JP2018162986A - Coloring method, coloring material and coloring kit - Google Patents

Coloring method, coloring material and coloring kit Download PDF

Info

Publication number
JP2018162986A
JP2018162986A JP2017059098A JP2017059098A JP2018162986A JP 2018162986 A JP2018162986 A JP 2018162986A JP 2017059098 A JP2017059098 A JP 2017059098A JP 2017059098 A JP2017059098 A JP 2017059098A JP 2018162986 A JP2018162986 A JP 2018162986A
Authority
JP
Japan
Prior art keywords
staining
substituted
tissue
group
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017059098A
Other languages
Japanese (ja)
Other versions
JP6950922B2 (en
Inventor
稲垣 宏
Hiroshi Inagaki
宏 稲垣
高瀬 弘嗣
Hiroshi Takase
弘嗣 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya City University
Original Assignee
Nagoya City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya City University filed Critical Nagoya City University
Priority to JP2017059098A priority Critical patent/JP6950922B2/en
Publication of JP2018162986A publication Critical patent/JP2018162986A/en
Application granted granted Critical
Publication of JP6950922B2 publication Critical patent/JP6950922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coloring method which colors a substance which includes an aldehyde group contained in a cell or a tissue by employing a low molecular weight compound capable of penetrating in the cell easier than an antibody and simultaneously is capable of performing well-known coloring such as HE coloring arbitrarily about an identical cell or tissue.SOLUTION: The coloring method includes [a] a coloring process X which colors the cell or tissue by stain solution containing one or more compounds selected from a group of the compound represented by a specified chemical formula and colors the substance including the aldehyde group contained in the cell or tissue. The coloring method includes [b] an oxidation treatment process which alters at least one of the hydroxy group of polysaccharide contained in the cell or tissue to the aldehyde group by performing the oxidation treatment of the cell or tissue in advance. The coloring method includes [c] a coloring process H which colors the basic substance contained in the cell or tissue. The coloring method further includes [d] a coloring process E which colors an acid substance contained in the cell or tissue.SELECTED DRAWING: Figure 1

Description

本発明は、染色方法、染色剤、及び染色キットに関する。   The present invention relates to a staining method, a staining agent, and a staining kit.

従来、組織学や病理学等の基礎研究および病理診断等の医療現場において、組織切片を光学顕微鏡で観察する際にヘマトキシリン−エオジン染色(HE染色)が行われている。ヘマトキシリンは塩基性の細胞核を青紫色に染色する性質があり、エオジンは酸性の細胞質構成成分、内分泌顆粒などを赤桃色に染色する性質がある。これらの性質を利用してHE染色された組織サンプルから、細胞の形態と病変に関する情報が得られる。   Conventionally, hematoxylin-eosin staining (HE staining) has been performed when observing a tissue section with an optical microscope in a medical field such as basic research such as histology and pathology and pathological diagnosis. Hematoxylin has the property of staining basic cell nuclei blue-purple, and eosin has the property of staining acidic cytoplasmic components, endocrine granules, etc. in red pink. Utilizing these properties, information on cell morphology and lesions can be obtained from tissue samples stained with HE.

また、組織切片について、特定の細胞構成成分(抗原)に結合可能な抗体を用いた免疫組織化学(IHC)による免疫染色が行われることがある。
特許文献1には、HE染色と免疫染色とを同一の組織切片について行うことにより、組織の形態に関する情報と、特定の細胞構成成分に関する情報とを得る組織染色方法が提案されている。
In addition, tissue sections may be immunostained by immunohistochemistry (IHC) using an antibody that can bind to a specific cell component (antigen).
Patent Document 1 proposes a tissue staining method in which HE staining and immunostaining are performed on the same tissue section to obtain information on the morphology of the tissue and information on specific cell components.

国際公開第2013/035688号International Publication No. 2013/035688

免疫染色法で抗原に結合させる抗体は、抗原の大きさに比べて巨大なタンパク質分子であり、細胞膜を通過して細胞内の抗原に到達し難い問題がある。このため、組織切片をアルコールで処理することによって細胞膜を破壊し、抗体を細胞内へ侵入させる処理が行われる。しかしながら、細胞膜の破壊に伴う組織の形態変化の懸念があり、HE染色と免疫染色とを両立させることが難しい一面もある。   An antibody that binds to an antigen by immunostaining is a protein molecule that is larger than the size of the antigen, and has a problem that it is difficult to reach the antigen inside the cell through the cell membrane. For this reason, the cell membrane is destroyed by treating the tissue section with alcohol, and a treatment for allowing the antibody to enter the cell is performed. However, there is a concern about the morphological change of the tissue accompanying the destruction of the cell membrane, and it is difficult to achieve both HE staining and immunostaining.

本発明は、抗体よりも容易に細胞内に浸透させることができる低分子化合物を用いて、細胞又は組織に含まれるアルデヒド基を有する物質を染色するとともに、同一の細胞又は組織について任意にHE染色等の公知の染色を行うことが可能な染色方法を提供する。また、その染色方法に用いられる染色剤及び染色キットを提供する。   The present invention stains a substance having an aldehyde group contained in a cell or tissue using a low molecular weight compound that can penetrate into cells more easily than an antibody, and optionally stains the same cell or tissue with HE. A staining method capable of performing known staining such as the above is provided. In addition, a staining agent and a staining kit used in the staining method are provided.

[1] 下記の式(1)〜(5)で表される化合物の群から選ばれる1種以上の化合物を含む染色液によって、細胞又は組織を染色し、前記細胞又は組織に含まれるアルデヒド基を有する物質を染色する染色工程Xを有する、染色方法。 [1] An aldehyde group contained in the cell or tissue by staining the cell or tissue with a staining solution containing one or more compounds selected from the group of compounds represented by the following formulas (1) to (5) The dyeing method which has the dyeing | staining process X which dye | stains the substance which has this.

[式(1)中、6個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜6の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよく;
式(2)中、10個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜10の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよく;
式(3)中、8個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜8の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよく;
式(4)中、ジアミノベンゼン構造の3,4,5,6位の4個の水素原子は任意の置換基で置換されていてもよく、前記3,4位の水素原子が除かれて炭素数4〜7のシクロアルカンQが縮合していてもよく、前記シクロアルカンQを構成する1つ以上のメチレン基は、酸素同士が隣接する場合を除いて、(−O−)基又は(−NH−)基によって置換されていてもよく;
式(5)中、ベンゾフラザンが有する3個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜3の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよい。]
[2] 前記細胞又は組織を予め酸化処理することによって、前記細胞又は組織に含まれる多糖類が有する水酸基の少なくとも一部をアルデヒド基に変化させる酸化処理工程を有する、[1]に記載の染色方法。
[3] 前記染色工程Xの前又は後に、前記細胞又は組織に含まれる塩基性物質を染色する染色工程Hを有する、[1]又は[2]に記載の染色方法。
[4] 前記染色工程Hにおいて、ヘマトキシリンを含む染色液を用いて前記塩基性物質を染色する、[3]に記載の染色方法。
[5] 前記細胞又は組織に対して、前記染色工程Xと、前記細胞又は組織に含まれる塩基性物質を染色する染色工程Hと、を同時に行う、[1]又は[2]に記載の染色方法。
[6] 前記式(1)〜(5)で表される化合物の群から選ばれる1種以上の化合物及びヘマトキシリンを含む染色液を用いる、[5]に記載の染色方法。
[7] 前記染色工程Xと前記染色工程Hを経た前記細胞又は組織に対して、前記細胞又は組織に含まれる酸性物質を染色する染色工程Eをさらに有する、[3]〜[6]の何れか一項に記載の染色方法。
[8] 前記染色工程Eにおいて、エオジンを含む染色液を用いて前記酸性物質を染色する、[7]に記載の染色方法。
[9] 同一の組織切片に対して、前記染色工程Xと、HE染色を行う工程と、を有する[1]に記載の染色方法。
[10] 同一の細胞検体に対して、前記染色工程Xと、パパニコロウ染色を行う工程と、を有する[1]に記載の染色方法。
[11] 同一の血液標本に対して、前記染色工程Xと、ギムザ染色を行う工程と、を有する[1]に記載の染色方法。
[12] 下記の式(1)〜(5)で表される化合物の群から選ばれる1種以上の化合物を含む、染色剤。
[In formula (1), at least one of six hydrogen atoms is substituted with R, R is an amino group or a functional group having a hydrazine structure at the end, and n is an integer of 1 to 6. , A hydrogen atom not substituted with R may be substituted with any substituent;
In formula (2), at least one of the 10 hydrogen atoms is substituted with R, R is an amino group or a functional group having a hydrazine structure at the end, and n is an integer of 1 to 10, A hydrogen atom not substituted with R may be substituted with any substituent;
In formula (3), at least one of the eight hydrogen atoms is substituted with R, R is a functional group having an amino group or a hydrazine structure at the end, and n is an integer of 1 to 8, A hydrogen atom not substituted with R may be substituted with any substituent;
In formula (4), the four hydrogen atoms at the 3, 4, 5, 6 positions of the diaminobenzene structure may be substituted with an arbitrary substituent, and the hydrogen atoms at the 3, 4 positions are removed to form carbon. The cycloalkane Q of formula 4-7 may be condensed, and one or more methylene groups constituting the cycloalkane Q are a (—O—) group or (— Optionally substituted by an NH-) group;
In formula (5), at least one of the three hydrogen atoms of benzofurazan is substituted with R, R is a functional group having an amino group or a hydrazine structure at the end, and n is an integer of 1 to 3 And a hydrogen atom not substituted with R may be substituted with any substituent. ]
[2] The staining according to [1], including an oxidation treatment step in which at least a part of hydroxyl groups of the polysaccharide contained in the cells or tissues is changed to aldehyde groups by oxidizing the cells or tissues in advance. Method.
[3] The staining method according to [1] or [2], which includes a staining step H for staining a basic substance contained in the cell or tissue before or after the staining step X.
[4] The staining method according to [3], wherein in the staining step H, the basic substance is stained with a staining solution containing hematoxylin.
[5] The staining according to [1] or [2], wherein the staining step X and the staining step H for staining a basic substance contained in the cell or tissue are simultaneously performed on the cell or tissue. Method.
[6] The staining method according to [5], wherein a staining solution containing at least one compound selected from the group of compounds represented by the formulas (1) to (5) and hematoxylin is used.
[7] Any of [3] to [6], further comprising a staining step E for staining the acidic substance contained in the cells or tissues with respect to the cells or tissues that have passed through the staining step X and the staining step H The staining method according to claim 1.
[8] The staining method according to [7], wherein, in the staining step E, the acidic substance is stained with a staining solution containing eosin.
[9] The staining method according to [1], including the staining step X and a step of performing HE staining on the same tissue section.
[10] The staining method according to [1], comprising the staining step X and a step of performing Papanicolaou staining on the same cell specimen.
[11] The staining method according to [1], including the staining step X and a step of performing Giemsa staining on the same blood specimen.
[12] A staining agent comprising one or more compounds selected from the group of compounds represented by the following formulas (1) to (5).

[式(1)中、6個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜6の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよく;
式(2)中、10個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜10の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよく;
式(3)中、8個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜8の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよく;
式(4)中、ジアミノベンゼン構造の3,4,5,6位の4個の水素原子は任意の置換基で置換されていてもよく、前記3,4位の水素原子が除かれて炭素数4〜7のシクロアルカンQが縮合していてもよく、前記シクロアルカンQを構成する1つ以上のメチレン基は、酸素同士が隣接する場合を除いて、(−O−)基又は(−NH−)基によって置換されていてもよく;
式(5)中、ベンゾフラザンが有する3個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜3の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよい。]
[13] さらにヘマトキシリンが含まれている、[12]に記載の染色剤。
[14] [12]又は[13]に記載の染色剤を有する、染色キット。
[15] 前記染色剤とヘマトキシリンを含む染色剤とを有する、[14]に記載の染色キット。
[16] エオジンを含む染色剤をさらに有する、[14]又は[15]に記載の染色キット。
[In formula (1), at least one of six hydrogen atoms is substituted with R, R is an amino group or a functional group having a hydrazine structure at the end, and n is an integer of 1 to 6. , A hydrogen atom not substituted with R may be substituted with any substituent;
In formula (2), at least one of the 10 hydrogen atoms is substituted with R, R is an amino group or a functional group having a hydrazine structure at the end, and n is an integer of 1 to 10, A hydrogen atom not substituted with R may be substituted with any substituent;
In formula (3), at least one of the eight hydrogen atoms is substituted with R, R is a functional group having an amino group or a hydrazine structure at the end, and n is an integer of 1 to 8, A hydrogen atom not substituted with R may be substituted with any substituent;
In formula (4), the four hydrogen atoms at the 3, 4, 5, 6 positions of the diaminobenzene structure may be substituted with an arbitrary substituent, and the hydrogen atoms at the 3, 4 positions are removed to form carbon. The cycloalkane Q of formula 4-7 may be condensed, and one or more methylene groups constituting the cycloalkane Q are a (—O—) group or (— Optionally substituted by an NH-) group;
In formula (5), at least one of the three hydrogen atoms of benzofurazan is substituted with R, R is a functional group having an amino group or a hydrazine structure at the end, and n is an integer of 1 to 3 And a hydrogen atom not substituted with R may be substituted with any substituent. ]
[13] The staining agent according to [12], further comprising hematoxylin.
[14] A staining kit comprising the staining agent according to [12] or [13].
[15] The staining kit according to [14], comprising the staining agent and a staining agent containing hematoxylin.
[16] The staining kit according to [14] or [15], further including a staining agent containing eosin.

本発明の染色方法によれば、染色対象の細胞又は組織に含まれるアルデヒド基を有する物質に対して、前記式(1)〜(5)で表される化合物を結合させ、前記化合物に由来する青色の蛍光を観測することにより、前記細胞又は組織内における前記物質に関する情報を得ることができる。また、本発明の染色方法と、HE染色、パパニコロウ染色、ギムザ染色等の従来の染色方法との両方を、同一の細胞又は同一の組織に対して実施することができる。これにより、例えば、同一の組織切片から、HE染色による組織形態に関する情報と、前記青色の蛍光観測による前記物質に関する情報とを得ることができる。つまり、従来は異なる2枚の組織切片について個別に行われていた2種類の染色を、1枚の同一組織切片について2種類の染色を同時に行うことができるので、病理診断をより迅速に且つより正確に実施することができる。   According to the staining method of the present invention, the compound represented by the formulas (1) to (5) is bound to a substance having an aldehyde group contained in a cell or tissue to be stained, and is derived from the compound. By observing blue fluorescence, information on the substance in the cell or tissue can be obtained. In addition, both the staining method of the present invention and conventional staining methods such as HE staining, Papanicolaou staining, Giemsa staining, and the like can be performed on the same cells or the same tissues. Thereby, for example, information on the tissue morphology by HE staining and information on the substance by the blue fluorescence observation can be obtained from the same tissue section. In other words, since two types of staining that were conventionally performed individually for two different tissue sections can be performed simultaneously for two types of staining for the same tissue section, pathological diagnosis can be performed more quickly and more easily. Can be implemented accurately.

本発明の染色方法における処理及び工程の順序の一例を示したフローチャートである。It is the flowchart which showed an example of the order of the process and process in the dyeing | staining method of this invention. 実施例1で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 1 with the fluorescence microscope. 実施例2で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。4 is a fluorescence image obtained by observing the tissue section stained in Example 2 with a fluorescence microscope. 実施例3で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 3 with the fluorescence microscope. 実施例4で染色した組織切片を光学顕微鏡で観察した透過画像である。It is the transmission image which observed the tissue section dye | stained in Example 4 with the optical microscope. 実施例4で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 4 with the fluorescence microscope. 実施例4で染色した組織切片の蛍光顕微鏡で観察した蛍光画像である。4 is a fluorescence image of a tissue section stained in Example 4 observed with a fluorescence microscope. 実施例5で染色した組織切片を光学顕微鏡で観察した透過画像である。It is the transmission image which observed the tissue section dye | stained in Example 5 with the optical microscope. 実施例5で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 5 with the fluorescence microscope. 実施例6で染色した組織切片を光学顕微鏡で観察した透過画像である。It is the transmission image which observed the tissue section dye | stained in Example 6 with the optical microscope. 実施例6で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 6 with the fluorescence microscope. 実施例7で染色した組織切片を光学顕微鏡で観察した透過画像である。It is the transmission image which observed the tissue section dye | stained in Example 7 with the optical microscope. 実施例7で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 7 with the fluorescence microscope. 実施例8で染色した組織切片を光学顕微鏡で観察した透過画像である。It is the transmission image which observed the tissue section dye | stained in Example 8 with the optical microscope. 実施例8で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 8 with the fluorescence microscope. 実施例9で染色した組織切片を光学顕微鏡で観察した透過画像である。It is the transmission image which observed the tissue section dye | stained in Example 9 with the optical microscope. 実施例9で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 9 with the fluorescence microscope. 実施例10で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 10 with the fluorescence microscope. 実施例10で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 10 with the fluorescence microscope. 実施例11で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 11 with the fluorescence microscope. 実施例11で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 11 with the fluorescence microscope. 実施例12で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 12 with the fluorescence microscope. 実施例12で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 12 with the fluorescence microscope. 実施例13で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 13 with the fluorescence microscope. 実施例13で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 13 with the fluorescence microscope. 実施例14で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 14 with the fluorescence microscope. 実施例14で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 14 with the fluorescence microscope. 実施例15で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 15 with the fluorescence microscope. 実施例15で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 15 with the fluorescence microscope. 実施例16で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 16 with the fluorescence microscope. 実施例16で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 16 with the fluorescence microscope. 実施例17で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 17 with the fluorescence microscope. 実施例17で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 17 with the fluorescence microscope. 実施例18で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 18 with the fluorescence microscope. 実施例19で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 19 with the fluorescence microscope. 実施例19で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 19 with the fluorescence microscope. 実施例20で染色した組織切片を顕微鏡で観察した透過画像である。It is the transmission image which observed the tissue section dye | stained in Example 20 with the microscope. 実施例20で染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。It is the fluorescence image which observed the tissue section dye | stained in Example 20 with the fluorescence microscope. 比較実験において、PAS染色した組織切片を光学顕微鏡で観察した透過画像である。In a comparative experiment, it is the transmission image which observed the tissue section which carried out PAS dyeing | staining with the optical microscope. 比較実験において、CHO染色した組織切片を蛍光顕微鏡で観察した蛍光画像である。In a comparative experiment, it is the fluorescence image which observed the tissue section dye | stained by CHO with the fluorescence microscope.

《染色対象》
本発明の染色方法が染色対象とする細胞又は組織は、生体由来の細胞又は組織であれば特に限定されず、ヒトを含めた動物に由来する細胞又は組織を染色する方法として好適である。前記細胞又は組織の種類や形態は特に限定されず、生体から分離された生きた状態の細胞又は組織であってもよいし、生体から分離された後で固定、凍結、パラフィン包埋、切片化等の従来の染色方法における公知の前処理が施された細胞又は組織であってもよい。
《Dyeing target》
The cell or tissue to be stained by the staining method of the present invention is not particularly limited as long as it is a living cell or tissue, and is suitable as a method for staining cells or tissue derived from animals including humans. The type and form of the cell or tissue is not particularly limited, and may be a living cell or tissue separated from a living body, or fixed, frozen, paraffin-embedded, sectioned after being separated from a living body. It may be a cell or tissue subjected to a known pretreatment in a conventional staining method such as the above.

《染色方法》
本発明の第一態様は、下記の式(1)で表される化合物、式(2)で表される化合物、式(3)で表される化合物、式(4)で表される化合物及び式(5)で表される化合物の群から選ばれる1種以上の化合物を含む染色液によって、細胞又は組織を染色し、前記細胞又は組織に含まれるアルデヒド基を有する物質を染色する染色工程Xを有する、染色方法である。
《Dyeing method》
A first aspect of the present invention includes a compound represented by the following formula (1), a compound represented by the formula (2), a compound represented by the formula (3), a compound represented by the formula (4), and A staining step X of staining a cell or tissue with a staining solution containing one or more compounds selected from the group of compounds represented by formula (5), and staining a substance having an aldehyde group contained in the cell or tissue. This is a dyeing method.

[式(1)中、6個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜6の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよく;
式(2)中、10個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜10の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよく;
式(3)中、8個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜8の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよく;
式(4)中、ジアミノベンゼン構造の3,4,5,6位の4個の水素原子は任意の置換基で置換されていてもよく、前記3,4位の水素原子が除かれて炭素数4〜7のシクロアルカンQが縮合していてもよく、前記シクロアルカンQを構成するメチレン基の1つ以上が、酸素同士が隣接する場合を除いて、(−O−)基又は(−NH−)基によって置換されていてもよく;
式(5)中、ベンゾフラザンが有する3個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜3の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよい。]
[In formula (1), at least one of six hydrogen atoms is substituted with R, R is an amino group or a functional group having a hydrazine structure at the end, and n is an integer of 1 to 6. , A hydrogen atom not substituted with R may be substituted with any substituent;
In formula (2), at least one of the 10 hydrogen atoms is substituted with R, R is an amino group or a functional group having a hydrazine structure at the end, and n is an integer of 1 to 10, A hydrogen atom not substituted with R may be substituted with any substituent;
In formula (3), at least one of the eight hydrogen atoms is substituted with R, R is a functional group having an amino group or a hydrazine structure at the end, and n is an integer of 1 to 8, A hydrogen atom not substituted with R may be substituted with any substituent;
In formula (4), the four hydrogen atoms at the 3, 4, 5, 6 positions of the diaminobenzene structure may be substituted with an arbitrary substituent, and the hydrogen atoms at the 3, 4 positions are removed to form carbon. 4 to 7 cycloalkanes Q may be condensed, and one or more of the methylene groups constituting the cycloalkanes Q are (—O—) groups or (— Optionally substituted by an NH-) group;
In formula (5), at least one of the three hydrogen atoms of benzofurazan is substituted with R, R is a functional group having an amino group or a hydrazine structure at the end, and n is an integer of 1 to 3 And a hydrogen atom not substituted with R may be substituted with any substituent. ]

前記式(1)〜(5)中、環構造に結合する水素原子は任意の置換基によって置換されていてもよい。この任意の置換基としては、例えば、炭素数1〜8の直鎖又は分岐鎖の脂肪族飽和炭化水素基、炭素数1〜8の直鎖又は分岐鎖の脂肪族不飽和炭化水素基、スルホン酸基(−SOH)、カルボン酸基(−COOH)、アセチル基(−COCH)、炭素数1〜4のアルコキシ基、ハロゲン原子、水酸基等が挙げられる。さらに、前記任意の置換基として、前記脂肪族飽和炭化水素基又は前記脂肪族不飽和炭化水素基を構成する1つ以上のメチレン基が、酸素原子同士が結合する場合を除いて、−O−、−C(=O)−、−C(=O)O−、−O−C(=O)−、又は−NH−によって置換された置換基も挙げられる。
前記任意の置換基が負電荷を有する酸基である場合、その酸基はナトリウム塩、カリウム塩等の塩を形成していてもよい。前記任意の置換基が水素原子を有する場合、その水素原子はハロゲン原子によって置換されていてもよい。
In the formulas (1) to (5), the hydrogen atom bonded to the ring structure may be substituted with any substituent. Examples of the optional substituent include, for example, a linear or branched aliphatic saturated hydrocarbon group having 1 to 8 carbon atoms, a linear or branched aliphatic unsaturated hydrocarbon group having 1 to 8 carbon atoms, and sulfone. Examples thereof include an acid group (—SO 3 H), a carboxylic acid group (—COOH), an acetyl group (—COCH 3 ), an alkoxy group having 1 to 4 carbon atoms, a halogen atom, and a hydroxyl group. Further, as the optional substituent, one or more methylene groups constituting the aliphatic saturated hydrocarbon group or the aliphatic unsaturated hydrocarbon group may be —O— except that oxygen atoms are bonded to each other. And a substituent substituted by -C (= O)-, -C (= O) O-, -OC (= O)-, or -NH-.
When the arbitrary substituent is an acid group having a negative charge, the acid group may form a salt such as a sodium salt or a potassium salt. When the arbitrary substituent has a hydrogen atom, the hydrogen atom may be substituted with a halogen atom.

前記式(1)〜(5)中、環構造に結合する水素原子を置換する前記R(官能基R)は、アミノ基(−NH)又はヒドラジン構造(−NH−NH)を末端に有する。
官能基Rは炭素数1〜10の2価の有機基を含んでいてもよい。
官能基Rとしては、例えば、−(CH−NH、−(CH−NH−NH、−NH−(CH−NH、等が挙げられる。これらの官能基Rにおいて、rは0〜10の整数であり、1つ以上のメチレン基が含まれる場合、各メチレン基は、酸素同士が結合する場合を除いて、−O−、−C(=O)−、−C(=O)O−、−O−C(=O)−、−NH−、又は−S−によって置換されていてもよい。
前記式(1)〜(5)に複数の官能基Rが存在する場合、それらの官能基Rは互いに同じであってもよいし、異なっていてもよい。
In the formulas (1) to (5), the R (functional group R) that replaces the hydrogen atom bonded to the ring structure is terminated with an amino group (—NH 2 ) or a hydrazine structure (—NH—NH 2 ). Have.
The functional group R may contain a divalent organic group having 1 to 10 carbon atoms.
Examples of the functional group R include — (CH 2 ) r —NH 2 , — (CH 2 ) r —NH—NH 2 , —NH— (CH 2 ) r —NH 2 , and the like. In these functional groups R, r is an integer of 0 to 10, and when one or more methylene groups are included, each methylene group is —O—, —C (, except when oxygens are bonded to each other. ═O) —, —C (═O) O—, —O—C (═O) —, —NH—, or —S— may be substituted.
When a plurality of functional groups R are present in the formulas (1) to (5), these functional groups R may be the same as or different from each other.

式(4)のジアミノベンゼン構造に縮合していてもよい前記シクロアルカンQとしては、1つ以上のメチレン基が酸素に置換されていてもよい、炭素数5〜6のシクロアルカンが好ましい。このような縮合環を有する構造の具体例として、1,2−メチレンジオキシベンゼン構造が挙げられる。   As the cycloalkane Q which may be condensed to the diaminobenzene structure of the formula (4), a cycloalkane having 5 to 6 carbon atoms in which one or more methylene groups may be substituted with oxygen is preferable. A specific example of a structure having such a condensed ring is a 1,2-methylenedioxybenzene structure.

前記式(1)〜(5)で表される化合物(以下、化合物(1)〜(5)と記す。)は、アミノ基又はヒドラジン構造を末端に有する官能基Rを1つ以上備えている。このため、化合物(1)〜(5)から選ばれる何れか1種以上の化合物を含む染色液を染色対象の細胞又は組織に接触させて染色する(以下、CHO染色と記す。)ことにより、前記細胞又は前記組織に含まれるアルデヒド基(−CHO)を有する物質に対して、化合物(1)〜(5)の官能基Rを結合させることができる。   The compounds represented by the formulas (1) to (5) (hereinafter referred to as compounds (1) to (5)) have one or more functional groups R having an amino group or a hydrazine structure at the terminal. . For this reason, a staining solution containing any one or more compounds selected from the compounds (1) to (5) is contacted with a cell or tissue to be stained and stained (hereinafter referred to as CHO staining). The functional group R of the compounds (1) to (5) can be bound to a substance having an aldehyde group (—CHO) contained in the cell or the tissue.

CHO染色によって化合物(1)〜(5)が結合する前記物質は、本来的にはアルデヒド基を有さずとも、細胞又は組織を染色前に前処理することによってアルデヒド基が形成された物質であってもよい。例えば、組織切片中に存在し、多糖類を含む粘液を生産する細胞(腺細胞)をCHO染色する場合、組織切片を過ヨウ素酸で処理し、組織切片中に含まれる多糖類を酸化することにより、多糖類分子中の水酸基をアルデヒド基に酸化する前処理が挙げられる。この前処理を説明する反応式を下記に示す。下記の反応式中、R及びRは多糖類の分子鎖の一部を表す。 The substance to which the compounds (1) to (5) bind by CHO staining is a substance in which an aldehyde group is formed by pretreatment of cells or tissues before staining, even though it does not inherently have an aldehyde group. There may be. For example, when cells (gland cells) that are present in tissue sections and produce mucus containing polysaccharides are stained with CHO, the tissue sections are treated with periodic acid to oxidize the polysaccharides contained in the tissue sections. And a pretreatment for oxidizing a hydroxyl group in a polysaccharide molecule to an aldehyde group. The reaction formula explaining this pretreatment is shown below. In the following reaction formula, R 1 and R 2 represent a part of the molecular chain of the polysaccharide.

前記多糖類としては、酸化剤によって酸化されてアルデヒド基を生成する多糖類であれば特に限定されず、例えば、グルコースを構成単位に有する多糖類が挙げられる。具体的には、例えば、グリコーゲン、粘液たんぱく、糖蛋白、糖脂質等が挙げられる。   The polysaccharide is not particularly limited as long as it is a polysaccharide that is oxidized by an oxidizing agent to generate an aldehyde group, and examples thereof include a polysaccharide having glucose as a structural unit. Specific examples include glycogen, mucus protein, glycoprotein, glycolipid and the like.

CHO染色によって前記細胞又は前記組織に含まれるアルデヒド基(−CHO)を有する物質と、化合物(1)〜(5)の何れかをシッフ反応により結合させた後、形成された結合(シッフ塩基)を安定化する目的で、還元的アミノ化試薬を用いることができる。還元的アミノ化試薬でシッフ塩基を安定化することにより、化合物(1)〜(5)に由来する蛍光の発色を向上させることができる。
還元的アミノ化試薬としては、例えば、2−ピコリンボラン等が挙げられる。なかでも、2−ピコリンボランは溶媒の種類を問わずに使用でき、安定な化合物であるため好ましい。還元的アミノ化試薬はCHO染色で用いる化合物(1)〜(5)の何れかを含む染色液に適当な濃度で予め添加しておくことができる。
Formed after binding a substance having an aldehyde group (—CHO) contained in the cell or the tissue by CHO staining and any one of the compounds (1) to (5) by a Schiff reaction (Schiff base) For the purpose of stabilizing, a reductive amination reagent can be used. By stabilizing the Schiff base with a reductive amination reagent, the color development of the fluorescence derived from the compounds (1) to (5) can be improved.
Examples of the reductive amination reagent include 2-picoline borane. Among these, 2-picoline borane can be used regardless of the type of solvent and is preferable because it is a stable compound. The reductive amination reagent can be added in advance to a staining solution containing any one of the compounds (1) to (5) used in CHO staining at an appropriate concentration.

CHO染色で用いる化合物のうち、化合物(1)〜(3)及び化合物(5)は、それらの骨格構造自体が蛍光性を有する。化合物(4)は染色対象が有する物質のアルデヒド基と反応して環構造を形成することによって蛍光性を獲得する(後述の反応式を参照)。したがって、アルデヒド基を有する前記物質に結合した化合物(1)〜(5)は、光で励起された後に蛍光を発する。この蛍光を蛍光顕微鏡等で観測することにより、CHO染色した細胞又は組織におけるアルデヒド基を有する前記物質の分布を調べることができる。   Among the compounds used for CHO staining, compounds (1) to (3) and compound (5) have fluorescence in their skeleton structures themselves. Compound (4) acquires fluorescence by reacting with the aldehyde group of the substance possessed by the dyeing target to form a ring structure (see the reaction formula described below). Therefore, the compounds (1) to (5) bonded to the substance having an aldehyde group emit fluorescence after being excited by light. By observing this fluorescence with a fluorescence microscope or the like, the distribution of the substance having an aldehyde group in a CHO-stained cell or tissue can be examined.

下記の反応式は、化合物(4)の一例がアルデヒド基を有する物質と反応することにより、蛍光性の環構造を形成する様子を示している。下記の反応式中、Rは前記物質を構成する有機基を表す。 The following reaction formula shows how an example of the compound (4) reacts with a substance having an aldehyde group to form a fluorescent ring structure. In the following reaction formula, R 3 represents an organic group constituting the substance.

化合物(1)〜(5)が前記物質と結合した後に発する蛍光波長は、発光時の化合物の骨格構造に概ね依存し、365nm〜405nm付近の波長で励起され、可視領域の波長の蛍光として観測される。これらの蛍光波長は、既存のヘマトキシリン−エオジン染色(HE染色)、パパニコロウ染色、及びギムザ染色で使用される染色物質が励起波長(365nm〜405nm)で生じる可視領域波長の蛍光と重ならない。したがって、同一の染色対象について、既存の染色とCHO染色の両方を行うことができる。このことは病理検査の分野において極めて大きなメリットとなる。例えば、組織切片についてHE染色とCHO染色の両方を行うことにより、その組織切片をHE染色して着目した部位について、CHO染色で染まる物質の有無(例えば、多糖類を含む腺細胞の有無)を調べることができる。従来の病理検査においては、第一の組織切片についてHE染色を行い、精査すべき箇所が観察された場合には、第一の組織切片に隣接する第二の組織切片をPAS染色で染めて、その精査すべき箇所における多糖類の有無を調べる方法が行われている。この従来方法であると、第一の組織切片と第二の組織切片とは厳密には物理的な位置が異なる箇所を観察しているため、第一の組織切片に含まれる物質又は細胞が第二の組織切片には含まれていない、という事態が現実には起こりうる。このため、正確な病理診断を行えない事態が少なからず生じていた。また、2枚の組織切片について2種類の染色を個別に行うため、染色作業の時間やコストをより多く必要とした。しかしながら、本発明が提案するように、同一の組織切片についてHE染色、パパニコロウ染色及びギムザ染色等から選ばれる既存の染色と、CHO染色の両方を行うことによって、病理診断をより正確且つ迅速に行うことができる。さらに、従来の免疫染色法で用いられる巨大な抗体よりも細胞/又は組織に対する浸透性が高い低分子の化合物(1)〜(5)を用いているので、より高感度に目的の物質を染色することができる。   The fluorescence wavelength emitted after the compounds (1) to (5) are bonded to the substance depends largely on the skeletal structure of the compound at the time of light emission, and is excited at a wavelength in the vicinity of 365 nm to 405 nm and observed as fluorescence having a wavelength in the visible region. Is done. These fluorescence wavelengths do not overlap with the fluorescence in the visible wavelength range that occurs at the excitation wavelengths (365 nm to 405 nm) of the staining materials used in the existing hematoxylin-eosin staining (HE staining), Papanicolaou staining, and Giemsa staining. Therefore, both existing staining and CHO staining can be performed on the same staining target. This is a great advantage in the field of pathological examination. For example, by performing both HE staining and CHO staining on a tissue section, the presence or absence of a substance stained by CHO staining (for example, presence or absence of a gland cell containing a polysaccharide) is examined at a site of interest by HE staining of the tissue section. be able to. In the conventional pathological examination, HE staining is performed on the first tissue section, and when a portion to be examined is observed, a second tissue section adjacent to the first tissue section is stained with PAS staining, A method for examining the presence or absence of polysaccharides at the site to be examined is being carried out. In this conventional method, since the first tissue section and the second tissue section are strictly observed at different physical positions, the substances or cells contained in the first tissue section are the first. In reality, it can happen that it is not included in the second tissue section. For this reason, there are not a few situations in which accurate pathological diagnosis cannot be performed. Further, since two types of staining are separately performed on two tissue sections, more time and cost for staining work are required. However, as proposed by the present invention, pathological diagnosis is performed more accurately and rapidly by performing both the existing staining selected from HE staining, Papanicolaou staining, Giemsa staining, and the like and CHO staining on the same tissue section. be able to. Furthermore, since the low molecular weight compounds (1) to (5) having higher cell / tissue permeability than the giant antibody used in the conventional immunostaining method are used, the target substance is stained with higher sensitivity. can do.

CHO染色で用いる化合物(1)〜(5)は、前記物質に結合した後又は前に紫外線領域(365nm〜405nm付近)の波長で励起され、可視領域の波長の蛍光を発する。この蛍光は紫外線励起によって生じるので、可視光によって生じるHE染色等の既存の染色で用いられる染色物質の自家蛍光(赤色〜緑色)と区別可能であり、蛍光顕微鏡による観察に適している。また、通常の光学顕微鏡で可視光域を観察する場合にはほぼ無色であるので、HE染色等の既存の染色後の光学顕微鏡観察を妨げない。したがって、化合物(1)〜(5)によるCHO染色は、既存の染色とCHO染色の両方を同一の染色対象に対して行う場合に特に有用である。さらに、化合物(1)〜(5)は、ヘマトキシリンを含む染色液に混合して使用できること、従来のHE染色と同時にほぼ同じ手順でCHO染色を並行して行えること、CHO染色後に硬化剤で封入した後の退色が少ないのでCHO染色した標本を半永久的に保存できること、等の優れた利点を有する。
以下に、化合物(1)〜(5)の好適な具体例を示す。
The compounds (1) to (5) used in the CHO staining are excited with a wavelength in the ultraviolet region (around 365 nm to 405 nm) after or before binding to the substance, and emit fluorescence with a wavelength in the visible region. Since this fluorescence is generated by ultraviolet excitation, it can be distinguished from autofluorescence (red to green) of a staining substance used in existing staining such as HE staining caused by visible light, and is suitable for observation with a fluorescence microscope. Moreover, since it is almost colorless when observing a visible light region with a normal optical microscope, it does not disturb the existing optical microscope observation after staining such as HE staining. Therefore, CHO staining with compounds (1) to (5) is particularly useful when both existing staining and CHO staining are performed on the same staining object. Furthermore, compounds (1) to (5) can be used by mixing with a staining solution containing hematoxylin, can be used in parallel with CHO staining in parallel with conventional HE staining, and encapsulated with a curing agent after CHO staining. Since there is little fading after the treatment, the CHO-stained specimen can be stored semipermanently and has excellent advantages.
Specific examples of preferred compounds (1) to (5) are shown below.

(染色工程X)
染色工程Xの具体的な方法としては、例えば、化合物(1)〜(5)で表される化合物の群から選ばれる何れか1種以上の化合物を任意の濃度で含む染色液に、細胞又は組織を室温で15〜30分程度浸漬させた後、取り出し、過剰な化合物を水洗する方法が挙げられる。
前記染色液に含まれる前記1種以上の化合物の合計の濃度としては、例えば0.01g/L〜0.2g/Lが挙げられる。
前記1種以上の化合物が有するアミノ基又はヒドラジン構造が、前記細胞又は組織に含まれるアルデヒド基に反応してシッフ塩基を形成することが容易になる観点から、前記染色液のpHは酸性であることが好ましい。前記染色液のpHを酸性にするためは、例えば、前記染色液に塩酸を濃度0.02mol/L程度で添加することが好ましい。
さらに、シッフ塩基の安定化のため、還元的アミノ化試薬を添加することが望ましく、例えば2−ピコリンボランを濃度50mg/L程度となるように添加することが挙げられる。
前記染色液には、CHO染色を阻害しない範囲において、その他の任意成分が含まれてもよい。
(Dyeing process X)
As a specific method of the staining step X, for example, in a staining solution containing any one or more compounds selected from the group of compounds represented by the compounds (1) to (5) at an arbitrary concentration, cells or Examples include a method of immersing the tissue at room temperature for about 15 to 30 minutes and then removing the tissue and washing excess compound with water.
Examples of the total concentration of the one or more compounds contained in the staining liquid include 0.01 g / L to 0.2 g / L.
From the viewpoint of facilitating the formation of a Schiff base by reacting the amino group or hydrazine structure of the one or more compounds with an aldehyde group contained in the cell or tissue, the pH of the staining solution is acidic. It is preferable. In order to make the pH of the staining solution acidic, for example, hydrochloric acid is preferably added to the staining solution at a concentration of about 0.02 mol / L.
Furthermore, it is desirable to add a reductive amination reagent in order to stabilize the Schiff base. For example, 2-picoline borane may be added to a concentration of about 50 mg / L.
The staining solution may contain other optional components as long as the CHO staining is not inhibited.

(酸化処理工程)
本発明の第一態様の染色方法は、染色工程Xの前に、染色対象である細胞又は組織を予め酸化処理することによって、前記細胞又は組織に含まれる多糖類が有する水酸基の少なくとも一部をアルデヒド基に変化させる酸化処理工程を有していてもよい。酸化処理工程は、染色工程Xに含まれるサブ工程と見なしてもよいし、染色工程Xとは独立した工程と見なしてもよい。
(Oxidation process)
In the staining method according to the first aspect of the present invention, before the staining step X, the cells or tissues to be stained are oxidized in advance, so that at least a part of the hydroxyl groups of the polysaccharide contained in the cells or tissues is obtained. You may have the oxidation process process changed to an aldehyde group. The oxidation treatment process may be regarded as a sub-process included in the dyeing process X, or may be regarded as a process independent of the dyeing process X.

前記酸化処理工程の方法としては、例えば、多糖類を染色する従来のPAS染色で行われる公知の酸化処理方法が適用できる。その具体的な方法としては、例えば、公知の酸化剤に染色対象の細胞又は組織を室温で15〜30分程度浸漬した後、軽く水洗する方法が挙げられる。酸化剤の具体例は後述する。   As a method of the oxidation treatment step, for example, a known oxidation treatment method performed by conventional PAS staining for staining polysaccharides can be applied. The specific method includes, for example, a method in which a cell or tissue to be stained is immersed in a known oxidizing agent for about 15 to 30 minutes at room temperature and then lightly washed with water. Specific examples of the oxidizing agent will be described later.

(染色工程H)
本発明の第一態様の染色方法は、染色工程Xの前又は後に、前記細胞又は組織に含まれる塩基性物質を染色する染色工程Hを有していてもよい。
同一の細胞又は組織試料に対して、染色工程Xと染色工程Hの両方を行うことができる。
前記塩基性物質は、前記細胞又は組織中で負(−)に帯電している部位、例えばリン酸基、カルボキシル基を有する物質であり、例えば、細胞核が挙げられる。
前記塩基性物質を染色する方法としては、従来のヘマトキシリン(Hematoxylin)を色素(色ラック)として染色するヘマトキシリン染色(H染色)が好ましい。H染色はヘマトキシリンを含む染色液を用いて従来方法と同様に行うことができる。
また、H染色に代えて、メチルグリーンやケルンエヒトロートを用いた核染色によって前記塩基性物質を染色してもよい。メチルグリーン及びケルンエヒトロートもヘマトキシリンと同様に青色の蛍光を発生せず、CHO染色を妨げることがない。
(Dyeing process H)
The staining method of the first aspect of the present invention may have a staining step H for staining a basic substance contained in the cells or tissues before or after the staining step X.
Both staining step X and staining step H can be performed on the same cell or tissue sample.
The basic substance is a substance having a negative (-) charge in the cell or tissue, such as a phosphate group or a carboxyl group, and examples thereof include a cell nucleus.
As a method for staining the basic substance, the conventional hematoxylin staining (H staining) in which hematoxylin is stained as a pigment (color rack) is preferable. H staining can be performed in the same manner as in the conventional method using a staining solution containing hematoxylin.
Further, instead of H staining, the basic substance may be stained by nuclear staining using methyl green or Cologne Echlot funnel. Similarly to hematoxylin, methyl green and cologne Echlot funnel do not emit blue fluorescence and do not interfere with CHO staining.

本発明の第一態様の染色方法において、染色工程Xと染色工程Hを同時に行ってもよい。例えば、CHO染色とH染色を同時に行うことができる。CHO染色とH染色を同時に行う方法としては、CHO染色の染色液とH染色の染色液とを混合した混合染色液を細胞又は組織に接触させて同時に染色する方法が挙げられる。具体的には、例えば、化合物(1)〜(5)で表される化合物の群から選ばれる何れか1種以上の化合物及びヘマトキシリンをそれぞれ任意の濃度で含む混合染色液に細胞又は組織を浸漬させて染色する方法が挙げられる。   In the staining method of the first aspect of the present invention, the staining step X and the staining step H may be performed simultaneously. For example, CHO staining and H staining can be performed simultaneously. Examples of the method for simultaneously performing CHO staining and H staining include a method in which a mixed staining solution obtained by mixing a staining solution for CHO staining and a staining solution for H staining is brought into contact with cells or tissues and stained simultaneously. Specifically, for example, cells or tissues are immersed in a mixed staining solution containing any one or more compounds selected from the group of compounds represented by compounds (1) to (5) and hematoxylin at an arbitrary concentration. And dyeing them.

(染色工程E)
本発明の第一態様の染色方法は、染色工程Xの前又は後に、或いは、染色工程Hの前又は後に、前記細胞又は組織に含まれる酸性物質を染色する染色工程Eをさらに有していてもよい。
同一の細胞又は組織試料に対して、染色工程X及び染色工程Hの少なくとも一方と、染色工程Eとを行うことができる。
前記酸性物質は、前記細胞又は組織中で正(+)に帯電している部位を有する物質であり、例えば、細胞質の構成成分が挙げられる。
前記酸性物質を染色する方法は、例えば、従来のエオジン(Eosin)を色素(カラーアニオン)として、前記細胞又は組織の陽性荷電部に結合して赤色に染色するエオジン染色(E染色)が好ましい。E染色は水溶性エオジンYを含む染色液を用いて従来方法と同様に行うことができる。
(Dyeing process E)
The staining method according to the first aspect of the present invention further includes a staining step E for staining an acidic substance contained in the cells or tissues before or after the staining step X or before or after the staining step H. Also good.
At least one of the staining step X and the staining step H and the staining step E can be performed on the same cell or tissue sample.
The acidic substance is a substance having a positive (+) charged site in the cell or tissue, and examples thereof include a cytoplasmic component.
The method for staining the acidic substance is preferably, for example, eosin staining (E staining) in which conventional eosin is used as a dye (color anion) and is dyed red by binding to a positively charged portion of the cell or tissue. E staining can be performed in the same manner as in the conventional method using a staining solution containing water-soluble eosin Y.

従来のヘマトキシリン−エオジン染色(HE染色)は、染色工程Hの後に染色工程Eを行うので、本発明の第一態様の染色方法においても、染色工程Hの後に染色工程Eを行う順序が好ましい。この順序において、染色工程X(例えばCHO染色)は、染色工程H(例えばH染色)の前に又は後に、或いは染色工程E(例えばE染色)の後に行うことができる。染色工程X、染色工程H、染色工程Eを行う順序の例を図1のフローチャートに示す。   Since the conventional hematoxylin-eosin staining (HE staining) performs the staining step E after the staining step H, the order in which the staining step E is performed after the staining step H is also preferable in the staining method of the first aspect of the present invention. In this order, the dyeing process X (eg CHO dyeing) can be performed before or after the dyeing process H (eg H dyeing) or after the dyeing process E (eg E dyeing). An example of the order of performing the dyeing process X, the dyeing process H, and the dyeing process E is shown in the flowchart of FIG.

(封入工程)
上述の各染色工程の後、アルコール濃度が段階的に高められたアルコール溶液に前記細胞又は組織を浸して脱水し、キシロールによる透徹処理を行い、封入することができる。
封入された前記細胞又は組織を蛍光顕微鏡で観察すると、前記細胞又は組織を構成するアルデヒド基に結合した化合物(1)〜(5)に由来する青色の蛍光を測定することができる。例えば、酸化された多糖類を含む腺細胞が青色の蛍光で染まった様子が観察される。
また、封入された前記細胞又は組織を光学顕微鏡で観察すると、染色工程H、染色工程Eで用いた色素(染色剤)に由来する色が観察される。例えば、H染色によって青色に染まった細胞核、E染色によって赤色に染まった細胞質が観察される。
(Encapsulation process)
After each of the above-mentioned staining steps, the cells or tissues can be immersed in an alcohol solution whose alcohol concentration has been increased stepwise, dehydrated, and subjected to a penetration treatment with xylol, followed by encapsulation.
When the encapsulated cell or tissue is observed with a fluorescence microscope, blue fluorescence derived from the compounds (1) to (5) bonded to the aldehyde group constituting the cell or tissue can be measured. For example, it is observed that glandular cells containing oxidized polysaccharides are stained with blue fluorescence.
Further, when the enclosed cells or tissues are observed with an optical microscope, a color derived from the dye (staining agent) used in the staining process H and the staining process E is observed. For example, cell nuclei stained blue by H staining and cytoplasm stained red by E staining are observed.

<パパニコロウ染色、ギムザ染色との併用>
後述する実施例で示すように、本発明の第一態様の染色方法において、同一の染色対象に対して、従来のパパニコロウ染色又はギムザ染色を、染色工程Xの前又は後に行うことができる。パパニコロウ染色とCHO染色、及びギムザ染色とCHO染色は、それぞれ互いに干渉せずに、各染色を単独で行う場合と同様の良好な染色結果を示す。
<Combination with Papanicolaou staining and Giemsa staining>
As shown in Examples described later, in the staining method of the first aspect of the present invention, conventional Papanicolaou staining or Giemsa staining can be performed on the same staining object before or after the staining step X. Papanicolaou dyeing and CHO dyeing, and Giemsa dyeing and CHO dyeing do not interfere with each other, and show the same good dyeing results as when each dyeing is carried out independently.

《染色剤》
本発明の第二態様は、前記式(1)で表される化合物、前記式(2)で表される化合物、前記式(3)で表される化合物、前記式(4)で表される化合物及び前記式(5)で表される化合物の群から選ばれる1種以上の化合物(1)〜(5)を含む染色剤である。
前記染色剤の形態は、化合物(1)〜(5)を含む粉末又は錠剤等の固体であってもよいし、化合物(1)〜(5)が任意の溶媒に任意の濃度で溶解又は分散された液体であってもよい。前記溶媒は化合物(1)〜(5)を溶解又は分散可能なものであれば特に限定されず、例えば、精製水、メタノール、エタノール、イソプロパノール等の第1級アルコール、アセトニトリル、DMSO、ヘキサン等のその他の有機溶媒等が挙げられる。
第二態様の染色剤には、さらにヘマトキシリンが含まれていてもよい。
《Dyeing agent》
The second aspect of the present invention is represented by the compound represented by the formula (1), the compound represented by the formula (2), the compound represented by the formula (3), and the formula (4). A staining agent comprising a compound and one or more compounds (1) to (5) selected from the group of compounds represented by formula (5).
The form of the staining agent may be a solid such as a powder or a tablet containing the compounds (1) to (5), and the compounds (1) to (5) are dissolved or dispersed in any solvent at any concentration. Liquid may be used. The solvent is not particularly limited as long as it can dissolve or disperse the compounds (1) to (5). For example, purified water, primary alcohols such as methanol, ethanol, isopropanol, acetonitrile, DMSO, hexane, etc. Other organic solvents are mentioned.
The staining agent of the second aspect may further contain hematoxylin.

《染色キット》
本発明の第三態様は、第二態様の染色剤を有する染色キットである。
前記染色キットは、染色前の組織切片を予め酸化処理する酸化剤を有していてもよい。
前記酸化剤としては、例えば、多糖類を酸化してアルデヒド基を生成する化合物Oxが挙げられる。具体的な化合物Oxとしては、例えば、過ヨウ素酸ナトリウム等の化合物が挙げられる。前記酸化剤の形態は、前記化合物Oxを含む粉末又は錠剤等の固体であってもよいし、前記化合物Oxが任意の溶媒に任意の濃度で溶解又は分散された液体であってもよい。
前記染色キットの使用前において、第二態様の染色剤と前記酸化剤とは個別の容器内に入れて保管されることが好ましい。
《Dyeing kit》
The third aspect of the present invention is a staining kit having the staining agent of the second aspect.
The staining kit may have an oxidizing agent that oxidizes a tissue section before staining in advance.
Examples of the oxidizing agent include a compound Ox that oxidizes a polysaccharide to generate an aldehyde group. Specific examples of the compound Ox include compounds such as sodium periodate. The form of the oxidizing agent may be a solid such as a powder or a tablet containing the compound Ox, or may be a liquid in which the compound Ox is dissolved or dispersed in an arbitrary solvent at an arbitrary concentration.
Prior to use of the staining kit, the staining agent of the second aspect and the oxidizing agent are preferably stored in separate containers.

前記染色キットは、ヘマトキシリンを含む染色剤Hを他の染色剤とは別に有していてもよい。染色剤Hの形態は、ヘマトキシリンを含む粉末又は錠剤等の固体であってもよいし、ヘマトキシリンが任意の溶媒に任意の濃度で溶解又は分散された液体であってもよい。
前記染色キットにおいて、ヘマトキシリンは第二態様の染色剤の一成分として第二態様の染色剤に任意の濃度で含まれていてもよい。
The staining kit may have a stain H containing hematoxylin separately from other stains. The form of the staining agent H may be a solid such as a powder or tablet containing hematoxylin, or may be a liquid in which hematoxylin is dissolved or dispersed in an arbitrary solvent at an arbitrary concentration.
In the staining kit, hematoxylin may be included in the staining agent of the second aspect at any concentration as a component of the staining agent of the second aspect.

前記染色キットは、エオジンを含む染色剤Eを有していてもよい。染色剤Eに含まれるエオジンの形態は、エオジンを含む粉末又は錠剤等の固体であってもよいし、エオジンが任意の溶媒に任意の濃度で溶解又は分散された液体であってもよい。
前記染色キットの使用前において、第二態様の染色剤及び染色剤Hと、染色剤Eとは個別の容器内に入れて保管されることが好ましい。
The staining kit may have a staining agent E containing eosin. The form of eosin contained in staining agent E may be a solid such as powder or tablet containing eosin, or may be a liquid in which eosin is dissolved or dispersed in an arbitrary solvent at an arbitrary concentration.
Prior to use of the staining kit, the staining agent and staining agent H of the second aspect, and the staining agent E are preferably stored in separate containers.

前記染色キットには、細胞又は組織切片を染色するために使用される市販の染色キットに含まれる、任意のその他の薬剤、容器、取り扱い説明書等が同梱されていてもよい。   Any other drug, container, instruction manual, and the like included in a commercially available staining kit used for staining cells or tissue sections may be included in the staining kit.

[試薬の調製]
<CHO染色剤(1)>
50%エチルアルコール(10ml)に、7−アミノ−4−メチルクマリン(AMC)(0.01g)と1mol/L塩酸(100μl)を溶解した。得られた溶液(約10ml)に対して、エチルアルコール(10ml)に2−ピコリンボラン(0.05g)を溶解した溶液(0.5ml)を添加し、CHO染色剤(1)を調製した。
<CHO染色剤(2)>
50%エチルアルコール(10ml)に、5−アミノ−1−ナフタレンスルホン酸ナトリウム塩水和物(SAN)(0.005g)と1mol/L塩酸(100μl)を溶解した。得られた溶液(約10ml)に対して、エチルアルコール(10ml)に2−ピコリンボラン(0.05g)を溶解した溶液(0.5ml)を添加し、CHO染色剤(2)を調製した。
<CHO染色剤(3)>
50%エチルアルコール(10ml)に、1,2−ジアミノ−4,5−メチレンジオキシベンゼン,二塩酸塩(MDB)(0.0025g)と1mol/L塩酸(100μl)を溶解した。得られた溶液(約10ml)に対して、エチルアルコール(10ml)に2−ピコリンボラン(0.05g)を溶解した溶液(0.5ml)を添加し、CHO染色剤(3)を調製した。
[Reagent preparation]
<CHO stain (1)>
7-Amino-4-methylcoumarin (AMC) (0.01 g) and 1 mol / L hydrochloric acid (100 μl) were dissolved in 50% ethyl alcohol (10 ml). A solution (0.5 ml) of 2-picoline borane (0.05 g) dissolved in ethyl alcohol (10 ml) was added to the resulting solution (about 10 ml) to prepare a CHO staining agent (1).
<CHO stain (2)>
5-Amino-1-naphthalenesulfonic acid sodium salt hydrate (SAN) (0.005 g) and 1 mol / L hydrochloric acid (100 μl) were dissolved in 50% ethyl alcohol (10 ml). A solution (0.5 ml) of 2-picoline borane (0.05 g) dissolved in ethyl alcohol (10 ml) was added to the resulting solution (about 10 ml) to prepare a CHO staining agent (2).
<CHO stain (3)>
1,2-Diamino-4,5-methylenedioxybenzene, dihydrochloride (MDB) (0.0025 g) and 1 mol / L hydrochloric acid (100 μl) were dissolved in 50% ethyl alcohol (10 ml). A solution (0.5 ml) of 2-picoline borane (0.05 g) dissolved in ethyl alcohol (10 ml) was added to the obtained solution (about 10 ml) to prepare a CHO staining agent (3).

<CHO染色剤(4)>
50%エチルアルコール(10ml)に、3−アミノ−クマリン(100mg/ml、DMSO溶液)(10μl)と、エチルアルコール(10ml)に2−ピコリンボラン(0.05g)を溶解した溶液(1ml)を添加し、RO水を加えて50mlにメスアップした。得られた溶液(50ml)に1mol/L塩酸(100μl)を添加し、CHO染色剤(4)を調製した。
<CHO染色剤(5)>
3−アミノ−クマリンに代えて、1−アミノ−ピレン(100mg/ml、DMSO溶液)(10μl)を用いた以外は、CHO染色剤(4)と同様にして、CHO染色剤(5)を調製した。
<CHO染色剤(6)>
3−アミノ−クマリンに代えて、4−(2−アミノエチルアミノ)−7−(N,N―ジメチルスルファモイル)ベンゾフラザン(100mg/ml、DMSO溶液)(10μl)を用いた以外は、CHO染色剤(4)と同様にして、CHO染色剤(6)を調製した。
<CHO染色剤(7)>
3−アミノ−クマリンに代えて、モノ−7−アミノ−1,3−ナフタレンジスルホン酸カリウム一水和物(100mg/ml、水溶液)(10μl)を用いた以外は、CHO染色剤(4)と同様にして、CHO染色剤(7)を調製した。
<CHO染色剤(8)>
3−アミノ−クマリンに代えて、7−アミノ−4−(トリフルオロメチル)クマリン(100mg/ml、水溶液)(10μl)を用いた以外は、CHO染色剤(8)と同様にして、CHO染色剤(8)を調製した。
<CHO stain (4)>
3-amino-coumarin (100 mg / ml, DMSO solution) (10 μl) in 50% ethyl alcohol (10 ml) and a solution (1 ml) of 2-picoline borane (0.05 g) dissolved in ethyl alcohol (10 ml). Then, RO water was added to make up to 50 ml. 1 mol / L hydrochloric acid (100 μl) was added to the resulting solution (50 ml) to prepare a CHO staining agent (4).
<CHO stain (5)>
Prepare CHO stain (5) in the same manner as CHO stain (4), except that 1-amino-pyrene (100 mg / ml, DMSO solution) (10 μl) was used instead of 3-amino-coumarin. did.
<CHO stain (6)>
CHO except that 4- (2-aminoethylamino) -7- (N, N-dimethylsulfamoyl) benzofurazan (100 mg / ml, DMSO solution) (10 μl) was used instead of 3-amino-coumarin. A CHO staining agent (6) was prepared in the same manner as the staining agent (4).
<CHO stain (7)>
In place of 3-amino-coumarin, CHO staining agent (4) except that mono-7-amino-1,3-naphthalenedisulfonic acid potassium monohydrate (100 mg / ml, aqueous solution) (10 μl) was used. In the same manner, a CHO dye (7) was prepared.
<CHO stain (8)>
CHO staining was carried out in the same manner as in the CHO staining agent (8) except that 7-amino-4- (trifluoromethyl) coumarin (100 mg / ml, aqueous solution) (10 μl) was used instead of 3-amino-coumarin. Agent (8) was prepared.

<CHO染色剤(9)>
50%エチルアルコール(10ml)に、4−クロロ−1,2−フェニレンジアミン(100mg/ml、DMSO溶液)(10μl)を添加し、RO水を加えて50mlにメスアップした。得られた溶液(50ml)に1mol/L塩酸(100μl)を添加し、CHO染色剤(9)を調製した。
<CHO染色剤(10)>
3−アミノ−クマリンに代えて、8−アミノナフタレン−1,3,6−トリスルホン酸二ナトリウム塩(100mg/ml、水溶液)(10μl)を用いた以外は、CHO染色剤(4)と同様にして、CHO染色剤(10)を調製した。
<CHO染色剤(11)>
3−アミノ−クマリンに代えて、8−アミノピレン−1,3,6−トリスルホン酸三ナトリウム塩(10mg/ml、DMSO溶液)(10μl)を用いた以外は、CHO染色剤(4)と同様にして、CHO染色剤(11)を調製した。
<CHO染色剤(12)>
エチルアルコール:酢酸=9:1(体積比)の混合液(50ml)に、8−アミノナフタレン−1,3,6−トリスルホン酸二ナトリウム塩(100mg/ml、DMSO溶液)(10μl)を添加し、さらにエチルアルコール(10ml)に2−ピコリンボラン(0.05g)を溶解した溶液(1ml)を添加し、CHO染色剤(12)を調製した。
<CHO染色剤(13)>
エチルアルコール:酢酸=9:1(体積比)の混合液(50ml)に、8−アミノピレン−1,3,6−トリスルホンサン三ナトリウム塩(10mg/ml、DMSO溶液)(10μl)を添加し、さらにエチルアルコール(10ml)に2−ピコリンボラン(0.05g)を溶解した溶液(1ml)を添加し、CHO染色剤(13)を調製した。
<CHO染色剤(14)>
50%エチルアルコール(10ml)に、7‐アミノ‐4‐メチルクマリン‐3‐酢酸(0.007g)を添加し、RO水を加えて50mlにメスアップした。得られた溶液(50ml)に、エチルアルコール(10ml)に2−ピコリンボラン(0.05g)を溶解した溶液(1ml)と、1mol/L塩酸(100μl)を添加し、CHO染色剤(14)を調製した。
<CHO stain (9)>
4-Chloro-1,2-phenylenediamine (100 mg / ml, DMSO solution) (10 μl) was added to 50% ethyl alcohol (10 ml), and RO water was added to make up to 50 ml. 1 mol / L hydrochloric acid (100 μl) was added to the resulting solution (50 ml) to prepare a CHO staining agent (9).
<CHO stain (10)>
Similar to CHO stain (4) except that 8-aminonaphthalene-1,3,6-trisulfonic acid disodium salt (100 mg / ml, aqueous solution) (10 μl) was used instead of 3-amino-coumarin. Thus, a CHO dye (10) was prepared.
<CHO stain (11)>
The same as CHO stain (4) except that 8-aminopyrene-1,3,6-trisulfonic acid trisodium salt (10 mg / ml, DMSO solution) (10 μl) was used instead of 3-amino-coumarin. Thus, a CHO dye (11) was prepared.
<CHO stain (12)>
8-aminonaphthalene-1,3,6-trisulfonic acid disodium salt (100 mg / ml, DMSO solution) (10 μl) was added to a mixture (50 ml) of ethyl alcohol: acetic acid = 9: 1 (volume ratio). Further, a solution (1 ml) of 2-picoline borane (0.05 g) dissolved in ethyl alcohol (10 ml) was added to prepare a CHO staining agent (12).
<CHO stain (13)>
To a mixed solution (50 ml) of ethyl alcohol: acetic acid = 9: 1 (volume ratio), 8-aminopyrene-1,3,6-trisulfonsan trisodium salt (10 mg / ml, DMSO solution) (10 μl) was added. Further, a solution (1 ml) of 2-picoline borane (0.05 g) dissolved in ethyl alcohol (10 ml) was added to prepare a CHO stain (13).
<CHO stain (14)>
To 50% ethyl alcohol (10 ml), 7-amino-4-methylcoumarin-3-acetic acid (0.007 g) was added, and RO water was added to make up to 50 ml. A solution (1 ml) of 2-picoline borane (0.05 g) dissolved in ethyl alcohol (10 ml) and 1 mol / L hydrochloric acid (100 μl) were added to the obtained solution (50 ml), and a CHO staining agent (14) Was prepared.

<マイヤーのヘマトキシリン溶液>
精製水(300ml)に硫酸カリウムアルミニウム(50g)を溶解した溶液Aを得た。
精製水(600ml)にヘマトキシリン(3g)を溶解し、ヨウ素酸ナトリウム(0.5g)を加えて溶解した溶液に、前記溶液Aを加えて混合し、抱水クロラール(50g)及びクエン酸一水和物(1.2g)をさらに加えて溶解し、マイヤーのヘマトキシリン溶液を得た。
<エオジン溶液>
蒸留水(100ml)にエオジンY(1g)を溶解し、1N塩酸を10ml加えて沈殿させた。得られた沈殿物を精製水で洗浄して風乾させ、粉末Yを得た。次いで、粉末Y(0.5g)をエチルアルコール(1000ml)に加え、保存用の溶液Yを得た。使用時には、精製水(140ml)に溶液Y(60ml)と酢酸(0.01ml)を加え、エオジン溶液を得た。
<ギルのヘマトキシリン溶液>
精製水(730ml)にエチレングリコール(250ml)とヘマトキシリン(2g)とヨウ素酸ナトリウム(0.2g)と、硫酸アルミニウム(17.6g)と酢酸(20ml)を溶解し、ギルのヘマトキシリン溶液を得た。
<Meyer's hematoxylin solution>
A solution A in which potassium aluminum sulfate (50 g) was dissolved in purified water (300 ml) was obtained.
Hematoxylin (3 g) is dissolved in purified water (600 ml), sodium iodate (0.5 g) is added and dissolved in the solution A, and the solution A is added and mixed. Chloral hydrate (50 g) and monohydrate citric acid A Japanese product (1.2 g) was further added and dissolved to obtain a Mayer's hematoxylin solution.
<Eosin solution>
Eosin Y (1 g) was dissolved in distilled water (100 ml) and precipitated by adding 10 ml of 1N hydrochloric acid. The obtained precipitate was washed with purified water and air-dried to obtain powder Y. Next, powder Y (0.5 g) was added to ethyl alcohol (1000 ml) to obtain a storage solution Y. At the time of use, solution Y (60 ml) and acetic acid (0.01 ml) were added to purified water (140 ml) to obtain an eosin solution.
<Gill's Hematoxylin Solution>
Ethylene glycol (250 ml), hematoxylin (2 g), sodium iodate (0.2 g), aluminum sulfate (17.6 g) and acetic acid (20 ml) were dissolved in purified water (730 ml) to obtain a hematoxylin solution of gill. .

[実施例1;CHO染色]
まず、常法により準備された人体組織のパラフィン包埋切片について、キシレン、アルコール、イオン交換水の順に浸漬する公知方法によって脱パラフィン処理を行った組織切片を得た。
次に、0.5%過ヨウ素酸ナトリウム水溶液に前記組織切片を20分間室温で浸漬した後、水洗した。この酸化処理により、前記組織切片中の多糖類が有する水酸基の少なくとも一部がアルデヒド基に変化した。
続いて、CHO染色剤(1)50mlに、前記組織切片を20分間室温で浸漬した後、水洗した。この染色により、アルデヒド基が形成された前記多糖類に対してAMCが結合するCHO染色がなされた組織切片を得た。
最後に、常法により前記組織切片に対して脱水処理及び封入処理を行い、CHO染色がなされた組織切片標本を得た。
[Example 1; CHO staining]
First, a paraffin-embedded section of human tissue prepared by a conventional method was used to obtain a tissue section that had been deparaffinized by a known method of immersing in the order of xylene, alcohol, and ion-exchanged water.
Next, the tissue section was immersed in a 0.5% aqueous sodium periodate solution for 20 minutes at room temperature, and then washed with water. By this oxidation treatment, at least a part of the hydroxyl groups of the polysaccharide in the tissue slice was changed to aldehyde groups.
Subsequently, the tissue section was immersed in 50 ml of CHO staining agent (1) for 20 minutes at room temperature, and then washed with water. By this staining, a tissue section was obtained that was subjected to CHO staining in which AMC binds to the polysaccharide in which the aldehyde group was formed.
Finally, dehydration treatment and encapsulation treatment were performed on the tissue section by a conventional method to obtain a tissue section sample that was stained with CHO.

前記組織切片標本を蛍光顕微鏡で観察した画像を図2に示す。
図2は蛍光顕微鏡で青色の波長域を観察した蛍光画像である。多糖類を含む腺細胞(青色)の組織構造を黒色の背景にはっきりと識別することができ、病理診断に用いことができる高品質の画像であることが確認された。
An image obtained by observing the tissue section specimen with a fluorescence microscope is shown in FIG.
FIG. 2 is a fluorescence image obtained by observing a blue wavelength region with a fluorescence microscope. The tissue structure of glandular cells (blue) containing polysaccharides can be clearly identified on a black background, and it was confirmed that the images were of high quality that could be used for pathological diagnosis.

[実施例2;CHO染色]
CHO染色剤(2)を用いた以外は、実施例1と同様にCHO染色を行った。
得られた組織切片標本の蛍光顕微鏡で観察した画像を図3に示す。
図3は蛍光顕微鏡で青色の波長域を観察した蛍光画像である。多糖類を含む腺細胞(青色)の組織構造を黒色の背景にはっきりと識別することができ、病理診断に用いことができる高品質の画像であることが確認された。
[Example 2; CHO staining]
CHO staining was performed in the same manner as in Example 1 except that the CHO staining agent (2) was used.
The image observed with the fluorescence microscope of the obtained tissue slice sample is shown in FIG.
FIG. 3 is a fluorescence image obtained by observing a blue wavelength region with a fluorescence microscope. The tissue structure of glandular cells (blue) containing polysaccharides can be clearly identified on a black background, and it was confirmed that the images were of high quality that could be used for pathological diagnosis.

[実施例3;CHO染色]
CHO染色剤(3)を用いた以外は、実施例1と同様にCHO染色を行った。
得られた組織切片標本の蛍光顕微鏡で観察した画像を図4に示す。
図4は蛍光顕微鏡で青色の波長域を観察した蛍光画像である。多糖類を含む腺細胞(青色)の組織構造を黒色の背景にはっきりと識別することができ、病理診断に用いことができる高品質の画像であることが確認された。
[Example 3; CHO staining]
CHO staining was performed in the same manner as in Example 1 except that the CHO staining agent (3) was used.
The image observed with the fluorescence microscope of the obtained tissue slice sample is shown in FIG.
FIG. 4 is a fluorescence image obtained by observing the blue wavelength region with a fluorescence microscope. The tissue structure of glandular cells (blue) containing polysaccharides can be clearly identified on a black background, and it was confirmed that the images were of high quality that could be used for pathological diagnosis.

[実施例4;H染色+CHO染色→E染色]
まず、常法により準備された人体組織のパラフィン包埋切片について、キシレン、アルコール、イオン交換水の順に浸漬する公知方法によって脱パラフィン処理を行った組織切片を得た。
次に、0.5%過ヨウ素酸ナトリウム水溶液に前記組織切片を20分間室温で浸漬した後、水洗した。この酸化処理により、前記組織切片中の多糖類が有する水酸基の少なくとも一部がアルデヒド基に変化した。
続いて、CHO染色剤(1)10mlを前記マイヤーのヘマトキシリン溶液40mlに混合した溶液に、前記組織切片を20分間室温で浸漬した後、水洗した。この染色により、アルデヒド基が形成された前記多糖類に対してAMCが結合するCHO染色がなされたとともに、細胞核等の塩基性物質に対してヘマトキシリンが結合するヘマトキシリン染色がなされた組織切片を得た。
次いで、前記エオジン溶液に前記組織切片を3分間室温で浸漬した後、水洗した。この染色により、細胞質等の酸性物質に対してエオジンが結合するエオジン染色がなされた組織切片を得た。
最後に、常法により前記組織切片に対して脱水処理及び封入処理を行い、CHO染色及びHE染色がなされた組織切片標本を得た。
[Example 4; H staining + CHO staining → E staining]
First, a paraffin-embedded section of human tissue prepared by a conventional method was used to obtain a tissue section that had been deparaffinized by a known method of immersing in the order of xylene, alcohol, and ion-exchanged water.
Next, the tissue section was immersed in a 0.5% aqueous sodium periodate solution for 20 minutes at room temperature, and then washed with water. By this oxidation treatment, at least a part of the hydroxyl groups of the polysaccharide in the tissue slice was changed to aldehyde groups.
Subsequently, the tissue section was immersed in a solution prepared by mixing 10 ml of the CHO stain (1) with 40 ml of the Meyer's hematoxylin solution at room temperature for 20 minutes, and then washed with water. By this staining, a tissue section was obtained in which CHO staining in which AMC binds to the polysaccharide having aldehyde groups formed and hematoxylin staining in which hematoxylin binds to basic substances such as cell nuclei was obtained. .
Next, the tissue section was immersed in the eosin solution for 3 minutes at room temperature, and then washed with water. By this staining, a tissue section was obtained that was stained with eosin that binds eosin to acidic substances such as cytoplasm.
Finally, dehydration treatment and encapsulation treatment were performed on the tissue section by a conventional method, and a tissue section specimen subjected to CHO staining and HE staining was obtained.

前記組織切片標本を光学顕微鏡及び蛍光顕微鏡で観察した画像を図5〜7に示す。
図5は通常の光学顕微鏡で観察した透過画像である。細胞核(青色)、細胞質(赤色〜桃色)等の組織構造をはっきりと識別することができる。
図6は蛍光顕微鏡で青色の波長域を観察した蛍光画像である。多糖類を含む腺細胞(青色)の組織構造を黒色の背景にはっきりと識別することができる。
図7は蛍光顕微鏡で緑色の波長域を観察した蛍光画像である。エオジンの自家蛍光が観察されている。図5〜7を見比べて、CHO染色とHE染色は互いに干渉せずに、各々の染色が充分に行われており、病理診断に用いことができる高品質の画像であることが確認された。
Images obtained by observing the tissue section specimen with an optical microscope and a fluorescence microscope are shown in FIGS.
FIG. 5 is a transmission image observed with a normal optical microscope. Tissue structures such as cell nuclei (blue) and cytoplasm (red to pink) can be clearly identified.
FIG. 6 is a fluorescence image obtained by observing the blue wavelength region with a fluorescence microscope. The tissue structure of glandular cells (blue) containing polysaccharides can be clearly distinguished on a black background.
FIG. 7 is a fluorescence image obtained by observing the green wavelength region with a fluorescence microscope. Autofluorescence of eosin has been observed. 5 to 7, it was confirmed that the CHO staining and the HE staining did not interfere with each other, and each staining was sufficiently performed, and that the images were high-quality images that could be used for pathological diagnosis.

[実施例5;H染色+CHO染色]
CHO染色剤(1)10mlと前記ギルのヘマトキシリン溶液40mlとを混合した溶液に、実施例4と同様に酸化処理された組織切片を浸漬した。その後、軽く水洗し、0.5%塩酸エチルアルコールに浸漬し、過剰なヘマトキシリンを洗浄した。その他は実施例4と同様に、同一の組織切片について、CHO染色及びギルのヘマトキシリン染色を同時に行った。
[Example 5: H staining + CHO staining]
The tissue section oxidized in the same manner as in Example 4 was immersed in a solution obtained by mixing 10 ml of the CHO staining agent (1) and 40 ml of the above-mentioned gil hematoxylin solution. Then, it lightly washed with water and immersed in 0.5% ethyl alcohol to wash excess hematoxylin. Otherwise, as in Example 4, the same tissue section was simultaneously subjected to CHO staining and Gill's hematoxylin staining.

その結果、実施例4と同様に、光学顕微鏡の透過画像においてギルのヘマトキシリン染色による青色に染色された鮮明な核構造が観察された(図8)。さらに、蛍光顕微鏡の蛍光画像においてギルのヘマトキシリン染色によって干渉されず、多糖類を含む腺細胞等の組織構造が鮮明に観察された(図9)。   As a result, as in Example 4, a clear nuclear structure stained in blue by Gill's hematoxylin staining was observed in the transmission image of the optical microscope (FIG. 8). Furthermore, tissue structures such as glandular cells containing polysaccharides were clearly observed without interference by Gill's hematoxylin staining in the fluorescence image of the fluorescence microscope (FIG. 9).

[実施例6;CHO染色→H染色→E染色]
まず、実施例4と同様に、脱パラフィン及び酸化処理を行った組織切片を得た。
次に、CHO染色剤(1)10mlを蒸留水40mlに混合した溶液に、前記組織切片を20分間室温で浸漬した後、水洗した。この染色により、アルデヒド基が形成された前記多糖類に対してAMCが結合するCHO染色がなされた組織切片を得た。
続いて、前記マイヤーのヘマトキシリン溶液に、前記組織切片を3分間室温で浸漬した後、水洗した。この染色により、細胞核等の塩基性物質に対してヘマトキシリンが結合するヘマトキシリン染色がなされた組織切片を得た。
最後に、実施例4と同様にエオジン染色を行い、組織切片標本を得た。
[Example 6; CHO staining → H staining → E staining]
First, similarly to Example 4, a tissue section subjected to deparaffinization and oxidation treatment was obtained.
Next, the tissue section was immersed in a solution obtained by mixing 10 ml of CHO staining agent (1) in 40 ml of distilled water at room temperature for 20 minutes, and then washed with water. By this staining, a tissue section was obtained that was subjected to CHO staining in which AMC binds to the polysaccharide in which the aldehyde group was formed.
Subsequently, the tissue section was immersed in the Mayer's hematoxylin solution for 3 minutes at room temperature, and then washed with water. By this staining, a tissue section stained with hematoxylin that binds hematoxylin to basic substances such as cell nuclei was obtained.
Finally, eosin staining was performed in the same manner as in Example 4 to obtain a tissue section sample.

本実施例では同一の組織切片についてCHO染色した後にHE染色した。その結果、実施例4と同様に、光学顕微鏡の透過画像においてHE染色による青色及び赤色に染色された鮮明な組織構造が観察された(図10)。さらに、蛍光顕微鏡の蛍光画像においてHE染色によって干渉されず、多糖類を含む腺細胞等の組織構造が鮮明に観察された(図11)。   In this example, the same tissue section was stained with CHO and then with HE. As a result, as in Example 4, a clear tissue structure stained in blue and red by HE staining was observed in the transmission image of the optical microscope (FIG. 10). Furthermore, tissue structures such as glandular cells containing polysaccharides were clearly observed without interference by HE staining in the fluorescence image of the fluorescence microscope (FIG. 11).

[実施例7;H染色→E染色→CHO染色]
まず、実施例1と同様に、脱パラフィンを行った組織切片を得た。この組織切片については酸化処理を行わずに染色工程へ供した。
次に、前記マイヤーのヘマトキシリン溶液に、前記組織切片を5分間室温で浸漬した後、水洗した。この染色により、細胞核等の塩基性物質に対してヘマトキシリンが結合するヘマトキシリン染色がなされた組織切片を得た。
続いて、前記エオジン溶液に前記組織切片を5分間室温で浸漬した後、水洗した。この染色により、細胞質等の酸性物質に対してエオジンが結合するエオジン染色がなされた組織切片を得た。
次に、酸化処理を施しCHO染色剤(1)10mlを蒸留水40mlに混合した溶液に、前記組織切片を15分間室温で浸漬した後、水洗した。この染色により、アルデヒド基が形成された前記多糖類に対してAMCが結合するCHO染色がなされた組織切片を得た。
最後に、実施例4と同様に脱水及び封入処理を行い、組織切片標本を得た。
[Example 7; H staining → E staining → CHO staining]
First, in the same manner as in Example 1, deparaffinized tissue sections were obtained. This tissue section was subjected to a staining step without being oxidized.
Next, the tissue section was immersed in the Mayer's hematoxylin solution for 5 minutes at room temperature, and then washed with water. By this staining, a tissue section stained with hematoxylin that binds hematoxylin to basic substances such as cell nuclei was obtained.
Subsequently, the tissue section was immersed in the eosin solution for 5 minutes at room temperature, and then washed with water. By this staining, a tissue section was obtained that was stained with eosin that binds eosin to acidic substances such as cytoplasm.
Next, the tissue section was immersed in a solution in which 10 ml of CHO staining agent (1) was mixed with 40 ml of distilled water for 15 minutes at room temperature and then washed with water. By this staining, a tissue section was obtained that was subjected to CHO staining in which AMC binds to the polysaccharide in which the aldehyde group was formed.
Finally, dehydration and encapsulation were performed in the same manner as in Example 4 to obtain a tissue section sample.

本実施例では同一の組織切片についてHE染色した後にCHO染色した。その結果、実施例4と同様に、光学顕微鏡の透過画像においてHE染色による青色及び赤色に染色された鮮明な組織構造が観察された(図12)。さらに、蛍光顕微鏡の蛍光画像においてHE染色によって干渉されず、多糖類を含む腺細胞等の組織構造が鮮明に観察された(図13)。   In this example, the same tissue section was stained with HE and then stained with CHO. As a result, as in Example 4, a clear tissue structure stained in blue and red by HE staining was observed in the transmission image of the optical microscope (FIG. 12). Furthermore, tissue structures such as glandular cells containing polysaccharides were clearly observed without interference by HE staining in the fluorescence image of the fluorescence microscope (FIG. 13).

[実施例8;CHO染色→パパニコロウ染色]
従来のパパニコロウ染色に供される細胞検体と同様に、脱パラフィン処理を行った細胞検体を得た。この細胞検体は、組織切片と同様に扱うことができるように、スライドガラス上に固定されている。
まず、前記細胞検体を実施例4と同様に酸化処理を行った。
次いで、CHO染色剤(1)10mlと前記ギルのヘマトキシリン溶液40mlとを混合した溶液に、前記細胞検体を20分間室温で浸漬した後、水洗した。さらに0.5%塩酸アルコールを用いて分別した後、70%エタノールから95%エタノールまで段階的にエタノール濃度を上昇させて親和した。
続いて、得られた細胞検体について、市販のオレンジG−6染色液(OG−6)、及び市販のEA50染色液を用いて、順に常法によって染色した。
最後に、エタノールで脱水して、キシレンで封入して細胞検体標本を得た。
[Example 8; CHO staining → Papanicolaou staining]
Similar to the cell sample subjected to conventional Papanicolaou staining, a cell sample subjected to deparaffinization treatment was obtained. This cell specimen is fixed on a glass slide so that it can be handled in the same manner as a tissue section.
First, the cell sample was oxidized in the same manner as in Example 4.
Subsequently, the cell specimen was immersed in a solution obtained by mixing 10 ml of the CHO staining agent (1) and 40 ml of the gil hematoxylin solution at room temperature for 20 minutes and then washed with water. Further, after fractionation with 0.5% hydrochloric acid alcohol, the ethanol concentration was increased stepwise from 70% ethanol to 95% ethanol for affinity.
Subsequently, the obtained cell specimen was sequentially stained by a conventional method using a commercially available orange G-6 stain (OG-6) and a commercially available EA50 stain.
Finally, it was dehydrated with ethanol and sealed with xylene to obtain a cell specimen.

本実施例では同一の細胞検体について、CHO染色とパパニコロウ染色を行った。その結果、光学顕微鏡の透過画像において、通常のパパニコロウ染色と同様の青色〜赤色に染色された鮮明な組織構造が観察された(図14)。さらに、蛍光顕微鏡の蛍光画像においてパパニコロウ染色によって干渉されず、多糖類を含む腺細胞等の組織構造が鮮明に観察された(図15)。   In this example, the same cell specimen was subjected to CHO staining and Papanicolaou staining. As a result, a clear tissue structure stained in blue to red similar to normal Papanicolaou staining was observed in the transmission image of the optical microscope (FIG. 14). Furthermore, tissue structures such as glandular cells containing polysaccharides were clearly observed without interference by Papanicolaou staining in the fluorescence image of the fluorescence microscope (FIG. 15).

[実施例9;CHO染色→ギムザ染色]
従来のギムザ染色に供される血球検体と同様に、スライドガラスに血球検体を塗布し、100%メタノールを用いて固定した。
まず、前記血球検体を実施例4と同様に酸化処理を行った。
次いで、CHO染色剤(1)50mlに、前記血球検体を20分間室温で浸漬した後、水洗した。
続いて、得られた血球検体について、市販のギムザ染色液を用いて、常法によって染色した。軽く水洗した後、乾燥して、キシレンに浸してから封入して血球検体標本を得た。
[Example 9: CHO staining → Giemsa staining]
In the same manner as the blood cell sample subjected to conventional Giemsa staining, the blood cell sample was applied to a slide glass and fixed with 100% methanol.
First, the blood cell sample was oxidized in the same manner as in Example 4.
Subsequently, the blood cell specimen was immersed in 50 ml of CHO staining agent (1) at room temperature for 20 minutes and then washed with water.
Subsequently, the obtained blood cell specimen was stained by a conventional method using a commercially available Giemsa staining solution. After lightly washing with water, the sample was dried, immersed in xylene and sealed to obtain a blood cell specimen.

本実施例では同一の血球検体について、CHO染色とギムザ染色を行った。その結果、光学顕微鏡の透過画像において、通常のギムザ染色と同様に青紫色に染色された(図16)。さらに、蛍光顕微鏡の蛍光画像においてギムザ染色によって干渉されず、多糖類が存在すると考えられる部位に青色の蛍光が観察された(図17)。   In this example, the same blood cell specimen was subjected to CHO staining and Giemsa staining. As a result, in the transmission image of the optical microscope, it was stained blue-purple similarly to normal Giemsa staining (FIG. 16). Furthermore, blue fluorescence was observed at a site where polysaccharides were present without interference by Giemsa staining in the fluorescence image of the fluorescence microscope (FIG. 17).

[実施例10;CHO染色]
まず、常法により準備された人体組織のパラフィン包埋切片について、キシレン、アルコール、イオン交換水の順に浸漬する公知方法によって脱パラフィン処理を行った組織切片を得た。
次に、0.5%過ヨウ素酸ナトリウム水溶液に前記組織切片を20分間室温で浸漬した後、水洗した。この酸化処理により、前記組織切片中の多糖類が有する水酸基の少なくとも一部がアルデヒド基に変化した。
続いて、CHO染色剤(4)50mlに、前記組織切片を20分間室温で浸漬した後、水洗した。この染色により、アルデヒド基が形成された前記多糖類に対して3−アミノクマリンが結合するCHO染色がなされた組織切片を得た。
最後に、常法により前記組織切片に対して脱水処理及び封入処理を行い、CHO染色がなされた組織切片標本を得た。
[Example 10; CHO staining]
First, a paraffin-embedded section of human tissue prepared by a conventional method was used to obtain a tissue section that had been deparaffinized by a known method of immersing in the order of xylene, alcohol, and ion-exchanged water.
Next, the tissue section was immersed in a 0.5% aqueous sodium periodate solution for 20 minutes at room temperature, and then washed with water. By this oxidation treatment, at least a part of the hydroxyl groups of the polysaccharide in the tissue slice was changed to aldehyde groups.
Subsequently, the tissue section was immersed in 50 ml of CHO staining agent (4) for 20 minutes at room temperature, and then washed with water. By this staining, a tissue section was obtained that was subjected to CHO staining in which 3-aminocoumarin was bound to the polysaccharide on which an aldehyde group was formed.
Finally, dehydration treatment and encapsulation treatment were performed on the tissue section by a conventional method to obtain a tissue section sample that was stained with CHO.

前記組織切片標本を蛍光顕微鏡で観察した画像を図18,図19に示す。
図18は蛍光顕微鏡で青色の波長域(365nm)を観察した蛍光画像である。多糖類を含む腺細胞(青色)の組織構造を黒色の背景にはっきりと識別することができ、病理診断に用いことができる高品質の画像であることが確認された。
図19は蛍光顕微鏡で緑色の波長域(480nm)を観察した蛍光画像である。組織構造をはっきりと識別することができる。
Images obtained by observing the tissue section specimen with a fluorescence microscope are shown in FIGS.
FIG. 18 is a fluorescence image obtained by observing a blue wavelength region (365 nm) with a fluorescence microscope. The tissue structure of glandular cells (blue) containing polysaccharides can be clearly identified on a black background, and it was confirmed that the images were of high quality that could be used for pathological diagnosis.
FIG. 19 is a fluorescence image obtained by observing a green wavelength region (480 nm) with a fluorescence microscope. The organizational structure can be clearly identified.

[実施例11;CHO染色]
CHO染色剤(5)を用いた以外は、実施例10と同様にCHO染色を行った。
得られた組織切片標本の蛍光顕微鏡で観察した画像を図20,図21に示す。
図20は蛍光顕微鏡で青色の波長域(365nm)を観察した蛍光画像である。多糖類を含む腺細胞(青色)の組織構造を黒色の背景にはっきりと識別することができ、病理診断に用いことができる高品質の画像であることが確認された。
図21は蛍光顕微鏡で緑色の波長域(480nm)を観察した蛍光画像である。組織構造をはっきりと識別することができる。
[Example 11; CHO staining]
CHO staining was performed in the same manner as in Example 10 except that the CHO staining agent (5) was used.
Images of the obtained tissue slice specimens observed with a fluorescence microscope are shown in FIGS.
FIG. 20 is a fluorescence image obtained by observing a blue wavelength region (365 nm) with a fluorescence microscope. The tissue structure of glandular cells (blue) containing polysaccharides can be clearly identified on a black background, and it was confirmed that the images were of high quality that could be used for pathological diagnosis.
FIG. 21 is a fluorescence image obtained by observing a green wavelength region (480 nm) with a fluorescence microscope. The organizational structure can be clearly identified.

[実施例12;CHO染色]
CHO染色剤(6)を用いた以外は、実施例10と同様にCHO染色を行った。
得られた組織切片標本の蛍光顕微鏡で観察した画像を図22,図23に示す。
図22は蛍光顕微鏡で青色の波長域(365nm)を観察した蛍光画像である。多糖類を含む腺細胞(青緑色)の組織構造を黒色の背景にはっきりと識別することができ、病理診断に用いことができる高品質の画像であることが確認された。
図23は蛍光顕微鏡で緑色の波長域(480nm)を観察した蛍光画像である。組織構造をはっきりと識別することができる。
[Example 12; CHO staining]
CHO staining was performed in the same manner as in Example 10 except that the CHO staining agent (6) was used.
Images of the obtained tissue slice specimens observed with a fluorescence microscope are shown in FIGS.
FIG. 22 is a fluorescence image obtained by observing a blue wavelength region (365 nm) with a fluorescence microscope. The tissue structure of the glandular cells (blue green) containing polysaccharides can be clearly identified on a black background, and it was confirmed that the images were of high quality that could be used for pathological diagnosis.
FIG. 23 is a fluorescence image obtained by observing the green wavelength region (480 nm) with a fluorescence microscope. The organizational structure can be clearly identified.

[実施例13;CHO染色]
CHO染色剤(7)を用いた以外は、実施例10と同様にCHO染色を行った。
得られた組織切片標本の蛍光顕微鏡で観察した画像を図24,図25に示す。
図24は蛍光顕微鏡で青色の波長域(365nm)を観察した蛍光画像である。多糖類を含む腺細胞(青色)の組織構造を黒色の背景にはっきりと識別することができ、病理診断に用いことができる高品質の画像であることが確認された。
図25は蛍光顕微鏡で緑色の波長域(480nm)を観察した蛍光画像である。組織構造をはっきりと識別することができる。
[Example 13; CHO staining]
CHO staining was performed in the same manner as in Example 10 except that the CHO staining agent (7) was used.
Images of the obtained tissue section specimen observed with a fluorescence microscope are shown in FIGS.
FIG. 24 is a fluorescence image obtained by observing a blue wavelength region (365 nm) with a fluorescence microscope. The tissue structure of glandular cells (blue) containing polysaccharides can be clearly identified on a black background, and it was confirmed that the images were of high quality that could be used for pathological diagnosis.
FIG. 25 is a fluorescence image obtained by observing a green wavelength region (480 nm) with a fluorescence microscope. The organizational structure can be clearly identified.

[実施例14;CHO染色]
CHO染色剤(8)を用いた以外は、実施例10と同様にCHO染色を行った。
得られた組織切片標本の蛍光顕微鏡で観察した画像を図26,図27に示す。
図26は蛍光顕微鏡で青色の波長域(365nm)を観察した蛍光画像である。多糖類を含む腺細胞(青緑色)の組織構造を黒色の背景にはっきりと識別することができ、病理診断に用いことができる高品質の画像であることが確認された。
図27は蛍光顕微鏡で緑色の波長域(480nm)を観察した蛍光画像である。組織構造をはっきりと識別することができる。
[Example 14; CHO staining]
CHO staining was performed in the same manner as in Example 10 except that the CHO staining agent (8) was used.
Images of the obtained tissue section specimen observed with a fluorescence microscope are shown in FIGS.
FIG. 26 is a fluorescence image obtained by observing a blue wavelength region (365 nm) with a fluorescence microscope. The tissue structure of the glandular cells (blue green) containing polysaccharides can be clearly identified on a black background, and it was confirmed that the images were of high quality that could be used for pathological diagnosis.
FIG. 27 is a fluorescence image obtained by observing the green wavelength region (480 nm) with a fluorescence microscope. The organizational structure can be clearly identified.

[実施例15;CHO染色]
実施例10と同様に脱パラフィン処理及び酸化処理を行った組織切片を得た。
次いで、55℃に加熱したCHO染色剤(9)50mlに、前記組織切片を15分間浸漬した後、水洗した。この染色により、アルデヒド基が形成された前記多糖類に対して4−クロロ−o−フェニレンジアミンが結合するCHO染色がなされた組織切片を得た。
最後に、常法により前記組織切片に対して脱水処理及び封入処理を行い、CHO染色がなされた組織切片標本を得た。
[Example 15; CHO staining]
A tissue section subjected to deparaffinization treatment and oxidation treatment in the same manner as in Example 10 was obtained.
Next, the tissue section was immersed in 50 ml of CHO staining agent (9) heated to 55 ° C. for 15 minutes, and then washed with water. By this staining, a tissue section was obtained that was subjected to CHO staining in which 4-chloro-o-phenylenediamine was bonded to the polysaccharide in which the aldehyde group was formed.
Finally, dehydration treatment and encapsulation treatment were performed on the tissue section by a conventional method to obtain a tissue section sample that was stained with CHO.

前記組織切片標本を蛍光顕微鏡で観察した画像を図28,図29に示す。
図28は蛍光顕微鏡で青色の波長域(365nm)を観察した蛍光画像である。多糖類を含む腺細胞(青緑色)の組織構造を黒色の背景にはっきりと識別することができ、病理診断に用いことができる高品質の画像であることが確認された。
図29は蛍光顕微鏡で緑色の波長域(480nm)を観察した蛍光画像である。組織構造をはっきりと識別することができる。
Images obtained by observing the tissue section specimen with a fluorescence microscope are shown in FIGS.
FIG. 28 is a fluorescence image obtained by observing the blue wavelength region (365 nm) with a fluorescence microscope. The tissue structure of the glandular cells (blue green) containing polysaccharides can be clearly identified on a black background, and it was confirmed that the images were of high quality that could be used for pathological diagnosis.
FIG. 29 is a fluorescence image obtained by observing the green wavelength region (480 nm) with a fluorescence microscope. The organizational structure can be clearly identified.

[実施例16;CHO染色]
実施例10と同様に脱パラフィン処理及び酸化処理を行った組織切片を得た。
次いで、55℃に加熱したCHO染色剤(10)50mlに、前記組織切片を30分間浸漬した後、2mMの水酸化ナトリウム水溶液で洗浄した。この染色により、アルデヒド基が形成された前記多糖類に対して8−アミノナフタレン−1,3,6−トリスルホン酸が結合するCHO染色がなされた組織切片を得た。
最後に、常法により前記組織切片に対して脱水処理及び封入処理を行い、CHO染色がなされた組織切片標本を得た。
[Example 16; CHO staining]
A tissue section subjected to deparaffinization treatment and oxidation treatment in the same manner as in Example 10 was obtained.
Next, the tissue section was immersed in 50 ml of CHO staining agent (10) heated to 55 ° C. for 30 minutes, and then washed with 2 mM sodium hydroxide aqueous solution. By this staining, a tissue section was obtained in which CHO staining was performed in which 8-aminonaphthalene-1,3,6-trisulfonic acid was bound to the polysaccharide in which the aldehyde group was formed.
Finally, dehydration treatment and encapsulation treatment were performed on the tissue section by a conventional method to obtain a tissue section sample that was stained with CHO.

前記組織切片標本を蛍光顕微鏡で観察した画像を図30,図31に示す。
図30は蛍光顕微鏡で青色の波長域(365nm)を観察した蛍光画像である。多糖類を含む腺細胞(青色)の組織構造を黒色の背景にはっきりと識別することができ、病理診断に用いことができる高品質の画像であることが確認された。
図31は蛍光顕微鏡で緑色の波長域(480nm)を観察した蛍光画像である。組織構造をはっきりと識別することができる。
Images obtained by observing the tissue section sample with a fluorescence microscope are shown in FIGS.
FIG. 30 is a fluorescence image obtained by observing a blue wavelength region (365 nm) with a fluorescence microscope. The tissue structure of glandular cells (blue) containing polysaccharides can be clearly identified on a black background, and it was confirmed that the images were of high quality that could be used for pathological diagnosis.
FIG. 31 is a fluorescence image obtained by observing the green wavelength region (480 nm) with a fluorescence microscope. The organizational structure can be clearly identified.

[実施例17;CHO染色]
CHO染色剤(11)を用いた以外は、実施例16と同様にCHO染色を行った。
得られた組織切片標本の蛍光顕微鏡で観察した画像を図32,図33に示す。
図32は蛍光顕微鏡で青色の波長域(365nm)を観察した蛍光画像である。多糖類を含む腺細胞(青色)の組織構造を黒色の背景にはっきりと識別することができ、病理診断に用いことができる高品質の画像であることが確認された。
図33は蛍光顕微鏡で緑色の波長域(480nm)を観察した蛍光画像である。組織構造をはっきりと識別することができる。
[Example 17; CHO staining]
CHO staining was performed in the same manner as in Example 16 except that the CHO staining agent (11) was used.
Images obtained by observing the obtained tissue section specimen with a fluorescence microscope are shown in FIGS. 32 and 33. FIG.
FIG. 32 is a fluorescence image obtained by observing a blue wavelength region (365 nm) with a fluorescence microscope. The tissue structure of glandular cells (blue) containing polysaccharides can be clearly identified on a black background, and it was confirmed that the images were of high quality that could be used for pathological diagnosis.
FIG. 33 is a fluorescence image obtained by observing the green wavelength region (480 nm) with a fluorescence microscope. The organizational structure can be clearly identified.

[実施例18;CHO染色]
まず、常法により準備された人体組織のパラフィン包埋切片について、キシレン、アルコール、イオン交換水の順に浸漬する公知方法によって脱パラフィン処理を行った組織切片を得た。
次に、0.5%過ヨウ素酸ナトリウム水溶液に前記組織切片を20分間室温で浸漬した後、水洗した。この酸化処理により、前記組織切片中の多糖類が有する水酸基の少なくとも一部がアルデヒド基に変化した。
続いて、CHO染色剤(14)50mlに、前記組織切片を20分間室温で浸漬した後、水洗した。この染色により、アルデヒド基が形成された前記多糖類に対して7−アミノ−4−メチルクマリン−3−酢酸が結合するCHO染色がなされた組織切片を得た。
最後に、常法により前記組織切片に対して脱水処理及び封入処理を行い、CHO染色がなされた組織切片標本を得た。
[Example 18; CHO staining]
First, a paraffin-embedded section of human tissue prepared by a conventional method was used to obtain a tissue section that had been deparaffinized by a known method of immersing in the order of xylene, alcohol, and ion-exchanged water.
Next, the tissue section was immersed in a 0.5% aqueous sodium periodate solution for 20 minutes at room temperature, and then washed with water. By this oxidation treatment, at least a part of the hydroxyl groups of the polysaccharide in the tissue slice was changed to aldehyde groups.
Subsequently, the tissue section was immersed in 50 ml of CHO staining agent (14) for 20 minutes at room temperature, and then washed with water. By this staining, a tissue section was obtained that was subjected to CHO staining in which 7-amino-4-methylcoumarin-3-acetic acid was bound to the polysaccharide in which the aldehyde group was formed.
Finally, dehydration treatment and encapsulation treatment were performed on the tissue section by a conventional method to obtain a tissue section sample that was stained with CHO.

前記組織切片標本を蛍光顕微鏡で観察した画像を図34に示す。
図34は蛍光顕微鏡で青色の波長域(365nm)を観察した蛍光画像である。多糖類を含む腺細胞(青色)の組織構造を黒色の背景にはっきりと識別することができ、病理診断に用いことができる高品質の画像であることが確認された。
FIG. 34 shows an image obtained by observing the tissue section specimen with a fluorescence microscope.
FIG. 34 is a fluorescence image obtained by observing the blue wavelength region (365 nm) with a fluorescence microscope. The tissue structure of glandular cells (blue) containing polysaccharides can be clearly identified on a black background, and it was confirmed that the images were of high quality that could be used for pathological diagnosis.

[実施例19;H染色+CHO染色→E染色]
CHO染色剤(14)20mlと前記マイヤーのヘマトキシリン溶液20mlとを混合した溶液に、実施例18と同様に酸化処理された組織切片を浸漬した。その後、軽く水洗した。
次いで、前記エオジン溶液に前記水洗した組織切片を3分間室温で浸漬した後、水洗した。この染色により、細胞質等の酸性物質に対してエオジンが結合するエオジン染色がなされた組織切片を得た。
最後に、常法により前記組織切片に対して脱水処理及び封入処理を行い、CHO染色及びHE染色がなされた組織切片標本を得た。
[Example 19: H staining + CHO staining → E staining]
The tissue section oxidized in the same manner as in Example 18 was immersed in a solution obtained by mixing 20 ml of the CHO staining agent (14) and 20 ml of the Meyer's hematoxylin solution. Then, it washed lightly.
Subsequently, the tissue section washed with water in the eosin solution was immersed for 3 minutes at room temperature and then washed with water. By this staining, a tissue section was obtained that was stained with eosin that binds eosin to acidic substances such as cytoplasm.
Finally, dehydration treatment and encapsulation treatment were performed on the tissue section by a conventional method, and a tissue section specimen subjected to CHO staining and HE staining was obtained.

前記組織切片標本を顕微鏡で観察した透過画像を図35に示し、蛍光顕微鏡で観察した画像を図36に示す。
図36は蛍光顕微鏡で青色の波長域(365nm)を観察した蛍光画像である。多糖類を含む腺細胞(青色)の組織構造を黒色の背景にはっきりと識別することができ、病理診断に用いことができる高品質の画像であることが確認された。
A transmission image obtained by observing the tissue section sample with a microscope is shown in FIG. 35, and an image observed with a fluorescence microscope is shown in FIG.
FIG. 36 is a fluorescence image obtained by observing the blue wavelength region (365 nm) with a fluorescence microscope. The tissue structure of glandular cells (blue) containing polysaccharides can be clearly identified on a black background, and it was confirmed that the images were of high quality that could be used for pathological diagnosis.

[実施例20;H染色+CHO染色]
CHO染色剤(14)20mlと前記マイヤーのヘマトキシリン溶液20mlとを混合した溶液に、実施例18と同様に酸化処理された組織切片を浸漬した。その後、軽く水洗した。
その後、常法により前記組織切片に対して脱水処理及び封入処理を行い、CHO染色及びH染色がなされた組織切片標本を得た。
[Example 20; H staining + CHO staining]
The tissue section oxidized in the same manner as in Example 18 was immersed in a solution obtained by mixing 20 ml of the CHO staining agent (14) and 20 ml of the Meyer's hematoxylin solution. Then, it washed lightly.
Thereafter, the tissue slice was subjected to dehydration treatment and encapsulation treatment by a conventional method to obtain a tissue slice specimen subjected to CHO staining and H staining.

前記組織切片標本を顕微鏡で観察した透過画像を図37に示し、蛍光顕微鏡で観察した画像を図38に示す。
図38は蛍光顕微鏡で青色の波長域(365nm)を観察した蛍光画像である。多糖類を含む腺細胞(青色)の組織構造を黒色の背景にはっきりと識別することができ、病理診断に用いことができる高品質の画像であることが確認された。
FIG. 37 shows a transmission image obtained by observing the tissue section sample with a microscope, and FIG. 38 shows an image observed with a fluorescence microscope.
FIG. 38 is a fluorescence image obtained by observing the blue wavelength region (365 nm) with a fluorescence microscope. The tissue structure of glandular cells (blue) containing polysaccharides can be clearly identified on a black background, and it was confirmed that the images were of high quality that could be used for pathological diagnosis.

[比較例1]
化合物(1)に代えて、化合物(1)〜(5)に該当しない骨格構造を有するフルオレセインイソチアシアネート(FITC)(0.005g)を使用した以外は、実施例4の手順に沿って、同一の組織切片について染色を行った。
その結果、光学顕微鏡の透過画像においてはFITCによる黄色の着色が、HE染色による青色及び赤色に干渉して、組織構造を従来のHE染色と同様に観察することは困難であった。
一方、蛍光顕微鏡の蛍光画像においてはFITCによる蛍光の波長(黄色)を観察し得ると予測していたが、実際に行ったところ、蛍光を観測できなかった。この理由として、エオジン染色が酸性条件で行われていたため、FITCから蛍光が発生しなかった又は消光したと考えられる。
以上の結果から、FITCによる染色結果を充分に把握することができなかった。
[Comparative Example 1]
According to the procedure of Example 4, except that fluorescein isothiocyanate (FITC) (0.005 g) having a skeletal structure not corresponding to compounds (1) to (5) was used instead of compound (1). Staining was performed on the same tissue section.
As a result, in the transmission image of the optical microscope, yellow coloration by FITC interfered with blue and red color by HE staining, and it was difficult to observe the tissue structure in the same manner as conventional HE staining.
On the other hand, it was predicted that the fluorescence wavelength (yellow) by FITC could be observed in the fluorescence image of the fluorescence microscope, but when actually performed, the fluorescence could not be observed. This is probably because eosin staining was performed under acidic conditions, so that fluorescence was not generated from FITC or quenched.
From the above results, the staining result by FITC could not be fully grasped.

[比較実験]
まず、実施例1と同様に、脱パラフィンを行った2枚の組織切片を得た。これらの組織切片は、組織において互いに隣接する部位から切り出されたものである。
得られた1枚目の組織切片を常法によってPAS染色した。2枚目の組織切片については、実施例1と同様にCHO染色剤(1)を用いてCHO染色した。染色後、常法により脱水及び封入の処理を行って、2枚の組織切片標本を得た。
PAS染色した標本を光学顕微鏡で観察した透過画像(図39)と、CHO染色した標本を蛍光顕微鏡で観察した蛍光画像(図40)と、の両方共に鮮明な画像であった。
両方の画像を比較すると、PAS染色よりもCHO染色の方が、染色されている部位同士の分解能(解像度)が高く、感度が優れていた。
[Comparison experiment]
First, as in Example 1, two tissue sections subjected to deparaffinization were obtained. These tissue sections are cut from sites adjacent to each other in the tissue.
The obtained first tissue section was stained with PAS by a conventional method. The second tissue section was stained with CHO using the CHO stain (1) in the same manner as in Example 1. After staining, dehydration and encapsulation were performed by a conventional method to obtain two tissue section samples.
Both the transmission image (FIG. 39) obtained by observing the PAS-stained specimen with an optical microscope and the fluorescence image (FIG. 40) obtained by observing the CHO-stained specimen with a fluorescence microscope were clear images.
Comparing both images, CHO staining had higher resolution (resolution) between the stained sites and superior sensitivity than PAS staining.

以上で説明した各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、公知の構成の付加、省略、置換、およびその他の変更が可能である。   The configurations and combinations thereof in the embodiments described above are examples, and additions, omissions, substitutions, and other modifications of known configurations are possible without departing from the spirit of the present invention.

本発明は、細胞や組織切片を染色する技術分野、例えば、病理診断や細胞組織学の研究などの医学及び医療分野に広く適用できる。   The present invention can be widely applied to technical fields for staining cells and tissue sections, for example, medical and medical fields such as pathological diagnosis and cytohistological research.

Claims (16)

下記の式(1)〜(5)で表される化合物の群から選ばれる1種以上の化合物を含む染色液によって、細胞又は組織を染色し、前記細胞又は組織に含まれるアルデヒド基を有する物質を染色する染色工程Xを有する、染色方法。
[式(1)中、6個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜6の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよく;
式(2)中、10個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜10の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよく;
式(3)中、8個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜8の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよく;
式(4)中、ジアミノベンゼン構造の3,4,5,6位の4個の水素原子は任意の置換基で置換されていてもよく、前記3,4位の水素原子が除かれて炭素数4〜7のシクロアルカンQが縮合していてもよく、前記シクロアルカンQを構成する1つ以上のメチレン基は、酸素同士が隣接する場合を除いて、(−O−)基又は(−NH−)基によって置換されていてもよく;
式(5)中、ベンゾフラザンが有する3個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜3の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよい。]
A substance having an aldehyde group contained in the cells or tissues by staining the cells or tissues with a staining solution containing one or more compounds selected from the group of compounds represented by the following formulas (1) to (5) A dyeing method comprising a dyeing step X.
[In formula (1), at least one of six hydrogen atoms is substituted with R, R is an amino group or a functional group having a hydrazine structure at the end, and n is an integer of 1 to 6. , A hydrogen atom not substituted with R may be substituted with any substituent;
In formula (2), at least one of the 10 hydrogen atoms is substituted with R, R is an amino group or a functional group having a hydrazine structure at the end, and n is an integer of 1 to 10, A hydrogen atom not substituted with R may be substituted with any substituent;
In formula (3), at least one of the eight hydrogen atoms is substituted with R, R is a functional group having an amino group or a hydrazine structure at the end, and n is an integer of 1 to 8, A hydrogen atom not substituted with R may be substituted with any substituent;
In formula (4), the four hydrogen atoms at the 3, 4, 5, 6 positions of the diaminobenzene structure may be substituted with an arbitrary substituent, and the hydrogen atoms at the 3, 4 positions are removed to form carbon. The cycloalkane Q of formula 4-7 may be condensed, and one or more methylene groups constituting the cycloalkane Q are a (—O—) group or (— Optionally substituted by an NH-) group;
In formula (5), at least one of the three hydrogen atoms of benzofurazan is substituted with R, R is a functional group having an amino group or a hydrazine structure at the end, and n is an integer of 1 to 3 And a hydrogen atom not substituted with R may be substituted with any substituent. ]
前記細胞又は組織を予め酸化処理することによって、前記細胞又は組織に含まれる多糖類が有する水酸基の少なくとも一部をアルデヒド基に変化させる酸化処理工程を有する、請求項1に記載の染色方法。   The staining method according to claim 1, further comprising an oxidation treatment step in which at least a part of hydroxyl groups of the polysaccharide contained in the cells or tissues is changed to aldehyde groups by oxidizing the cells or tissues in advance. 前記染色工程Xの前又は後に、前記細胞又は組織に含まれる塩基性物質を染色する染色工程Hを有する、請求項1又は2に記載の染色方法。   The staining method according to claim 1 or 2, further comprising a staining step H for staining a basic substance contained in the cell or tissue before or after the staining step X. 前記染色工程Hにおいて、ヘマトキシリンを含む染色液を用いて前記塩基性物質を染色する、請求項3に記載の染色方法。   The staining method according to claim 3, wherein in the staining step H, the basic substance is stained using a staining solution containing hematoxylin. 前記細胞又は組織に対して、前記染色工程Xと、
前記細胞又は組織に含まれる塩基性物質を染色する染色工程Hと、を同時に行う、請求項1又は2に記載の染色方法。
For the cells or tissues, the staining step X;
The staining method according to claim 1 or 2, wherein the staining step H for staining a basic substance contained in the cell or tissue is simultaneously performed.
前記式(1)〜(5)で表される化合物の群から選ばれる1種以上の化合物及びヘマトキシリンを含む染色液を用いる、請求項5に記載の染色方法。   The dyeing | staining method of Claim 5 using the dyeing | staining liquid containing 1 or more types of compounds chosen from the group of the compound represented by said Formula (1)-(5), and hematoxylin. 前記染色工程Xと前記染色工程Hを経た前記細胞又は組織に対して、前記細胞又は組織に含まれる酸性物質を染色する染色工程Eをさらに有する、請求項3〜6の何れか一項に記載の染色方法。   The dyeing | staining process E which dye | stains the acidic substance contained in the said cell or tissue with respect to the said cell or tissue which passed through the said dyeing | staining process X and the said dyeing | staining process H is further included in any one of Claims 3-6. Dyeing method. 前記染色工程Eにおいて、エオジンを含む染色液を用いて前記酸性物質を染色する、請求項7に記載の染色方法。   The staining method according to claim 7, wherein in the staining step E, the acidic substance is stained with a staining solution containing eosin. 同一の組織切片に対して、前記染色工程Xと、HE染色を行う工程と、を有する請求項1に記載の染色方法。   The staining method according to claim 1, comprising the staining step X and a HE staining step for the same tissue section. 同一の細胞検体に対して、前記染色工程Xと、パパニコロウ染色を行う工程と、を有する請求項1に記載の染色方法。   The staining method according to claim 1, comprising the staining step X and a step of performing Papanicolaou staining on the same cell specimen. 同一の血液標本に対して、前記染色工程Xと、ギムザ染色を行う工程と、を有する請求項1に記載の染色方法。   The staining method according to claim 1, comprising the staining step X and Giemsa staining on the same blood specimen. 下記の式(1)〜(5)で表される化合物の群から選ばれる1種以上の化合物を含む、染色剤。
[式(1)中、6個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜6の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよく;
式(2)中、10個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜10の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよく;
式(3)中、8個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜8の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよく;
式(4)中、ジアミノベンゼン構造の3,4,5,6位の4個の水素原子は任意の置換基で置換されていてもよく、前記3,4位の水素原子が除かれて炭素数4〜7のシクロアルカンQが縮合していてもよく、前記シクロアルカンQを構成する1つ以上のメチレン基は、酸素同士が隣接する場合を除いて、(−O−)基又は(−NH−)基によって置換されていてもよく;
式(5)中、ベンゾフラザンが有する3個の水素原子のうち少なくとも1つはRで置換されており、Rはアミノ基又はヒドラジン構造を末端に有する官能基であり、nは1〜3の整数であり、Rで置換されていない水素原子は任意の置換基で置換されていてもよい。]
A staining agent comprising one or more compounds selected from the group of compounds represented by the following formulas (1) to (5).
[In formula (1), at least one of six hydrogen atoms is substituted with R, R is an amino group or a functional group having a hydrazine structure at the end, and n is an integer of 1 to 6. , A hydrogen atom not substituted with R may be substituted with any substituent;
In formula (2), at least one of the 10 hydrogen atoms is substituted with R, R is an amino group or a functional group having a hydrazine structure at the end, and n is an integer of 1 to 10, A hydrogen atom not substituted with R may be substituted with any substituent;
In formula (3), at least one of the eight hydrogen atoms is substituted with R, R is a functional group having an amino group or a hydrazine structure at the end, and n is an integer of 1 to 8, A hydrogen atom not substituted with R may be substituted with any substituent;
In formula (4), the four hydrogen atoms at the 3, 4, 5, 6 positions of the diaminobenzene structure may be substituted with an arbitrary substituent, and the hydrogen atoms at the 3, 4 positions are removed to form carbon. The cycloalkane Q of formula 4-7 may be condensed, and one or more methylene groups constituting the cycloalkane Q are a (—O—) group or (— Optionally substituted by an NH-) group;
In formula (5), at least one of the three hydrogen atoms of benzofurazan is substituted with R, R is a functional group having an amino group or a hydrazine structure at the end, and n is an integer of 1 to 3 And a hydrogen atom not substituted with R may be substituted with any substituent. ]
さらにヘマトキシリンが含まれている、請求項12に記載の染色剤。   The staining agent according to claim 12, further comprising hematoxylin. 請求項12又は13に記載の染色剤を有する、染色キット。   A staining kit comprising the staining agent according to claim 12 or 13. 前記染色剤とヘマトキシリンを含む染色剤とを有する、請求項14に記載の染色キット。   The staining kit according to claim 14, comprising the staining agent and a staining agent containing hematoxylin. エオジンを含む染色剤をさらに有する、請求項14又は15に記載の染色キット。   The staining kit according to claim 14 or 15, further comprising a staining agent containing eosin.
JP2017059098A 2017-03-24 2017-03-24 Dyeing method, dyeing agent, and dyeing kit Active JP6950922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017059098A JP6950922B2 (en) 2017-03-24 2017-03-24 Dyeing method, dyeing agent, and dyeing kit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017059098A JP6950922B2 (en) 2017-03-24 2017-03-24 Dyeing method, dyeing agent, and dyeing kit

Publications (2)

Publication Number Publication Date
JP2018162986A true JP2018162986A (en) 2018-10-18
JP6950922B2 JP6950922B2 (en) 2021-10-13

Family

ID=63860082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017059098A Active JP6950922B2 (en) 2017-03-24 2017-03-24 Dyeing method, dyeing agent, and dyeing kit

Country Status (1)

Country Link
JP (1) JP6950922B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112666138A (en) * 2020-12-11 2021-04-16 南阳理工学院 Method for rapidly predicting difficulty of bending-resistant elastic deformation of wood based on microstructure
WO2021201233A1 (en) * 2020-04-02 2021-10-07 公立大学法人名古屋市立大学 Staining method, microscopic observation method, staining agent and staining kit
IT202100018434A1 (en) * 2021-07-13 2023-01-13 Diapath S P A Coloring compositions for biological, cytological, histological and autopsy samples.
WO2023132337A1 (en) * 2022-01-06 2023-07-13 国立大学法人大阪大学 Fluorescent staining method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526137A (en) * 2003-05-28 2006-11-16 ジーイー・ヘルスケア・ユーケイ・リミテッド Differential analysis of cell surface proteins on a closed membrane structure by labeling the dye in the presence of an internal standard
WO2013035688A1 (en) * 2011-09-09 2013-03-14 コニカミノルタエムジー株式会社 Method for staining tissue

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526137A (en) * 2003-05-28 2006-11-16 ジーイー・ヘルスケア・ユーケイ・リミテッド Differential analysis of cell surface proteins on a closed membrane structure by labeling the dye in the presence of an internal standard
WO2013035688A1 (en) * 2011-09-09 2013-03-14 コニカミノルタエムジー株式会社 Method for staining tissue

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"CHAPTER 3 Click Chemistry and Other Functional Group Modifications", MOLECULAR PROBES HANDBOOK, JPN7020004258, 2010, pages 122 - 150, ISSN: 0004419942 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021201233A1 (en) * 2020-04-02 2021-10-07 公立大学法人名古屋市立大学 Staining method, microscopic observation method, staining agent and staining kit
CN112666138A (en) * 2020-12-11 2021-04-16 南阳理工学院 Method for rapidly predicting difficulty of bending-resistant elastic deformation of wood based on microstructure
CN112666138B (en) * 2020-12-11 2023-04-07 南阳理工学院 Method for rapidly predicting difficulty of bending-resistant elastic deformation of wood based on microstructure
IT202100018434A1 (en) * 2021-07-13 2023-01-13 Diapath S P A Coloring compositions for biological, cytological, histological and autopsy samples.
WO2023285968A1 (en) * 2021-07-13 2023-01-19 Diapath S.P.A. Staining compositions for biological, cytological, histological and autopsical samples
WO2023132337A1 (en) * 2022-01-06 2023-07-13 国立大学法人大阪大学 Fluorescent staining method

Also Published As

Publication number Publication date
JP6950922B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
Ryan et al. Real-time monitoring of the mitophagy process by a photostable fluorescent mitochondrion-specific bioprobe with AIE characteristics
Zheng et al. Simultaneous dual-colour tracking lipid droplets and lysosomes dynamics using a fluorescent probe
JP6950922B2 (en) Dyeing method, dyeing agent, and dyeing kit
Frick et al. Aqueous Nile blue: a simple, versatile and safe reagent for the detection of latent fingermarks
Kumar et al. FLIM FRET technology for drug discovery: Automated multiwell‐plate high‐content analysis, multiplexed readouts and application in situ
Tang et al. A dual near-infrared pH fluorescent probe and its application in imaging of HepG2 cells
Soleimaninejad et al. Measuring macromolecular crowding in cells through fluorescence anisotropy imaging with an AIE fluorogen
EP2833140B1 (en) Method for detecting biological material
EP3035026A1 (en) Composition for preparing biomaterial with excellent light-transmitting property, and use thereof
Yan et al. Preparation of near-infrared AIEgen-active fluorescent probes for mapping amyloid-β plaques in brain tissues and living mice
Singh et al. A Golgi-localized two-photon probe for imaging zinc ions
CN110981842B (en) Fluorescent probe for distinguishing normal cells and cancer cells and specifically detecting lipid droplets and application
Kim et al. A ratiometric two-photon probe for Ca2+ in live tissues and its application to spinal cord injury model
Shivran et al. A BODIPY-O-glycoside based near-infrared fluorescent sensor for serum albumin
JPS6361622B2 (en)
US9562836B2 (en) Formalin-free fixation agent for histological stains of tissue samples
JPH0224467B2 (en)
JP6966435B2 (en) Imaging method for tomography
WO2022054755A1 (en) Fluorescent dye and method for detecting tumor cells
Doane et al. Photophysics of silicon phthalocyanines in aqueous media
Liu et al. Fluorogenic probes for mitochondria and lysosomes via intramolecular photoclick reaction
EP3732461A1 (en) Tissue sample preparation system
CN109369455A (en) A kind of big Stokes shift fluorescent dye of two-photon Near-infrared Double and its synthetic method and application
CN114057604A (en) Cell nucleus fluorescent dye and dyeing method thereof
JP2007222100A (en) Stain composition for staining inside of cell or tissue, and staining method by using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210915

R150 Certificate of patent or registration of utility model

Ref document number: 6950922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150