JP2018164936A - Punching mold and punching method using the same - Google Patents

Punching mold and punching method using the same Download PDF

Info

Publication number
JP2018164936A
JP2018164936A JP2017063722A JP2017063722A JP2018164936A JP 2018164936 A JP2018164936 A JP 2018164936A JP 2017063722 A JP2017063722 A JP 2017063722A JP 2017063722 A JP2017063722 A JP 2017063722A JP 2018164936 A JP2018164936 A JP 2018164936A
Authority
JP
Japan
Prior art keywords
punching
mold
die
soft iron
electromagnetic soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017063722A
Other languages
Japanese (ja)
Other versions
JP6878999B2 (en
Inventor
修一 岩永
Shuichi Iwanaga
修一 岩永
竜司 田上
Ryuji Tagami
竜司 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2017063722A priority Critical patent/JP6878999B2/en
Publication of JP2018164936A publication Critical patent/JP2018164936A/en
Application granted granted Critical
Publication of JP6878999B2 publication Critical patent/JP6878999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a punching mold having excellent abrasion resistance and adhesion resistance, which is suitable for punching electromagnetic soft iron.SOLUTION: A punching mold for electromagnetic soft iron contains 6 mass% or less of Co and is composed of WC-based sintered material. Preferably, the punching mold is provided with a hard film containing Al, Cr, and N, on its surface. The punching mold can be applied to a punching method for electromagnetic soft iron.SELECTED DRAWING: Figure 2

Description

本発明は、打抜き加工用金型及びそれを用いた打抜き加工方法に関する。特に、電磁軟鉄の打抜き加工に適した打抜き加工用金型及びそれを用いた打抜き加工方法に関する。   The present invention relates to a punching die and a punching method using the die. In particular, the present invention relates to a punching die suitable for electromagnetic soft iron punching and a punching method using the die.

鉄系の電磁材料は、その優れた軟磁性特性を利用して、トランスやモーター等の鉄心、電磁リレーのアーマチュア(可動鉄片)等に使用されている。   Iron-based electromagnetic materials are used in iron cores such as transformers and motors, armatures (movable iron pieces) of electromagnetic relays, etc. by utilizing their excellent soft magnetic properties.

電磁リレーの構成部品であるアーマチュアは、優れた電磁特性が求められる。そのため、その素材には、高い磁束密度、透磁率、小さな保磁力を有する純鉄系の電磁軟鉄が使用されている。板材からアーマチュアを製造する場合、打抜き加工が用いられる。電磁軟鉄の板材を打ち抜いて、所定形状の部材(ブランク材)が得られる。その後、得られた部材の剪断面および破断面を仕上げるためのシュービング加工を施して、所定形状の小型リレー用のアーマチュアを製造するのが一般的である。   An armature that is a component of an electromagnetic relay is required to have excellent electromagnetic characteristics. Therefore, pure iron-based electromagnetic soft iron having high magnetic flux density, magnetic permeability, and small coercive force is used as the material. When manufacturing an armature from a plate material, stamping is used. A plate member made of electromagnetic soft iron is punched out to obtain a member (blank material) having a predetermined shape. After that, it is common to manufacture an armature for a small relay having a predetermined shape by performing a scouring process for finishing the shearing surface and the fracture surface of the obtained member.

打抜き加工においては、打抜き金型とシェービング金型という2種の金型が用いられる。本明細書は、打抜き金型とシェービング金型をまとめて、「打抜き加工用金型」という。打抜き加工用金型は、被加工材と激しく摩擦するため、加工回数の増加とともに磨耗し、パンチとダイとのクリアランスも増大する。金型が損耗した状態で加工を続けると、製品端面のせん断面比率が低下し、破断面比率が上昇するなど、破面の性状が変化し、かえり高さが増大するため、形状不良を発生させる原因となる。そのため、磨耗の進行した金型は、交換もしくは再研磨が行われる。頻繁な交換は、生産性の低下を引き起こし、製造コストの増大につながる。   In the punching process, two types of molds, a punching mold and a shaving mold, are used. In the present specification, the punching die and the shaving die are collectively referred to as “a punching die”. Since the punching die is violently rubbed with the workpiece, it is worn as the number of machining increases, and the clearance between the punch and the die also increases. If processing is continued with the mold worn out, the shear surface ratio of the product end face decreases, the fracture surface ratio increases, and the fracture surface properties change and the burr height increases, resulting in shape defects. Cause it. For this reason, the mold that has been worn out is replaced or re-polished. Frequent replacement causes a decrease in productivity and increases manufacturing costs.

打抜き加工用金型は、高い硬度と高い摩耗性を必要とされるので、超硬合金が使用されることが多い。超硬合金は、WCを主成分とする材料であり、WC粉末と結合剤のCo粉末とを混合し焼結して得られる。WCの欠落を抑制するため、結合剤のCo量は、10質量%程度で含まれる。   A die for punching is required to have a high hardness and a high wear property, so that a cemented carbide is often used. The cemented carbide is a material mainly composed of WC, and is obtained by mixing and sintering WC powder and Co powder as a binder. In order to suppress the loss of WC, the amount of Co in the binder is included at about 10% by mass.

電磁材料の打抜き加工に関して、例えば、特許文献1には、Si:4.0〜7.0wt%の高珪素鋼板に対する打抜き加工方法において、硬質相の平均粒径が3μm以下である超硬合金製打抜き工具を用いることにより、工具の摩耗及びチッピング発生を抑制し、工具寿命を延命化させたものが記載されている。   Regarding punching of electromagnetic materials, for example, in Patent Document 1, in a punching method for high silicon steel sheets of Si: 4.0 to 7.0 wt%, a cemented carbide alloy having an average particle size of hard phase of 3 μm or less is used. A tool that suppresses tool wear and chipping and extends tool life by using a punching tool is described.

特開平11−319981号公報Japanese Patent Laid-Open No. 11-319981

特許文献1の珪素鋼板と異なり、電磁部品で使用される電磁軟鉄は、純鉄に近い組成を有しているので、機械的強度が比較的低い素材であり、打抜き加工に高い荷重を必要としない。しかし、打抜き加工を行うと、被加工材(電磁軟鉄)の一部が超硬合金製の金型表面に貼り付く凝着現象を生じることがある。金型表面に凝着した被加工材の一部は、打抜き加工中に貼り付いた箇所の金型材とともに、金型から欠落するため、金型の磨耗を促進させる要因となる。電磁軟鉄の打抜き加工においては、この凝着が発生することにより、金型の磨耗が激しく、金型寿命が短い。そのため、製造コストが増大し、生産性を低下させるという問題があった。   Unlike the silicon steel sheet of Patent Document 1, electromagnetic soft iron used in electromagnetic parts has a composition close to that of pure iron, so it is a material with relatively low mechanical strength and requires a high load for punching. do not do. However, when punching is performed, an adhesion phenomenon may occur in which a part of the workpiece (electromagnetic soft iron) sticks to the surface of the cemented carbide mold. A part of the work material adhered to the mold surface is missing from the mold together with the mold material attached at the time of the punching process, which is a factor for promoting the wear of the mold. In the punching process of electromagnetic soft iron, this adhesion occurs, resulting in severe wear of the mold and short mold life. Therefore, there has been a problem that the manufacturing cost increases and the productivity is lowered.

本発明は、電磁軟鉄の打抜き加工に適した、耐摩耗性および耐凝着性に優れる打抜き加工用金型を提供することを目的する。また、当該金型を用いて電磁軟鉄に対して打抜き加工を行う打抜き加工方法を提供することを目的とする。   An object of the present invention is to provide a die for punching which is suitable for punching electromagnetic soft iron and has excellent wear resistance and adhesion resistance. Another object of the present invention is to provide a punching method for punching electromagnetic soft iron using the mold.

本発明者らは、上記の課題を解決するため検討した結果、金型の超硬合金中のCo量を低減することにより、電磁軟鉄が金型表面に凝着するのを抑制できることを見出し、本発明に至った。具体的には、本発明は、以下のものを提供する。   As a result of studying to solve the above problems, the present inventors have found that by reducing the amount of Co in the cemented carbide of the mold, it is possible to suppress electromagnetic soft iron from adhering to the mold surface, The present invention has been reached. Specifically, the present invention provides the following.

(1)本発明は、6質量%以下のCoを含み、WCを主体とする焼結部材で構成された、電磁軟鉄の打抜き加工用金型である。 (1) The present invention is a die for punching electromagnetic soft iron, comprising a sintered member mainly containing WC, containing 6% by mass or less of Co.

(2)本発明は、前記金型の表面にAl、CrおよびNを含む硬質皮膜を備えた、(1)記載の電磁軟鉄の打抜き用金型である。 (2) The present invention is the electromagnetic soft iron punching die according to (1), wherein a hard film containing Al, Cr and N is provided on the surface of the die.

(3)本発明は、(1)または(2)に記載された金型を用いて、電磁軟鉄の打抜き加工を行う、打抜き加工方法である。 (3) The present invention is a punching method in which electromagnetic soft iron is punched using the mold described in (1) or (2).

本発明によれば、打抜き加工を行っても、電磁軟鉄が金型表面に凝着することが抑制させる。そのため、凝着に起因する金型の磨耗が抑制され、金型寿命が長くなり、打抜き加工の生産性が向上し、製造コストが低減に寄与する。   According to the present invention, even if punching is performed, electromagnetic soft iron is prevented from adhering to the mold surface. Therefore, the wear of the mold due to adhesion is suppressed, the mold life is extended, the productivity of the punching process is improved, and the manufacturing cost is reduced.

実施例における打抜き試験を説明するための図である。It is a figure for demonstrating the punch test in an Example. 実施例における打抜き加工後の金型の外観を示す図である。It is a figure which shows the external appearance of the metal mold | die after the punching process in an Example. 実施例における摩耗量の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of the abrasion loss in an Example. 実施例におけるパンチ先端における摩耗量の測定箇所を説明するための図であり、(a)は、直辺部の測定箇所を示す図であり、(b)は、コーナー部の測定箇所を示す図である。It is a figure for demonstrating the measurement location of the abrasion loss in the punch tip in an Example, (a) is a figure which shows the measurement location of a right side part, (b) is a figure which shows the measurement location of a corner part. It is. 実施例における摩擦係数の測定装置を示す模式図である。It is a schematic diagram which shows the measuring apparatus of the friction coefficient in an Example. 実施例における摩擦係数の時間的変化を示す図である。It is a figure which shows the time change of the friction coefficient in an Example.

以下、本発明の実施形態について説明する。本発明は、以下の説明によって限定されるものではない。   Hereinafter, embodiments of the present invention will be described. The present invention is not limited by the following description.

本発明に係る打抜き加工用金型は、6質量%以下のCoを含み、WCを主体とする焼結部材で構成されている。金型に使用される焼結部材は、WC粉末をバインダであるCoと混合して焼結することで製造される超硬合金からなるものである。打抜き加工は、パンチを被加工材に押し込んで、パンチ及びダイの剪断作用によって、被加工材にクラックを生じさせ、さらに加圧して被加工材を剪断及び破断させる加工形態である。打ち抜きが行われる際、金型(パンチ、ダイ)と被加工材との間で激しい摩擦が起きるため、被加工材が金型表面に凝着することがある。   The punching die according to the present invention is composed of a sintered member mainly containing WC, containing 6% by mass or less of Co. The sintered member used in the mold is made of a cemented carbide manufactured by mixing and sintering WC powder with Co as a binder. The punching process is a processing mode in which a punch is pushed into a workpiece, a crack is generated in the workpiece by the shearing action of the punch and the die, and the workpiece is further sheared and broken by pressurization. When punching is performed, intense friction occurs between the mold (punch, die) and the workpiece, and the workpiece may adhere to the mold surface.

本発明に係る打抜き加工用金型は、金型材のCoの含有量を6質量%以下に規制されたものである。Co量を低減した超硬合金製の金型を用いて、電磁軟鉄を打抜き加工すると、金型に電磁軟鉄が凝着する事象を抑制できる。   In the punching die according to the present invention, the Co content of the die material is regulated to 6% by mass or less. When electromagnetic soft iron is punched using a cemented carbide mold with a reduced amount of Co, the phenomenon of electromagnetic soft iron adhering to the mold can be suppressed.

この理由は明らかでないが、従来の超硬合金製金型における電磁軟鉄の凝着は、金型材に含まれるCo元素と、電磁軟鉄のFe元素との親和性によるものと推測される。本実施形態の金型において、Feと結合するCoの含有量を低減したので、電磁軟鉄の凝着が抑制されたと考えられる。   Although the reason for this is not clear, the adhesion of electromagnetic soft iron in a conventional cemented carbide mold is assumed to be due to the affinity between the Co element contained in the mold material and the Fe element of electromagnetic soft iron. In the mold according to the present embodiment, the content of Co bonded to Fe is reduced, so that it is considered that the adhesion of electromagnetic soft iron is suppressed.

本発明に係る打抜き加工用金型は、前記金型の表面にAl、CrおよびNを含む硬質皮膜を備えることが好ましい。上記の硬質皮膜を金型表面に設けることにより、電磁軟鉄と金型との直接的な接触が防止されるので、金型の耐摩耗性や耐凝着性が向上する。また、加工発熱によって金型表面が高温になると、硬質皮膜が変質して剥離する場合がある。それため、硬質皮膜としては、高温で酸化が生じ難く、耐焼付性に優れたAlCrNのコーティングが好ましく、金型の耐摩耗性が一層向上するのに寄与する。   The punching die according to the present invention preferably includes a hard film containing Al, Cr, and N on the surface of the die. By providing the hard film on the mold surface, direct contact between the electromagnetic soft iron and the mold is prevented, so that the wear resistance and adhesion resistance of the mold are improved. Further, when the mold surface becomes high temperature due to processing heat generation, the hard coating may be denatured and peeled off. Therefore, the hard coating is preferably an AlCrN coating that hardly oxidizes at a high temperature and has excellent seizure resistance, which contributes to further improving the wear resistance of the mold.

以下、本発明に係る実施例について説明する。本発明は、以下の説明によって限定されない。   Examples according to the present invention will be described below. The present invention is not limited by the following description.

(試験例1) 打抜き試験による摩耗状態の評価
上述したように、アーマチュア等の部材を打抜き加工により製造する工程において、打抜き金型およびシェービング金型の打抜き加工用金型は、板材との摩擦を繰り返している。そこで、本実施例における打抜き試験は、打抜き金型により板材に穴を打ち抜いた後、その打ち抜かれた穴の打ち抜き面に対してシェ−ビング金型を適用する動作を繰り返すことにより、打抜き加工用金型の性能や表面状態を評価した。
(Test Example 1) Evaluation of wear state by punching test As described above, in the process of manufacturing a member such as an armature by punching, the punching die and the die for shaving die have a friction with the plate material. It is repeating. Therefore, the punching test in this example is for punching by repeating the operation of applying a shaving die to the punched surface of the punched hole after punching a hole in the plate material by the punching die. The mold performance and surface condition were evaluated.

図1は、本実施例の打抜き金型2およびシェービング金型3を含む打抜き加工用金型1による打抜き試験の概要を示したものである。図1に示すように、打抜き金型2により被加工材4を打抜いて加工穴5を形成した後、加工穴5が送り方向7に移送される。次いで、加工穴5の打ち抜き面をシェービング金型3で仕上げて加工穴6を形成する。   FIG. 1 shows an outline of a punching test using a punching die 1 including a punching die 2 and a shaving die 3 according to this embodiment. As shown in FIG. 1, after the workpiece 4 is punched by the punching die 2 to form the processed hole 5, the processed hole 5 is transferred in the feed direction 7. Next, the punched surface of the processed hole 5 is finished with the shaving mold 3 to form the processed hole 6.

打抜き加工用金型1は、パンチとダイとを備えている。図1にはパンチを示している。打抜き金型2におけるパンチ先端面は、図1に示される被加工材4の加工穴5の形状と寸法に対応し、打抜き金型2の先端面は、4.0mm×4.0mmの寸法を有する。図1に示すように、シェービング金型3は、加工穴5の一端に2.0mm×0.5mmの削り代を取るように加工穴6を形成するため、そのパンチ先端面は、2.0mm×4.5mmの形状と寸法を有する。   The punching die 1 includes a punch and a die. FIG. 1 shows a punch. The punch tip surface of the punching die 2 corresponds to the shape and dimensions of the machining hole 5 of the workpiece 4 shown in FIG. 1, and the tip surface of the punching die 2 has a size of 4.0 mm × 4.0 mm. Have. As shown in FIG. 1, the shaving die 3 is formed with a processing hole 6 at one end of the processing hole 5 so as to take a cutting allowance of 2.0 mm × 0.5 mm. It has a shape and dimensions of × 4.5 mm.

被加工材4を挟んで、パンチの反対側には、開口部を有するダイ(図示を省略)が設けられている。ダイにおける開口部は、パンチ寸法よりクリアランス分だけ大きい寸法を有している。本実施例のクリアランスは、打抜き金型が0.06mm(5%)、シェービング金型が0.02mm(1.7%)に設定した。   A die (not shown) having an opening is provided on the opposite side of the punch across the workpiece 4. The opening in the die has a dimension that is larger than the punch dimension by a clearance. The clearance in this example was set to 0.06 mm (5%) for the punching die and 0.02 mm (1.7%) for the shaving die.

打抜き加工用金型は、金型の材質が異なる試験用金型No.1、試験用金型No.2を作製し、打抜き試験に供した。
試験用金型No.1:WC−6質量%Coの超硬合金材(本発明例)
試験用金型No.2:WC−13質量%Coの超硬合金材(比較例)
The punching die is a test die No. having a different die material. 1. Test mold No. 2 was prepared and subjected to a punching test.
Test die No. 1: WC-6 mass% Co cemented carbide material (example of the present invention)
Test die No. 2: WC-13 mass% Co cemented carbide material (comparative example)

試験用金型は、公知の製造方法により作製した。具体的には、市販のWC粉末とCo粉末により原料を調製した。WC粉末の平均粒径は、本発明例の金型No.1が0.5〜5.0μm、比較例のNo.2が0.5〜1.5μm(比較例)を用いた。原料粉末を所定量の配合組成に秤量し、ステンレス製ポットにアセトン溶媒と超硬合金製ボ−ルと共に挿入し、ボ−ル含有量および粉砕時間を調整して混合粉砕後、乾燥して混合粉末を得た。これらの混合粉末を加圧成形して、粉末成形体とし、次いで、雰囲気圧力10Paの真空中で1300〜1400℃の温度で1時間加熱保持して焼結した。得られた超硬合金材の表面を所定寸法となるよう研磨し、試験用金型を得た。   The test mold was produced by a known production method. Specifically, raw materials were prepared from commercially available WC powder and Co powder. The average particle size of the WC powder is determined according to the mold no. 1 is 0.5 to 5.0 μm, No. of Comparative Example. 2 used 0.5-1.5 micrometers (comparative example). The raw material powder is weighed to a prescribed composition, inserted into a stainless steel pot together with an acetone solvent and a cemented carbide ball, the ball content and grinding time are adjusted, mixed and ground, then dried and mixed A powder was obtained. These mixed powders were pressure-molded to form powder compacts, and then sintered by heating for 1 hour at a temperature of 1300 to 1400 ° C. in a vacuum of 10 Pa. The surface of the obtained cemented carbide material was polished so as to have a predetermined dimension to obtain a test mold.

板厚1.2mmの電磁軟鉄(SUYP−1)の板材に対して、本発明例および比較例の打抜き加工用金型を用いて、400kNプレス機により打抜き加工を行った。図1に示すように、打抜き金型2により電磁軟鉄4を4.0mm×4.0mmの矩形穴を打抜いた後、シェービング金型を用いて、削り代が2.0mm×0.5mmとなるシェービング加工を行った。この一連の打抜き加工を300spmの加工速度で、合計20,000回の打抜き試験を行った。   The plate material of 1.2 mm thick electromagnetic soft iron (SUYP-1) was punched by a 400 kN press using the punching die of the present invention example and the comparative example. As shown in FIG. 1, after punching out a 4.0 mm × 4.0 mm rectangular hole of electromagnetic soft iron 4 with a punching die 2, a shaving die is used to reduce the cutting allowance to 2.0 mm × 0.5 mm. A shaving process was performed. This series of punching processes was performed a total of 20,000 punching tests at a processing speed of 300 spm.

図2に、20,000回のシェービング加工を行った後のシェービング金型(パンチ)の外観を示す。この外観は、パンチの長さ2.0mmの部分の表面を示したものである。図2に示すように、比較例の試験用金型No.2は、その表面に白色部分が観察された。この部分は、電磁軟鉄の一部が凝着した箇所である。とくに、金型のコーナー部(Rc部)において多くの凝着が認められた。それに対し、本発明例の試験用金型No.1は、コーナー部に若干の凝着が認められた程度であり、表面全体において凝着がほとんど生じていなかった。   FIG. 2 shows an appearance of a shaving die (punch) after 20,000 times of shaving. This appearance shows the surface of the punch having a length of 2.0 mm. As shown in FIG. As for 2, the white part was observed on the surface. This part is a place where a part of electromagnetic soft iron has adhered. In particular, many adhesions were observed at the corner (Rc portion) of the mold. On the other hand, the test mold No. No. 1 was a degree in which slight adhesion was observed in the corner portion, and almost no adhesion occurred on the entire surface.

次に、上記のパンチの先端部における摩耗量を測定した。測定方法は、次のとおりであある。図3に示すように、パンチ本体の外形を基準線21,22とし、側面基準線21と端面基準線22をそれぞれ延長した線の交差点25を設定した。そして、パンチ先端部の外形が当該基準線21,22と乖離し始める箇所23,24から上記交差点25までの距離26,27を測定し、その距離を摩耗量とした。摩耗量の測定面を応じて、パンチ先端の側面で測定された側面摩耗量26と、パンチ先端の端面で測定した端面摩耗量27が得られる。例えば、側面摩耗量26は、パンチ本体の側面基準線21と乖離する箇所23から交差点25に至るまでの距離に相当する。   Next, the amount of wear at the tip of the punch was measured. The measuring method is as follows. As shown in FIG. 3, the outer shape of the punch body is set as reference lines 21 and 22, and intersection points 25 of lines extending from the side reference line 21 and the end face reference line 22 are set. Then, the distances 26 and 27 from the points 23 and 24 where the outer shape of the punch tip portion starts to deviate from the reference lines 21 and 22 to the intersection 25 are measured, and the distance is defined as the wear amount. According to the measurement surface of the wear amount, a side wear amount 26 measured on the side surface of the punch tip and an end face wear amount 27 measured on the end surface of the punch tip are obtained. For example, the side surface wear amount 26 corresponds to the distance from the portion 23 that deviates from the side surface reference line 21 of the punch body to the intersection 25.

本試験では、パンチ先端部において、図4の(a)に示す直辺部において、側面方向31の側面摩耗量26と端面方向の端面摩擦量27を測定し、図4の(b)に示すコーナー部において、側面方向33の側面摩耗量26と端面方向34の端面摩耗量27を測定した。それらの摩耗量(mm)の測定結果を表1に示す。   In this test, the side surface wear amount 26 in the side surface direction 31 and the end surface friction amount 27 in the end surface direction were measured at the front end portion of the punch at the straight side portion shown in FIG. 4A, and shown in FIG. At the corner portion, the side surface wear amount 26 in the side surface direction 33 and the end surface wear amount 27 in the end surface direction 34 were measured. The measurement results of the amount of wear (mm) are shown in Table 1.

表1に示すように、本発明例の直辺部における摩耗量は、側面方向31において比較例の14%程度、端面方向32で比較例の60%程度にそれぞれ低減した。コーナーの摩耗量は、端面方向34では比較例と同程度であったが、側面方向33で比較例の66%程度に低減した。このように、6質量%以下のCoを含有する本発明例の金型は、Co含有量の低減により、電磁軟鉄の打抜き加工における金型の摩耗量が大きく低減された。電磁軟鉄の打抜き加工において、金型のCo含有量の低減が、耐凝着性および耐磨耗性の向上に有効であることが分かった。   As shown in Table 1, the amount of wear in the right side portion of the inventive example was reduced to about 14% of the comparative example in the side surface direction 31 and to about 60% of the comparative example in the end surface direction 32, respectively. The amount of wear at the corners was about the same as that of the comparative example in the end surface direction 34, but was reduced to about 66% of the comparative example in the side surface direction 33. Thus, in the mold of the present invention example containing 6% by mass or less of Co, the wear amount of the mold in the punching of electromagnetic soft iron was greatly reduced due to the reduction of the Co content. In the punching of electromagnetic soft iron, it has been found that reducing the Co content of the mold is effective in improving adhesion resistance and wear resistance.

上記の試験結果の理由は、明らかでない。FeとCoとの親和性に起因して、Co含有量が高い超硬合金を用いた従来の金型では、加工時に電磁軟鉄中のFeと金型中のCoとが結合し、金型表面の凝着に至ったものと考えられる。   The reason for the above test results is not clear. Due to the affinity between Fe and Co, in the conventional mold using a cemented carbide with a high Co content, Fe in the electromagnetic soft iron and Co in the mold are bonded during processing, and the mold surface It is thought that this resulted in adhesion.

(試験例2) 摩擦係数の測定
次に、金型の摩擦係数について摺動時間による変化を、本発明例と比較例の各試験用金型を用いて、ピンオンディスク試験の方法により測定した。図5に摩擦係数測定装置の概要を示す。試験用金型の材質からなる板厚5.0mmの試験片(70mm×70mm)を回転台41の上に固定した。荷重センサ44側に設けた支持具45に、電磁軟鉄からなるピン状の接触子46を取り付けた。接触子46を試験片42の上で、回転中心から半径で10mm離れた位置に接触させた。その後、100gの荷重錘43で負荷を掛けながら、回転台を9.6rpmの速度で回転させて、接触子46を試験片42上の同一円周上を摺動させた。また、打抜き加工時の加工発熱を考慮して、測定装置の周囲に加熱装置を配置し、試験温度を200℃で実施した。そして、荷重センサ44により摩擦力を測定し、摩擦係数(=摩擦力/荷重)を得た。
(Test Example 2) Measurement of friction coefficient Next, the change in the friction coefficient of the mold due to the sliding time was measured by the pin-on-disk test method using the test molds of the present invention example and the comparative example. . FIG. 5 shows an outline of the friction coefficient measuring apparatus. A test piece (70 mm × 70 mm) having a plate thickness of 5.0 mm made of a test mold material was fixed on the turntable 41. A pin-shaped contact 46 made of electromagnetic soft iron was attached to a support 45 provided on the load sensor 44 side. The contact 46 was brought into contact with the position on the test piece 42 at a radius of 10 mm from the center of rotation. Thereafter, while applying a load with a load weight 43 of 100 g, the turntable was rotated at a speed of 9.6 rpm, and the contact 46 was slid on the same circumference on the test piece 42. In consideration of heat generated during punching, a heating device was arranged around the measuring device, and the test temperature was 200 ° C. Then, the friction force was measured by the load sensor 44 to obtain a friction coefficient (= friction force / load).

その測定結果を表2に示す。摩擦係数は、摺動時間とともに計測される。表2に示した摩擦係数の測定値は、5分間での平均値を示したものである。   The measurement results are shown in Table 2. The coefficient of friction is measured with the sliding time. The measured values of the coefficient of friction shown in Table 2 are average values over 5 minutes.

図6は、表2の測定結果を図示したものである。図6に示すように、本発明例の金型は、試験前の摩擦係数0.24が摺動時間とともに低減し、20分以上で0.13付近のほぼ一定に移行した。それに対し、比較例の金型は、試験前の摩擦係数0.26が摺動時間とともに上昇し、10分以上で0.33付近のほぼ一定に移行した。超硬合金製金型の摩擦係数は、Co含有量の低減によって、摺動時間が増えても減少することが分かった。   FIG. 6 illustrates the measurement results of Table 2. As shown in FIG. 6, in the mold of the example of the present invention, the friction coefficient 0.24 before the test decreased with the sliding time, and shifted to almost constant around 0.13 after 20 minutes or more. On the other hand, in the mold of the comparative example, the friction coefficient 0.26 before the test increased with the sliding time, and shifted to almost constant around 0.33 after 10 minutes or more. It has been found that the coefficient of friction of the cemented carbide mold decreases as the sliding time increases due to the reduction of the Co content.

その理由は、明らかでない。比較例の金型は、電磁軟鉄中のFeと超硬合金中のCoとの親和性に起因して、金型と電磁軟鉄との摺動により、金型表面にFeの凝着が発生し、さらに摩擦熱の発生によって当該凝着が促進されたことにより、摺動時間とともに金型の摩擦係数が増大したものと推測される。それに対し、6質量%以下のCoを含有する本発例の金型は、Coの低減により、凝着の発生が抑制され、凝着によって誘因される摩耗についても抑制されたものと推測される。そして、摺動の摩擦により、金型表面の凹凸(表面粗さ)が削られて平滑になったため、摺動時間の経過とともに摩擦係数が低下したものと考えられる。   The reason is not clear. In the comparative mold, due to the affinity between Fe in the electromagnetic soft iron and Co in the cemented carbide, Fe adhesion occurs on the mold surface due to sliding between the mold and the electromagnetic soft iron. Further, it is presumed that the friction coefficient of the mold increased with the sliding time because the adhesion was promoted by generation of frictional heat. On the other hand, in the metal mold of the present example containing 6% by mass or less of Co, the occurrence of adhesion is suppressed by reducing Co, and it is presumed that the wear induced by the adhesion is also suppressed. . And since the unevenness | corrugation (surface roughness) of the metal mold | die surface was shaved and smoothed by the friction of sliding, it is thought that a friction coefficient fell with progress of sliding time.

(試験例3) 表面コーティングの評価
本発明例の試験用金型No.1に対して、PVDにより、TiAlNのコーティングを施した試験用金型No.3と、AlCrNのコーティングを施した試験用金型No.4を作製した。これらの金型を用いて、試験例1と同様の打抜き加工を行った後、パンチの外観を観察した。いずれも凝着が抑制された表面性状を示していた。詳細に対比すると、コーティングを有しない金型No.1は、表面全体でコーナー部において若干の凝着が生じていた。それに対し、TiAlNのコーティングを有する金型No.3と、AlCrNのコーティングを有する金型No.4は、コーナー部を含め表面全体で凝着が認めらなかった。
(Test Example 3) Evaluation of surface coating Test mold No. 1 is a test mold No. 1 coated with TiAlN by PVD. 3 and test mold No. 1 coated with AlCrN. 4 was produced. Using these molds, the punching process similar to that of Test Example 1 was performed, and then the appearance of the punch was observed. All showed surface properties with suppressed adhesion. Compared in detail, the mold no. In No. 1, slight adhesion occurred at the corners on the entire surface. In contrast, mold No. having a coating of TiAlN. 3 and mold No. 3 having a coating of AlCrN. In No. 4, no adhesion was observed on the entire surface including the corner.

他方で、金型No.3は、刃先近傍の広い範囲で表面が黒く変色し、摩耗の進行が観察された。これは、加工発熱によってTiAlNコーティングが酸化して変質し、その結果、摺動が特に激しいコーナー部において、コーティングが部分的に剥離して、集中的な摩耗が生じたものと推測される。それに対し、金型No.4のAlCrNのコーティングは、高温においても酸化し難く、耐焼付性に優れた被覆材であるから、金型No.4には大きな損傷が認められなかった。よって、電磁軟鉄の打抜き加工に使用する金型は、AlCrNコーティングにより、さらに金型寿命の向上が可能になることを確認できた。   On the other hand, mold no. In No. 3, the surface changed to black in a wide range near the blade edge, and the progress of wear was observed. This is presumed that the TiAlN coating is oxidized and deteriorated by processing heat generation, and as a result, the coating is partially peeled off at the corner portion where the sliding is particularly intense, resulting in intensive wear. In contrast, mold no. The coating of AlCrN No. 4 is a coating material that hardly oxidizes even at high temperatures and has excellent seizure resistance. No significant damage was observed in 4. Therefore, it was confirmed that the die used for electromagnetic soft iron punching can further improve the die life by the AlCrN coating.

1 打抜き加工用金型
2 打抜き金型のパンチ
3 シェービング金型のパンチ
4 被加工材(電磁軟鉄)
5 打抜き加工による加工穴
6 シェービング金型による加工穴
7 送り方向
21 側面基準線
22 端面基準線
23 乖離箇所(側面)
24 乖離箇所(端面)
25 基準線の交差点
26 側面摩耗量
27 端面摩耗量
31 側面方向(長辺部)
32 端面方向(長辺部)
33 側面方向(コーナー部)
34 端面方向(コーナー部)
41 回転台
42 試験片
43 荷重錘
44 荷重センサ
45 支持具
46 接触子
1 Punching die 2 Punching die 3 Shaving die punch 4 Work material (electromagnetic soft iron)
5 Processed hole by punching 6 Processed hole by shaving mold 7 Feed direction 21 Side reference line 22 End face reference line 23 Deviation (side)
24 Deviation (end face)
25 Intersection of the reference line 26 Side wear amount 27 End face wear amount 31 Side direction (long side)
32 End face direction (long side)
33 Side direction (corner part)
34 End face direction (corner part)
41 rotating table 42 test piece 43 load weight 44 load sensor 45 support tool 46 contactor

Claims (3)

6質量%以下のCoを含み、WCを主体とする焼結部材で構成された、電磁軟鉄の打抜き加工用金型。   A die for punching electromagnetic soft iron, comprising a sintered member mainly containing WC, containing 6% by mass or less of Co. 前記金型の表面にAl、CrおよびNを含む硬質皮膜を備えた、請求項1記載の電磁軟鉄の打抜き用金型。   2. The electromagnetic soft iron punching die according to claim 1, wherein a hard coating containing Al, Cr and N is provided on a surface of the die. 3. 請求項1または2に記載された金型を用いて、電磁軟鉄の打抜き加工を行う、打抜き加工方法。   A punching method for performing electromagnetic soft iron punching using the mold according to claim 1.
JP2017063722A 2017-03-28 2017-03-28 Die for punching and punching method using it Active JP6878999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017063722A JP6878999B2 (en) 2017-03-28 2017-03-28 Die for punching and punching method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017063722A JP6878999B2 (en) 2017-03-28 2017-03-28 Die for punching and punching method using it

Publications (2)

Publication Number Publication Date
JP2018164936A true JP2018164936A (en) 2018-10-25
JP6878999B2 JP6878999B2 (en) 2021-06-02

Family

ID=63922428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017063722A Active JP6878999B2 (en) 2017-03-28 2017-03-28 Die for punching and punching method using it

Country Status (1)

Country Link
JP (1) JP6878999B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021125952A1 (en) 2020-10-12 2022-04-14 Hitachi Metals, Ltd. Molding for processing an amorphous alloy plate material and method for processing an amorphous alloy plate material
WO2022196385A1 (en) * 2021-03-16 2022-09-22 Jfeスチール株式会社 Damage evalulation device and damage evalulation method for press-forming dies

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136928A (en) * 1984-12-10 1986-06-24 Matsushita Electric Ind Co Ltd Mold for press-molding optical glass element
JPH01319648A (en) * 1988-06-20 1989-12-25 Mitsubishi Metal Corp Tungsten carbide-base sintered hard alloy for working tool of al and al alloy
JPH11241138A (en) * 1998-02-25 1999-09-07 Toshiba Tungaloy Co Ltd Die part made of cemented carbide
JP2008038242A (en) * 2006-08-08 2008-02-21 Fuji Dies Kk Ultrafine particle cemented carbide
JP2009072792A (en) * 2007-09-18 2009-04-09 Jfe Steel Kk Method and apparatus for manufacturing laminated core
US20150336851A1 (en) * 2012-12-21 2015-11-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hard coating having excellent adhesion resistance to soft metal
WO2016171273A1 (en) * 2015-04-23 2016-10-27 日立金属株式会社 Coated metal mold and method for manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136928A (en) * 1984-12-10 1986-06-24 Matsushita Electric Ind Co Ltd Mold for press-molding optical glass element
JPH01319648A (en) * 1988-06-20 1989-12-25 Mitsubishi Metal Corp Tungsten carbide-base sintered hard alloy for working tool of al and al alloy
JPH11241138A (en) * 1998-02-25 1999-09-07 Toshiba Tungaloy Co Ltd Die part made of cemented carbide
JP2008038242A (en) * 2006-08-08 2008-02-21 Fuji Dies Kk Ultrafine particle cemented carbide
JP2009072792A (en) * 2007-09-18 2009-04-09 Jfe Steel Kk Method and apparatus for manufacturing laminated core
US20150336851A1 (en) * 2012-12-21 2015-11-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hard coating having excellent adhesion resistance to soft metal
WO2016171273A1 (en) * 2015-04-23 2016-10-27 日立金属株式会社 Coated metal mold and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021125952A1 (en) 2020-10-12 2022-04-14 Hitachi Metals, Ltd. Molding for processing an amorphous alloy plate material and method for processing an amorphous alloy plate material
WO2022196385A1 (en) * 2021-03-16 2022-09-22 Jfeスチール株式会社 Damage evalulation device and damage evalulation method for press-forming dies

Also Published As

Publication number Publication date
JP6878999B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
JP5997424B2 (en) Manufacturing method of dust core
TWI544998B (en) Flat cutting blade and green sheet cutting blade
JP5900298B2 (en) Resin grinding wheel cutting blade and multi-cutting method of rare earth magnet
JP2009536985A (en) Thermal spray coated work roll
JP2012011393A (en) Shearing die and method for manufacturing the same
SG177099A1 (en) Method for multiple cutoff machining of rare earth magnet
JP6878999B2 (en) Die for punching and punching method using it
CN1224731C (en) Cobalt based bonding phase material for refractory antistick tungsten carbide alloy
JP5314807B1 (en) Cemented carbide and manufacturing method thereof, and carbide tool
Olt et al. Magnetic Abrasive Machining of Hard Workpieces by New Diffusion-Alloyed Materials
JP2003205352A (en) Member for molten metal, composed of sintered alloy having excellent corrosion resistance and wear resistance to molten metal, its producing method and machine structural member using it
TWI518185B (en) Composite of carbide cermet/blending metal
JP2017036488A (en) Hard metal tool and manufacturing method therefor
JP4588847B2 (en) Die cut roll
JPS61235533A (en) High heat resistant sintered hard alloy
Sran et al. Nano finishing of brass tubes by using mechanically alloyed magnetic abrasives
CN102766795A (en) Non-magnetic die material and production method thereof
WO2022208766A1 (en) Superhard alloy and mold
Aizawa et al. Fine piercing of electromagnetic steel sheets by the plasma-nitrided tools
JPS61111885A (en) Molding for grinding
JP2005238357A (en) Processing method of pressed powder mold and workpiece of pressed powder mold
Genga et al. Laser Shock Peening: A NbC Based Cermet Enhancement Alternative for Improved GCI Interrupted Face-Milling
JP2023018533A (en) anvil roll and rotary cutter
JPS63216942A (en) Tool for warm and hot forgings
JPH08319532A (en) Sintered hard alloy for punching tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210412

R151 Written notification of patent or utility model registration

Ref document number: 6878999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151