JP2018162814A - Two-way clutch - Google Patents

Two-way clutch Download PDF

Info

Publication number
JP2018162814A
JP2018162814A JP2017059371A JP2017059371A JP2018162814A JP 2018162814 A JP2018162814 A JP 2018162814A JP 2017059371 A JP2017059371 A JP 2017059371A JP 2017059371 A JP2017059371 A JP 2017059371A JP 2018162814 A JP2018162814 A JP 2018162814A
Authority
JP
Japan
Prior art keywords
cam
engagement element
way clutch
input shaft
engagement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017059371A
Other languages
Japanese (ja)
Other versions
JP6887843B2 (en
Inventor
栄弥 大池
Eiya Oike
栄弥 大池
忠彦 加藤
Tadahiko Kato
忠彦 加藤
吉洋 浅田
Yoshihiro Asada
吉洋 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Univance Corp
Original Assignee
Univance Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univance Corp filed Critical Univance Corp
Priority to JP2017059371A priority Critical patent/JP6887843B2/en
Publication of JP2018162814A publication Critical patent/JP2018162814A/en
Application granted granted Critical
Publication of JP6887843B2 publication Critical patent/JP6887843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Operated Clutches (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a two-way clutch which is reduced in size and achieved in power saving.SOLUTION: A two-way clutch comprises: a first member connected to an input shaft, and having a prescribed first face; a second member connected to an output shaft, and having a second face opposing the first face in an axial line direction; a first engagement piece interposed between the first face and the second face, and transmitting torque in a forward direction from the first member to the second member; a second engagement piece for transmitting torque in a reverse direction from the first member to the second member; a spring for energizing the first engagement piece and the second engagement piece to the axial line direction in which the first engagement piece and the second engagement piece are engaged with each other; and a cam mechanism for converting the torque of the input shaft to a force in the axial direction, and making the first engagement piece and the second engagement piece non-engageable with each other by elastically deforming the space.SELECTED DRAWING: Figure 1

Description

本発明は、入力軸と出力軸との間にトルクを伝達または遮断する二方向クラッチに関するものである。   The present invention relates to a two-way clutch that transmits or interrupts torque between an input shaft and an output shaft.

入力軸と出力軸との間にトルクを伝達または遮断する二方向クラッチとして、特許文献1や特許文献2に開示される技術が知られている。特許文献1や特許文献2に開示される二方向クラッチは、入力軸に結合する第1部材と、出力軸に結合すると共に第1部材と軸線方向に対向する第2部材と、第1部材と第2部材との間に介在して第1部材と第2部材とを係合する第1係合子および第2係合子と、第1係合子および第2係合子の動作を制限する駆動装置と、を備えている。駆動装置は、電磁力を利用して電気エネルギーを機械運動に変換するソレノイドと、ソレノイドの機械運動により第1係合子および第2係合子の係合の可否を切り換える切換機構と、を備えている。   As a two-way clutch that transmits or interrupts torque between an input shaft and an output shaft, techniques disclosed in Patent Document 1 and Patent Document 2 are known. The two-way clutch disclosed in Patent Document 1 or Patent Document 2 includes a first member coupled to the input shaft, a second member coupled to the output shaft and opposed to the first member in the axial direction, and a first member. A first engagement element and a second engagement element which are interposed between the second member and engage the first member and the second member; and a drive device which restricts the operation of the first engagement element and the second engagement element. It is equipped with. The drive device includes a solenoid that converts electric energy into mechanical motion using electromagnetic force, and a switching mechanism that switches whether the first engagement element and the second engagement element are engaged by the mechanical movement of the solenoid. .

特許第5145019号公報Japanese Patent No. 5145019 国際公開第2015/001642号International Publication No. 2015/001642

しかしながら、上記従来の技術ではソレノイドを備えているので、二方向クラッチが大型化すると共に、ソレノイドの消費電力が生じるという問題点がある。   However, since the conventional technology includes the solenoid, there are problems that the two-way clutch is enlarged and the power consumption of the solenoid is generated.

本発明は上述した問題点を解決するためになされたものであり、小型化および省電力化を図る二方向クラッチを提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a two-way clutch that achieves miniaturization and power saving.

この目的を達成するために本発明の二方向クラッチは、入力軸と出力軸とのトルクの伝達と遮断とを切り換えるものである。入力軸に結合する第1部材は所定の第1面を有し、出力軸に結合する第2部材は、第1面と軸線方向に対向する第2面を有する。第1面と第2面との間に介在する第1係合子は、第1部材と第2部材とを係合して第1部材から第2部材へ正転方向のトルクを伝達する。第1面と第2面との間に介在する第2係合子は、第1部材と第2部材とを係合して第1部材から第2部材へ逆転方向のトルクを伝達する。ばねは、第1係合子および第2係合子が係合する軸線方向へ第1係合子および第2係合子を付勢する。カム機構は、入力軸のトルクを軸方向の力に変換し、ばねを弾性変形させて第1係合子および第2係合子を係合不能にする。   In order to achieve this object, the two-way clutch of the present invention switches between transmission and interruption of torque between the input shaft and the output shaft. The first member coupled to the input shaft has a predetermined first surface, and the second member coupled to the output shaft has a second surface facing the first surface in the axial direction. A first engagement element interposed between the first surface and the second surface engages the first member and the second member, and transmits torque in the forward rotation direction from the first member to the second member. A second engagement element interposed between the first surface and the second surface engages the first member and the second member, and transmits torque in the reverse direction from the first member to the second member. The spring biases the first engagement element and the second engagement element in the axial direction in which the first engagement element and the second engagement element are engaged. The cam mechanism converts the torque of the input shaft into an axial force, and elastically deforms the spring to make the first engagement element and the second engagement element impossible to engage.

請求項1記載の二方向クラッチによれば、ばねにより、第1係合子および第2係合子が係合する軸線方向へ第1係合子および第2係合子が付勢される。カム機構により、入力軸のトルクを軸方向の力に変換することでばねを弾性変形させて第1係合子および第2係合子を係合不能にする。その結果、ソレノイドを不要にできる。よって、ソレノイドを省略できる分だけ、二方向クラッチの小型化および省電力化を図ることができる。   According to the two-way clutch of the first aspect, the first engagement element and the second engagement element are biased by the spring in the axial direction in which the first engagement element and the second engagement element are engaged. By converting the torque of the input shaft into axial force by the cam mechanism, the spring is elastically deformed so that the first engagement element and the second engagement element cannot be engaged. As a result, the solenoid can be dispensed with. Therefore, the two-way clutch can be reduced in size and power can be saved as much as the solenoid can be omitted.

請求項2記載の二方向クラッチによれば、カム機構は、第1カム、第2カム及び第3カムを備えている。第1カムは、第1係合子に対する軸線方向へ入力軸に対して移動可能に配置されると共に入力軸と一体に回転する。第2カムは、第2係合子に対する軸線方向へ入力軸および第1カムに対して移動可能に配置されると共に入力軸と一体に回転する。第3カムは、第1カム及び第2カムと軸線方向に対向しつつ軸線の回りに回転可能かつ軸線方向へ移動不能に配置される。   According to the two-way clutch of the second aspect, the cam mechanism includes the first cam, the second cam, and the third cam. The first cam is disposed so as to be movable with respect to the input shaft in the axial direction relative to the first engagement element and rotates integrally with the input shaft. The second cam is disposed so as to be movable relative to the input shaft and the first cam in the axial direction with respect to the second engagement element, and rotates integrally with the input shaft. The third cam is disposed so as to be rotatable about the axis and immovable in the axial direction while facing the first cam and the second cam in the axial direction.

これにより、入力軸が回転して第1カム及び第2カムが回転すると、第1ボール又は第2ボールを介して第3カムが回転する。第3カムと第1カムとの間に介在する第1ボールは、第1カムの逆転方向における第3カムとの相対回転により第3カムと第1カムとの軸線方向の間隔を広げて第1係合子を係合不能にする。第3カムと第2カムとの間に介在する第2ボールは、第2カムの正転方向における第3カムとの相対回転により第3カムと第2カムとの軸線方向の間隔を広げて第2係合子を係合不能にする。よって、請求項1の効果に加え、カム機構により回転運動を軸線方向の運動に変換し、第1係合子を介して正転方向の入力軸のトルクを出力軸に伝達し、第2係合子を介して逆転方向の入力軸のトルクを出力軸に伝達できる。   Thus, when the input shaft rotates and the first cam and the second cam rotate, the third cam rotates via the first ball or the second ball. The first ball interposed between the third cam and the first cam increases the axial distance between the third cam and the first cam by the relative rotation with the third cam in the reverse rotation direction of the first cam. 1 Engagement element is disabled. The second ball interposed between the third cam and the second cam increases the axial distance between the third cam and the second cam by relative rotation with the third cam in the forward rotation direction of the second cam. The second engagement element is disabled. Therefore, in addition to the effect of the first aspect, the rotary motion is converted into the axial motion by the cam mechanism, the torque of the input shaft in the forward rotation direction is transmitted to the output shaft through the first engagement element, and the second engagement element. The torque of the input shaft in the reverse direction can be transmitted to the output shaft via the.

請求項3記載の二方向クラッチによれば、第3カムに係合部が設けられる。質量体は、係合部との摩擦によって第3カムと一体に回転しつつ遠心力によって係合部から離れる方向へ移動する。弾性体は、質量体を係合部へ近づく方向へ付勢するので、第3カムの回転数が低いときは、第3カムの回転数が高いときに比べて、質量体および弾性体によって第3カムの慣性質量を大きくできる。よって、請求項2の効果に加え、第3カムの回転数が低いときにカム機構の動作に必要な第1カム及び第2カムと第3カムとの相対回転を発生させてカム機構を動作させ易くできると共に、第3カムの回転数が高いときのフリクションを軽減できる。   According to the two-way clutch of the third aspect, the engaging portion is provided on the third cam. The mass body moves in a direction away from the engaging portion by centrifugal force while rotating integrally with the third cam by friction with the engaging portion. The elastic body urges the mass body in a direction approaching the engaging portion. Therefore, when the third cam has a low rotation speed, the mass body and the elastic body cause the first cam to rotate. The inertial mass of 3 cams can be increased. Therefore, in addition to the effect of claim 2, when the rotation speed of the third cam is low, the cam mechanism is operated by generating the relative rotation between the first cam and the second cam and the third cam necessary for the operation of the cam mechanism. In addition, it is possible to reduce friction when the rotation speed of the third cam is high.

請求項4記載の二方向クラッチによれば、摩擦材は固定要素に対する摩擦力を第3カムに付与するので、カム機構の動作に必要な第1カム及び第2カムと第3カムとの相対回転を発生させることができる。よって、請求項2又は3の効果に加え、入力軸の回転数が低いときにカム機構を動作させ易くできる。   According to the two-way clutch of the fourth aspect, the friction material imparts a frictional force against the fixed element to the third cam, so that the relative relationship between the first cam, the second cam, and the third cam necessary for the operation of the cam mechanism. Rotation can be generated. Therefore, in addition to the effect of the second or third aspect, the cam mechanism can be easily operated when the rotational speed of the input shaft is low.

請求項5記載の二方向クラッチによれば、制動機構は質量体に回転方向の摩擦力を付与するので、請求項3の効果に加え、第3カムの回転数が高いときのフリクションは軽減しつつ、第3カムの回転数が低いときにカム機構をより動作させ易くできる。   According to the two-way clutch of the fifth aspect, since the braking mechanism applies a frictional force in the rotational direction to the mass body, in addition to the effect of the third aspect, the friction when the rotation speed of the third cam is high is reduced. However, the cam mechanism can be more easily operated when the rotation speed of the third cam is low.

請求項6記載の二方向クラッチによれば、カム機構は、逆転方向から正転方向へ第1カムの回転方向を切り換えるときに第1係合子および第2係合子の噛み合いが外れるように軸方向の移動量が設定されている。よって、請求項2から5のいずれかの効果に加え、第1係合子および第2係合子が同時に噛み合わないようにできる。   According to the two-way clutch of the sixth aspect, the cam mechanism is axially arranged so that the first engagement element and the second engagement element are disengaged when the rotation direction of the first cam is switched from the reverse rotation direction to the normal rotation direction. The amount of movement is set. Therefore, in addition to the effect of any one of claims 2 to 5, it is possible to prevent the first engagement element and the second engagement element from engaging at the same time.

請求項7記載の二方向クラッチによれば、カム機構は、逆転方向から正転方向へ第1カムの回転方向を切り換えるときに第1係合子および第2係合子が噛み合うように軸方向の移動量が設定されている。よって、請求項2から6のいずれかの効果に加え、第1部材と第2部材とを素早く同期できる。   According to the two-way clutch of the seventh aspect, the cam mechanism moves in the axial direction so that the first engagement element and the second engagement element are engaged when the rotation direction of the first cam is switched from the reverse rotation direction to the normal rotation direction. The amount is set. Therefore, in addition to the effect of any one of claims 2 to 6, the first member and the second member can be quickly synchronized.

本発明の一実施の形態における二方向クラッチの断面図である。It is sectional drawing of the two-way clutch in one embodiment of this invention. 図1のII−II線における二方向クラッチの断面図である。It is sectional drawing of the two-way clutch in the II-II line of FIG. (a)は図1のIIIa−IIIa線における二方向クラッチの断面図であり、(b)は第1係合子の正面図であり、(c)は第1係合子の側面図である。(A) is sectional drawing of the two-way clutch in the IIIa-IIIa line | wire of FIG. 1, (b) is a front view of a 1st engagement element, (c) is a side view of a 1st engagement element. (a)は第3カムの模式図であり、(b)は別の第3カムの模式図である。(A) is a schematic diagram of a 3rd cam, (b) is a schematic diagram of another 3rd cam. 図1のV−V線における二方向クラッチの断面図である。It is sectional drawing of the two-way clutch in the VV line | wire of FIG. (a)は入力軸に正転方向のトルクが入力された二方向クラッチの模式図であり、(b)は入力軸に逆転方向のトルクが入力された二方向クラッチの模式図である。(A) is a schematic diagram of the two-way clutch in which the forward rotation direction torque is input to the input shaft, and (b) is a schematic diagram of the two-way clutch in which the reverse rotation direction torque is input to the input shaft.

以下、本発明の好ましい実施の形態について添付図面を参照して説明する。まず図1を参照して本発明の第1実施の形態における二方向クラッチ10について説明する。図1は本発明の一実施の形態における二方向クラッチ10の断面図である。二方向クラッチ10は、本実施の形態では車両に搭載されている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. First, the two-way clutch 10 according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view of a two-way clutch 10 according to an embodiment of the present invention. The two-way clutch 10 is mounted on a vehicle in the present embodiment.

図1に示すように二方向クラッチ10は、同一の軸線O上に配置される入力軸11と出力軸12との間のトルクの伝達または遮断を行うための装置である。二方向クラッチ10は、入力軸11に結合される第1部材20と、出力軸12に結合される第2部材30と、第1部材20と第2部材30とを係合する第1係合子40及び第2係合子50と、第1部材20及び第2部材30が係合する方向へそれぞれ第1係合子40及び第2係合子50を付勢するばね43,53と、ばね43,53の弾性力に抗して第1係合子40及び第2係合子50の係合を解除するカム機構60と、を備えている。   As shown in FIG. 1, the two-way clutch 10 is a device for transmitting or blocking torque between the input shaft 11 and the output shaft 12 arranged on the same axis O. The two-way clutch 10 includes a first member 20 coupled to the input shaft 11, a second member 30 coupled to the output shaft 12, and a first engagement element that engages the first member 20 and the second member 30. 40 and the second engaging element 50, springs 43 and 53 for urging the first engaging element 40 and the second engaging element 50 in the direction in which the first member 20 and the second member 30 are engaged, and the springs 43 and 53, respectively. And a cam mechanism 60 that releases the engagement of the first engagement element 40 and the second engagement element 50 against the elastic force.

図2を参照して第1部材20について説明する。図2は図1のII−II線における二方向クラッチ10の断面図である。第1部材20は入力軸11に結合すると共に、軸受13によって出力軸12に内周が回転可能に支持される略円環状の部材である。第1部材20の第1面21は軸線Oと直交する平坦面である。第1部材20には、軸線O方向に延びる円筒部22が、第1面21の外周に結合している。   The first member 20 will be described with reference to FIG. 2 is a cross-sectional view of the two-way clutch 10 taken along the line II-II in FIG. The first member 20 is a substantially annular member that is coupled to the input shaft 11 and whose inner periphery is rotatably supported by the output shaft 12 by a bearing 13. The first surface 21 of the first member 20 is a flat surface orthogonal to the axis O. A cylindrical portion 22 extending in the direction of the axis O is coupled to the first member 20 on the outer periphery of the first surface 21.

第1部材20は、第1面21に、直径の異なる円環状の溝23,26が形成されている。第1面21は、溝23上に複数(本実施の形態では8個)の第1凹部24が形成され、溝26上に複数(本実施の形態では8個)の第2凹部27が形成されている。溝26の直径は溝23の直径よりも小さい。第1部材20は、第1部材20を厚さ方向(軸線O方向)に貫通する貫通孔25が、第1凹部24内の溝23上に成形されており、第1部材20を厚さ方向に貫通する貫通孔28が、第2凹部27内の溝26上に成形されている。   In the first member 20, annular grooves 23 and 26 having different diameters are formed on the first surface 21. The first surface 21 has a plurality (eight in this embodiment) of first recesses 24 formed on the groove 23 and a plurality (eight in this embodiment) of second recesses 27 formed on the groove 26. Has been. The diameter of the groove 26 is smaller than the diameter of the groove 23. In the first member 20, a through hole 25 penetrating the first member 20 in the thickness direction (axis O direction) is formed on the groove 23 in the first recess 24, and the first member 20 is formed in the thickness direction. A through hole 28 is formed on the groove 26 in the second recess 27.

第1凹部24は、第2部材30に揺動可能に支持される第1係合子40の本体部41(後述する)が進入する部位である。第2凹部27は、第2部材30に揺動可能に支持される第2係合子50の本体部51(後述する)が進入する部位である。第1凹部24及び第2凹部27は、正面視が略矩形の開口を有し、溝23,26の円周上にそれぞれ略均等な間隔で形成されている。第1凹部24及び第2凹部27の径方向の幅は、第1係合子40の本体部41及び第2係合子50の本体部51の幅よりわずかに大きい。これにより、本体部41,51は第1凹部24及び第2凹部27に進入できる。   The first concave portion 24 is a portion into which a main body portion 41 (described later) of the first engagement element 40 that is swingably supported by the second member 30 enters. The second concave portion 27 is a portion into which a main body portion 51 (described later) of the second engaging member 50 that is swingably supported by the second member 30 enters. The first recess 24 and the second recess 27 have openings that are substantially rectangular when viewed from the front, and are formed on the circumferences of the grooves 23 and 26 at substantially equal intervals. The radial widths of the first recess 24 and the second recess 27 are slightly larger than the widths of the main body 41 of the first engagement element 40 and the main body 51 of the second engagement element 50. Accordingly, the main body portions 41 and 51 can enter the first recess portion 24 and the second recess portion 27.

溝23はリング部材44(図1参照)を周方向および軸線O方向に移動可能に収容する部位であり、溝26はリング部材54(図1参照)を周方向および軸線O方向に移動可能に収容する部位である。溝23,26はいずれも軸線Oを含む断面において矩形の断面形状を有している。貫通孔25,28は、ピン45,55(図1参照)がそれぞれ摺動可能に嵌る部位である。ピン45,55は、リング部材44,54にカム機構60の力を伝達する。リング部材44,54は第1係合子40及び第2係合子50の揺動を規制する。   The groove 23 is a part for accommodating the ring member 44 (see FIG. 1) so as to be movable in the circumferential direction and the axis O direction, and the groove 26 is capable of moving the ring member 54 (see FIG. 1) in the circumferential direction and the axis O direction. It is a part to accommodate. Each of the grooves 23 and 26 has a rectangular cross section in a cross section including the axis O. The through holes 25 and 28 are portions into which the pins 45 and 55 (see FIG. 1) are slidably fitted. The pins 45 and 55 transmit the force of the cam mechanism 60 to the ring members 44 and 54. The ring members 44 and 54 restrict the swinging of the first engagement element 40 and the second engagement element 50.

図3(a)を参照して第2部材30について説明する。図3(a)は図1のIIIa−IIIa線における二方向クラッチ10の断面図である。第2部材30は、スプラインによって出力軸12に結合する略円環状の部材である。第2部材30は円筒部22(図1参照)の内側に配置される。第2部材30は、円筒部22に固定された規制部材14(図1参照)によって、第1部材20に対する軸線O方向の移動が規制される。第2部材30の第2面31は軸線Oと直交する平坦面である。第2面31は、第1部材20の第1面21と軸線O方向に対向する。   The second member 30 will be described with reference to FIG. FIG. 3A is a cross-sectional view of the two-way clutch 10 taken along line IIIa-IIIa in FIG. The second member 30 is a substantially annular member that is coupled to the output shaft 12 by a spline. The second member 30 is disposed inside the cylindrical portion 22 (see FIG. 1). The movement of the second member 30 in the direction of the axis O relative to the first member 20 is restricted by the restriction member 14 (see FIG. 1) fixed to the cylindrical portion 22. The second surface 31 of the second member 30 is a flat surface orthogonal to the axis O. The second surface 31 faces the first surface 21 of the first member 20 in the axis O direction.

第2面31は、第1面21(図2参照)の第1凹部24に対応する位置に、複数(本実施の形態では8個)の第1収容部32が形成されており、第1面21の第2凹部27に対応する位置に複数(本実施の形態では8個)の第2収容部36が形成されている。第1収容部32に第1係合子40が収容され、第2収容部36に第2係合子50が収容される。   The second surface 31 has a plurality of (eight in the present embodiment) first accommodating portions 32 formed at positions corresponding to the first recesses 24 of the first surface 21 (see FIG. 2). A plurality of (eight in the present embodiment) second accommodating portions 36 are formed at positions corresponding to the second concave portions 27 of the surface 21. The first engaging element 40 is accommodated in the first accommodating part 32, and the second engaging element 50 is accommodated in the second accommodating part 36.

図3(b)及び図3(c)を参照して第1係合子40及び第2係合子50について説明する。図3(b)は第1係合子40の正面図であり、図3(c)は第1係合子40の側面図である。なお、第1係合子40及び第2係合子50は、第2部材30に配置される周方向の向きが異なる以外は同一に構成されている。よって、第1係合子40の各部を説明して、第2係合子50の各部の説明は省略する。   The first engaging element 40 and the second engaging element 50 will be described with reference to FIGS. 3B and 3C. FIG. 3B is a front view of the first engagement element 40, and FIG. 3C is a side view of the first engagement element 40. The first engagement element 40 and the second engagement element 50 are configured in the same manner except that the circumferential direction arranged on the second member 30 is different. Therefore, each part of the 1st engagement element 40 is demonstrated and description of each part of the 2nd engagement element 50 is abbreviate | omitted.

第1係合子40は、正面視が略T字状の板状体であり、正面視して略矩形状に形成される本体部41と、本体部41の端部の両側縁から両側に突設される略棒状の腕部42とを備えている。第1係合子40及び第2係合子50は、互いに異なる方向のトルクを伝達する。   The first engagement element 40 is a plate-like body that is substantially T-shaped when viewed from the front, and protrudes from the both side edges of the end portion of the main body 41 and the main body 41 formed in a substantially rectangular shape when viewed from the front. And a substantially rod-shaped arm portion 42 provided. The first engagement element 40 and the second engagement element 50 transmit torque in different directions.

図3(a)に戻って説明する。第1収容部32は、第1係合子40の本体部41が収容される浅い窪みである本体収容部33と、腕部42が収容される浅い窪みである腕収容部34とを備えている。腕収容部34は本体収容部33に連接されている。第1収容部32は、本体収容部33を円周方向に並べた状態で、腕収容部34を径方向の内外に向けて配置されている。   Returning to FIG. The first housing portion 32 includes a main body housing portion 33 that is a shallow depression in which the main body portion 41 of the first engagement element 40 is accommodated, and an arm housing portion 34 that is a shallow depression in which the arm portion 42 is accommodated. . The arm accommodating portion 34 is connected to the main body accommodating portion 33. The first accommodating portion 32 is arranged with the arm accommodating portion 34 facing inward and outward in the radial direction in a state where the main body accommodating portions 33 are arranged in the circumferential direction.

第1収容部32は、本体収容部33よりも深い窪みであるばね収容部35が、腕収容部34と反対側の本体収容部33に連接されている。ばね収容部35にばね43(図1参照)が収容される。ばね収容部35を本体収容部33に加えた周方向の長さは、本体収容部33及びばね収容部35に第1係合子40の本体部41を収容するため、第1係合子40の本体部41の長さよりもわずかに長い。円周方向に隣り合う第1収容部32は、腕収容部34とばね収容部35とが向き合う。本実施の形態では、ばね43はねじりコイルばねであるが、これに限られるものではない。ねじりコイルばねに代えて、圧縮コイルばね等を用いることは当然可能である。   In the first housing portion 32, a spring housing portion 35, which is a depression deeper than the main body housing portion 33, is connected to the main body housing portion 33 on the side opposite to the arm housing portion 34. A spring 43 (see FIG. 1) is accommodated in the spring accommodating portion 35. The circumferential length obtained by adding the spring accommodating portion 35 to the main body accommodating portion 33 is that the main body portion 41 of the first engaging element 40 is accommodated in the main body accommodating portion 33 and the spring accommodating portion 35. It is slightly longer than the length of the portion 41. As for the 1st accommodating part 32 adjacent to the circumference direction, the arm accommodating part 34 and the spring accommodating part 35 face each other. In the present embodiment, the spring 43 is a torsion coil spring, but is not limited thereto. It is naturally possible to use a compression coil spring or the like instead of the torsion coil spring.

第2収容部36は、第2係合子50の本体部51が収容される浅い窪みである本体収容部37と、腕部52が収容される浅い窪みである腕収容部38とを備えている。腕収容部38は本体収容部37に連接されている。第2収容部36は、本体収容部37を円周方向に並べた状態で、腕収容部38を径方向の内外に向けて配置されている。   The second housing portion 36 includes a main body housing portion 37 that is a shallow depression in which the main body portion 51 of the second engagement element 50 is accommodated, and an arm housing portion 38 that is a shallow depression in which the arm portion 52 is accommodated. . The arm accommodating portion 38 is connected to the main body accommodating portion 37. The second accommodating portion 36 is arranged with the arm accommodating portions 38 facing inward and outward in the radial direction in a state where the main body accommodating portions 37 are arranged in the circumferential direction.

第2収容部36は、本体収容部37よりも深い窪みであるばね収容部39が、腕収容部38と反対側の本体収容部37に連接されている。ばね収容部39にばね53(図1参照)が収容される。本実施の形態では、ばね53はねじりコイルばねである。ばね収容部39を本体収容部37に加えた周方向の長さは、本体収容部37及びばね収容部39に第2係合子50の本体部51を収容するため、第2係合子50の本体部51の長さよりもわずかに長い。円周方向に隣り合う第2収容部36は、腕収容部38とばね収容部39とが向き合う。第2収容部36及び第1収容部32は、周方向の向きを互いに異ならせて配置されている。   In the second housing portion 36, a spring housing portion 39, which is a depression deeper than the main body housing portion 37, is connected to the main body housing portion 37 on the side opposite to the arm housing portion 38. A spring 53 (see FIG. 1) is accommodated in the spring accommodating portion 39. In the present embodiment, the spring 53 is a torsion coil spring. The circumferential length of the spring accommodating portion 39 added to the main body accommodating portion 37 is that the main body 51 of the second engaging member 50 is accommodated in the main body accommodating portion 37 and the spring accommodating portion 39. It is slightly longer than the length of the part 51. As for the 2nd accommodating part 36 adjacent to the circumferential direction, the arm accommodating part 38 and the spring accommodating part 39 face each other. The 2nd accommodating part 36 and the 1st accommodating part 32 are arrange | positioned by making the direction of the circumferential direction mutually differ.

図1に示すように、第2部材30の第1収容部32に第1係合子40及びばね43が収容され、第2収容部36に第2係合子50及びばね53が収容される。一方、第1部材20の溝23,26にリング部材44,54がそれぞれ収容される。第2部材30の第2面31が第1部材20の第1面21と対面するように、第1部材20に第2部材30が組み付けられる。   As shown in FIG. 1, the first engaging element 40 and the spring 43 are accommodated in the first accommodating part 32 of the second member 30, and the second engaging element 50 and the spring 53 are accommodated in the second accommodating part 36. On the other hand, the ring members 44 and 54 are accommodated in the grooves 23 and 26 of the first member 20, respectively. The second member 30 is assembled to the first member 20 such that the second surface 31 of the second member 30 faces the first surface 21 of the first member 20.

二方向クラッチ10は、第1部材20と第2部材30との相対回転によって第1凹部24の位置に第1係合子40が来ると、ばね43の弾性力により、第1係合子40の腕部42を軸にして本体部41が揺動し、本体部41の端部が第1凹部24に進入する。同様に、第2凹部27の位置に第2係合子50が来ると、ばね53の弾性力により、第2係合子50の腕部52を軸にして本体部51が揺動し、本体部51の端部が第2凹部27に進入する。   When the first engagement element 40 comes to the position of the first recess 24 due to the relative rotation of the first member 20 and the second member 30, the two-way clutch 10 is moved to the arm of the first engagement element 40 by the elastic force of the spring 43. The main body 41 swings about the part 42 as an axis, and the end of the main body 41 enters the first recess 24. Similarly, when the second engagement element 50 comes to the position of the second recess 27, the main body part 51 swings around the arm part 52 of the second engagement element 50 by the elastic force of the spring 53, and the main body part 51. The end portion enters the second recess 27.

これに対し、後述するカム機構60(図1参照)が、貫通孔25,28に嵌ったピン45,55を第1凹部24及び第2凹部27側へ押し出すと、溝23,26に収容されたリング部材44,54が第1凹部24及び第2凹部27内へ押し出される。第1凹部24及び第2凹部27内へ押し出されたリング部材44,54は、第1係合子40及び第2係合子50の第1凹部24及び第2凹部27への進入を阻止する。   On the other hand, when a cam mechanism 60 (see FIG. 1), which will be described later, pushes the pins 45 and 55 fitted in the through holes 25 and 28 toward the first concave portion 24 and the second concave portion 27, the cam mechanism 60 is accommodated in the grooves 23 and 26. The ring members 44 and 54 are pushed into the first recess 24 and the second recess 27. The ring members 44 and 54 pushed into the first recess 24 and the second recess 27 prevent the first engagement element 40 and the second engagement element 50 from entering the first recess 24 and the second recess 27.

次にカム機構60(図1参照)について説明する。カム機構60は、第1係合子40及び第2係合子50の動作を制限する機構である。カム機構60は、第1係合子40に対する軸線O方向に配置された第1カム61と、第2係合子50に対する軸線O方向に配置された第2カム63と、第1カム61及び第2カム63に対向する第3カム65と、を備えている。第1カム61と第3カム65との間に複数の第1ボール68が介在し、第2カム63と第3カム65との間に複数の第2ボール69が介在する。   Next, the cam mechanism 60 (see FIG. 1) will be described. The cam mechanism 60 is a mechanism that restricts the operations of the first engagement element 40 and the second engagement element 50. The cam mechanism 60 includes a first cam 61 disposed in the axis O direction with respect to the first engagement element 40, a second cam 63 disposed in the axis O direction with respect to the second engagement element 50, the first cam 61, and the second cam 61. And a third cam 65 facing the cam 63. A plurality of first balls 68 are interposed between the first cam 61 and the third cam 65, and a plurality of second balls 69 are interposed between the second cam 63 and the third cam 65.

第1カム61は、第1部材20を挟んで第2部材30の反対側に入力軸11を取り囲んで配置される円環状の部材である。第1カム61は、円筒部22及び第1カム61に形成されたスプラインの係合により円筒部22と一体に回転すると共に、円筒部22に対して軸線O方向に移動可能に円筒部22の内側に配置されている。第1カム61には、第1部材20の反対側に開放するカム溝62が形成されている。カム溝62は、径方向へ延びる例えば断面三角形の溝であり、周方向に間隔をあけて複数設けられている。   The first cam 61 is an annular member disposed so as to surround the input shaft 11 on the opposite side of the second member 30 across the first member 20. The first cam 61 rotates integrally with the cylindrical portion 22 by the engagement of the cylindrical portion 22 and the spline formed in the first cam 61, and is movable in the direction of the axis O with respect to the cylindrical portion 22. Arranged inside. The first cam 61 is formed with a cam groove 62 that opens to the opposite side of the first member 20. The cam grooves 62 are, for example, triangular grooves extending in the radial direction, and a plurality of cam grooves 62 are provided at intervals in the circumferential direction.

第2カム63は、第1部材20を挟んで第2部材30の反対側、且つ、第1カム61の内側(軸線O側)に配置される円環状の部材である。第2カム63は入力軸11を取り囲んでいる。第2カム63は、入力軸11及び第2カム63に形成されたスプラインの係合により入力軸11と一体に回転すると共に、入力軸11に対して軸線O方向に移動可能に入力軸11の外側に配置されている。第2カム63は、第1カム61に対して軸線O方向に移動可能である。第2カム63には、第1部材20の反対側に開放するカム溝64が形成されている。カム溝64は、径方向へ延びる例えば断面三角形の溝であり、周方向に間隔をあけて複数設けられている。   The second cam 63 is an annular member disposed on the opposite side of the second member 30 across the first member 20 and on the inner side (axis O side) of the first cam 61. The second cam 63 surrounds the input shaft 11. The second cam 63 rotates integrally with the input shaft 11 by engagement of the splines formed on the input shaft 11 and the second cam 63, and is movable with respect to the input shaft 11 in the axis O direction. Arranged outside. The second cam 63 is movable in the axis O direction with respect to the first cam 61. The second cam 63 is formed with a cam groove 64 that opens to the opposite side of the first member 20. The cam grooves 64 are, for example, triangular grooves extending in the radial direction, and a plurality of cam grooves 64 are provided at intervals in the circumferential direction.

第3カム65は、第1カム61及び第2カム63に対向する円環状の部材である。第3カム65は入力軸11を取り囲んでいる。第3カム65は、入力軸11及び円筒部22に対して回転自在に円筒部22の内側に配置されている。第3カム65は、円筒部22に固定された円環状の軸受70により、第1部材20と反対側への軸線O方向の移動が規制されている。第3カム65には、第1部材20側に開放するカム溝66,67が形成されている。カム溝66は、第1カム61のカム溝62と対向する位置に設けられており、カム溝67は、第2カム63のカム溝64と対向する位置に設けられている。カム溝66,67は、径方向に延びる例えば断面三角形の溝である。   The third cam 65 is an annular member that faces the first cam 61 and the second cam 63. The third cam 65 surrounds the input shaft 11. The third cam 65 is disposed inside the cylindrical portion 22 so as to be rotatable with respect to the input shaft 11 and the cylindrical portion 22. The movement of the third cam 65 in the direction of the axis O toward the opposite side of the first member 20 is restricted by an annular bearing 70 fixed to the cylindrical portion 22. The third cam 65 is formed with cam grooves 66 and 67 that open to the first member 20 side. The cam groove 66 is provided at a position facing the cam groove 62 of the first cam 61, and the cam groove 67 is provided at a position facing the cam groove 64 of the second cam 63. The cam grooves 66 and 67 are, for example, triangular grooves extending in the radial direction.

第1カム61及び第2カム63と第3カム65とは、回転方向の位相差が設けられている。第1カム61及び第2カム63と第3カム65とは、その位相差の分だけ、第1ボール68及び第2ボール69の反力を受けながら相対回転できる。第1カム61及び第2カム63と第3カム65との相対回転により、第1ボール68又は第2ボール69が第1カム61又は第2カム63と第3カム65とに係合すると、第1カム61又は第2カム63と第3カム65とは一体に回転する。第3カム65は軸線O方向の移動が規制されているので、第1カム61及び第2カム63と第3カム65とに回転差が生じると、第1カム61又は第2カム63を軸線O方向(第2部材30側)へ移動させる。   The first cam 61, the second cam 63, and the third cam 65 are provided with a phase difference in the rotational direction. The first cam 61, the second cam 63, and the third cam 65 can rotate relative to each other while receiving the reaction force of the first ball 68 and the second ball 69 by the amount of the phase difference. When the first ball 68 or the second ball 69 is engaged with the first cam 61 or the second cam 63 and the third cam 65 by the relative rotation of the first cam 61 and the second cam 63 and the third cam 65, The first cam 61 or the second cam 63 and the third cam 65 rotate integrally. Since the third cam 65 is restricted from moving in the direction of the axis O, if there is a rotational difference between the first cam 61, the second cam 63, and the third cam 65, the first cam 61 or the second cam 63 is moved to the axis. Move in the O direction (second member 30 side).

図4(a)は第3カム65の模式図(カム線図)である。図4(a)は、第3カム65のカム溝66,67が、軸線O回りの回転角を合わせて左右に図示されている。図4(a)に示す矢印Fは、入力軸11(図1参照)の回転方向(正転方向)を示している(以上は図4(b)においても同じ)。   FIG. 4A is a schematic diagram (cam diagram) of the third cam 65. In FIG. 4A, the cam grooves 66 and 67 of the third cam 65 are shown on the left and right with the rotation angle around the axis O being aligned. An arrow F shown in FIG. 4A indicates the rotation direction (forward rotation direction) of the input shaft 11 (see FIG. 1) (the same applies to FIG. 4B).

図4(a)に示すように、カム溝66の回転方向における傾斜の向きは、カム溝67の回転方向における傾斜の向きと反対である。第2カム63(図1参照)と第3カム65との相対回転(矢印F方向)により、カム溝67の傾斜に沿って第2ボール69が軸線O方向の第1部材20側(図4(a)右側)へ近づくと、第2ボール69がカム溝64(図1参照)を軸線O方向へ押して、第2カム63は第3カム65から遠ざかるように軸線O方向へ移動する。第2カム63が回転するときは第1カム61も回転するが、カム溝66の傾斜の向きはカム溝67の傾斜の向きと反対なので、第1ボール68は第1カム61(図1参照)を軸線O方向に移動させない。   As shown in FIG. 4A, the direction of inclination of the cam groove 66 in the rotational direction is opposite to the direction of inclination of the cam groove 67 in the rotational direction. Due to the relative rotation of the second cam 63 (see FIG. 1) and the third cam 65 (in the direction of arrow F), the second ball 69 moves along the inclination of the cam groove 67 on the first member 20 side in the axis O direction (FIG. 4). When approaching (a) right side), the second ball 69 pushes the cam groove 64 (see FIG. 1) in the direction of the axis O, and the second cam 63 moves in the direction of the axis O so as to move away from the third cam 65. When the second cam 63 rotates, the first cam 61 also rotates. However, since the cam groove 66 is inclined in the opposite direction to the cam groove 67, the first ball 68 is moved to the first cam 61 (see FIG. 1). ) Is not moved in the direction of the axis O.

これにより、図1に示すように、第2カム63は貫通孔28に嵌ったピン55を第2凹部27側へ押し出し、溝26に収容されたリング部材54を第2凹部27内へ押し出す。第2凹部27内へ押し出されたリング部材54は、第2係合子50の第2凹部27への進入を阻止する。   Thereby, as shown in FIG. 1, the second cam 63 pushes the pin 55 fitted in the through hole 28 toward the second recess 27, and pushes the ring member 54 accommodated in the groove 26 into the second recess 27. The ring member 54 pushed into the second recess 27 prevents the second engaging element 50 from entering the second recess 27.

これとは反対に、図4(a)に示すように、第1カム61(図1参照)と第3カム65との相対回転(反矢印F方向)により、カム溝66の傾斜に沿って第1ボール68が軸線O方向の第1部材20側(図4(a)右側)へ近づくと、第1ボール68がカム溝62(図1参照)を軸線O方向へ押して、第1カム61は第3カム65から遠ざかるように軸線O方向へ移動する。第1カム61が回転するときは第2カム63も回転するが、カム溝67の傾斜の向きはカム溝66の傾斜の向きと反対なので、第2ボール69は第2カム63(図1参照)を軸線O方向に移動させない。   On the contrary, as shown in FIG. 4 (a), the relative rotation of the first cam 61 (see FIG. 1) and the third cam 65 (counter arrow F direction) causes the cam groove 66 to follow the inclination. When the first ball 68 approaches the first member 20 side (right side in FIG. 4A) in the axis O direction, the first ball 68 pushes the cam groove 62 (see FIG. 1) in the axis O direction, and the first cam 61 Moves in the direction of the axis O so as to move away from the third cam 65. When the first cam 61 rotates, the second cam 63 also rotates. However, since the cam groove 67 is inclined in the opposite direction to the cam groove 66, the second ball 69 is in contact with the second cam 63 (see FIG. 1). ) Is not moved in the direction of the axis O.

これにより、図1に示すように、第1カム61は貫通孔25に嵌ったピン45を第1凹部24側へ押し出し、溝23に収容されたリング部材44を第1凹部24内へ押し出す。第1凹部24内へ押し出されたリング部材44は、第1係合子40の第1凹部24への進入を阻止する。   Thereby, as shown in FIG. 1, the first cam 61 pushes the pin 45 fitted in the through hole 25 toward the first recess 24, and pushes the ring member 44 accommodated in the groove 23 into the first recess 24. The ring member 44 pushed into the first recess 24 prevents the first engagement element 40 from entering the first recess 24.

なお、図4(a)に示す第3カム65は、第1部材20側へ第1カム61及び第2カム63がピン45,55を押し出さない位置(カム溝66,67の底の位置)が同じ回転角となるようにカム溝66,67が設定されている。即ち、カム機構60は、逆転方向(反矢印F方向)から正転方向(矢印F方向)へ第1カム61の回転方向を切り換えるときに第1係合子40及び第2係合子50が噛み合うように軸方向の移動量が設定されている。第1係合子40及び第2係合子50が第1凹部24及び第2凹部27にそれぞれ噛み合った後、第2係合子50の噛み合いが外れるので、第1カム61及び第2カム63と第3カム65との相対回転によって、第1係合子40又は第2係合子50を第1凹部24又は第2凹部27に噛み合い易くできる(遊びを少なくできる)。よって、第1部材20と第3部材30とを素早く同期できる。   4A is a position where the first cam 61 and the second cam 63 do not push the pins 45 and 55 toward the first member 20 (the positions of the bottoms of the cam grooves 66 and 67). Are set to have the same rotation angle. That is, when the cam mechanism 60 switches the rotation direction of the first cam 61 from the reverse rotation direction (counter arrow F direction) to the normal rotation direction (arrow F direction), the first engagement element 40 and the second engagement element 50 are engaged with each other. The amount of movement in the axial direction is set in. After the first engagement element 40 and the second engagement element 50 are engaged with the first recess 24 and the second recess 27, respectively, the engagement of the second engagement element 50 is released, so that the first cam 61, the second cam 63 and the third engagement element are disengaged. By relative rotation with the cam 65, the first engagement element 40 or the second engagement element 50 can be easily engaged with the first recess 24 or the second recess 27 (play can be reduced). Therefore, the first member 20 and the third member 30 can be quickly synchronized.

図1に示すように第3カム65は、カム溝66が形成された面の反対側の面に、係合部71が設けられている。本実施の形態では、係合部71は第3カム65の径方向の中心から軸線O方向に突出した円筒状の部位であり、係合部71は第3カム65に結合する。   As shown in FIG. 1, the third cam 65 is provided with an engaging portion 71 on the surface opposite to the surface on which the cam groove 66 is formed. In the present embodiment, the engaging portion 71 is a cylindrical portion that protrudes in the direction of the axis O from the radial center of the third cam 65, and the engaging portion 71 is coupled to the third cam 65.

図5は図1のV−V線における二方向クラッチ10の断面図である。図5に示すように第3カム65は、係合部71に質量体72が取り付けられている。質量体72は、第3カム65の慣性質量を大きくするための部材であり、軸線O方向から見て各々が略扇形に形成されている。質量体72は、係合部71の周囲に複数(本実施の形態では2つ)が互いに周方向に間隔をあけて配置されている。質量体72は、係合部71の外周に接触面73が接触する。質量体72の外周に形成された周方向に延びる溝部74に、弾性体75が巻かれている。溝部74は弾性体75の軸線O方向の移動を規制する。本実施の形態では、弾性体75は引張コイルばねの両端に設けられたフックを互いに掛けて環状に形成されている。   FIG. 5 is a sectional view of the two-way clutch 10 taken along the line V-V in FIG. As shown in FIG. 5, the third cam 65 has a mass body 72 attached to the engaging portion 71. The mass bodies 72 are members for increasing the inertial mass of the third cam 65, and each is formed in a substantially sector shape when viewed from the direction of the axis O. A plurality of mass bodies 72 (two in the present embodiment) are arranged around the engaging portion 71 at intervals in the circumferential direction. In the mass body 72, the contact surface 73 comes into contact with the outer periphery of the engaging portion 71. An elastic body 75 is wound around a circumferentially extending groove 74 formed on the outer periphery of the mass body 72. The groove 74 restricts the movement of the elastic body 75 in the axis O direction. In the present embodiment, the elastic body 75 is formed in an annular shape by hooking hooks provided at both ends of the tension coil spring.

制動機構80(図1参照)は、ケース81に固定された摩擦材82を備えている。摩擦材82は質量体72の軸線O方向の端面に接触して、質量体72の回転を規制する。質量体72は、弾性体75により係合部71へ近づく方向(径方向の内側)へ付勢され、接触面73が係合部71に押し付けられる。従って、第3カム65及び係合部71が静止しているときや第3カム65及び係合部71の回転数が低いときには、第3カム65及び係合部71が第1カム61又は第2カム63と一緒に回転しないように、第3カム65に制動力を与えることができる。質量体72によって第3カム65の慣性質量を大きくできるので、位相差の分だけ第1カム61及び第2カム63が相対回転するときに、第1ボール68又は第2ボール69を第1カム61又は第2カム63と第3カム65とに係合し易くできる。   The braking mechanism 80 (see FIG. 1) includes a friction material 82 fixed to the case 81. The friction material 82 contacts the end surface of the mass body 72 in the direction of the axis O, and restricts the rotation of the mass body 72. The mass body 72 is biased by the elastic body 75 in a direction approaching the engaging portion 71 (inside in the radial direction), and the contact surface 73 is pressed against the engaging portion 71. Therefore, when the third cam 65 and the engaging portion 71 are stationary or when the rotation speed of the third cam 65 and the engaging portion 71 is low, the third cam 65 and the engaging portion 71 are not connected to the first cam 61 or the first cam 61. A braking force can be applied to the third cam 65 so as not to rotate together with the two cams 63. Since the inertial mass of the third cam 65 can be increased by the mass body 72, when the first cam 61 and the second cam 63 rotate relative to each other by the phase difference, the first ball 68 or the second ball 69 is moved to the first cam. 61 or the second cam 63 and the third cam 65 can be easily engaged.

一方、第1ボール68又は第2ボール69が第1カム61又は第2カム63と第3カム65とに係合して、第1カム61又は第2カム63と第3カム65とが一体に回転し、第3カム65及び係合部71の回転数が高くなると、弾性体75の弾性力に抗して、遠心力により質量体72の重心は係合部71から離れる方向(径方向の外側)へ移動する。質量体72の接触面73と係合部71との摩擦力が小さくなると、係合部71は質量体72に対して滑り状態になる。これにより、第1カム61又は第2カム63と一体に回転する第3カム65の慣性モーメントを軽減できるので、フリクションによる損失を少なくできる。   On the other hand, the first ball 68 or the second ball 69 is engaged with the first cam 61 or the second cam 63 and the third cam 65, and the first cam 61 or the second cam 63 and the third cam 65 are integrated. When the rotation speed of the third cam 65 and the engaging portion 71 increases, the center of gravity of the mass body 72 moves away from the engaging portion 71 by the centrifugal force against the elastic force of the elastic body 75 (radial direction). To the outside). When the frictional force between the contact surface 73 of the mass body 72 and the engaging portion 71 becomes small, the engaging portion 71 slides with respect to the mass body 72. Thereby, the moment of inertia of the third cam 65 that rotates integrally with the first cam 61 or the second cam 63 can be reduced, so that loss due to friction can be reduced.

次に図6を参照して、二方向クラッチ10の動作について説明する。図6(a)は入力軸11に正転方向(矢印F方向)のトルクが入力された二方向クラッチ10の模式図である。図6(b)は入力軸11に逆転方向(矢印R方向)のトルクが入力された二方向クラッチ10の模式図である。   Next, the operation of the two-way clutch 10 will be described with reference to FIG. FIG. 6A is a schematic diagram of the two-way clutch 10 in which torque in the forward rotation direction (arrow F direction) is input to the input shaft 11. FIG. 6B is a schematic diagram of the two-way clutch 10 in which torque in the reverse rotation direction (arrow R direction) is input to the input shaft 11.

図6(a)に示すように第1係合子40及び第2係合子50は、ばね43,53によって、それぞれ第1部材20側へ付勢されている。入力軸11と一体に回転する第1カム61のカム溝62と第3カム65のカム溝66との間の第1ボール68が、正転方向(矢印F方向)へ回転することでカム溝62,66に係合し、第1カム61が第1部材20に対して遠ざかる。一方、第2カム63のカム溝64は、第1カム61のカム溝62と位相が異なるため、第3カム65と第2カム63との間にある第2ボール69の反力により、第2カム63は第1部材20に近づく。   As shown in FIG. 6A, the first engaging element 40 and the second engaging element 50 are urged toward the first member 20 by springs 43 and 53, respectively. The first ball 68 between the cam groove 62 of the first cam 61 and the cam groove 66 of the third cam 65 that rotates integrally with the input shaft 11 rotates in the forward rotation direction (arrow F direction), thereby forming the cam groove. The first cam 61 moves away from the first member 20 by engaging with 62 and 66. On the other hand, since the cam groove 64 of the second cam 63 is out of phase with the cam groove 62 of the first cam 61, the reaction force of the second ball 69 between the third cam 65 and the second cam 63 causes The two cams 63 approach the first member 20.

第2カム63は、ばね53の弾性力に抗してピン55を第1部材20側へ押し込み、ピン55に押されたリング部材54は、第2係合子50の本体部51を第2部材30の第2収容部36内へ収容する。第2係合子50は第2凹部27内へ揺動できないので、第2係合子50によるトルク伝達は遮断される。   The second cam 63 pushes the pin 55 toward the first member 20 against the elastic force of the spring 53, and the ring member 54 pushed by the pin 55 causes the main body 51 of the second engagement element 50 to move to the second member. It accommodates in the 30 2nd accommodating part 36. Since the second engagement element 50 cannot swing into the second recess 27, torque transmission by the second engagement element 50 is interrupted.

一方、ばね43に付勢された第1係合子40は揺動して第1凹部24内へ進入する。よって、第1係合子40により第1部材20から第2部材30へ正転方向(矢印F方向)のトルクが伝達される。   On the other hand, the first engagement element 40 biased by the spring 43 swings and enters the first recess 24. Therefore, torque in the forward rotation direction (arrow F direction) is transmitted from the first member 20 to the second member 30 by the first engagement element 40.

この状態から、入力軸11の回転が遅くなるか出力軸12の回転が速くなり、第2部材30の回転数が第1カム61及び第2カム63の回転数より高くなると、第1係合子40の本体部41は第1凹部24と係合できないので、トルク伝達が遮断される。   From this state, when the rotation of the input shaft 11 is slowed down or the output shaft 12 is rotated fast, and the rotational speed of the second member 30 is higher than the rotational speeds of the first cam 61 and the second cam 63, the first engagement element. Since the main body 41 of 40 cannot engage with the first recess 24, torque transmission is interrupted.

図6(b)に示すように、入力軸11と一体に回転する第2カム63のカム溝64と第3カム65のカム溝67との間の第2ボール69が、逆転方向(矢印R方向)へ回転することでカム溝64,67に係合し、第2カム63が第1部材20に対して遠ざかる。一方、第1カム61のカム溝62は、第2カム63のカム溝64と位相が異なるため、第3カム65と第1カム61との間にある第1ボール68の反力により、第1カム61は第1部材20に近づく。   As shown in FIG. 6B, the second ball 69 between the cam groove 64 of the second cam 63 and the cam groove 67 of the third cam 65 that rotates integrally with the input shaft 11 moves in the reverse direction (arrow R). , The second cam 63 moves away from the first member 20. On the other hand, since the cam groove 62 of the first cam 61 is out of phase with the cam groove 64 of the second cam 63, the reaction force of the first ball 68 between the third cam 65 and the first cam 61 causes One cam 61 approaches the first member 20.

第1カム61は、ばね43の弾性力に抗してピン45を第1部材20側へ押し込み、ピン45に押されたリング部材44は、第1係合子40の本体部41を第2部材30の第1収容部32内へ収容する。第1係合子40は第1凹部24内へ揺動できないので、第1係合子40によるトルク伝達は遮断される。   The first cam 61 pushes the pin 45 toward the first member 20 against the elastic force of the spring 43, and the ring member 44 pushed by the pin 45 causes the main body portion 41 of the first engagement element 40 to move to the second member. It accommodates in the 30 1st accommodating part 32. FIG. Since the first engagement element 40 cannot swing into the first recess 24, torque transmission by the first engagement element 40 is interrupted.

一方、ばね53に付勢された第2係合子50は揺動して第2凹部27内へ進入する。よって、第2係合子50により第1部材20から第2部材30へ逆転方向(矢印R方向)のトルクが伝達される。   On the other hand, the second engagement element 50 biased by the spring 53 swings and enters the second recess 27. Therefore, torque in the reverse rotation direction (arrow R direction) is transmitted from the first member 20 to the second member 30 by the second engagement element 50.

この状態から、入力軸11の回転が遅くなるか出力軸12の回転が速くなり、第2部材30の回転数が第1カム61及び第2カム63の回転数より高くなると、第2係合子50の本体部51は第2凹部27と係合できないので、トルク伝達が遮断される。   From this state, when the rotation of the input shaft 11 slows down or the output shaft 12 rotates faster, and the rotational speed of the second member 30 becomes higher than the rotational speeds of the first cam 61 and the second cam 63, the second engagement element. Since the 50 main body portions 51 cannot be engaged with the second recesses 27, torque transmission is interrupted.

以上のように、二方向クラッチ10はカム機構60により第1係合子40及び第2係合子50を係合不能にするので、電気エネルギーを機械運動に変換するソレノイド等の装置を不要にできる。ソレノイド等の装置を不要にできる分だけ、二方向クラッチ10を小型化できると共に省電力化できる。   As described above, since the two-way clutch 10 disables the engagement of the first engagement element 40 and the second engagement element 50 by the cam mechanism 60, a device such as a solenoid that converts electric energy into mechanical motion can be eliminated. The two-way clutch 10 can be reduced in size and power can be saved as much as a device such as a solenoid can be dispensed with.

第1カム61、第2カム63及び第3カム65を備えるカム機構60は、第1部材20及び第2部材30と同じ軸線O上に配置される。よって、二方向クラッチ10の大きさが径方向に拡大しないようにできる。また、第1カム61及び第2カム63を備えているので、入力軸11と出力軸12との間で、正転方向および逆転方向のトルクを伝達できる。   The cam mechanism 60 including the first cam 61, the second cam 63, and the third cam 65 is disposed on the same axis O as the first member 20 and the second member 30. Therefore, the size of the two-way clutch 10 can be prevented from expanding in the radial direction. In addition, since the first cam 61 and the second cam 63 are provided, torque in the forward direction and the reverse direction can be transmitted between the input shaft 11 and the output shaft 12.

第3カム65に配置された弾性体75は、質量体72を係合部71へ近づく方向へ付勢するので、第3カム65の回転数が低いときは、第3カム65の回転数が高いときに比べて、質量体72及び弾性体75によって第3カム65の慣性質量を大きくできる。よって、第3カム65の回転数が低いときにカム機構60を動作(係合)させ易くできると共に、第3カム65の回転数が高いときのフリクションを軽減できる。   The elastic body 75 disposed on the third cam 65 urges the mass body 72 in a direction approaching the engaging portion 71. Therefore, when the rotation speed of the third cam 65 is low, the rotation speed of the third cam 65 is low. The inertial mass of the third cam 65 can be increased by the mass body 72 and the elastic body 75 as compared to when it is high. Therefore, the cam mechanism 60 can be easily operated (engaged) when the rotation speed of the third cam 65 is low, and friction when the rotation speed of the third cam 65 is high can be reduced.

第3カム65は、ケース81に固定された摩擦材82によって、質量体72を介して回転方向の摩擦力が付与され、制動作用が生じる。よって、入力軸11、第1カム61及び第2カム63の回転数が低いときは、制動作用によって、カム機構60の動作に必要な第1カム61及び第2カム63と第3カム65との相対回転を発生させ易くできる。   The third cam 65 is given a frictional force in the rotational direction via the mass body 72 by the friction material 82 fixed to the case 81, and a braking action is generated. Therefore, when the rotational speeds of the input shaft 11, the first cam 61, and the second cam 63 are low, the first cam 61, the second cam 63, and the third cam 65 required for the operation of the cam mechanism 60 are caused by the braking action. Can be easily generated.

一方、第3カム65の回転数が高くなり、遠心力により質量体72の重心が係合部71から離れる方向(径方向の外側)へ移動すると、係合部71は質量体72に対して滑り状態になるので、摩擦材82による制動作用が低減する。よって、入力軸11の回転数が低いときにカム機構60を動作させ易くできると共に、入力軸11の回転数が高いときのフリクションを軽減できる。   On the other hand, when the rotation speed of the third cam 65 increases and the center of gravity of the mass body 72 moves in a direction away from the engagement portion 71 due to centrifugal force (outside in the radial direction), the engagement portion 71 moves relative to the mass body 72. Since the sliding state occurs, the braking action by the friction material 82 is reduced. Therefore, the cam mechanism 60 can be easily operated when the rotational speed of the input shaft 11 is low, and friction when the rotational speed of the input shaft 11 is high can be reduced.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、第1係合子40及び第2係合子50の数は例示であり、適宜設定できる。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed. For example, the numbers of the first engagement elements 40 and the second engagement elements 50 are examples and can be set as appropriate.

上記実施の形態では、入力軸11の正転方向のトルクを伝達する第1係合子40を第2部材30の外周側に配置し、入力軸11の逆転方向のトルクを伝達する第2係合子50を第2部材30の内周側に配置する場合について説明したが、必ずしもこれに限られるものではない。これとは逆に、第1係合子40を内周側に配置し、第2係合子50を外周側に配置することは当然可能である。   In the above embodiment, the first engagement element 40 that transmits the torque in the forward rotation direction of the input shaft 11 is arranged on the outer peripheral side of the second member 30, and the second engagement element that transmits the torque in the reverse rotation direction of the input shaft 11. Although the case where 50 is arrange | positioned to the inner peripheral side of the 2nd member 30 was demonstrated, it is not necessarily restricted to this. On the contrary, it is naturally possible to arrange the first engaging element 40 on the inner peripheral side and the second engaging element 50 on the outer peripheral side.

上記実施の形態では、リング部材44,54を介して第1係合子40及び第2係合子50を軸線O方向に押圧する場合について説明したが、必ずしもこれに限られるものではない。リング部材44,54を省略し、ピン45,55の先端形状や第1係合子40及び第2係合子50の形状を変更することで、ピン45,55を介して第1係合子40及び第2係合子50を軸線O方向に押圧することは当然可能である。   In the above-described embodiment, the case where the first engagement element 40 and the second engagement element 50 are pressed in the direction of the axis O via the ring members 44 and 54 has been described, but the present invention is not necessarily limited thereto. By omitting the ring members 44 and 54 and changing the tip shapes of the pins 45 and 55 and the shapes of the first and second engagement elements 40 and 50, the first engagement element 40 and the first engagement element 40 and the second engagement element 50 are interposed via the pins 45 and 55. It is naturally possible to press the two engaging elements 50 in the direction of the axis O.

上記実施の形態では、第1カム61及び第2カム63がピン45,55を第1部材20側へ押し出さない位置(カム溝66,67の底の位置)が同じ回転角となるように第3カム65のカム溝66,67が設定される場合について説明したが、必ずしもこれに限られるものではない。図4(b)に示すようにカム溝66,67を設定することは当然可能である。   In the above embodiment, the first cam 61 and the second cam 63 do not push the pins 45 and 55 to the first member 20 side (the positions of the bottoms of the cam grooves 66 and 67) so that the rotation angle is the same. Although the case where the cam grooves 66 and 67 of the three cams 65 are set has been described, the present invention is not necessarily limited thereto. Of course, it is possible to set the cam grooves 66 and 67 as shown in FIG.

図4(b)は別の第3カム85の模式図である。図4(b)は、第3カム85のカム溝66,67が、軸線O回りの回転角を合わせて左右に図示されている。第3カム85は、第1カム61及び第2カム63がピン45,55を第1部材20側へ押し出さす位置(カム溝66,67の頂の位置)が同じ回転角となるようにカム溝66,67が設定されている。   FIG. 4B is a schematic diagram of another third cam 85. In FIG. 4B, the cam grooves 66 and 67 of the third cam 85 are shown on the left and right with the rotation angle around the axis O being aligned. The third cam 85 is configured so that the positions at which the first cam 61 and the second cam 63 push the pins 45 and 55 toward the first member 20 (the positions of the tops of the cam grooves 66 and 67) have the same rotation angle. Grooves 66 and 67 are set.

即ち、逆転方向(反矢印F方向)から正転方向(矢印F方向)へ第1カム61の回転方向を切り換えるときに第1係合子40及び第2係合子50の噛み合いが外れるように、第3カム85に対する第1カム61及び第2カム63の軸方向の移動量が設定されている。第1係合子40及び第2係合子50が第1凹部24及び第2凹部27から外れた後、第1係合子40が第1凹部24に噛み合うので、第1カム61及び第2カム63と第3カム85との相対回転によって、第1係合子40及び第2係合子50を第1凹部24及び第2凹部27に噛み合い難くできる(遊びを多くできる)。よって、第1係合子40及び第2係合子50が同時に噛み合わないようにできる。   That is, the first engagement element 40 and the second engagement element 50 are disengaged when the rotation direction of the first cam 61 is switched from the reverse rotation direction (counter arrow F direction) to the normal rotation direction (arrow F direction). A movement amount in the axial direction of the first cam 61 and the second cam 63 with respect to the three cams 85 is set. After the first engagement element 40 and the second engagement element 50 are disengaged from the first recess 24 and the second recess 27, the first engagement element 40 meshes with the first recess 24, so that the first cam 61 and the second cam 63 By the relative rotation with the third cam 85, the first engaging element 40 and the second engaging element 50 can be made difficult to engage with the first recess 24 and the second recess 27 (the play can be increased). Therefore, the first engaging element 40 and the second engaging element 50 can be prevented from being engaged at the same time.

上記実施の形態では、第3カム65に質量体72及び弾性体75を配置すると共に、ケース81に固定された摩擦材82を質量体72に接触させる場合について説明したが、必ずしもこれに限られるものではない。質量体72及び弾性体75、摩擦材82を両方とも省略することは当然可能である。また、質量体72及び弾性体75、摩擦材82のいずれか一方を省略することも当然可能である。質量体72及び弾性体75を省略した場合に、ケース81に固定された摩擦材82を第3カム65に接触させて制動作用を得ることは当然可能である。   In the above embodiment, the case where the mass body 72 and the elastic body 75 are disposed on the third cam 65 and the friction material 82 fixed to the case 81 is brought into contact with the mass body 72 has been described. It is not a thing. It is naturally possible to omit both the mass body 72, the elastic body 75, and the friction material 82. Of course, any one of the mass body 72, the elastic body 75, and the friction material 82 may be omitted. When the mass body 72 and the elastic body 75 are omitted, it is naturally possible to obtain a braking action by bringing the friction material 82 fixed to the case 81 into contact with the third cam 65.

上記実施の形態では、第1係合子40及び第2係合子50が同一形状の場合について説明したが、必ずしもこれに限られるものではない。第1係合子40及び第2係合子50の長さ、幅、厚さが互いに異なるように構成することは当然可能である。   In the above-described embodiment, the case where the first engaging element 40 and the second engaging element 50 have the same shape has been described, but the present invention is not necessarily limited thereto. Of course, the first engagement element 40 and the second engagement element 50 may be configured to have different lengths, widths, and thicknesses.

上記実施の形態では、摩擦材82が固定される固定要素としてケース81を例示して説明したが、必ずしもこれに限られるものではない。固定要素は、第3カム65、85と一体に回転しない部材であれば、ケース81以外にも適宜設定できる。   In the above embodiment, the case 81 has been described as an example of a fixing element to which the friction material 82 is fixed. However, the present invention is not necessarily limited to this. The fixing element can be appropriately set in addition to the case 81 as long as it is a member that does not rotate integrally with the third cams 65 and 85.

10 二方向クラッチ
11 入力軸
12 出力軸
20 第1部材
21 第1面
30 第2部材
31 第2面
40 第1係合子
43 ばね
50 第2係合子
53 ばね
60 カム機構
61 第1カム
63 第2カム
65,85 第3カム
68 第1ボール
69 第2ボール
71 係合部
72 質量体
75 弾性体
80 制動機構
81 ケース(固定要素)
82 摩擦材
O 軸線
DESCRIPTION OF SYMBOLS 10 Two-way clutch 11 Input shaft 12 Output shaft 20 1st member 21 1st surface 30 2nd member 31 2nd surface 40 1st engagement element 43 Spring 50 2nd engagement element 53 Spring 60 Cam mechanism 61 1st cam 63 2nd Cam 65, 85 Third cam 68 First ball 69 Second ball 71 Engaging portion 72 Mass body 75 Elastic body 80 Braking mechanism 81 Case (fixing element)
82 Friction material O Axis

Claims (7)

入力軸と出力軸との間のトルクの伝達と遮断とを切り換える二方向クラッチであって、
前記入力軸に結合し所定の第1面を有する第1部材と、
前記出力軸に結合し前記第1面と軸線方向に対向する第2面を有する第2部材と、
前記第1面と前記第2面との間に介在し前記第1部材と前記第2部材とを係合して前記第1部材から前記第2部材へ正転方向のトルクを伝達する第1係合子と、
前記第1面と前記第2面との間に介在し前記第1部材と前記第2部材とを係合して前記第1部材から前記第2部材へ逆転方向のトルクを伝達する第2係合子と、
前記第1係合子および前記第2係合子が係合する前記軸線方向へ前記第1係合子および前記第2係合子をそれぞれ付勢するばねと、
前記入力軸のトルクを軸方向の力に変換し、前記ばねを弾性変形させて前記第1係合子および前記第2係合子を係合不能にするカム機構と、を備える二方向クラッチ。
A two-way clutch that switches between transmission and interruption of torque between the input shaft and the output shaft,
A first member coupled to the input shaft and having a predetermined first surface;
A second member having a second surface coupled to the output shaft and facing the first surface in the axial direction;
A first member that is interposed between the first surface and the second surface and engages the first member and the second member to transmit torque in the forward rotation direction from the first member to the second member; An engagement element;
A second engagement that is interposed between the first surface and the second surface and engages the first member and the second member to transmit torque in the reverse direction from the first member to the second member. With Kazuko,
Springs for urging the first and second engagement elements in the axial direction with which the first and second engagement elements engage; and
A two-way clutch comprising: a cam mechanism that converts torque of the input shaft into axial force and elastically deforms the spring so that the first engagement element and the second engagement element cannot be engaged.
前記カム機構は、前記第1係合子に対する前記軸線方向へ前記入力軸に対して移動可能に配置されると共に前記入力軸と一体に回転する第1カムと、
前記第2係合子に対する前記軸線方向へ前記入力軸および前記第1カムに対して移動可能に配置されると共に前記入力軸と一体に回転する第2カムと、
前記第1カム及び前記第2カムと前記軸線方向に対向しつつ前記軸線の回りに回転可能かつ前記軸線方向へ移動不能に配置される第3カムと、
前記第3カムと前記第1カムとの間に介在し、前記第1カムの逆転方向における前記第3カムと前記第1カムとの相対回転により前記第3カムと前記第1カムとの前記軸線方向の間隔を広げて前記第1係合子を係合不能にする第1ボールと、
前記第3カムと前記第2カムとの間に介在し、前記第2カムの正転方向における前記第3カムと前記第2カムとの相対回転により前記第3カムと前記第2カムとの前記軸線方向の間隔を広げて前記第2係合子を係合不能にする第2ボールと、を備える請求項1記載の二方向クラッチ。
The cam mechanism is disposed so as to be movable with respect to the input shaft in the axial direction with respect to the first engagement element, and rotates together with the input shaft.
A second cam that is arranged so as to be movable with respect to the input shaft and the first cam in the axial direction with respect to the second engagement element and rotates integrally with the input shaft;
A third cam disposed so as to be rotatable about the axis and immovable in the axial direction while facing the first cam and the second cam in the axial direction;
The third cam and the first cam are interposed between the third cam and the first cam by the relative rotation of the third cam and the first cam in the reverse rotation direction of the first cam. A first ball that widens an axial interval to disengage the first engagement element;
The third cam is interposed between the third cam and the second cam, and the third cam and the second cam are rotated by relative rotation between the third cam and the second cam in the forward rotation direction of the second cam. The two-way clutch according to claim 1, further comprising: a second ball that widens the interval in the axial direction and makes the second engagement element unengageable.
前記第3カムに設けられた係合部と、
前記係合部との摩擦によって前記第3カムと一体に回転しつつ遠心力によって前記係合部から離れる方向へ移動する質量体と、
前記質量体を前記係合部へ近づく方向へ付勢する弾性体と、を備える請求項2から4のいずれかに記載の二方向クラッチ。
An engagement portion provided on the third cam;
A mass body that rotates integrally with the third cam by friction with the engagement portion and moves away from the engagement portion by centrifugal force;
The two-way clutch according to any one of claims 2 to 4, further comprising: an elastic body that urges the mass body in a direction approaching the engagement portion.
固定要素に対する摩擦力を前記第3カムに付与する摩擦材を備える請求項2又は3に記載の二方向クラッチ。   4. The two-way clutch according to claim 2, further comprising a friction material that applies a frictional force to the fixed element to the third cam. 5. 前記質量体に回転方向の摩擦力を付与する制動機構を備える請求項3記載の二方向クラッチ。   The two-way clutch according to claim 3, further comprising a braking mechanism that applies a frictional force in a rotational direction to the mass body. 前記カム機構は、逆転方向から正転方向へ前記第1カムの回転方向を切り換えるときに前記第1係合子および前記第2係合子の噛み合いが外れるように軸方向の移動量が設定されている請求項2から5のいずれかに記載の二方向クラッチ。   The cam mechanism has an axial movement amount so as to disengage the first engagement element and the second engagement element when the rotation direction of the first cam is switched from the reverse rotation direction to the normal rotation direction. The two-way clutch according to any one of claims 2 to 5. 前記カム機構は、逆転方向から正転方向へ前記第1カムの回転方向を切り換えるときに前記第1係合子および前記第2係合子が噛み合うように軸方向の移動量が設定されている請求項2から5のいずれかに記載の二方向クラッチ。   The axial movement amount of the cam mechanism is set so that the first engagement element and the second engagement element are engaged when the rotation direction of the first cam is switched from the reverse rotation direction to the normal rotation direction. The two-way clutch according to any one of 2 to 5.
JP2017059371A 2017-03-24 2017-03-24 Two-way clutch Active JP6887843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017059371A JP6887843B2 (en) 2017-03-24 2017-03-24 Two-way clutch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017059371A JP6887843B2 (en) 2017-03-24 2017-03-24 Two-way clutch

Publications (2)

Publication Number Publication Date
JP2018162814A true JP2018162814A (en) 2018-10-18
JP6887843B2 JP6887843B2 (en) 2021-06-16

Family

ID=63859907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017059371A Active JP6887843B2 (en) 2017-03-24 2017-03-24 Two-way clutch

Country Status (1)

Country Link
JP (1) JP6887843B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020136856A1 (en) * 2018-12-28 2020-07-02 株式会社ユニバンス Clutch
CN111547639A (en) * 2020-05-12 2020-08-18 王利 Manual elevating gear of building engineering

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247688A (en) * 2006-03-13 2007-09-27 Univance Corp Two-way clutch
JP2011169344A (en) * 2010-02-16 2011-09-01 Aisin Aw Co Ltd Clutch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247688A (en) * 2006-03-13 2007-09-27 Univance Corp Two-way clutch
JP2011169344A (en) * 2010-02-16 2011-09-01 Aisin Aw Co Ltd Clutch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020136856A1 (en) * 2018-12-28 2020-07-02 株式会社ユニバンス Clutch
JPWO2020136856A1 (en) * 2018-12-28 2021-11-25 株式会社ユニバンス clutch
CN111547639A (en) * 2020-05-12 2020-08-18 王利 Manual elevating gear of building engineering
CN111547639B (en) * 2020-05-12 2021-07-16 天长市千盛建设有限公司 Manual elevating gear of building engineering

Also Published As

Publication number Publication date
JP6887843B2 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
CN110945260B (en) Clutch and power transmission structure for vehicle
JP6661316B2 (en) One-way clutch
EP2952767B1 (en) Rotation transmission device
JP6209608B2 (en) Clutch device and power transmission device
JP2018162814A (en) Two-way clutch
JP6086735B2 (en) Rotation transmission device
JP7123500B2 (en) clutch device
JP5829646B2 (en) 2-way clutch
US9523395B2 (en) Driving force transmission device
JP6905481B2 (en) Clutch device
JP5706591B2 (en) Power transmission device, clutch device, and drive device
JP2006112524A (en) Reverse input intercepting clutch
JP2004108583A (en) Axial adjustment device with many ball means
JP2013053644A (en) One-way clutch
JP7085446B2 (en) Rotation transmission device
JP2012154450A (en) Operation device of manual transmission
JP2017040340A (en) transmission
JP6786327B2 (en) Clutch unit
JP2006057804A (en) Reverse input shut-off device
KR20180068185A (en) Synchronizer for transmission
JP7065001B2 (en) Rotation transmission device
JP4658811B2 (en) Reverse input blocking device
JP2012172787A (en) Two-way clutch
JP2006057802A (en) Reverse input cut-off device
WO2020136856A1 (en) Clutch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210519

R150 Certificate of patent or registration of utility model

Ref document number: 6887843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250