JP2018163817A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2018163817A
JP2018163817A JP2017060855A JP2017060855A JP2018163817A JP 2018163817 A JP2018163817 A JP 2018163817A JP 2017060855 A JP2017060855 A JP 2017060855A JP 2017060855 A JP2017060855 A JP 2017060855A JP 2018163817 A JP2018163817 A JP 2018163817A
Authority
JP
Japan
Prior art keywords
electrode assembly
negative electrode
insulating film
case
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017060855A
Other languages
Japanese (ja)
Inventor
厚志 南形
Atsushi MINAGATA
厚志 南形
雅人 小笠原
Masahito Ogasawara
雅人 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2017060855A priority Critical patent/JP2018163817A/en
Priority to PCT/JP2018/009836 priority patent/WO2018180475A1/en
Publication of JP2018163817A publication Critical patent/JP2018163817A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device capable of suppressing breakage of an insulation sheet due to expansion of an electrode.SOLUTION: A secondary battery 10 comprises: a rectangular parallelepiped electrode assembly 12 alternately laminating a plurality of rectangular sheet-like positive electrodes and negative electrodes in a state of insulation with a separator; a rectangular parallelepiped case 11 housing the electrode assembly 12; and an insulation film 30 that is arranged between the electrode assembly 12 and the case 11, is formed in a bag-shape housing the electrode assembly 12, and insulates the electrode assembly 12 and the case 11. The piercing resistance of the insulation film 30 is set to 30 to 70 N.SELECTED DRAWING: Figure 2

Description

本発明は、電極組立体と、電極組立体を収容するケースと、電極組立体とケースとの間に配置され、両者を絶縁する絶縁シートとを備える蓄電装置に関する。   The present invention relates to a power storage device including an electrode assembly, a case that accommodates the electrode assembly, and an insulating sheet that is disposed between the electrode assembly and the case and insulates the two.

EV(Electric Vehicle)やPHV(Plug-in Hybrid Vehicle)などの車両には、走行用モータへの供給電力を蓄える蓄電装置としての二次電池が搭載されている。二次電池は、矩形シート状の正極電極及び負極電極が積層された電極組立体と、当該電極組立体を収容する直方体状のケースとを備える。また、電極組立体を袋状に形成された絶縁シートによって覆うことで、電極組立体とケースとを絶縁させている(特許文献1参照)。   A vehicle such as an EV (Electric Vehicle) or a PHV (Plug-in Hybrid Vehicle) is equipped with a secondary battery as a power storage device that stores power supplied to a traveling motor. The secondary battery includes an electrode assembly in which a rectangular sheet-like positive electrode and negative electrode are stacked, and a rectangular parallelepiped case that accommodates the electrode assembly. Moreover, the electrode assembly and the case are insulated by covering the electrode assembly with an insulating sheet formed in a bag shape (see Patent Document 1).

特開2014−38736号公報JP 2014-38736 A

ところで、正極電極及び負極電極は、二次電池の充放電時に膨張収縮するため、膨張した正極電極及び負極電極の角部とケースの内面との間に絶縁シートが挟まれ、絶縁シートが破れるおそれがある。絶縁シートが破れると、電極組立体とケースが短絡してしまう。   By the way, since the positive electrode and the negative electrode expand and contract during charging and discharging of the secondary battery, the insulating sheet may be sandwiched between the corners of the expanded positive electrode and negative electrode and the inner surface of the case, and the insulating sheet may be broken. There is. When the insulating sheet is broken, the electrode assembly and the case are short-circuited.

本発明は、上記課題を解決するためになされたものであり、その目的は、電極の膨張による絶縁シートの破れを抑制できる蓄電装置を提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a power storage device that can suppress breakage of an insulating sheet due to expansion of an electrode.

上記問題点を解決するための蓄電装置は、矩形シート状の複数の正極電極と負極電極とをセパレータで絶縁した状態で交互に積層した直方体状の電極組立体と、前記電極組立体を収容する直方体状のケースと、前記電極組立体と前記ケースとの間に配置され、前記電極組立体を収容する袋状であって、前記電極組立体と前記ケースとを絶縁する絶縁シートと、を備えた蓄電装置であって、前記絶縁シートの突き刺し強度は、30〜70Nであることを要旨とする。   A power storage device for solving the above-described problems contains a rectangular parallelepiped electrode assembly in which a plurality of rectangular sheet-like positive electrodes and negative electrodes are alternately stacked in a state of being insulated by a separator, and houses the electrode assembly A rectangular parallelepiped case, and a bag-like container that is disposed between the electrode assembly and the case and accommodates the electrode assembly, and that insulates the electrode assembly from the case. The summary is that the puncture strength of the insulating sheet is 30 to 70 N.

これによれば、蓄電装置の充電時に正極電極及び負極電極が膨張し、正極電極及び負極電極の角部が絶縁シートに押し当てられ、押し当てられた部分の絶縁シートが正極電極及び負極電極の角部とケースの内面とで挟まれたとしても、絶縁シートが破れにくくなる。   According to this, the positive electrode and the negative electrode expand when the power storage device is charged, the corners of the positive electrode and the negative electrode are pressed against the insulating sheet, and the pressed portions of the insulating sheet are the positive electrode and the negative electrode. Even if the insulating sheet is sandwiched between the corner portion and the inner surface of the case, the insulating sheet is hardly broken.

また、上記蓄電装置において、前記絶縁シートは、厚みが120〜150μmのポリプロピレン製であるのが好ましい。
同じ材料の絶縁シートでは、厚みが厚いほど突き刺し強度は強くなるため破れにくくなる。その一方で、絶縁シートが厚くなるほどケース内を占める電極組立体の容積が小さくなり、蓄電装置の容量が低下してしまう。よって、絶縁シートがポリプロピレン製である場合、絶縁シートの突き刺し強度と電極組立体の容積の両方を加味した厚みとして120〜150μmに設定することで、蓄電装置の容量を大幅に低下させることなく絶縁シートの破れを抑制できる。また、絶縁シートをポリプロピレン(PP)製にすることで、例えばポリフェニレンサルファイド(PPS)製にする場合と比べて、絶縁シートの生産コストを抑えられる。
In the power storage device, the insulating sheet is preferably made of polypropylene having a thickness of 120 to 150 μm.
Insulating sheets made of the same material become harder to tear because the piercing strength increases as the thickness increases. On the other hand, the thicker the insulating sheet, the smaller the volume of the electrode assembly that occupies the case, and the capacity of the power storage device decreases. Therefore, when the insulating sheet is made of polypropylene, the thickness is set to 120 to 150 μm in consideration of both the piercing strength of the insulating sheet and the volume of the electrode assembly, thereby insulating without significantly reducing the capacity of the power storage device. Sheet tearing can be suppressed. Moreover, by making the insulating sheet made of polypropylene (PP), for example, the production cost of the insulating sheet can be reduced as compared with the case of making polyphenylene sulfide (PPS).

また、上記蓄電装置において、前記負極電極は、集電体及び該集電体の両面又は片面に存在する活物質層を有し、前記活物質層は、ケイ素を含むのが好ましい。
負極電極の活物質層がケイ素を含む場合、ケイ素を含まない場合と比較して膨張量が大きいため、膨張した負極電極の角部から絶縁シートに加わる荷重も大きくなる。このため、突き刺し強度が30〜70Nの絶縁シートを採用することで絶縁シートの破れを抑制するとよい。
In the above power storage device, it is preferable that the negative electrode includes a current collector and an active material layer present on both surfaces or one surface of the current collector, and the active material layer includes silicon.
When the active material layer of the negative electrode includes silicon, the amount of expansion is large compared to the case where silicon is not included, and thus the load applied to the insulating sheet from the corner of the expanded negative electrode increases. For this reason, it is good to suppress a tear of an insulating sheet by employ | adopting an insulating sheet with a puncture strength of 30-70N.

本発明によれば、電極の膨張による絶縁シートの破れを抑制できる。   According to the present invention, it is possible to suppress the tearing of the insulating sheet due to the expansion of the electrode.

実施形態の二次電池の分解斜視図。The disassembled perspective view of the secondary battery of embodiment. (a)は実施形態の二次電池の断面図、(b)は(a)の拡大断面図。(A) is sectional drawing of the secondary battery of embodiment, (b) is an expanded sectional view of (a). 実施形態の電極組立体の分解斜視図。The disassembled perspective view of the electrode assembly of embodiment.

以下、蓄電装置を具体化した一実施形態を図1〜図3にしたがって説明する。
図1及び図2(a)に示すように、蓄電装置としての二次電池10は、ケース11を備える。二次電池10は、ケース11に収容された電極組立体12を備える。ケース11は、直方体状のケース本体13と、ケース本体13の開口部13aを閉塞する矩形平板状の蓋14とを有する。ケース11を構成するケース本体13と蓋14は、何れも金属製(例えば、ステンレスやアルミニウム)である。また、本実施形態の二次電池10は、その外観が角型をなす角型電池である。また、本実施形態の二次電池10は、リチウムイオン電池である。
Hereinafter, an embodiment embodying a power storage device will be described with reference to FIGS.
As shown in FIGS. 1 and 2A, the secondary battery 10 as a power storage device includes a case 11. The secondary battery 10 includes an electrode assembly 12 accommodated in a case 11. The case 11 includes a rectangular parallelepiped case main body 13 and a rectangular flat lid 14 that closes the opening 13 a of the case main body 13. Both the case main body 13 and the lid 14 constituting the case 11 are made of metal (for example, stainless steel or aluminum). Further, the secondary battery 10 of the present embodiment is a prismatic battery whose appearance is square. Further, the secondary battery 10 of the present embodiment is a lithium ion battery.

ケース本体13は、底壁13b(図2(a)参照)と、底壁13bに繋がる第1〜第4壁部13c〜13fとを備える。ケース本体13は、底壁13bの一対の長縁部に繋がる壁部のうちの一方の壁部に第1壁部13cを備え、第1壁部13cと対面する他方の壁部に第2壁部13dを備える。また、ケース本体13は、第1壁部13cと第2壁部13dとを繋ぎ、底壁13bの一対の短縁部に繋がる壁部のうちの一方の壁部に第3壁部13eを備え、第3壁部13eと対面する他方の壁部に第4壁部13fを備える。図2に示すように、ケース本体13は、底壁13bの内底面と第1〜第4壁部13c〜13fの内面とが交差する部分に、第1〜第4壁部13c〜13fから底壁13bに向かうアール状の隅部13gを有する。ケース本体13は、深絞り加工や、インパクトプレス加工などの塑性加工によって金属板を塑性変形させることで製造されている。隅部13gは、塑性加工に際して生じるものである。   The case main body 13 includes a bottom wall 13b (see FIG. 2A) and first to fourth wall portions 13c to 13f connected to the bottom wall 13b. The case body 13 includes a first wall portion 13c on one of the wall portions connected to the pair of long edges of the bottom wall 13b, and a second wall on the other wall portion facing the first wall portion 13c. A portion 13d is provided. The case main body 13 includes a third wall portion 13e on one of the wall portions connecting the first wall portion 13c and the second wall portion 13d and connecting to the pair of short edge portions of the bottom wall 13b. The other wall portion facing the third wall portion 13e is provided with a fourth wall portion 13f. As shown in FIG. 2, the case main body 13 has a bottom from the first to fourth wall portions 13c to 13f at a portion where the inner bottom surface of the bottom wall 13b intersects with the inner surfaces of the first to fourth wall portions 13c to 13f. It has a rounded corner 13g that faces the wall 13b. The case body 13 is manufactured by plastically deforming a metal plate by plastic working such as deep drawing or impact pressing. The corner 13g is generated during plastic processing.

二次電池10は、電極組立体12から電気を取り出すための正極端子15と負極端子16を備える。正極端子15と負極端子16は、蓋14に所定の間隔をあけて並設された一対の孔14aからケース11の外部に露出される。また、正極端子15及び負極端子16には、ケース11から絶縁するためのリング状の絶縁リング17aがそれぞれ取り付けられている。   The secondary battery 10 includes a positive electrode terminal 15 and a negative electrode terminal 16 for taking out electricity from the electrode assembly 12. The positive electrode terminal 15 and the negative electrode terminal 16 are exposed to the outside of the case 11 through a pair of holes 14 a arranged in parallel with the lid 14 at a predetermined interval. Further, a ring-shaped insulating ring 17 a for insulating from the case 11 is attached to the positive terminal 15 and the negative terminal 16, respectively.

図3に示すように、電極組立体12は、第1の電極としての矩形シート状の複数の正極電極20と、第2の電極としての矩形シート状の複数の負極電極21と、矩形シート状の複数のセパレータ28とを備える。電極組立体12は、正極電極20と負極電極21との間にセパレータ28を介在させ、かつ相互に絶縁させた状態で積層した構造を備える。電極組立体12は、直方体状をなす。   As shown in FIG. 3, the electrode assembly 12 includes a plurality of positive electrodes 20 in the form of rectangular sheets as first electrodes, a plurality of negative electrodes 21 in the form of rectangular sheets as second electrodes, and a rectangular sheet shape. And a plurality of separators 28. The electrode assembly 12 has a structure in which a separator 28 is interposed between the positive electrode 20 and the negative electrode 21 and laminated in a state of being insulated from each other. The electrode assembly 12 has a rectangular parallelepiped shape.

正極電極20は、矩形シート状の集電体としての正極金属箔(例えばアルミニウム箔)22と、正極金属箔22の両面に存在する正極活物質層23とを有する。正極電極20は、一対の長辺に沿う縁部のうちの一方の縁部に第1縁部20aを備える。正極電極20は、第1縁部20aの一部から突出した形状の正極タブ24を有する。正極タブ24は、正極活物質層23が存在せず、正極金属箔22そのもので構成されている。   The positive electrode 20 includes a positive metal foil (for example, an aluminum foil) 22 as a rectangular sheet-shaped current collector, and a positive electrode active material layer 23 present on both surfaces of the positive metal foil 22. The positive electrode 20 includes a first edge portion 20a at one edge portion of the edge portions along the pair of long sides. The positive electrode 20 includes a positive electrode tab 24 having a shape protruding from a part of the first edge 20a. The positive electrode tab 24 is configured by the positive electrode metal foil 22 itself without the positive electrode active material layer 23.

また、正極電極20は、一対の長辺に沿う縁部のうちの第1縁部20aの対辺となる他方の縁部に第2縁部20bを備える。さらに、正極電極20は、第1縁部20aと第2縁部20b同士を繋ぐ一対の短辺に沿う縁部のうちの一方の縁部に第3縁部20cを備え、第3縁部20cの対辺となる他方の縁部に第4縁部20dを備える。正極電極20は、第2縁部20bと第3縁部20cとが交差する部分に第1角部20eを備え、第2縁部20bと第4縁部20dとが交差する部分に第2角部20fを備える。   Further, the positive electrode 20 includes a second edge 20b on the other edge which is the opposite side of the first edge 20a among the edges along the pair of long sides. Further, the positive electrode 20 includes a third edge 20c on one edge of a pair of short edges connecting the first edge 20a and the second edge 20b, and the third edge 20c. A fourth edge portion 20d is provided on the other edge portion which is the opposite side. The positive electrode 20 includes a first corner 20e at a portion where the second edge 20b and the third edge 20c intersect, and a second corner at a portion where the second edge 20b and the fourth edge 20d intersect. 20f is provided.

負極電極21は、矩形シート状の集電体としての負極金属箔(例えば銅箔)25と、負極金属箔25の両面に存在する負極活物質層26とを有する。負極活物質層26は、活物質、導電助剤、溶媒及びバインダを混合した活物質ペーストを集電体に塗布した後、乾燥させることで形成される。本実施形態の活物質はケイ素である。活物質にケイ素を用いることで、例えばカーボンを用いる場合と比較して、二次電池10の容量を増大させることができる。一方で、ケイ素を含む負極活物質層26は、二次電池10の充放電時の膨張量及び収縮量が大きくなる。負極電極21は、一対の長辺に沿う縁部のうちの一方の縁部に第1縁部21aを備える。負極電極21は、第1縁部21aの一部から突出した形状の負極タブ27を有する。負極タブ27は、負極活物質層26が存在せず、負極金属箔25そのもので構成されている。   The negative electrode 21 includes a negative electrode metal foil (for example, copper foil) 25 as a rectangular sheet-shaped current collector, and negative electrode active material layers 26 present on both surfaces of the negative electrode metal foil 25. The negative electrode active material layer 26 is formed by applying an active material paste, in which an active material, a conductive additive, a solvent, and a binder are mixed, to a current collector and then drying it. The active material of this embodiment is silicon. By using silicon as the active material, for example, the capacity of the secondary battery 10 can be increased compared to the case of using carbon. On the other hand, the negative electrode active material layer 26 containing silicon has a large amount of expansion and contraction when the secondary battery 10 is charged and discharged. The negative electrode 21 includes a first edge portion 21a on one edge portion of the edge portions along the pair of long sides. The negative electrode 21 has a negative electrode tab 27 having a shape protruding from a part of the first edge 21a. The negative electrode tab 27 is configured by the negative electrode metal foil 25 itself without the negative electrode active material layer 26.

また、負極電極21は、一対の長辺に沿う縁部のうちの第1縁部21aの対辺となる他方の縁部に第2縁部21bを備える。さらに、負極電極21は、第1縁部21aと第2縁部21b同士を繋ぐ一対の短辺に沿う縁部のうちの一方の縁部に第3縁部21cを備え、第3縁部21cの対辺となる他方の縁部に第4縁部21dを備える。負極電極21は、第2縁部21bと第3縁部21cとが交差する部分に第1角部21eを備え、第2縁部21bと第4縁部21dとが交差する部分に第2角部21fを備える。以下、負極電極21の面と直交する方向を負極電極21の厚さ方向としての第1方向X1とする。また、第1及び第2縁部21a,21bに沿う方向を第2方向X2とし、第3及び第4縁部21c,21dに沿う方向を第3方向X3とする。   Moreover, the negative electrode 21 is provided with the 2nd edge part 21b in the other edge part used as the opposite side of the 1st edge part 21a among the edge parts along a pair of long side. Furthermore, the negative electrode 21 includes a third edge 21c on one edge of the pair of short edges connecting the first edge 21a and the second edge 21b, and the third edge 21c. A fourth edge portion 21d is provided on the other edge portion which is the opposite side. The negative electrode 21 includes a first corner 21e at a portion where the second edge 21b and the third edge 21c intersect, and a second corner at a portion where the second edge 21b and the fourth edge 21d intersect. A portion 21f is provided. Hereinafter, a direction orthogonal to the surface of the negative electrode 21 is defined as a first direction X <b> 1 as a thickness direction of the negative electrode 21. The direction along the first and second edge portions 21a and 21b is defined as a second direction X2, and the direction along the third and fourth edge portions 21c and 21d is defined as a third direction X3.

図1に示すように、各正極電極20は、それぞれの正極タブ24が電極組立体12の積層方向に沿って列状に配置されるように積層される。同様に、各負極電極21は、それぞれの負極タブ27が、正極タブ24と重ならないように電極組立体12の積層方向に沿って列状に配置されるように積層される。そして、各正極タブ24は、電極組立体12における積層方向の一端から他端までの範囲に集められて正極タブ群24aとされる。正極タブ群24aには、正極端子15が電気的に接合される。また、各負極タブ27も同様に、電極組立体12における積層方向の一端から他端までの範囲に集められて負極タブ群27aとされる。負極タブ群27aには、負極端子16が電気的に接続される。   As shown in FIG. 1, each positive electrode 20 is stacked such that the respective positive electrode tabs 24 are arranged in a line along the stacking direction of the electrode assembly 12. Similarly, each negative electrode 21 is laminated so that the respective negative electrode tabs 27 are arranged in a line along the lamination direction of the electrode assembly 12 so as not to overlap the positive electrode tab 24. The positive electrode tabs 24 are collected in a range from one end to the other end in the stacking direction of the electrode assembly 12 to form a positive electrode tab group 24a. The positive electrode terminal 15 is electrically joined to the positive electrode tab group 24a. Similarly, the negative electrode tabs 27 are gathered in a range from one end to the other end in the stacking direction of the electrode assembly 12 to form a negative electrode tab group 27a. The negative electrode terminal 16 is electrically connected to the negative electrode tab group 27a.

電極組立体12は、蓋14に対向した端面に正極タブ群24a及び負極タブ群27aが存在するタブ側端面12aを備え、ケース本体13の底壁13bの内面に対向した端面に底側端面12bを備える。底側端面12bは、正極電極20及び負極電極21の第2縁部20b,21bが積層されて構成されている。また、電極組立体12は、ケース本体13の第1壁部13cの内面に対向した端面に第1側面12cを備え、ケース本体13の第2壁部13dの内面に対向した端面に第2側面12dを備える。電極組立体12は、ケース本体13の第3壁部13eの内面に対向した端面に第3側面12eを備え、ケース本体13の第4壁部13fの内面に対向した端面に第4側面12fを備える。第3側面12eは、正極電極20及び負極電極21の第3縁部20c,21cが積層されて構成され、第4側面12fは、正極電極20及び負極電極21の第4縁部20d,21dが積層されて構成されている。このような電極組立体12は、袋状の絶縁シートとしての絶縁フィルム30に収容されている。   The electrode assembly 12 includes a tab-side end surface 12a in which a positive electrode tab group 24a and a negative electrode tab group 27a exist on the end surface facing the lid 14, and the bottom-side end surface 12b on the end surface facing the inner surface of the bottom wall 13b of the case body 13. Is provided. The bottom end face 12b is configured by laminating the second edges 20b and 21b of the positive electrode 20 and the negative electrode 21. In addition, the electrode assembly 12 includes a first side surface 12 c on an end surface facing the inner surface of the first wall portion 13 c of the case body 13, and a second side surface on the end surface facing the inner surface of the second wall portion 13 d of the case body 13. 12d. The electrode assembly 12 includes a third side surface 12e on the end surface facing the inner surface of the third wall portion 13e of the case body 13, and the fourth side surface 12f on the end surface facing the inner surface of the fourth wall portion 13f of the case body 13. Prepare. The third side surface 12e is configured by laminating the third edges 20c and 21c of the positive electrode 20 and the negative electrode 21, and the fourth side surface 12f is configured by the fourth edges 20d and 21d of the positive electrode 20 and the negative electrode 21. It is configured by stacking. Such an electrode assembly 12 is accommodated in an insulating film 30 as a bag-shaped insulating sheet.

ここで、二次電池10の充放電時の正極電極20及び負極電極21について説明する。
二次電池10の充放電を行うと、正極電極20の正極活物質層23及び負極電極21の負極活物質層26は、第2方向X2及び第3方向X3へ膨張収縮する。なお、正極活物質層23及び負極活物質層26は第1方向X1にも膨張収縮しようとするが、一般に二次電池10の充放電は、図示しない拘束治具によって電極組立体12を第1方向X1に拘束した状態で行われるため、第1方向X1への膨張量及び収縮量は十分小さい。正極活物質層23及び負極活物質層26の膨張に伴い、正極電極20の正極金属箔22及び負極電極21の負極金属箔25も第2方向X2及び第3方向X3に膨張する。これにより、正極電極20及び負極電極21の第1角部20e,21eから絶縁フィルム30の第1部位30aに荷重が加わる。同様に、正極電極20及び負極電極21の第2角部20f,21fから絶縁フィルム30の第2部位30bに荷重が加わる。
Here, the positive electrode 20 and the negative electrode 21 during charging / discharging of the secondary battery 10 will be described.
When the secondary battery 10 is charged and discharged, the positive electrode active material layer 23 of the positive electrode 20 and the negative electrode active material layer 26 of the negative electrode 21 expand and contract in the second direction X2 and the third direction X3. The positive electrode active material layer 23 and the negative electrode active material layer 26 try to expand and contract in the first direction X1 as well. In general, the secondary battery 10 is charged / discharged by first holding the electrode assembly 12 with a restraining jig (not shown). Since it is performed in a state constrained in the direction X1, the amount of expansion and contraction in the first direction X1 is sufficiently small. As the positive electrode active material layer 23 and the negative electrode active material layer 26 expand, the positive electrode metal foil 22 of the positive electrode 20 and the negative electrode metal foil 25 of the negative electrode 21 also expand in the second direction X2 and the third direction X3. Thereby, a load is applied to the first portion 30a of the insulating film 30 from the first corner portions 20e and 21e of the positive electrode 20 and the negative electrode 21. Similarly, a load is applied to the second portion 30 b of the insulating film 30 from the second corner portions 20 f and 21 f of the positive electrode 20 and the negative electrode 21.

絶縁フィルム30は、電極組立体12を金属製のケース11と絶縁するための絶縁性のシートである。絶縁フィルム30の突き刺し強度は、30〜70Nに設定される。本実施形態の絶縁フィルム30は、厚みが150μmのポリプロピレン(PP)製であり、突き刺し強度は58Nである。   The insulating film 30 is an insulating sheet for insulating the electrode assembly 12 from the metal case 11. The puncture strength of the insulating film 30 is set to 30 to 70N. The insulating film 30 of this embodiment is made of polypropylene (PP) having a thickness of 150 μm, and the piercing strength is 58N.

突き刺し強度は、次の方法で測定される。まず、拘束具(図示せず)によって絶縁フィルム30を拘束する。拘束具は、一対の拘束板と、一対の拘束板を連結するボルトと、ボルトに螺合されるナットとを備える。各拘束板は、貫通孔を備える。各拘束板は、片面に円環状のシリコンゴムを備える。貫通孔は、シリコンゴムの内側と連通する。一対の拘束板のうち、一方の拘束板は、シリコンゴムが絶縁フィルム30の一方の面と対向するように配置され、他方の拘束板は、シリコンゴムが絶縁フィルム30の他方の面と対向するように配置される。この状態でボルトにナットを螺合することで、一対の拘束板はシリコンゴムを介して絶縁フィルム30を拘束する。絶縁フィルム30は、張った状態(皺や撓みがない状態)で拘束される。次に、拘束された絶縁フィルム30に対して釘(図示せず)を一定速度(25mm/min)で降下させ、絶縁フィルム30に荷重を加えていく。釘は、φ8mmであり、先端にテーパ部を備える。釘の中心軸線に対するテーパ部の傾斜角度は60度である。そして、絶縁フィルム30に釘が接触した後であって、釘の先端が絶縁フィルム30を突き抜ける直前の荷重を測定する。測定された荷重が突き刺し強度である。つまり、突き刺し強度とは、釘によって絶縁フィルム30に孔が開く直前に絶縁フィルム30に加わっている荷重である。   The puncture strength is measured by the following method. First, the insulating film 30 is restrained by a restraining tool (not shown). The restraining tool includes a pair of restraining plates, a bolt that connects the pair of restraining plates, and a nut that is screwed to the bolt. Each constraining plate includes a through hole. Each constraining plate includes an annular silicon rubber on one side. The through hole communicates with the inside of the silicon rubber. Of the pair of restraining plates, one restraining plate is disposed so that the silicon rubber faces one surface of the insulating film 30, and the other restraining plate has the silicon rubber facing the other surface of the insulating film 30. Are arranged as follows. In this state, the nuts are screwed onto the bolts, so that the pair of restraining plates restrains the insulating film 30 via silicon rubber. The insulating film 30 is restrained in a stretched state (a state without wrinkles or deflection). Next, a nail (not shown) is lowered with respect to the restrained insulating film 30 at a constant speed (25 mm / min), and a load is applied to the insulating film 30. The nail has a diameter of 8 mm and has a tapered portion at the tip. The inclination angle of the tapered portion with respect to the central axis of the nail is 60 degrees. Then, the load immediately after the nail contacts the insulating film 30 and immediately before the tip of the nail penetrates the insulating film 30 is measured. The measured load is the puncture strength. That is, the piercing strength is a load applied to the insulating film 30 immediately before a hole is opened in the insulating film 30 by a nail.

絶縁フィルム30の突き刺し強度が30Nより小さい場合、上述した正極電極20及び負極電極21の膨張によって絶縁フィルム30に破れが発生する可能性が高く好ましくない。正極電極20及び負極電極21の膨張度合いが大きく、正極電極20及び負極電極21の各角部20e,20f,21e,21fから絶縁フィルム30に加わる荷重が70Nを超える場合、電極組立体12全体が蓋14の方へ移動する。これにより、絶縁フィルム30は、正極電極20及び負極電極21の各角部20e,20f,21e,21fとケース本体13の隅部13gの間で挟まれず、絶縁フィルム30に破れが発生する可能性は低い。このことから、絶縁フィルム30の突き刺し強度を70N以下にしてよい。   When the piercing strength of the insulating film 30 is smaller than 30N, it is not preferable because the insulating film 30 is likely to be broken due to the expansion of the positive electrode 20 and the negative electrode 21 described above. When the degree of expansion of the positive electrode 20 and the negative electrode 21 is large and the load applied to the insulating film 30 from each corner 20e, 20f, 21e, 21f of the positive electrode 20 and the negative electrode 21 exceeds 70 N, the entire electrode assembly 12 is Move toward the lid 14. Thereby, the insulating film 30 is not sandwiched between the corners 20e, 20f, 21e, 21f of the positive electrode 20 and the negative electrode 21 and the corner 13g of the case body 13, and the insulating film 30 may be broken. Is low. For this reason, the piercing strength of the insulating film 30 may be 70 N or less.

絶縁フィルム30の突き刺し強度は、絶縁フィルム30の厚みを厚くするほど強くなる。その一方で、絶縁フィルム30が厚くなるほどケース11内を占める電極組立体12の容積が小さくなり、二次電池10の容量が低下してしまう。したがって、例えば、ポリプロピレン(PP)製の絶縁フィルム30の場合、絶縁フィルム30の突き刺し強度と二次電池10の容量の両方を加味した厚みとして120〜150μmに設定することが好ましい。   The piercing strength of the insulating film 30 increases as the thickness of the insulating film 30 increases. On the other hand, as the insulating film 30 becomes thicker, the volume of the electrode assembly 12 occupying the case 11 becomes smaller, and the capacity of the secondary battery 10 decreases. Therefore, for example, in the case of the insulating film 30 made of polypropylene (PP), it is preferable to set the thickness to 120 to 150 μm in consideration of both the piercing strength of the insulating film 30 and the capacity of the secondary battery 10.

本実施形態の絶縁フィルム30は、1枚の絶縁フィルム30を折り畳み、かつ溶着して袋状に形成されている。絶縁フィルム30は、電極組立体12のタブ側端面12aを除く5面(底側端面12b及び第1〜第4側面12c〜12f)を覆っている。絶縁フィルム30のうち、正極電極20及び負極電極21の第1角部20e,21eを覆う部分を第1部位30aとし、第2角部20f,21fを覆う部分を第2部位30bとする。絶縁フィルム30に覆われた電極組立体12をケース本体13に収容した状態において、第1部位30aは、第1角部20e,21eとケース本体13の隅部13gとの間に位置し、第2部位30bは、第2角部20f,21fとケース本体13の隅部13gとの間に位置する(図2(b)参照)。   The insulating film 30 of this embodiment is formed in a bag shape by folding and welding one insulating film 30. The insulating film 30 covers five surfaces (the bottom end surface 12b and the first to fourth side surfaces 12c to 12f) excluding the tab side end surface 12a of the electrode assembly 12. In the insulating film 30, a portion covering the first corner portions 20e and 21e of the positive electrode 20 and the negative electrode 21 is defined as a first portion 30a, and a portion covering the second corner portions 20f and 21f is defined as a second portion 30b. In a state where the electrode assembly 12 covered with the insulating film 30 is accommodated in the case main body 13, the first portion 30 a is located between the first corner portions 20 e and 21 e and the corner portion 13 g of the case main body 13. The two portions 30b are located between the second corner portions 20f and 21f and the corner portion 13g of the case body 13 (see FIG. 2B).

次に、本実施形態の作用について説明する。
本実施形態の絶縁フィルム30の突き刺し強度は30〜70Nに設定されているため、正極電極20及び負極電極21が膨張したとしても第1部位30a及び第2部位30bに破れが生じにくくなる。
Next, the operation of this embodiment will be described.
Since the puncture strength of the insulating film 30 of the present embodiment is set to 30 to 70 N, even if the positive electrode 20 and the negative electrode 21 expand, the first part 30a and the second part 30b are not easily broken.

次に、本実施形態の効果を記載する。
(1)絶縁フィルム30の突き刺し強度は30〜70Nに設定される。よって、二次電池10の充電時に正極電極20及び負極電極21が膨張し、正極電極20及び負極電極21の第1角部20e,21eや第2角部20f,21fが絶縁フィルム30の第1部位30aや第2部位30bに押し当てられ、第1部位30aや第2部位30bが第1角部20e,21eや第2角部20f,21fとケース本体13の隅部13gとで挟まれたとしても、絶縁フィルム30に破れが生じにくくなる。
Next, the effect of this embodiment will be described.
(1) The puncture strength of the insulating film 30 is set to 30 to 70N. Therefore, when the secondary battery 10 is charged, the positive electrode 20 and the negative electrode 21 expand, and the first corners 20e and 21e and the second corners 20f and 21f of the positive electrode 20 and the negative electrode 21 are the first of the insulating film 30. The first portion 30a or the second portion 30b is pressed against the portion 30a or the second portion 30b, and is sandwiched between the first corner portions 20e and 21e or the second corner portions 20f and 21f and the corner portion 13g of the case body 13. However, the insulating film 30 is less likely to be broken.

(2)絶縁フィルム30は、厚みが120〜150μmのポリプロピレン(PP)製である。絶縁フィルム30の厚みが厚いほど、突き刺し強度は強くなるため、絶縁フィルム30の厚みを厚くすることで破れを抑制できる。その一方で、絶縁フィルム30が厚くなるほどケース11内を占める電極組立体12の容積が小さくなり、二次電池10の容量が低下してしまう。よって、絶縁フィルム30の突き刺し強度と二次電池10の容量の両方を加味して絶縁フィルム30の厚みを設定することで、二次電池10の容量を低下させることなく絶縁フィルム30の破れを抑制できる。また、絶縁フィルム30をポリプロピレン(PP)製にすることで、例えば、ポリフェニレンサルファイド(PPS)製にする場合と比べて、絶縁フィルム30の生産コストを抑えられる。   (2) The insulating film 30 is made of polypropylene (PP) having a thickness of 120 to 150 μm. Since the puncture strength increases as the thickness of the insulating film 30 increases, the tearing can be suppressed by increasing the thickness of the insulating film 30. On the other hand, as the insulating film 30 becomes thicker, the volume of the electrode assembly 12 occupying the case 11 becomes smaller, and the capacity of the secondary battery 10 decreases. Therefore, by setting both the piercing strength of the insulating film 30 and the capacity of the secondary battery 10 to set the thickness of the insulating film 30, the tearing of the insulating film 30 is suppressed without reducing the capacity of the secondary battery 10. it can. Further, by making the insulating film 30 made of polypropylene (PP), for example, the production cost of the insulating film 30 can be suppressed as compared with the case of making polyphenylene sulfide (PPS).

(3)負極活物質層26は、ケイ素を含むため、ケイ素を含まない負極活物質層と比較して膨張量が大きい。よって、負極電極21の各角部21e,21fから絶縁フィルム30に加わる荷重も大きくなる。このため、突き刺し強度が30〜70Nの絶縁フィルム30を採用することで絶縁フィルム30の破れを抑制するとよい。   (3) Since the negative electrode active material layer 26 contains silicon, the amount of expansion is larger than that of the negative electrode active material layer not containing silicon. Therefore, the load applied to the insulating film 30 from the corners 21e and 21f of the negative electrode 21 is also increased. For this reason, it is good to suppress the tearing of the insulating film 30 by employ | adopting the insulating film 30 whose puncture strength is 30-70N.

なお、上記実施形態は、以下のように変更してもよい。
○ 集電体は、正極活物質層23や負極活物質層26が形成できるものであれば、正極金属箔22や負極金属箔25に限定されるものではない。例えば、織物状や網状のシートを用いてもよい。
In addition, you may change the said embodiment as follows.
The current collector is not limited to the positive electrode metal foil 22 and the negative electrode metal foil 25 as long as the positive electrode active material layer 23 and the negative electrode active material layer 26 can be formed. For example, a woven or net-like sheet may be used.

○ 正極電極20は、正極金属箔22の片面に正極活物質層23が存在する構造でもよい。同様に、負極電極21は、負極金属箔25の片面に負極活物質層26が存在する構成でもよい。   The positive electrode 20 may have a structure in which the positive electrode active material layer 23 exists on one side of the positive electrode metal foil 22. Similarly, the negative electrode 21 may have a configuration in which the negative electrode active material layer 26 exists on one surface of the negative electrode metal foil 25.

○ 正極電極20及び負極電極21の一方の極性の電極の外形を他方の極性の電極の外形よりも大きくしてもよい。この場合、絶縁フィルム30は、外形の大きい方の極性の電極の角部とケース本体13の隅部13gの間に挟まれる。   (Circle) you may make the external shape of the electrode of one polarity of the positive electrode 20 and the negative electrode 21 larger than the external shape of the electrode of the other polarity. In this case, the insulating film 30 is sandwiched between the corner portion of the electrode having the larger outer shape and the corner portion 13 g of the case body 13.

○ 負極活物質層26の活物質は、カーボンでもよく、シリコンとカーボンの両方を含んでもよい。活物質に用いる材料の種類や割合は、二次電池10の容量に応じて変更してよい。   ○ The active material of the negative electrode active material layer 26 may be carbon, or may include both silicon and carbon. The type and ratio of the material used for the active material may be changed according to the capacity of the secondary battery 10.

○ 上記実施形態の絶縁フィルム30の突き刺し強度は58Nであったが、30〜70Nの範囲で適宜変更してよい。
○ 上記実施形態の絶縁フィルム30は、厚みが150μmのポリプロピレン(PP)製であったが、絶縁フィルム30の材料及び厚みは、突き刺し強度が30〜70Nとなる範囲で適宜変更してよい。絶縁フィルム30の他の材料としては、例えば、ポリフェニレンサルファイド(PPS)やポリエチレン(PE)などが挙げられる。
O The puncture strength of the insulating film 30 of the above embodiment was 58 N, but may be appropriately changed within the range of 30 to 70 N.
The insulating film 30 of the above embodiment is made of polypropylene (PP) having a thickness of 150 μm, but the material and thickness of the insulating film 30 may be appropriately changed within a range where the puncture strength is 30 to 70N. Examples of other materials for the insulating film 30 include polyphenylene sulfide (PPS) and polyethylene (PE).

○ 複数枚の絶縁フィルム30を袋状に形成することで、電極組立体12を覆ってもよい。
○ 絶縁フィルム30を袋状に形成する方法は、溶着に限定されない。例えば、1枚の絶縁フィルム30によって電極組立体12を覆う。そして、絶縁フィルム30において電極組立体12からはみ出した部分を、電極組立体12を覆っている部分に重ねるようにテープで貼り付けてもよい。また、他の方法として、電極組立体12より一回り大きい袋状の絶縁フィルム30の中に電極組立体12を収納し、その後で絶縁フィルム30を熱収縮させることで電極組立体12と絶縁フィルム30とを密着させてもよい。
O The electrode assembly 12 may be covered by forming a plurality of insulating films 30 in a bag shape.
(Circle) the method of forming the insulating film 30 in a bag shape is not limited to welding. For example, the electrode assembly 12 is covered with a single insulating film 30. And you may affix with the tape so that the part which protruded from the electrode assembly 12 in the insulating film 30 may overlap with the part which has covered the electrode assembly 12. FIG. As another method, the electrode assembly 12 is housed in a bag-like insulating film 30 that is slightly larger than the electrode assembly 12, and then the insulating film 30 is thermally contracted, thereby the electrode assembly 12 and the insulating film. 30 may be brought into close contact with each other.

○ 二次電池10は、リチウムイオン二次電池でもよいし、他の二次電池であってもよい。要は、正極用の活物質と負極用の活物質との間をイオンが移動するとともに電荷の授受を行うものであればよい。   The secondary battery 10 may be a lithium ion secondary battery or another secondary battery. In short, any ion may be used as long as ions move between the active material for the positive electrode and the active material for the negative electrode and charge is transferred.

○ 蓄電装置は、例えばキャパシタなど、二次電池以外の蓄電装置にも適用可能である。   The power storage device can also be applied to power storage devices other than secondary batteries, such as capacitors.

10…蓄電装置としての二次電池、11…ケース、12…電極組立体、20…正極電極、21…負極電極、25…集電体としての負極金属箔、26…活物質層としての負極活物質層、28…セパレータ、30…絶縁シートとしての絶縁フィルム。   DESCRIPTION OF SYMBOLS 10 ... Secondary battery as an electrical storage device, 11 ... Case, 12 ... Electrode assembly, 20 ... Positive electrode, 21 ... Negative electrode, 25 ... Negative electrode metal foil as a collector, 26 ... Negative electrode active as an active material layer Material layer, 28 ... separator, 30 ... insulating film as an insulating sheet.

Claims (3)

矩形シート状の複数の正極電極と負極電極とをセパレータで絶縁した状態で交互に積層した直方体状の電極組立体と、
前記電極組立体を収容する直方体状のケースと、
前記電極組立体と前記ケースとの間に配置され、前記電極組立体を収容する袋状であって、前記電極組立体と前記ケースとを絶縁する絶縁シートと、
を備えた蓄電装置であって、
前記絶縁シートの突き刺し強度は、30〜70Nであることを特徴とする蓄電装置。
A rectangular parallelepiped electrode assembly in which a plurality of rectangular sheet-like positive electrodes and negative electrodes are alternately laminated in a state insulated by a separator;
A rectangular parallelepiped case for housing the electrode assembly;
An insulating sheet that is disposed between the electrode assembly and the case and that accommodates the electrode assembly, and that insulates the electrode assembly from the case;
A power storage device comprising:
The electrical storage device, wherein the piercing strength of the insulating sheet is 30 to 70N.
前記絶縁シートは、厚みが120〜150μmのポリプロピレン製である請求項1に記載の蓄電装置。   The power storage device according to claim 1, wherein the insulating sheet is made of polypropylene having a thickness of 120 to 150 μm. 前記負極電極は、集電体及び該集電体の両面又は片面に存在する活物質層を有し、
前記活物質層は、ケイ素を含む請求項1又は請求項2に記載の蓄電装置。
The negative electrode has a current collector and an active material layer present on both sides or one side of the current collector,
The power storage device according to claim 1, wherein the active material layer contains silicon.
JP2017060855A 2017-03-27 2017-03-27 Power storage device Pending JP2018163817A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017060855A JP2018163817A (en) 2017-03-27 2017-03-27 Power storage device
PCT/JP2018/009836 WO2018180475A1 (en) 2017-03-27 2018-03-14 Electricity storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017060855A JP2018163817A (en) 2017-03-27 2017-03-27 Power storage device

Publications (1)

Publication Number Publication Date
JP2018163817A true JP2018163817A (en) 2018-10-18

Family

ID=63675402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017060855A Pending JP2018163817A (en) 2017-03-27 2017-03-27 Power storage device

Country Status (2)

Country Link
JP (1) JP2018163817A (en)
WO (1) WO2018180475A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197162A1 (en) * 2022-04-12 2023-10-19 宁德时代新能源科技股份有限公司 Battery cell, battery and electric device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195122A (en) * 2011-03-16 2012-10-11 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary battery
JP5906912B2 (en) * 2012-04-12 2016-04-20 株式会社豊田自動織機 Power storage device
JP2015228359A (en) * 2014-05-02 2015-12-17 住友電気工業株式会社 Rectangular parallelepiped power storage device, and manufacturing method thereof

Also Published As

Publication number Publication date
WO2018180475A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP5618010B2 (en) Lithium secondary battery having multidirectional lead-tab structure
JP5354042B2 (en) Power storage device, vehicle
JP7109231B2 (en) Prismatic non-aqueous electrolyte secondary battery and manufacturing method thereof
JPWO2018235428A1 (en) Power storage device
JP6878914B2 (en) Power storage device
JP6274461B2 (en) Electrochemical cell and method for producing electrochemical cell
JP6731157B2 (en) Square rechargeable battery
JP2016178028A (en) Electrode body and power storage element having the same
JP6793458B2 (en) Electrochemical cell and manufacturing method of electrochemical cell
WO2018180475A1 (en) Electricity storage device
JP6911463B2 (en) Power storage device
JP2018170244A (en) Power storage device
JP2016046009A (en) Power storage device
JP2019053818A (en) Power storage element, and power storage device including the same
KR20150072107A (en) Secondary battery peripheral site of the pouch type case is folded through the un-thermal fusion bonding line
JP6874525B2 (en) Manufacturing method of power storage device
JP6738565B2 (en) Electric storage element and method for manufacturing electric storage element
JP2013251106A (en) Power storage device
JP6955693B2 (en) Power storage element and manufacturing method of power storage element
JP6939010B2 (en) Power storage device
JP6048315B2 (en) Power storage device
JP2014035916A (en) Power storage device
JP6801371B2 (en) Power storage device
JP2016085844A (en) Power storage device
JPH10284138A (en) Electric charge storing part compounded battery