe connection structure according to [1], wherein the first member is divided into a plurality of portions in the circumferential direction, and a gap is provided between the plurality of portions.
[3] The steel pipe connection structure according to [1] or [2], wherein the pressing surface and the pressed surface are tapered surfaces having shapes corresponding to each other.
[4] The steel pipe connection structure according to any one of [1] to [3], wherein thread shapes corresponding to each other are formed on an inner periphery of the first member and an outer periphery of the second member.
[5] The steel pipe connection structure according to any one of [1] to [4], wherein an adhesive layer is formed between the pressing surface and the pressed surface.
[6] The steel pipe connection structure according to any one of [1] to [5], wherein the friction surface or the inner peripheral surface of the steel pipe is roughened.
[7] The steel pipe connection structure according to [6], wherein the friction surface or the inner peripheral surface of the steel pipe is blasted or metal sprayed.
[8] The steel pipe connection structure according to any one of [1] to [7], wherein the first member has a flange rising outward from one end of the friction surface.
[9] The diameter δ of the steel pipe when the outer diameter of the first member is expanded beyond the inner diameter of the steel pipe is the outer diameter D of the steel pipe, the Young's modulus E of the steel pipe, the yield strength σ y of the steel pipe, the friction surface Is expressed by the following equation (i) using the coefficient of static friction μ between the pipe and the inner peripheral surface of the steel pipe, the length L of the friction surface in the axial direction of the steel pipe, and the coefficient α (0 <α ≦ 1). The connection structure of steel pipes according to any one of [1] to [8], which is in a range.
Figure 2018165470
[10] Using the outer diameter D of the steel pipe, the Young's modulus E of the steel pipe, and the yield strength σ y of the steel pipe when the outer diameter of the first member is expanded beyond the inner diameter of the steel pipe. The connection structure of steel pipes according to any one of [1] to [9], in a range represented by the following formula (ii):
Figure 2018165470
[11] The amount of expansion δ of the steel pipe when the outer diameter of the first member is expanded beyond the inner diameter of the steel pipe is the following using the outer diameter D of the steel pipe and the uniform elongation A U (%) of the steel pipe: Any one of [1] to [9], which is in the range represented by the following formula (iv) using the formula (iii) or the outer diameter D of the steel pipe and the total elongation A D (%) at break of the steel pipe The steel pipe connection structure according to Item 1.
Figure 2018165470
Figure 2018165470

本発明によれば、機械式の継手を用いて鋼管を連結するにあたり、鋼管に対する事前の加工を最小限に抑えることができる。   ADVANTAGE OF THE INVENTION According to this invention, when connecting a steel pipe using a mechanical coupling, the prior process with respect to a steel pipe can be suppressed to the minimum.

本発明の第1実施形態に係る連結構造の部材を示す概略的な斜視図である。It is a schematic perspective view which shows the member of the connection structure which concerns on 1st Embodiment of this invention. 図1に示された連結構造による鋼管の連結工程を示す図である。It is a figure which shows the connection process of the steel pipe by the connection structure shown by FIG. 図1に示された連結構造に作用する力について説明するための図である。It is a figure for demonstrating the force which acts on the connection structure shown by FIG. 本発明の第1実施形態の変形例を示す概略的な断面図である。It is a schematic sectional drawing which shows the modification of 1st Embodiment of this invention. 本発明の第2実施形態に係る連結構造の部材を示す概略的な斜視図である。It is a schematic perspective view which shows the member of the connection structure which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る連結構造の部材を示す概略的な斜視図である。It is a schematic perspective view which shows the member of the connection structure which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る連結構造を示す概略的な断面図である。It is a rough sectional view showing the connection structure concerning a 4th embodiment of the present invention.

以下、添付図面を参照しながら、本発明の一実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

(第1実施形態)
図1は、本発明の第1実施形態に係る連結構造の部材を示す概略的な斜視図である。図1に示された連結構造10は、鋼管の内側に挿入される第1部材11(部分11a,11b,11cとして図示される)と、第1部材11の内側に挿入される第2部材12とを含む。
(First embodiment)
FIG. 1 is a schematic perspective view showing members of a connection structure according to the first embodiment of the present invention. The connecting structure 10 shown in FIG. 1 includes a first member 11 (illustrated as portions 11a, 11b, and 11c) inserted inside the steel pipe and a second member 12 inserted inside the first member 11. Including.

第1部材11は、外周に形成される摩擦面111と、内周に形成されるテーパー面112とを有する。ここで、テーパー面は、部材の径(第1部材11では内径、第2部材12では外径)が連結する鋼管の管軸方向に連続的に変化する面を意味する。摩擦面111は、鋼管の内周面に対応する形状を有し、第1部材11が鋼管の内側に挿入されたときに鋼管の内周面に接触する。後述するように、摩擦面111には、摩擦力を大きくするための表面処理が施されていてもよい。テーパー面112は、第2部材12のテーパー面122によって押圧される被押圧面である。なお、図示された例では、管軸方向(すなわち、鋼管の軸方向)での摩擦面111の長さを確保するために、テーパー面112に連続して内周にストレート面113が形成されている。ここで、ストレート面は、部材の径(第1部材11では内径)が連結する鋼管の管軸方向に一定である面を意味する。さらに、第1部材11は、摩擦面111の一方の端部から外向きに立ち上がるフランジ114を有する。一方、第2部材12は、全体として棒状または円筒状であるが、外周にはテーパー面122が形成される。テーパー面122は、第1部材11のテーパー面112を押圧する押圧面である。テーパー面112,122は、互いに対応する形状を有する。   The first member 11 has a friction surface 111 formed on the outer periphery and a tapered surface 112 formed on the inner periphery. Here, the taper surface means a surface in which the diameter of the member (the inner diameter in the first member 11 and the outer diameter in the second member 12) continuously changes in the tube axis direction of the steel pipe to be connected. The friction surface 111 has a shape corresponding to the inner peripheral surface of the steel pipe, and contacts the inner peripheral surface of the steel pipe when the first member 11 is inserted inside the steel pipe. As will be described later, the friction surface 111 may be subjected to a surface treatment for increasing the frictional force. The tapered surface 112 is a pressed surface that is pressed by the tapered surface 122 of the second member 12. In the illustrated example, in order to ensure the length of the friction surface 111 in the tube axis direction (that is, the axial direction of the steel pipe), a straight surface 113 is formed on the inner periphery continuously to the tapered surface 112. Yes. Here, the straight surface means a surface in which the diameter of the member (inner diameter in the first member 11) is constant in the tube axis direction of the steel pipe to be connected. Further, the first member 11 has a flange 114 that rises outward from one end of the friction surface 111. On the other hand, the second member 12 has a rod shape or a cylindrical shape as a whole, but a tapered surface 122 is formed on the outer periphery. The tapered surface 122 is a pressing surface that presses the tapered surface 112 of the first member 11. The tapered surfaces 112 and 122 have shapes corresponding to each other.

ここで、第1部材11は、全体として円筒状であるが、周方向について複数の部分、具体的には3つの部分11a〜11cに分割され、部分11a〜11cのそれぞれの間には所定の隙間が設けられている。このような構造によって、第1部材11の外径は拡縮自在になる。第1部材11の内側に第2部材12を挿入していくと、第2部材12のテーパー面122が第1部材11のテーパー面112を押圧することによって上記の隙間が広がり、第1部材11の外径が拡張される。このとき、第1部材11の拡張前の外径は、鋼管の内径に等しいか、鋼管の内径よりも小さい。また、第1部材11の拡張後の外径は、鋼管の内径よりも大きい。これによって、後述するように、第2部材12が第1部材11の内側に挿入されたときに、第1部材11の摩擦面111と鋼管の内周面との間に大きな摩擦力を作用させることができる。   Here, although the 1st member 11 is a cylindrical shape as a whole, it is divided | segmented into several parts about the circumferential direction, specifically, three parts 11a-11c, and between each of parts 11a-11c, it is predetermined. A gap is provided. With this structure, the outer diameter of the first member 11 can be expanded and contracted. When the second member 12 is inserted inside the first member 11, the tapered surface 122 of the second member 12 presses the tapered surface 112 of the first member 11, so that the gap is widened. The outer diameter of the is expanded. At this time, the outer diameter of the first member 11 before expansion is equal to or smaller than the inner diameter of the steel pipe. Further, the outer diameter of the first member 11 after expansion is larger than the inner diameter of the steel pipe. As a result, as described later, when the second member 12 is inserted inside the first member 11, a large frictional force is applied between the friction surface 111 of the first member 11 and the inner peripheral surface of the steel pipe. be able to.

なお、本実施形態において、第2部材12のテーパー面122が第1部材11のテーパー面112を押圧することによって第1部材11の外径を拡張させた状態は、テーパー面112とテーパー面122との間に接着層(図示せず)を形成することによって維持される。接着層は、例えばテーパー面112,122のいずれか、または両方に接着剤を塗布することによって形成される。   In the present embodiment, the state in which the outer diameter of the first member 11 is expanded by the tapered surface 122 of the second member 12 pressing the tapered surface 112 of the first member 11 is the tapered surface 112 and the tapered surface 122. It is maintained by forming an adhesive layer (not shown) between them. The adhesive layer is formed, for example, by applying an adhesive to one or both of the tapered surfaces 112 and 122.

図2(A)〜(C)は、図1に示された連結構造による鋼管の連結工程を示す図である。図示された例では、1対の第1部材11(部分11a〜11cおよび部分11d〜11f。ただし、部分11cおよび部分11fは図示されていないため、以下ではそれぞれ部分11a,11bおよび部分11d,11eとして説明する)と、第2部材12(互いに反対向きに形成されたテーパー面122a,122bを有する)とを用いて、1対の鋼管2(鋼管2aおよび鋼管2b)が連結される。   2 (A) to 2 (C) are diagrams showing a steel pipe connecting step by the connecting structure shown in FIG. In the illustrated example, the pair of first members 11 (parts 11a to 11c and parts 11d to 11f. However, since the part 11c and the part 11f are not shown, the parts 11a and 11b and the parts 11d and 11e are respectively shown below. And a pair of steel pipes 2 (steel pipe 2a and steel pipe 2b) are connected using the second member 12 (having tapered surfaces 122a and 122b formed in opposite directions).

まず、図2(A)に示すように、鋼管2aの内側に第1部材11(部分11a,11b)を挿入する。このとき、第1部材11(部分11a,11b)の外径は、図示されているように鋼管2aの内径dに等しい、またはより小さい。従って、第1部材11(部分11a,11b)を鋼管2aの内側に挿入することは容易である。フランジ114が鋼管2aの端面2eに当接することによって、第1部材11(部分11a,11b)の管軸方向での位置が固定される。   First, as shown to FIG. 2 (A), the 1st member 11 (part 11a, 11b) is inserted inside the steel pipe 2a. At this time, the outer diameter of the first member 11 (parts 11a and 11b) is equal to or smaller than the inner diameter d of the steel pipe 2a as shown in the figure. Therefore, it is easy to insert the 1st member 11 (part 11a, 11b) inside the steel pipe 2a. When the flange 114 abuts against the end surface 2e of the steel pipe 2a, the position of the first member 11 (parts 11a and 11b) in the pipe axis direction is fixed.

次に、図2(B)に示すように、第1部材11(部分11a,11b)の内側に第2部材12を挿入する。このとき、第2部材12のテーパー面122aが第1部材11(部分11a,11b)のテーパー面112を押圧することによって、第1部材11(部分11a,11b)の外径が拡張される。図示された例では、第2部材12が所定深さdpまで挿入されるまでの間に、第1部材11(部分11a,11b)の外径が、鋼管2aの内径dを超えてd+δまで拡張される。なお、δは、鋼管2aの拡径量である。これによって、第1部材11(部分11a,11b)の摩擦面111と鋼管2aの内周面2sとの間に大きな摩擦力が作用するようになり、第1部材11(部分11a,11b)が鋼管2aに固定される。   Next, as shown in FIG. 2B, the second member 12 is inserted inside the first member 11 (parts 11a and 11b). At this time, the tapered surface 122a of the second member 12 presses the tapered surface 112 of the first member 11 (parts 11a and 11b), whereby the outer diameter of the first member 11 (parts 11a and 11b) is expanded. In the illustrated example, the outer diameter of the first member 11 (parts 11a and 11b) extends beyond the inner diameter d of the steel pipe 2a to d + δ until the second member 12 is inserted to a predetermined depth dp. Is done. In addition, δ is the diameter expansion amount of the steel pipe 2a. As a result, a large frictional force acts between the friction surface 111 of the first member 11 (parts 11a and 11b) and the inner peripheral surface 2s of the steel pipe 2a, and the first member 11 (parts 11a and 11b) It is fixed to the steel pipe 2a.

さらに、図2(C)に示すように、もう一方の鋼管2bの内側にも第1部材11(部分11d,11e)を挿入し、その内側に第2部材12を挿入する。図2(B)に示した工程と同様に、第2部材12のテーパー面122bが第1部材11(部分11d,11e)のテーパー面112を押圧することによって、第1部材11(部分11d,11e)の外径が鋼管2bの内径dを超えて拡張される。これによって、第1部材11(部分11d,11e)の摩擦面111と鋼管2bの内周面2sとの間に大きな摩擦力が作用するようになり、第1部材11(部分11d,11e)が鋼管2bに固定される。   Further, as shown in FIG. 2 (C), the first member 11 (parts 11d and 11e) is also inserted inside the other steel pipe 2b, and the second member 12 is inserted inside thereof. Similarly to the process shown in FIG. 2B, the tapered surface 122b of the second member 12 presses the tapered surface 112 of the first member 11 (parts 11d and 11e), thereby the first member 11 (parts 11d and 11d). The outer diameter of 11e) is expanded beyond the inner diameter d of the steel pipe 2b. As a result, a large frictional force acts between the friction surface 111 of the first member 11 (parts 11d and 11e) and the inner peripheral surface 2s of the steel pipe 2b, and the first member 11 (parts 11d and 11e) It is fixed to the steel pipe 2b.

図示された例では、鋼管2a,2bの双方について、内側に挿入された第1部材11の外径が、鋼管2a,2bの内径dを超えて拡張される。これによって、第1部材11の摩擦面111と鋼管2a,2bの内周面2sとの間に大きな摩擦力を作用させ、第1部材11を鋼管2a,2bに固定することができる。また、両方の第1部材11の内側には共通の第2部材12が挿入されており、第1部材11と第2部材12との間は接着層によって固定されている。このようにして、本実施形態に係る連結構造10は、鋼管2aと鋼管2bとを連結する。   In the illustrated example, the outer diameter of the first member 11 inserted inside the steel pipes 2a and 2b is expanded beyond the inner diameter d of the steel pipes 2a and 2b. Thus, a large frictional force is applied between the friction surface 111 of the first member 11 and the inner peripheral surface 2s of the steel pipes 2a and 2b, and the first member 11 can be fixed to the steel pipes 2a and 2b. Further, a common second member 12 is inserted inside both the first members 11, and the first member 11 and the second member 12 are fixed by an adhesive layer. Thus, the connection structure 10 which concerns on this embodiment connects the steel pipe 2a and the steel pipe 2b.

(第1設計例)
図3は、図1に示された連結構造に作用する力について説明するための図である。図3には、鋼管2の内周面2sから第1部材11の摩擦面111に向けて作用する面圧Pと、面圧Pに伴って発生する鋼管2の軸方向の摩擦力(最大静止摩擦力F)とが示されている。また、図3には、鋼管2の内径d、外径Dおよび肉厚t、ならびに鋼管2の軸方向での第1部材11の摩擦面111の長さLも示されている。なお、以下の説明では、鋼管2が拡径されても肉厚tが変化しないものとする。この場合、鋼管2の内径dおよび外径Dには同じ拡径量δが発生する。なお、図3および後述する図4では、鋼管2の両側で均等に拡径量δ/2が発生するように示されているが、両側を合わせて拡径量δが発生していれば以下の説明は成り立ち、必ずしも両側で均等な拡径量が発生していなくてもよい。以下では、この拡径量δを条件とする連結構造の第1設計例について説明する。
(First design example)
FIG. 3 is a diagram for explaining the force acting on the connection structure shown in FIG. 1. In FIG. 3, the surface pressure P acting from the inner peripheral surface 2 s of the steel pipe 2 toward the friction surface 111 of the first member 11 and the axial friction force of the steel pipe 2 generated along with the surface pressure P (maximum static Friction force F) is shown. FIG. 3 also shows the inner diameter d, outer diameter D, and wall thickness t of the steel pipe 2 and the length L of the friction surface 111 of the first member 11 in the axial direction of the steel pipe 2. In the following description, it is assumed that the wall thickness t does not change even when the diameter of the steel pipe 2 is increased. In this case, the same expanded amount δ is generated in the inner diameter d and the outer diameter D of the steel pipe 2. In FIG. 3 and FIG. 4 to be described later, it is shown that the diameter expansion amount δ / 2 is uniformly generated on both sides of the steel pipe 2, but if the diameter expansion amount δ is generated on both sides, The above explanation is valid, and it is not always necessary to generate an equal amount of diameter expansion on both sides. Below, the 1st design example of the connection structure on condition of this diameter expansion amount (delta) is demonstrated.

既に説明した通り、本実施形態では、鋼管2の内側に挿入された第1部材11の外径が、鋼管2の内径dを超えてd+δまで拡張される。このときの拡径量δが適切な範囲にあれば鋼管2は弾性変形する。このとき、第2部材12によって押圧された第1部材11の摩擦面111と、鋼管2の内周面との間に面圧Pが作用する。面圧Pに伴って発生する最大静止摩擦力Fは、第1部材11の摩擦面111と鋼管2の内周面2sとの間の静止摩擦係数μ、面圧P、および摩擦面111と内周面2sとの接触面積の積であり、式(1)のように表される。なお、静止摩擦係数μは、例えば、JIS K7125に規定された摩擦係数測定方法に従って測定することができる。   As already described, in the present embodiment, the outer diameter of the first member 11 inserted inside the steel pipe 2 exceeds the inner diameter d of the steel pipe 2 and is expanded to d + δ. If the diameter expansion amount δ at this time is within an appropriate range, the steel pipe 2 is elastically deformed. At this time, the surface pressure P acts between the friction surface 111 of the first member 11 pressed by the second member 12 and the inner peripheral surface of the steel pipe 2. The maximum static frictional force F generated with the surface pressure P is the static friction coefficient μ between the friction surface 111 of the first member 11 and the inner peripheral surface 2s of the steel pipe 2, the surface pressure P, and the friction surface 111 and the inner surface. It is the product of the contact area with the peripheral surface 2s, and is expressed as in equation (1). Note that the static friction coefficient μ can be measured, for example, according to a friction coefficient measurement method defined in JIS K7125.

Figure 2018165470
Figure 2018165470

上記の式(1)から、最大静止摩擦力Fは、静止摩擦係数μ、面圧P、および摩擦面111の長さLに比例して大きくなることがわかる。このうち、静止摩擦係数μの値を大きくするためには、摩擦面111および内周面2sのいずれか、または両方を粗面化すればよい。粗面化は、具体的には、ブラスト処理、またはアルミニウムもしくは亜鉛の金属溶射処理のような表面処理によって実現することができる。あるいは、第1部材11または鋼管2が鋳造によって製造される場合、摩擦面111および内周面2sのいずれか、または両方に鋳肌の粗面を残すことによって、静止摩擦係数μの値を大きくしてもよい。   From the above equation (1), it can be seen that the maximum static friction force F increases in proportion to the static friction coefficient μ, the surface pressure P, and the length L of the friction surface 111. Of these, in order to increase the value of the static friction coefficient μ, either or both of the friction surface 111 and the inner peripheral surface 2s may be roughened. Specifically, the surface roughening can be realized by surface treatment such as blast treatment or metal spray treatment of aluminum or zinc. Alternatively, when the first member 11 or the steel pipe 2 is manufactured by casting, the value of the static friction coefficient μ is increased by leaving a rough surface of the casting surface on one or both of the friction surface 111 and the inner peripheral surface 2s. May be.

一方、面圧Pは、拡径量δの関数として表すことができる。鋼管2の肉厚tが外径Dに対して十分に小さいことを仮定すると、鋼管の円周方向の応力をσとして、面圧Pについて式(2)が成り立つ。   On the other hand, the surface pressure P can be expressed as a function of the diameter expansion amount δ. Assuming that the thickness t of the steel pipe 2 is sufficiently small with respect to the outer diameter D, Equation (2) is established for the surface pressure P, where σ is the stress in the circumferential direction of the steel pipe.

Figure 2018165470
Figure 2018165470

ここで、鋼管の外径Dに対して拡径量をδとすると、拡径前後の鋼管周長の変化から、円周方向のひずみεcは式(3)のように表すことができる。 Here, when the amount of expansion is δ with respect to the outer diameter D of the steel pipe, the circumferential strain ε c can be expressed as in Equation (3) from the change in the circumferential length of the steel pipe before and after the expansion.

Figure 2018165470
Figure 2018165470

一方、鋼管が降伏しない範囲であればヤング率との関係から円周方向のひずみεcは式(4)のように表すことができる。 On the other hand, as long as the steel pipe does not yield, the circumferential strain ε c can be expressed as shown in Equation (4) from the relationship with the Young's modulus.

Figure 2018165470
Figure 2018165470

上記の式(3)および式(4)より、式(5)の関係が成り立つ。 From the above equations (3) and (4), the relationship of equation (5) is established.

Figure 2018165470
Figure 2018165470

上記の式(2)および式(5)より、面圧Pを拡径量δの関数として式(6)のように表すことができる。さらに、式(6)を上記の式(1)に代入すると式(7)が得られる。なお、式(7)以降の式では、鋼管2の肉厚tが外径Dに対して十分に小さいことから、肉厚tの2次の項を切り捨てる近似を用いている。   From the above formulas (2) and (5), the surface pressure P can be expressed as a formula (6) as a function of the diameter expansion amount δ. Further, when Expression (6) is substituted into the above Expression (1), Expression (7) is obtained. In addition, in the expression after the expression (7), since the wall thickness t of the steel pipe 2 is sufficiently small with respect to the outer diameter D, an approximation is used in which a quadratic term of the wall thickness t is discarded.

Figure 2018165470
Figure 2018165470
Figure 2018165470
Figure 2018165470

次に、上記のように算出された最大静止摩擦力Fが満たすべき条件を検討する。まず、鋼管2の軸方向の引張に対する全強、すなわち鋼管2自体が軸方向の引張荷重によって降伏するまで連結構造が維持されることを条件にする。この場合、最大静止摩擦力Fが対抗すべき最大引張荷重Fmaxは、鋼管2の軸方向に、鋼管2の降伏強度σに等しい応力が作用するときの引張荷重になる。これは、降伏強度σに鋼管2の断面積を乗じたものであり、式(8)によって表される。なお、降伏強度σは、鋼管2の材料規格が判明している場合はその規格最小降伏強度(SMYS:Specified Minimum Yield Strength)として特定することができる。鋼管2の材料規格が判明しない場合、また材料規格にてSMYSが規定されていない場合は、例えばJIS Z2241などに規定された金属の引張試験方法により測定した鋼管2の降伏強度を使用することもできる。 Next, a condition to be satisfied by the maximum static friction force F calculated as described above is examined. First, the total strength of the steel pipe 2 with respect to the axial tension, that is, the condition that the connected structure is maintained until the steel pipe 2 itself yields due to the axial tensile load. In this case, the maximum tensile load F max to be countered by the maximum static frictional force F is a tensile load when a stress equal to the yield strength σ y of the steel pipe 2 acts in the axial direction of the steel pipe 2. This is obtained by multiplying the yield strength σ y by the cross-sectional area of the steel pipe 2 and is expressed by the equation (8). In addition, when the material standard of the steel pipe 2 is known, the yield strength σ y can be specified as the standard minimum yield strength (SMYS). When the material standard of the steel pipe 2 is not known, or when SMYS is not stipulated in the material standard, the yield strength of the steel pipe 2 measured by, for example, a metal tensile test method specified in JIS Z2241 may be used. it can.

Figure 2018165470
Figure 2018165470

上記の式(7)および式(8)より、最大静止摩擦力Fが最大引張荷重Fmaxに対抗できる(F≧Fmax)という条件は、式(9)のように表される。式(9)を拡径量δについて整理すると、式(10)が得られる。 From the above formulas (7) and (8), the condition that the maximum static friction force F can counter the maximum tensile load F max (F ≧ F max ) is expressed as in formula (9). When formula (9) is arranged with respect to the diameter expansion amount δ, formula (10) is obtained.

Figure 2018165470
Figure 2018165470
Figure 2018165470
Figure 2018165470

ここで、上記の式(10)は引張に対する全強を条件としているが、より小さい、必要最小限の引張強度で経済的な設計をすることが求められる場合も多い。そのような場合、必要とされる引張強度が鋼管2の降伏強度σに対してασ(0<α≦1)で表されるものとして、上記の式(10)を式(11)のように書き換えることができる。 Here, although the above formula (10) is based on the condition of the total strength against tension, it is often required to design economically with a smaller, minimum necessary tensile strength. In such a case, assuming that the required tensile strength is expressed by ασ y (0 <α ≦ 1) with respect to the yield strength σ y of the steel pipe 2, the above formula (10) is changed to the formula (11). Can be rewritten as:

Figure 2018165470
Figure 2018165470

上記の式(11)は、本実施形態に係る連結構造10が、鋼管2の軸方向の引張に対抗して連結を維持するための条件を規定している。つまり、連結構造10の第2部材12が第1部材11の内側に挿入されたときに、鋼管2の拡径量δが上記の式(11)によって表される範囲にあれば、連結構造10は鋼管2の軸方向の引張に対抗することができる。   The above equation (11) defines the condition for the connection structure 10 according to the present embodiment to maintain the connection against the axial tension of the steel pipe 2. In other words, when the second member 12 of the connection structure 10 is inserted inside the first member 11, if the diameter expansion amount δ of the steel pipe 2 is within the range represented by the above formula (11), the connection structure 10 Can resist the tensile of the steel pipe 2 in the axial direction.

一方、上述のように、本実施形態に係る連結構造10は、拡径量δが鋼管2の内径dおよび外径Dに対して小さく、鋼管2が弾性変形することを前提にして設計されている。つまり、拡径量δが大きすぎ、鋼管2が周方向に降伏して塑性変形した場合には、面圧Pはむしろ小さくなり、連結の維持は困難になる。従って、上記の式(11)によって拡径量δの下限値を規定するのに加えて、鋼管2が周方向に降伏しないための拡径量δの上限値を規定することは有用である。   On the other hand, as described above, the connecting structure 10 according to the present embodiment is designed on the assumption that the diameter expansion amount δ is smaller than the inner diameter d and the outer diameter D of the steel pipe 2 and the steel pipe 2 is elastically deformed. Yes. That is, when the diameter expansion amount δ is too large and the steel pipe 2 yields in the circumferential direction and undergoes plastic deformation, the surface pressure P is rather small, and it is difficult to maintain the connection. Therefore, in addition to defining the lower limit value of the diameter expansion amount δ by the above equation (11), it is useful to define the upper limit value of the diameter expansion amount δ so that the steel pipe 2 does not yield in the circumferential direction.

鋼管2の周方向に作用する応力σ(径方向に作用する応力に等しいと近似される)と面圧Pとの関係は、上記の式(2)によって既に示されている。ここで、鋼管2が周方向に降伏する直前の応力σは、鋼管2の降伏強度σに等しいと考えられる。それゆえ、鋼管2が周方向に降伏する直前の面圧Pmaxは、式(2)において応力σを置き換えることによって、式(12)のように表される。 The relationship between the stress σ acting in the circumferential direction of the steel pipe 2 (approximate that it is equal to the stress acting in the radial direction) and the surface pressure P has already been shown by the above equation (2). Here, the stress σ immediately before the steel pipe 2 yields in the circumferential direction is considered to be equal to the yield strength σ y of the steel pipe 2. Therefore, the surface pressure P max immediately before the steel pipe 2 yields in the circumferential direction is expressed as in Expression (12) by replacing the stress σ in Expression (2).

Figure 2018165470
Figure 2018165470

上記の式(6)および式(12)より、鋼管2が周方向に降伏しない(P≦Pmax)という条件は、式(13)のように表される。式(13)を拡径量δについて整理すると、式(14)が得られる。 From the above equations (6) and (12), the condition that the steel pipe 2 does not yield in the circumferential direction (P ≦ P max ) is expressed as equation (13). When formula (13) is arranged with respect to the diameter expansion amount δ, formula (14) is obtained.

Figure 2018165470
Figure 2018165470
Figure 2018165470
Figure 2018165470

上記の式(14)は、本実施形態に係る連結構造10が、鋼管2を周方向に降伏させないための条件を規定している。つまり、連結構造10の第2部材12が第1部材11の内側に挿入されたときに、鋼管2の拡径量δが上記の式(14)によって表される範囲にあれば、鋼管2は弾性変形し、想定されているような面圧Pおよび摩擦力が作用する。   The above equation (14) defines the conditions for the connecting structure 10 according to the present embodiment to prevent the steel pipe 2 from yielding in the circumferential direction. That is, when the second member 12 of the connection structure 10 is inserted inside the first member 11, if the diameter expansion amount δ of the steel pipe 2 is within the range represented by the above formula (14), the steel pipe 2 is It is elastically deformed and surface pressure P and frictional force as expected are applied.

以上の検討をふまえた連結構造10の第1設計例を、表1に示す。下記の例では、外径Dが114.3mm(呼び径100A)、ヤング率Eが205.8GPa(205.8×10N/mm)の鋼管2について、上述した静止摩擦係数μ、長さL、係数α、および降伏強度σを変数として、連結構造10を設計している。それぞれの設計は、上記の式(11)および式(14)を満たす拡径量δの範囲の広さによって評価される。なお、表において、δminは式(11)によって算出される拡径量δの下限値を示し、δmaxは式(14)によって算出される拡径量δの上限値を示す。拡径量δの許容範囲(δmax−δmin)が広いほど、例えば部材加工や施工における誤差を許容することができるという点で有利である。 Table 1 shows a first design example of the connecting structure 10 based on the above examination. In the following example, the above-described static friction coefficient μ, long for a steel pipe 2 having an outer diameter D of 114.3 mm (nominal diameter 100 A) and a Young's modulus E of 205.8 GPa (205.8 × 10 3 N / mm 2 ). The connecting structure 10 is designed using the thickness L, the coefficient α, and the yield strength σ y as variables. Each design is evaluated by the range of the diameter expansion amount δ satisfying the above formulas (11) and (14). In the table, δ min indicates a lower limit value of the diameter expansion amount δ calculated by the equation (11), and δ max indicates an upper limit value of the diameter expansion amount δ calculated by the equation (14). A wider permissible range (δ max −δ min ) of the diameter expansion amount δ is advantageous in that, for example, an error in member processing or construction can be permitted.

Figure 2018165470
Figure 2018165470

例1〜例4では、降伏強度σが235N/mmである通常の鋼管2を用いる。例1では、鋼管2の内周面2sおよび第1部材11の摩擦面111の粗面化を実施せず(静止摩擦係数μ=0.3)、長さLを外径Dの2倍(228.6mm)とし、引張に対する全強(α=1)を条件とした。この場合、設計は可能であるものの、拡径量δの許容範囲(δmax−δmin)が狭く(0.022mm)、部材加工や施工における誤差がほとんど許容されない。 In Examples 1 to 4, a normal steel pipe 2 having a yield strength σ y of 235 N / mm 2 is used. In Example 1, the inner circumferential surface 2s of the steel pipe 2 and the friction surface 111 of the first member 11 are not roughened (static friction coefficient μ = 0.3), and the length L is twice the outer diameter D ( 228.6 mm) and the total strength against tension (α = 1) was the condition. In this case, although design is possible, the allowable range (δ max −δ min ) of the diameter expansion amount δ is narrow (0.022 mm), and errors in member processing and construction are hardly allowed.

これに対して、例2では、長さLを外径Dの3倍(342.9mm)に延伸した。これによって、同じ拡径量δに対して発生する最大静止摩擦力Fが大きくなり、拡径量δの下限値δminが小さくなる結果、拡径量δの許容範囲(δmax−δmin)が例1と比較して3倍近くまでに拡大した(0.058mm)。 In contrast, in Example 2, the length L was stretched to 3 times the outer diameter D (342.9 mm). As a result, the maximum static frictional force F generated with respect to the same diameter expansion amount δ increases, and the lower limit value δ min of the diameter expansion amount δ decreases. As a result, the allowable range (δ max −δ min ) of the diameter expansion amount δ. Expanded to nearly three times that of Example 1 (0.058 mm).

また、例3では、長さLは外径Dの2倍(228.6mm)のままで、粗面化によって静止摩擦係数μを0.3から0.7に上昇させた。これによって、例2の場合と同様に最大静止摩擦力Fが大きくなり、拡径量δの下限値δminが小さくなる結果、拡径量δの許容範囲(δmax−δmin)が例1と比較して4倍近くまで拡大した(0.084mm)。 In Example 3, the static friction coefficient μ was increased from 0.3 to 0.7 by roughening while the length L remained twice as large as the outer diameter D (228.6 mm). As a result, as in Example 2, the maximum static frictional force F increases and the lower limit value δ min of the diameter expansion amount δ decreases. As a result, the allowable range (δ max −δ min ) of the diameter expansion amount δ increases. It was enlarged to nearly 4 times (0.084 mm).

なお、静止摩擦係数μが0.7である場合、例4のように、長さLを外径Dの1.5倍(171.5mm)まで短縮しても、拡径量δの許容範囲(δmax−δmin)が例1と比較して3倍以上ある(0.068mm)。このことから、静止摩擦係数μの上昇が設計の自由度を高めるために効果が高いことがわかる。 When the coefficient of static friction μ is 0.7, as shown in Example 4, even if the length L is shortened to 1.5 times the outer diameter D (171.5 mm), the allowable range of the diameter expansion amount δ. (Δ max −δ min ) is 3 times or more (0.068 mm) as compared with Example 1. From this, it can be seen that an increase in the static friction coefficient μ is highly effective for increasing the degree of freedom in design.

例5では、長さLおよび静止摩擦係数μは例1と同じである一方で、引張に対する全強を要求せず、その75%の引張強度でよいことにした(α=0.75)。これによって拡径量δの下限値δminが小さくなる結果、拡径量δの許容範囲(δmax−δmin)が例1と比較して2倍以上に拡大した(0.049mm)。 In Example 5, the length L and the coefficient of static friction μ were the same as in Example 1, but the total strength against tension was not required, and 75% of the tensile strength could be used (α = 0.75). As a result, the lower limit value δ min of the diameter expansion amount δ was reduced, and as a result, the allowable range (δ max −δ min ) of the diameter expansion amount δ was expanded more than twice (0.049 mm) compared to Example 1.

一方、例6では、鋼管2を高強度化した結果、降伏強度σが315N/mmになっている。そうすると、拡径量δの上限値δmaxが大きくなるが、下限値δminも同様に大きくなるため、拡径量δの許容範囲(δmax−δmin)は例1と同程度に狭い(0.029mm)。これをふまえ、例7では、要求される引張強度が鋼管2を高強度化しない場合(例1)と同程度になるように係数αの値を調節した(α=0.75)。この結果、下限値δminを例1と同程度に維持し、拡径量δの許容範囲(δmax−δmin)を広げることができた(0.066mm)。 On the other hand, in Example 6, as a result of increasing the strength of the steel pipe 2, the yield strength σ y is 315 N / mm 2 . As a result, the upper limit value δ max of the diameter expansion amount δ increases, but the lower limit value δ min also increases, so that the allowable range (δ max −δ min ) of the diameter expansion amount δ is as narrow as in Example 1 ( 0.029 mm). Based on this, in Example 7, the value of the coefficient α was adjusted (α = 0.75) so that the required tensile strength was approximately the same as in the case where the steel pipe 2 was not strengthened (Example 1). As a result, the lower limit δ min was maintained at the same level as in Example 1, and the allowable range (δ max −δ min ) of the diameter expansion amount δ could be expanded (0.066 mm).

上記の例のように、鋼管2の拡径量δを考慮して設計することによって、鋼管2の軸方向の引張に対抗して連結を維持し、かつ鋼管2を周方向に降伏させない連結構造10を、部材加工や施工における誤差を可能な限り許容しながら実現させることができる。   As in the above example, by designing in consideration of the diameter expansion amount δ of the steel pipe 2, a connection structure that maintains the connection against the axial tension of the steel pipe 2 and does not yield the steel pipe 2 in the circumferential direction. 10 can be realized while allowing an error in member processing and construction as much as possible.

(第2設計例)
以下では、図3に示された拡径量δを条件とする連結構造10の第2設計例について説明する。上記の第1設計例では鋼管2を周方向に降伏しない、すなわち弾性変形の範囲内で拡径させることを条件として拡径量δの条件を決定したが、当業者には知られているように、金属材料は弾性変形の範囲を超えて変形しても直ちに破断することはなく、塑性変形の範囲でもある程度までは部材の各部で一様に変形する。つまり、鋼管2が塑性変形する場合も、変形量がある程度に達するまでは弾性変形の範囲と同様に面圧Pおよび摩擦力が発生し、連結構造10を維持することが可能である。ただし、さらに塑性変形が進むと、一様ではない塑性変形、具体的には鋼管2の周方向の一部がくびれるような変形が生じ、破断の可能性が高まるのに加えて第1部材11との接触面積が減少するため、連結構造の維持が困難になる。第2設計例では、上記のような連結構造10を維持可能な塑性変形の範囲を考慮して拡径量δの許容範囲を拡張する。
(Second design example)
Below, the 2nd design example of the connection structure 10 on condition of the diameter expansion amount (delta) shown by FIG. 3 is demonstrated. In the first design example described above, the condition of the diameter expansion amount δ is determined on the condition that the steel pipe 2 does not yield in the circumferential direction, that is, the diameter is expanded within the range of elastic deformation. In addition, even if the metal material is deformed beyond the range of elastic deformation, it does not break immediately, and even in the range of plastic deformation, the metal material is uniformly deformed to some extent. That is, even when the steel pipe 2 is plastically deformed, the contact pressure P and the frictional force are generated as in the elastic deformation range until the deformation amount reaches a certain level, and the connection structure 10 can be maintained. However, when plastic deformation further proceeds, non-uniform plastic deformation, specifically, deformation in which a part of the circumferential direction of the steel pipe 2 is constricted occurs, and in addition to the possibility of breakage, the first member 11 is increased. As a result, the contact area is reduced, which makes it difficult to maintain the connection structure. In the second design example, the allowable range of the diameter expansion amount δ is expanded in consideration of the range of plastic deformation that can maintain the connection structure 10 as described above.

連結構造10を維持可能な塑性変形の範囲は、例えばJIS G0202、およびJIS Z2241において一様伸び(最大試験力時塑性伸び)として定義されている。伸び(変形量)が弾性変形の範囲を超えても、一様伸びまでは、非線形ではあるものの伸びが拡大するにつれて応力も増大し、鋼管2は周方向についてほぼ一様に変形するため、上記のように連結構造10を維持することが可能である。従って、連結構造10を維持可能な塑性変形の範囲に対応する拡径量δの条件は、鋼管2の外径をD、一様伸びをA(%)として以下の式(15)で表現される。 The range of plastic deformation that can maintain the connection structure 10 is defined as uniform elongation (plastic elongation at the maximum test force) in JIS G0202 and JIS Z2241, for example. Even if the elongation (deformation amount) exceeds the range of elastic deformation, the stress increases as the elongation increases, but the steel pipe 2 is deformed almost uniformly in the circumferential direction until the uniform elongation. It is possible to maintain the connection structure 10 like this. Accordingly, the condition of the diameter expansion amount δ corresponding to the range of plastic deformation capable of maintaining the connection structure 10 is expressed by the following equation (15), where D is the outer diameter of the steel pipe 2 and A U (%) is the uniform elongation. Is done.

Figure 2018165470
Figure 2018165470

ところで、実際に供給される鋼管2では、鋼材検査証明書(ミルシート)に記載される引張試験値として、一様伸びAよりも、同じくJIS G0202、およびJIS Z2241で定義されている破断時全伸びの方が一般的である。例えば、鋼管2の製品情報として破断時全伸びだけが利用可能である場合、JIS Z2241に規定されるような方法で一様伸びAを実測してもよいが、簡便な代替手段として、破断時全伸びをA(%)として以下の式(16)を用いてもよい。 Incidentally, in the steel pipe 2 is actually supplied as tensile test values described steel inspection certificate (mill sheet), than uniform elongation A U, likewise JIS G0202, and at break defined in JIS Z2241 total Elongation is more common. For example, if only the total elongation at break as product information of the steel pipe 2 is available, it may be actually measured uniform elongation A U in a manner as defined in JIS Z2241, as a convenient alternative, break The following equation (16) may be used with the total elongation at time A D (%).

Figure 2018165470
Figure 2018165470

上記の式(16)は、例えば岩田善裕らによる「鋼材の素材引張試験における一様伸びと破断伸びの関係」(日本建築学会構造系論文集、第78巻、683号、223−232頁、2013年1月)などに記載の知見に基づく。上記文献では材料の強度に応じて一様伸びと破断時全伸びの大小関係が異なることが記載されている。例えば、引張強度500N/mm級の材料では一様伸びAが破断時全伸びAの1/2程度だが、引張強度800N/mm級の材料では一様伸びAが破断時全伸びAの1/6程度まで減少する場合がある。上記の式(16)では、これらの知見を踏まえ、ほぼ確実に一様伸びAよりも小さくなる値として破断時全伸びAの1/10とした。 The above formula (16) is obtained by, for example, “Relationship between uniform elongation and breaking elongation in steel material tensile test” by Yoshihiro Iwata et al. (The Architectural Institute of Japan, Vol. 78, No. 683, pages 223-232) (January 2013) and the like. The above document describes that the magnitude relationship between the uniform elongation and the total elongation at break differs depending on the strength of the material. For example, a material having a tensile strength of 500 N / mm class 2 has a uniform elongation A U of about 1/2 of the total elongation AD at break, whereas a material having a tensile strength of 800 N / mm class 2 has a uniform elongation A U of all at break. It may decrease to about 1/6 of the elongation AD . In the above equation (16), based on these findings, and the elongation at 1/10 of the total elongation A D as almost certainly smaller value than the uniform elongation A U.

以上の検討をふまえた連結構造10の第2設計例を、表2に示す。下記の例では、外径Dが114.3mm(呼び径100A)、ヤング率Eが205.8GPa(205.8×10N/mm)の鋼管2について、図3に示した長さLを228.6mm、式(11)の係数αを1とし、静止摩擦係数μ、降伏強度σを変数として、一様伸びAおよび破断時全伸びAに基づいて連結構造10を設計している。なお、表において、δminは式(11)によって算出される拡径量δの下限値を示し、δmaxは式(15)(一様伸びAの値が示されている場合)または式(16)(破断時全伸びAの値が示されている場合)によって算出される拡径量δの上限値を示す。既に述べたように、拡径量δの許容範囲(δmax−δmin)が広いほど、例えば部材加工や施工における誤差を許容することができるという点で有利である。 Table 2 shows a second design example of the connection structure 10 based on the above examination. In the following example, a steel pipe 2 having an outer diameter D of 114.3 mm (nominal diameter 100 A) and a Young's modulus E of 205.8 GPa (205.8 × 10 3 N / mm 2 ) is shown in FIG. Is 228.6 mm, the coefficient α in equation (11) is 1, the static friction coefficient μ, and the yield strength σ y are variables, and the connecting structure 10 is designed based on the uniform elongation A U and the total elongation A D at break. ing. In Table, [delta] min represents a lower limit of the diameter expansion amount [delta] calculated by equation (11), [delta] max (if shown the value of uniform elongation A U) formula (15) or formula (16) Indicates the upper limit value of the diameter expansion amount δ calculated by (when the value of the total elongation AD at break is shown). As already described, the wider the allowable range (δ max −δ min ) of the diameter expansion amount δ, the more advantageous, for example, that an error in member processing or construction can be permitted.

Figure 2018165470
Figure 2018165470

上記の例では、鋼管2を高強度化した結果、降伏強度σが460N/mmになり、それに伴って一様伸びAおよび破断時全伸びAの値が変化した場合(例10、例11、例14、例15)、および粗面化によって静止摩擦係数μを0.3から0.7に上昇させた場合(例12〜例15)についても設計を実施したが、いずれの場合においても、拡径量δの許容範囲(δmax−δmin)が上記の設計例1の場合と比べて大幅に拡大した。例えば、JIS G3444に規定されている鋼管の外径製造公差のうち、1号公差は±1%のため、鋼管2の外径Dが114.3mmの場合には±1.143mmのばらつきが許容されることになる。拡径量δの許容範囲(δmax−δmin)の大きさは、いずれもこのばらつきの範囲よりも大きい。従って、設計例2では通常の製造公差で製造された鋼管を用いて連結構造10を構成することが可能である。 In the above example, as a result of increasing the strength of the steel pipe 2, the yield strength σ y becomes 460 N / mm 2 , and accordingly, the values of the uniform elongation A U and the total elongation A D at break change (Example 10). , Example 11, Example 14, Example 15), and the case where the static friction coefficient μ was increased from 0.3 to 0.7 by roughening (Examples 12 to 15), Even in this case, the allowable range (δ max −δ min ) of the diameter expansion amount δ was significantly increased as compared with the case of the above design example 1. For example, among the outer diameter manufacturing tolerances of steel pipes specified in JIS G3444, No. 1 tolerance is ± 1%. Therefore, when the outer diameter D of the steel pipe 2 is 114.3 mm, a variation of ± 1.143 mm is allowed. Will be. The size of the allowable range (δ max −δ min ) of the diameter expansion amount δ is larger than the range of variation. Therefore, in the design example 2, it is possible to configure the connection structure 10 using a steel pipe manufactured with a normal manufacturing tolerance.

(変形例)
図4は、本発明の第1実施形態の変形例を示す概略的な断面図である。図4に示された連結構造では、第1部材11の内周にストッパー115が設けられる。図示された例において、ストッパー115は第1部材11のテーパー面112に接するストレート面113に設けられ、第1部材11の内側に挿入された第2部材12の端面125に当接する。ストッパー115は、例えば、管軸方向に延びる線状の突出部として形成されてもよいし、周方向に延びる環状の突出部として形成されてもよい。
(Modification)
FIG. 4 is a schematic cross-sectional view showing a modification of the first embodiment of the present invention. In the connection structure shown in FIG. 4, a stopper 115 is provided on the inner periphery of the first member 11. In the illustrated example, the stopper 115 is provided on the straight surface 113 in contact with the tapered surface 112 of the first member 11, and abuts on the end surface 125 of the second member 12 inserted inside the first member 11. For example, the stopper 115 may be formed as a linear protrusion extending in the tube axis direction, or may be formed as an annular protrusion extending in the circumferential direction.

このようなストッパー115を設けることによって、第2部材12の第1部材11への挿入深さを規制することができる。より具体的には、例えば、図示されているように、第2部材12が第1部材11の内側に所定深さdpまで挿入されたときに、ストッパー115が端面125に当接するように第1部材11および第2部材12を設計する。これによって、実際の拡径量δを上述したような適切な範囲に制御することが容易になる。   By providing such a stopper 115, the insertion depth of the second member 12 into the first member 11 can be regulated. More specifically, for example, as shown in the drawing, when the second member 12 is inserted into the first member 11 to a predetermined depth dp, the first stopper 115 comes into contact with the end surface 125. The member 11 and the second member 12 are designed. This makes it easy to control the actual diameter expansion amount δ to an appropriate range as described above.

なお、第2部材12の第1部材11への挿入深さを規制するための手段は、上述したストッパー115には限られない。例えば、第2部材12にストッパーが設けられてもよい。具体的には、第2部材12の中央部、すなわちテーパー面122の底部から外側に立ち上がり、第1部材11のフランジ114に当接するフランジが設けられてもよい。また、挿入深さを規制する以外の手段として、第2部材12の表面に適切な挿入深さを示す基準線を引いたり、第2部材12を第1部材11に挿入するときの推進力を管理したりすることによって、拡径量δを適切な範囲に制御してもよい。   The means for restricting the insertion depth of the second member 12 into the first member 11 is not limited to the stopper 115 described above. For example, a stopper may be provided on the second member 12. Specifically, a flange that rises outward from the center of the second member 12, that is, the bottom of the tapered surface 122, and comes into contact with the flange 114 of the first member 11 may be provided. Further, as a means other than restricting the insertion depth, a reference line indicating an appropriate insertion depth is drawn on the surface of the second member 12 or a propulsive force when the second member 12 is inserted into the first member 11 is used. For example, the diameter expansion amount δ may be controlled within an appropriate range.

以上で説明した本発明の第1実施形態に係る連結構造10によれば、第1部材11の摩擦面111と鋼管2の内周面2sの間に作用する摩擦力によって鋼管2の連結が維持される。この場合、鋼管2の端面に連結部材を溶接したり、鋼管2に開孔やフランジを形成したりすることは必要ではない。上記の実施形態では、鋼管2に対する事前の加工が、内周面2sの粗面化を除いて必要とされず、また内周面2sの粗面化も省略可能である。従って、上記の実施形態では、鋼管2を連結するにあたり、鋼管2に対する事前の加工を最小限に抑えることができる。   According to the connection structure 10 according to the first embodiment of the present invention described above, the connection of the steel pipe 2 is maintained by the frictional force acting between the friction surface 111 of the first member 11 and the inner peripheral surface 2s of the steel pipe 2. Is done. In this case, it is not necessary to weld a connecting member to the end surface of the steel pipe 2 or to form an opening or a flange in the steel pipe 2. In the above-described embodiment, prior processing for the steel pipe 2 is not required except for the roughening of the inner peripheral surface 2s, and the roughening of the inner peripheral surface 2s can be omitted. Therefore, in said embodiment, when connecting the steel pipe 2, the prior process with respect to the steel pipe 2 can be suppressed to the minimum.

(第2実施形態)
図5は、本発明の第2実施形態に係る連結構造の部材を示す概略的な斜視図である。図5に示された連結構造20は、第1部材21(部分21a〜21cとして図示される)と、第2部材22とを含む。第1実施形態に係る連結構造10との相違として、第1部材21では、テーパー面112にねじ山216が形成される。一方、第2部材22では、テーパー面122にねじ溝226が設けられる。それ以外について、本実施形態に係る連結構造20は、第1実施形態に係る連結構造10と同様の構成を有する。
(Second Embodiment)
FIG. 5 is a schematic perspective view showing members of a connection structure according to the second embodiment of the present invention. The connection structure 20 shown in FIG. 5 includes a first member 21 (illustrated as portions 21 a to 21 c) and a second member 22. As a difference from the connection structure 10 according to the first embodiment, a thread 216 is formed on the tapered surface 112 in the first member 21. On the other hand, in the second member 22, a thread groove 226 is provided on the tapered surface 122. Other than that, the connection structure 20 according to the present embodiment has the same configuration as the connection structure 10 according to the first embodiment.

本実施形態において、第1部材21のねじ山216と、第2部材22のねじ溝226とは、互いに対応するねじ形状である。このようなねじ形状が設けられることによって、第2部材22または第1部材21の管軸回りの回転力を、第2部材22を第1部材21に挿入するときの推進力に変換することができる。それゆえ、本実施形態では、鋼管の内側に挿入された第1部材21の内側に第2部材22を挿入し、さらに第2部材22を管軸回りに回転させる。これによって、第2部材22を第1部材21の内側に挿入してテーパー面122にテーパー面112を押圧させ、結果として第1部材11の外径を拡張させることができる。なお、このとき、第2部材22の代わりに、または第2部材22とともに、第1部材11および鋼管が回転させられてもよい。   In the present embodiment, the screw thread 216 of the first member 21 and the screw groove 226 of the second member 22 are screw shapes corresponding to each other. By providing such a screw shape, the rotational force around the tube axis of the second member 22 or the first member 21 can be converted into a propulsive force when the second member 22 is inserted into the first member 21. it can. Therefore, in the present embodiment, the second member 22 is inserted inside the first member 21 inserted inside the steel pipe, and the second member 22 is further rotated around the pipe axis. As a result, the second member 22 can be inserted into the first member 21 to press the tapered surface 112 against the tapered surface 122, and as a result, the outer diameter of the first member 11 can be expanded. At this time, the first member 11 and the steel pipe may be rotated instead of the second member 22 or together with the second member 22.

また、本実施形態では、第2部材22のテーパー面122が第1部材21のテーパー面112を押圧して第1部材21の外径を拡張させた状態を、ねじ山216とねじ溝226との間に作用する摩擦力によって維持することができる。従って、本実施形態では、必ずしも第2部材22のテーパー面122と第1部材21のテーパー面112との間に接着層を形成しなくてもよい。ただし、例えばねじの緩みを防止するなどの目的で、テーパー面122とテーパー面112との間に接着層を形成してもよい。   Further, in the present embodiment, the state in which the tapered surface 122 of the second member 22 presses the tapered surface 112 of the first member 21 to expand the outer diameter of the first member 21 is represented by the thread 216 and the thread groove 226. Can be maintained by the frictional force acting during Therefore, in this embodiment, it is not always necessary to form an adhesive layer between the tapered surface 122 of the second member 22 and the tapered surface 112 of the first member 21. However, an adhesive layer may be formed between the tapered surface 122 and the tapered surface 112 for the purpose of, for example, preventing the screws from loosening.

さらに、本実施形態では、第1部材21のフランジ114側に位置するねじ山216の終端と、第2部材22の中央側に位置するねじ溝226の終端とが、互いに当接するように形成されてもよい。これによって、第2部材22の第1部材21への挿入深さを規制することができる。あるいは、上記の第1実施形態の変形例に係る連結構造のように、第1部材21のストレート面113に設けられるストッパーなどの手段によって挿入深さを規制し、それによって拡径量δを適切な範囲に制御してもよい。   Furthermore, in the present embodiment, the end of the screw thread 216 located on the flange 114 side of the first member 21 and the end of the screw groove 226 located on the center side of the second member 22 are formed so as to contact each other. May be. Thereby, the insertion depth of the second member 22 into the first member 21 can be regulated. Alternatively, the insertion depth is restricted by means such as a stopper provided on the straight surface 113 of the first member 21 as in the connection structure according to the modified example of the first embodiment described above, whereby the diameter expansion amount δ is appropriately set. It may be controlled within a range.

(第3実施形態)
図6は、本発明の第3実施形態に係る連結構造の部材を示す概略的な斜視図である。図6に示された連結構造30は、第1部材31(部分31a〜31cとして図示される)と、第2部材32とを含む。第1実施形態に係る連結構造10との相違として、第1部材31では、内周にテーパー面312とストレート面313とが形成され、ストレート面313にねじ山316が形成される。一方、第2部材32では、外周にテーパー面322とストレート面323とが形成され、ストレート面323にねじ溝326が形成される。それ以外について、本実施形態に係る連結構造30は、第1実施形態に係る連結構造10と同様の構成を有する。
(Third embodiment)
FIG. 6 is a schematic perspective view showing members of a connection structure according to the third embodiment of the present invention. The connection structure 30 illustrated in FIG. 6 includes a first member 31 (illustrated as portions 31 a to 31 c) and a second member 32. As a difference from the connection structure 10 according to the first embodiment, in the first member 31, a tapered surface 312 and a straight surface 313 are formed on the inner periphery, and a thread 316 is formed on the straight surface 313. On the other hand, in the second member 32, a tapered surface 322 and a straight surface 323 are formed on the outer periphery, and a screw groove 326 is formed on the straight surface 323. Other than that, the connection structure 30 according to the present embodiment has the same configuration as the connection structure 10 according to the first embodiment.

本実施形態において、第1部材31のテーパー面312は被押圧面であり、押圧面である第2部材32のテーパー面322によって押圧される。上記の第1実施形態と同様に、第1部材31の内側に第2部材32を挿入していくと、第2部材32のテーパー面322が第1部材31のテーパー面312を押圧することによって第1部材31の外径が拡張される。また、第1部材31のねじ山316と、第2部材32のねじ溝326とは、互いに対応するねじ形状である。上記の第2実施形態と同様に、このようなねじ形状によって、第2部材32または第1部材31の軸回りの回転力が、第2部材32を第1部材31に挿入するときの推進力に変換される。また、第2部材32のテーパー面322が第1部材31のテーパー面312を押圧して第1部材31の外径を拡張させた状態を維持することができる。   In the present embodiment, the tapered surface 312 of the first member 31 is a pressed surface and is pressed by the tapered surface 322 of the second member 32 that is a pressing surface. As in the first embodiment, when the second member 32 is inserted inside the first member 31, the tapered surface 322 of the second member 32 presses the tapered surface 312 of the first member 31. The outer diameter of the first member 31 is expanded. Further, the thread 316 of the first member 31 and the thread groove 326 of the second member 32 have screw shapes corresponding to each other. Similar to the second embodiment, such a screw shape allows the rotational force around the axis of the second member 32 or the first member 31 to drive the second member 32 into the first member 31. Is converted to Further, the state in which the tapered surface 322 of the second member 32 presses the tapered surface 312 of the first member 31 and the outer diameter of the first member 31 is expanded can be maintained.

さらに、本実施形態では、第1部材31のテーパー面312とストレート面313との間にステップ315が形成され、第2部材32のテーパー面322とストレート面323との間にステップ325が形成される。このステップ315,325を互いに当接するように形成することによって、第2部材32の第1部材31への挿入深さを規制することができる。あるいは、上記の第1実施形態の変形例に係る連結構造のように、第1部材31のストレート面313に設けられるストッパーなどの手段によって挿入深さを規制し、それによって拡径量δを適切な範囲に制御してもよい。   Further, in the present embodiment, a step 315 is formed between the tapered surface 312 and the straight surface 313 of the first member 31, and a step 325 is formed between the tapered surface 322 and the straight surface 323 of the second member 32. The By forming the steps 315 and 325 so as to contact each other, the insertion depth of the second member 32 into the first member 31 can be regulated. Alternatively, the insertion depth is regulated by means such as a stopper provided on the straight surface 313 of the first member 31 as in the connection structure according to the modified example of the first embodiment described above, whereby the diameter expansion amount δ is appropriately set. It may be controlled within a range.

上記の第2実施形態に係る連結構造20と本実施形態に係る連結構造30とを比較すると、第1部材の内周、および第2部材の外周に、互いに対応するねじ形状が形成される点は共通している。一方で、連結構造20ではねじ形状が押圧面および被押圧面(テーパー面112,122)に形成されたのに対し、連結構造30ではねじ形状が押圧面および被押圧面とは異なる面(ストレート面313,323)に形成される点は異なる。別の表現をすれば、連結構造20では押圧面および被押圧面とねじ形状とが管軸方向について重複しているのに対して、連結構造30では押圧面および被押圧面とねじ形状とが管軸方向について分離されている。第2実施形態と第3実施形態とは、例えば、ねじ形状の加工条件などによって使い分けられる。   When the connecting structure 20 according to the second embodiment is compared with the connecting structure 30 according to the present embodiment, screw shapes corresponding to each other are formed on the inner periphery of the first member and the outer periphery of the second member. Are common. On the other hand, in the connecting structure 20, the screw shape is formed on the pressing surface and the pressed surface (tapered surfaces 112, 122), whereas in the connecting structure 30, the screw shape is different from the pressing surface and the pressed surface (straight). The points formed on the surfaces 313, 323) are different. In other words, in the connecting structure 20, the pressing surface, the pressed surface, and the screw shape overlap in the tube axis direction, whereas in the connecting structure 30, the pressing surface, the pressed surface, and the screw shape are different. Separated in the tube axis direction. The second embodiment and the third embodiment are selectively used depending on, for example, a thread-shaped processing condition.

(第4実施形態)
図7は、本発明の第4実施形態に係る連結構造を示す概略的な断面図である。図7に示された連結構造40は、上記の第1実施形態と同様の第1部材11(部分11a〜11cおよび部分11d〜11fを含む。ただし部分11cおよび部分11fは図示されていない)と、第2部材42とを含む。第2部材42は、管軸方向に貫通する中空部分427を含む。それ以外について、第2部材42の構成は第1実施形態に係る第2部材12と同様である。
(Fourth embodiment)
FIG. 7 is a schematic cross-sectional view showing a connection structure according to the fourth embodiment of the present invention. The connection structure 40 shown in FIG. 7 includes a first member 11 (including portions 11a to 11c and portions 11d to 11f, but the portions 11c and 11f are not shown) as in the first embodiment. And the second member 42. The second member 42 includes a hollow portion 427 that penetrates in the tube axis direction. About the other than that, the structure of the 2nd member 42 is the same as that of the 2nd member 12 which concerns on 1st Embodiment.

鋼管を構造部材として施工する際、鋼管内部をモルタルや水などの流体、あるいはドリル等の施工器具が通過する場合がある。そのような場合は図7に示すように第2部材42に中空部分427を設けることで、上記のような流体や器具が連結構造を通過することが可能になる。なお、同様の中空部分を、第2実施形態および第3実施形態において第2部材22,32に設けることも可能である。   When constructing a steel pipe as a structural member, a fluid such as mortar or water, or a construction tool such as a drill may pass through the steel pipe. In such a case, as shown in FIG. 7, by providing the second member 42 with the hollow portion 427, it becomes possible for the fluid and instrument as described above to pass through the connection structure. In addition, it is also possible to provide the same hollow part in the 2nd members 22 and 32 in 2nd Embodiment and 3rd Embodiment.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

例えば、上記の実施形態では、第1部材を3つの部分に分割し、3つの部分の間に所定の隙間を設けることによって外径の拡張を可能にした。他の実施形態では、第1部材を2つ、または4つ以上の部分に分割し、各部分の間に所定の隙間を設けることによって外径の拡張を可能にしてもよい。さらに他の実施形態では、第1部材を単一の部分から構成してもよい。この場合、例えば、第1部材に周方向について伸縮可能な継手構造を設けることによって外径の拡張を可能にしてもよい。あるいは、第1部材を管軸方向のスリットを含むC形断面で形成し、第2部材が挿入されたときにはスリットが広がるように弾性変形させることによって外径の拡張を可能にしてもよい。   For example, in the above embodiment, the outer diameter can be expanded by dividing the first member into three parts and providing a predetermined gap between the three parts. In another embodiment, the first member may be divided into two, or four or more parts, and the outer diameter may be expanded by providing a predetermined gap between the parts. In still other embodiments, the first member may be composed of a single part. In this case, for example, the outer diameter may be increased by providing the first member with a joint structure that can expand and contract in the circumferential direction. Alternatively, the first member may be formed with a C-shaped cross section including a slit in the tube axis direction, and when the second member is inserted, the outer diameter may be expanded by elastically deforming so that the slit is widened.

10,20,30,40…連結構造、11,21,31…第1部材、111…摩擦面、112,312…テーパー面、114…フランジ、115…ストッパー、216,316…ねじ山、12,22,32,42…第2部材、122,322…テーパー面、226,326…ねじ溝、427…中空部分、2…鋼管、2e…端面、2s…内周面。   DESCRIPTION OF SYMBOLS 10, 20, 30, 40 ... Connection structure 11, 21, 31 ... 1st member, 111 ... Friction surface, 112, 312 ... Tapered surface, 114 ... Flange, 115 ... Stopper, 216, 316 ... Screw thread, 12, 22, 32, 42 ... second member, 122, 322 ... tapered surface, 226, 326 ... thread groove, 427 ... hollow portion, 2 ... steel pipe, 2e ... end face, 2s ... inner peripheral surface.

Claims (11)

鋼管の内側に挿入される第1部材と、前記第1部材の内側に挿入される第2部材とを含み、
前記第1部材は、外周に形成される摩擦面と、内周に形成される被押圧面とを有し、
前記第2部材は、外周に形成され、前記被押圧面を押圧することによって前記第1部材の外径を前記鋼管の内径を超えて拡張させる押圧面を有する、鋼管の連結構造。
A first member inserted inside the steel pipe, and a second member inserted inside the first member,
The first member has a friction surface formed on the outer periphery and a pressed surface formed on the inner periphery.
The said 2nd member is a connection structure of the steel pipe which has a press surface which is formed in the outer periphery and expands the outer diameter of the said 1st member beyond the internal diameter of the said steel pipe by pressing the said to-be-pressed surface.
前記第1部材は、周方向について複数の部分に分割され、前記複数の部分の間に隙間が設けられる、請求項1に記載の鋼管の連結構造。   The steel pipe connection structure according to claim 1, wherein the first member is divided into a plurality of portions in the circumferential direction, and a gap is provided between the plurality of portions. 前記押圧面および前記被押圧面は、互いに対応する形状を有するテーパー面である、請求項1または請求項2に記載の鋼管の連結構造。   The steel pipe connection structure according to claim 1, wherein the pressing surface and the pressed surface are tapered surfaces having shapes corresponding to each other. 前記第1部材の内周、および前記第2部材の外周に、互いに対応するねじ形状が形成される、請求項1〜請求項3のいずれか1項に記載の鋼管の連結構造。   The steel pipe connection structure according to any one of claims 1 to 3, wherein screw shapes corresponding to each other are formed on an inner periphery of the first member and an outer periphery of the second member. 前記押圧面と前記被押圧面との間に接着層が形成される、請求項1〜請求項4のいずれか1項に記載の鋼管の連結構造。   The steel pipe connection structure according to any one of claims 1 to 4, wherein an adhesive layer is formed between the pressing surface and the pressed surface. 前記摩擦面または前記鋼管の内周面が粗面化されている、請求項1〜請求項5のいずれか1項に記載の鋼管の連結構造。   The steel pipe connection structure according to any one of claims 1 to 5, wherein the friction surface or an inner peripheral surface of the steel pipe is roughened. 前記摩擦面または前記鋼管の内周面がブラスト処理または金属溶射処理されている、請求項6に記載の鋼管の連結構造。   The steel pipe connection structure according to claim 6, wherein the friction surface or the inner peripheral surface of the steel pipe is subjected to blasting or metal spraying. 前記第1部材は、前記摩擦面の一方の端部から外向きに立ち上がるフランジを有する、請求項1〜請求項7のいずれか1項に記載の鋼管の連結構造。   The steel pipe connection structure according to any one of claims 1 to 7, wherein the first member has a flange that rises outward from one end of the friction surface. 前記第1部材の外径が前記鋼管の内径を超えて拡張されるときの前記鋼管の拡径量δが、前記鋼管の外径D、前記鋼管のヤング率E、前記鋼管の降伏強度σ、前記摩擦面と前記鋼管の内周面との間の静止摩擦係数μ、前記鋼管の軸方向での前記摩擦面の長さL、および係数α(0<α≦1)を用いて下記の式(i)によって表される範囲にある、請求項1〜請求項8のいずれか1項に記載の鋼管の連結構造。
Figure 2018165470
The diameter δ of the steel pipe when the outer diameter of the first member is expanded beyond the inner diameter of the steel pipe is the outer diameter D of the steel pipe, the Young's modulus E of the steel pipe, and the yield strength σ y of the steel pipe. , The static friction coefficient μ between the friction surface and the inner peripheral surface of the steel pipe, the length L of the friction surface in the axial direction of the steel pipe, and the coefficient α (0 <α ≦ 1) The connection structure of the steel pipe of any one of Claims 1-8 which exists in the range represented by Formula (i).
Figure 2018165470
前記第1部材の外径が前記鋼管の内径を超えて拡張されるときの前記鋼管の拡径量δが、前記鋼管の外径D、前記鋼管のヤング率E、および前記鋼管の降伏強度σを用いて下記の式(ii)によって表される範囲にある、請求項1〜請求項9のいずれか1項に記載の鋼管の連結構造。
Figure 2018165470
The diameter δ of the steel pipe when the outer diameter of the first member is expanded beyond the inner diameter of the steel pipe is the outer diameter D of the steel pipe, the Young's modulus E of the steel pipe, and the yield strength σ of the steel pipe. The connection structure of the steel pipe of any one of Claims 1-9 which exists in the range represented by following formula (ii) using y .
Figure 2018165470
前記第1部材の外径が前記鋼管の内径を超えて拡張されるときの前記鋼管の拡径量δが、前記鋼管の外径Dおよび前記鋼管の一様伸びA(%)を用いた下記の式(iii)、または前記鋼管の外径Dおよび前記鋼管の破断時全伸びA(%)を用いた下記の式(iv)によって表される範囲にある、請求項1〜請求項9のいずれか1項に記載の鋼管の連結構造。
Figure 2018165470
Figure 2018165470
As the diameter δ of the steel pipe when the outer diameter of the first member is expanded beyond the inner diameter of the steel pipe, the outer diameter D of the steel pipe and the uniform elongation A U (%) of the steel pipe are used. It exists in the range represented by the following formula (iii) using the following formula (iii) or the following formula (iv) using the outer diameter D of the steel pipe and the total elongation at break A D (%) of the steel pipe. The steel pipe connection structure according to any one of 9.
Figure 2018165470
Figure 2018165470
JP2018021885A 2017-03-28 2018-02-09 Connection structure of steel pipe Pending JP2018165470A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017062502 2017-03-28
JP2017062502 2017-03-28

Publications (1)

Publication Number Publication Date
JP2018165470A true JP2018165470A (en) 2018-10-25

Family

ID=63922663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018021885A Pending JP2018165470A (en) 2017-03-28 2018-02-09 Connection structure of steel pipe

Country Status (1)

Country Link
JP (1) JP2018165470A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135918U (en) * 1976-04-09 1977-10-15
JPS53135425U (en) * 1977-03-31 1978-10-26
JPS53137956U (en) * 1977-04-06 1978-10-31
JPH10102992A (en) * 1996-09-30 1998-04-21 Kubota Corp Connecting device
JP2002013136A (en) * 2000-06-27 2002-01-18 Sumitomo Pipe & Tube Co Ltd Screw joint for steel pipe pile, steel pipe pile, and construction method of burying the steel pipe pile
JP2007063806A (en) * 2005-08-30 2007-03-15 Jfe Steel Kk Screw joint structure of metal tube
US20070296208A1 (en) * 2006-06-22 2007-12-27 9031-1671 Quebec Inc. Hollow pipe connector
JP3140677U (en) * 2008-01-25 2008-04-03 株式会社サンコー Telescopic device and umbrella attachment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135918U (en) * 1976-04-09 1977-10-15
JPS53135425U (en) * 1977-03-31 1978-10-26
JPS53137956U (en) * 1977-04-06 1978-10-31
JPH10102992A (en) * 1996-09-30 1998-04-21 Kubota Corp Connecting device
JP2002013136A (en) * 2000-06-27 2002-01-18 Sumitomo Pipe & Tube Co Ltd Screw joint for steel pipe pile, steel pipe pile, and construction method of burying the steel pipe pile
JP2007063806A (en) * 2005-08-30 2007-03-15 Jfe Steel Kk Screw joint structure of metal tube
US20070296208A1 (en) * 2006-06-22 2007-12-27 9031-1671 Quebec Inc. Hollow pipe connector
JP3140677U (en) * 2008-01-25 2008-04-03 株式会社サンコー Telescopic device and umbrella attachment

Similar Documents

Publication Publication Date Title
US7255374B2 (en) Threaded tube joint
US4376604A (en) Blind fastener for composite materials
EP0480478B1 (en) Tube coupling
US4406561A (en) Sucker rod assembly
JP5366651B2 (en) Thin cylindrical workpiece holding jig, thin cylindrical workpiece processing method, and sheet / film forming roll
JP4843356B2 (en) Joining method between members
WO2018070429A1 (en) Screw-type rebar joint structure of deformed rebar and manufacturing method thereof
EP1296088A1 (en) Taper threaded joint
US5919016A (en) Blind threaded nut
MXPA04003401A (en) Radially expandable tubular connection.
US4500224A (en) Coupling for sucker rod assembly
US4627146A (en) Method of producing pipe joints
US4985975A (en) System for attaching a fitting to a tube
US20140338178A1 (en) Method and Jaw Assembly for Applying End Fittings or Couplings to a Fluid Hose
US4645247A (en) Mechanical pipe joint
JP2018536818A (en) Screw connection including middle shoulder
WO2018070075A1 (en) Screw-type rebar joint of deformed rebar and manufacturing method thereof
JP2018165470A (en) Connection structure of steel pipe
JP5858195B1 (en) Fittings and fitting assemblies
JP4761929B2 (en) Steel beam reinforcement hardware and its construction method
JP7092200B2 (en) Manufacturing method of steel pipe
JP5780426B2 (en) Joint structure and connection method
JP2005308201A (en) Joint for oil well steel pipe
CN114945730A (en) Threaded joint with sealed bearing by additive manufacturing
RU138584U1 (en) HIGH SEALED THREADED CONNECTION OF OIL AND GAS PIPES

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220301