JP2018160605A - Non-contact power feeding mechanism - Google Patents

Non-contact power feeding mechanism Download PDF

Info

Publication number
JP2018160605A
JP2018160605A JP2017057838A JP2017057838A JP2018160605A JP 2018160605 A JP2018160605 A JP 2018160605A JP 2017057838 A JP2017057838 A JP 2017057838A JP 2017057838 A JP2017057838 A JP 2017057838A JP 2018160605 A JP2018160605 A JP 2018160605A
Authority
JP
Japan
Prior art keywords
coil
inner coil
shaft
power feeding
feeding mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017057838A
Other languages
Japanese (ja)
Inventor
正彦 高地
Masahiko Kochi
正彦 高地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Printed Circuits Inc
Original Assignee
Sumitomo Electric Printed Circuits Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Printed Circuits Inc filed Critical Sumitomo Electric Printed Circuits Inc
Priority to JP2017057838A priority Critical patent/JP2018160605A/en
Publication of JP2018160605A publication Critical patent/JP2018160605A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power feeding mechanism that is relatively easily to be disposed.SOLUTION: A non-contact power feeding mechanism that exchanges electric power between a shaft-like member 1 and an outer peripheral member 2 disposed so as to be relatively rotatable around the shaft-like member includes an inner coil 3 disposed along the circumferential surface of the shaft-like member and an outer coil 4 disposed on the outer peripheral member so as to face the inner coil and magnetically coupled to the inner coil. The inner coil and the outer coil includes at least one pair of linear portions 3a and 3b extending in the circumferential direction of the shaft-like member and having different current directions.SELECTED DRAWING: Figure 1

Description

本発明は、非接触給電機構に関する。   The present invention relates to a non-contact power feeding mechanism.

様々な機器において、回転体と固定体との間で電力を授受する給電機構が必要とされる場合がある。このような給電機構としては、ブラシと呼ばれる接点部材を回転体に摺接させる方法が一般的である。しかしながら、例えば回転抵抗を非常に小さくする必要がある場合等、回転体と固定体との間で非接触に電力を授受することが望まれることがある。   In various devices, a power feeding mechanism that transmits and receives electric power between a rotating body and a fixed body may be required. As such a power feeding mechanism, a method of bringing a contact member called a brush into sliding contact with a rotating body is common. However, for example, when it is necessary to make the rotational resistance very small, it may be desired to exchange electric power between the rotating body and the stationary body in a non-contact manner.

例えば、回転軸とこの回転軸が挿入される穴を有する固定体との間で非接触に電力を授受する給電機構として、回転軸及び固定体に、回転の中心軸に垂直で互いに近距離で対向し合う板状体を配設し、この板状体の双方の対向面に回転軸と同心の円環状の平面コイルを対向して配設した機構が提案されている(国際公開第2015/108152号公報参照)。   For example, as a power feeding mechanism that transfers power in a non-contact manner between a rotating shaft and a fixed body having a hole into which the rotating shaft is inserted, the rotating shaft and the fixed body are perpendicular to the central axis of rotation and close to each other. There has been proposed a mechanism in which opposing plate-like bodies are arranged and annular planar coils concentric with the rotation shaft are arranged on both opposing surfaces of the plate-like bodies so as to face each other (International Publication No. 2015/2015). No. 108152).

国際公開第2015/108152号公報International Publication No. 2015/108152

上記公報に開示される非接触給電機構では、一方の平面コイルに電流を流すことにより、電磁誘導によって他方の平面コイルに起電力を生じさせることで、電力を授受することができる。   In the non-contact power feeding mechanism disclosed in the above publication, electric power can be transmitted and received by causing an electromotive force to be generated in the other planar coil by electromagnetic induction by passing a current through the one planar coil.

しかしながら、上記公報に記載の非接触給電機構では、平面コイルの内部を回転軸が貫通する必要があるため、例えば既存の回転軸にセンサを配設してこのセンサに給電する場合等、平面コイルの配設が困難な場合がある。   However, in the non-contact power feeding mechanism described in the above publication, the rotating shaft needs to penetrate the inside of the planar coil. Therefore, for example, when a sensor is arranged on an existing rotating shaft and power is supplied to this sensor, the planar coil May be difficult to arrange.

本発明は、上述のような事情に基づいてなされたものであり、配設が比較的容易な非接触給電機構を提供することを課題とする。   This invention is made | formed based on the above situations, and makes it a subject to provide the non-contact electric power feeding mechanism with which arrangement | positioning is comparatively easy.

上記課題を解決するためになされた本発明の一態様に係る非接触給電機構は、軸状部材とこの軸状部材の周囲に相対回転可能に配設される外周部材との間で電力を授受する非接触給電機構であって、上記軸状部材の周面に沿って配設される内側コイルと、上記内側コイルに対向するよう外周部材に配設され、上記内側コイルと磁気結合する外側コイルとを備え、上記内側コイル及び外側コイルが、軸状部材の周方向に延在し、互いに電流の向きが異なる少なくとも一対の直線部をそれぞれ有する。   A non-contact power feeding mechanism according to one aspect of the present invention, which has been made to solve the above-described problems, transmits and receives electric power between a shaft-shaped member and an outer peripheral member disposed around the shaft-shaped member so as to be relatively rotatable. A non-contact power feeding mechanism that includes an inner coil disposed along a circumferential surface of the shaft-shaped member, and an outer coil disposed on the outer circumferential member so as to face the inner coil and magnetically coupled to the inner coil. And the inner coil and the outer coil each have at least a pair of linear portions extending in the circumferential direction of the shaft-like member and having different current directions.

本発明の一態様に係る非接触給電機構は、配設が比較的容易である。   The non-contact power feeding mechanism according to one embodiment of the present invention is relatively easy to dispose.

図1は、本発明の一実施形態の非接触給電機構を示す模式的分解斜視図である。FIG. 1 is a schematic exploded perspective view showing a non-contact power feeding mechanism according to an embodiment of the present invention. 図2は、図1の非接触給電機構の模式的断面図である。FIG. 2 is a schematic cross-sectional view of the non-contact power feeding mechanism of FIG. 図3は、図1の非接触給電機構の回路図である。FIG. 3 is a circuit diagram of the non-contact power feeding mechanism of FIG. 図4は、図1の非接触給電機構の内側コイルの展開図である。4 is a development view of the inner coil of the non-contact power feeding mechanism of FIG. 図5は、本発明の図1とは異なる実施形態の非接触給電機構を示す模式的分解斜視図である。FIG. 5 is a schematic exploded perspective view showing a non-contact power feeding mechanism of an embodiment different from FIG. 1 of the present invention. 図6は、図5の非接触給電機構の回路図である。FIG. 6 is a circuit diagram of the non-contact power feeding mechanism of FIG.

[本発明の実施形態の説明]
本発明の一態様に係る非接触給電機構は、軸状部材とこの軸状部材の周囲に相対回転可能に配設される外周部材との間で電力を授受する非接触給電機構であって、上記軸状部材の周面に沿って配設される内側コイルと、上記内側コイルに対向するよう外周部材に配設され、上記内側コイルと磁気結合する外側コイルとを備え、上記内側コイル及び外側コイルが、軸状部材の周方向に延在し、互いに電流の向きが異なる少なくとも一対の直線部をそれぞれ有する。
[Description of Embodiment of the Present Invention]
A non-contact power feeding mechanism according to an aspect of the present invention is a non-contact power feeding mechanism that transmits and receives electric power between a shaft-shaped member and an outer peripheral member that is rotatably disposed around the shaft-shaped member, An inner coil disposed along a circumferential surface of the shaft-shaped member; and an outer coil disposed on the outer circumferential member so as to face the inner coil and magnetically coupled to the inner coil. Each of the coils has at least a pair of linear portions extending in the circumferential direction of the shaft-like member and having different current directions.

当該非接触給電機構は、上記軸状部材の周面に沿って配設される内側コイルと、上記内側コイルに対向するよう外周部材に配設され、上記内側コイルと磁気結合する外側コイルとを備えることによって、上記内側コイルと外側コイルとの相互誘導により一方のコイルへの電力の入力により、他方のコイルから電力の出力を得ることができる。ここで、上記内側コイル及び外側コイルが、平面展開時に直線状となるよう軸状部材の周方向に延在し、互いに電流の向きが異なる少なくとも一対の直線部をそれぞれ有することによって、上記内側コイルと外側コイルとの相対的な回転位置の変化による重複面積の変化を抑制することができ、磁気結合を比較的大きい状態に維持できるので、給電効率が比較的大きくなる。また、当該非接触給電機構は、上記軸状部材の周面に径方向外側から平面コイルを巻き付けることにより形成できるので、配設が比較的容易である。   The non-contact power feeding mechanism includes an inner coil disposed along a circumferential surface of the shaft-shaped member, and an outer coil disposed on the outer circumferential member so as to face the inner coil and magnetically coupled to the inner coil. By providing, the output of electric power can be obtained from the other coil by the input of electric power to one coil by mutual induction of the inner coil and the outer coil. Here, the inner coil and the outer coil each have at least a pair of linear portions extending in the circumferential direction of the shaft-like member so as to be linear when being developed in a plane, and having different current directions. Since the change in the overlapping area due to the change in the relative rotational position between the outer coil and the outer coil can be suppressed, and the magnetic coupling can be maintained in a relatively large state, the power feeding efficiency becomes relatively large. Moreover, since the non-contact power feeding mechanism can be formed by winding a planar coil around the peripheral surface of the shaft-shaped member from the outside in the radial direction, the arrangement is relatively easy.

上記直線部が軸状部材の周りに1/2周以上の長さを有するとよい。このように、上記直線部が軸状部材の周りに1/2周以上の長さを有することによって、内側コイルと外側コイルとの磁気結合がより大きくなるので、給電効率がさらに大きくなる。   The linear portion may have a length of ½ or more around the shaft-shaped member. As described above, since the linear portion has a length of ½ or more around the shaft member, the magnetic coupling between the inner coil and the outer coil is further increased, and the power feeding efficiency is further increased.

上記内側コイル及び外側コイルのうち受電側のインピーダンスとしては、給電側のインピーダンス以上が好ましい。このように、上記内側コイル及び外側コイルのうち受電側のインピーダンスが上記下限以上であることによって、給電側への入力に対する受電側の出力の比を比較的大きくすることができる。   Of the inner and outer coils, the power receiving side impedance is preferably equal to or higher than the power feeding side impedance. Thus, when the impedance on the power receiving side of the inner coil and the outer coil is equal to or higher than the lower limit, the ratio of the output on the power receiving side to the input on the power feeding side can be made relatively large.

上記内側コイル及び外側コイルが、可撓性及び絶縁性を有するシート状の基材の少なくとも一方の面側に積層される導電パターンから形成されるとよい。このように、上記内側コイル及び外側コイルが、可撓性及び絶縁性を有するシート状の基材の少なくとも一方の面側に積層される導電パターンから形成されることによって、上記内側コイル及び外側コイルの形状の精度を向上できると共に、軸状部材及び外周部材周面に沿って比較的容易に配設することができる。   The inner coil and the outer coil may be formed from a conductive pattern laminated on at least one surface side of a flexible sheet-like base material. In this way, the inner coil and the outer coil are formed from a conductive pattern laminated on at least one surface side of a sheet-like base material having flexibility and insulation, so that the inner coil and the outer coil are formed. The accuracy of the shape can be improved, and the shaft member and the outer peripheral member can be disposed relatively easily along the circumferential surface.

上記内側コイルと直列に接続される内側キャパシタと、上記外側コイルと直列に接続される外側キャパシタと、上記内側コイルと内側キャパシタとの直列回路又は外側コイルと外側キャパシタとの直列回路に交流電流を印加する電源とをさらに備え、内側コイル及び内側キャパシタの共振周波数と外側コイル及び外側キャパシタの共振周波数とが電源の交流電流の周波数と等しいとよい。このように内側キャパシタ、外側キャパシタ、及び電源をさらに備え、内側コイル及び内側キャパシタの共振周波数と外側コイル及び外側キャパシタの共振周波数とが電源の交流電流の周波数と等しいことによって、電磁界共振結合により電力を電送するシステムとなるので、さらに電力供給効率を向上できる。   An alternating current is applied to the inner capacitor connected in series with the inner coil, the outer capacitor connected in series with the outer coil, and the series circuit of the inner coil and inner capacitor or the series circuit of the outer coil and outer capacitor. A power supply to be applied, and the resonance frequency of the inner coil and the inner capacitor and the resonance frequency of the outer coil and the outer capacitor may be equal to the frequency of the alternating current of the power supply. As described above, the apparatus further includes an inner capacitor, an outer capacitor, and a power source, and the resonance frequency of the inner coil and the inner capacitor and the resonance frequency of the outer coil and the outer capacitor are equal to the frequency of the AC current of the power source, thereby Since the system transmits electric power, the power supply efficiency can be further improved.

ここで、共振周波数が等しいとは、内側コイル及び外側コイルのインピーダンスの周波数特性において、一方の共振周波数が、他方のインピーダンスが共振周波数におけるインピーダンスと共振周波数の低周波数側直近のインピーダンスのピーク値との平均値以下となる周波数範囲内にあることを意味する。   Here, the resonance frequency is equal in the frequency characteristic of the impedance of the inner coil and the outer coil, one resonance frequency is the impedance value at the resonance frequency and the peak value of the impedance closest to the low frequency side of the resonance frequency. It means that it is in the frequency range that is below the average value of.

[本発明の実施形態の詳細]
以下、本発明に係る非接触給電機構の実施形態について図面を参照しつつ詳説する。
[Details of the embodiment of the present invention]
Hereinafter, embodiments of a non-contact power feeding mechanism according to the present invention will be described in detail with reference to the drawings.

[第一実施形態]
図1及び図2に示す本発明の一実施形態に係る給電機構は、軸状部材1とこの軸状部材1の周囲に相対回転可能に配設される外周部材2との間で電力を授受する非接触給電機構である。
[First embodiment]
The power feeding mechanism according to one embodiment of the present invention shown in FIGS. 1 and 2 transmits and receives electric power between a shaft-shaped member 1 and an outer peripheral member 2 disposed around the shaft-shaped member 1 so as to be relatively rotatable. This is a non-contact power feeding mechanism.

当該非接触給電機構は、軸状部材1の周面に沿って配設される内側コイル3と、この内側コイル3に対向するよう外周部材2に配設され、内側コイル3と磁気結合する外側コイル4とを備える。なお、図1において、内側コイル3及び外側コイル4は、平面上に展開した状態を示す。   The non-contact power feeding mechanism includes an inner coil 3 disposed along the peripheral surface of the shaft-shaped member 1 and an outer member disposed on the outer member 2 so as to face the inner coil 3 and magnetically coupled to the inner coil 3. A coil 4. In addition, in FIG. 1, the inner side coil 3 and the outer side coil 4 show the state expand | deployed on the plane.

当該非接触給電機構は、図3に示すように、内側コイル3と直列に接続される内側キャパシタ5と、外側コイル4と直列に接続される外側キャパシタ6と、外側コイル4と並列に接続される並列キャパシタ7と、内側コイル3と内側キャパシタ5との直列回路に交流電流を印加する交流電流源8とをさらに備える。つまり、図1の非接触給電機構は、軸状部材1から外周部材2に給電する機構であり、給電側の内側コイル3から、受電側の外側コイル4に電力を受け渡すものである。   As shown in FIG. 3, the non-contact power feeding mechanism is connected in parallel with the inner capacitor 5 connected in series with the inner coil 3, the outer capacitor 6 connected in series with the outer coil 4, and the outer coil 4. A parallel capacitor 7 and an alternating current source 8 for applying an alternating current to the series circuit of the inner coil 3 and the inner capacitor 5. That is, the non-contact power feeding mechanism in FIG. 1 is a mechanism that feeds power from the shaft-shaped member 1 to the outer peripheral member 2, and delivers power from the inner coil 3 on the power feeding side to the outer coil 4 on the power receiving side.

<軸状部材>
軸状部材1は、少なくとも部分的に例えば円柱状、円筒状等の円周面を有する形状に形成される。この軸状部材1は、典型的には回転軸、又は外周部材2若しくは外周部材2が取り付けられる部材を回転可能に支持する固定軸とされる。
<Shaft-shaped member>
The shaft-shaped member 1 is at least partially formed into a shape having a circumferential surface such as a columnar shape or a cylindrical shape. The shaft-shaped member 1 is typically a rotating shaft or a fixed shaft that rotatably supports an outer peripheral member 2 or a member to which the outer peripheral member 2 is attached.

この軸状部材1の材質、径、長さ等は、特に限定されない。   The material, diameter, length, etc. of the shaft-shaped member 1 are not particularly limited.

<外周部材>
外周部材2は、軸状部材1に対して相対回転するものであればよく、軸状部材1が回転軸である場合には軸受けのハウジングと一体に形成してもよく、軸状部材1を有する機器のフレーム等に配設してもよい。
<Outer peripheral member>
The outer peripheral member 2 only needs to rotate relative to the shaft-shaped member 1. When the shaft-shaped member 1 is a rotating shaft, it may be formed integrally with a housing of the bearing. You may arrange | position to the flame | frame etc. of the apparatus which has.

また、外周部材2は、場合によっては、配設を容易にするために周方向に複数に分割して形成されてもよい。   In some cases, the outer peripheral member 2 may be divided into a plurality of parts in the circumferential direction in order to facilitate disposition.

<内側コイル>
内側コイル3は、図1及び図2に示すように、軸状部材1に貼着される可撓性及び絶縁性を有するシート状の基材(ベースフィルム)8の少なくとも一方の面側に積層される導電パターンから形成されるとよい。つまり、内側コイル3は、フレキシブルプリント配線板の導電パターンによって形成することができる。このように、内側コイル3をフレキシブルプリント配線板の導電パターンよって形成することで、内側コイル3の形状精度が向上し、電磁気的特性を比較的安定させることができる。
<Inner coil>
As shown in FIGS. 1 and 2, the inner coil 3 is laminated on at least one surface side of a sheet-like base material (base film) 8 having flexibility and insulation that is adhered to the shaft-like member 1. The conductive pattern may be formed. That is, the inner coil 3 can be formed by a conductive pattern of a flexible printed wiring board. Thus, by forming the inner coil 3 with the conductive pattern of the flexible printed wiring board, the shape accuracy of the inner coil 3 can be improved, and the electromagnetic characteristics can be made relatively stable.

内側コイル3は、磁束を効率よく形成するために、軸状部材1の周方向の両端が重ならないよう形成されることが好ましい。   The inner coil 3 is preferably formed so that both ends in the circumferential direction of the shaft-shaped member 1 do not overlap in order to efficiently form a magnetic flux.

(基材)
基材9の材料としては、例えばポリイミド、液晶ポリマー、フッ素樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等の可撓性を有する樹脂を用いることが可能であり、これらの中でも絶縁性及び強度に優れるポリイミドが特に好ましい。
(Base material)
As a material of the base material 9, for example, a flexible resin such as polyimide, liquid crystal polymer, fluororesin, polyethylene terephthalate, polyethylene naphthalate, etc. can be used. Among these, polyimide having excellent insulation and strength is used. Particularly preferred.

上記基材9の厚さは、軸状部材1の径(基材9に必要とされる曲げ)及び必要とされる強度を考慮して適宜選択されるが、例えば上記基材9の平均厚さの下限としては、5μmが好ましく、12μmがより好ましい。一方、上記基材9の平均厚さの上限としては、0.5mmが好ましく、0.2mmがより好ましい。上記基材9の平均厚さが上記下限に満たない場合、基材9の強度が小さくなることで軸状部材1の周面に貼着する前の内側コイル3の損傷を十分に防止できないおそれがある。逆に、基材9の平均厚さが上記上限を超える場合、基材9の可撓性が不十分となることで軸状部材1の周面に沿って内側コイル3を貼着することが容易でなくなるおそれがある。   The thickness of the base material 9 is appropriately selected in consideration of the diameter of the shaft-like member 1 (bending required for the base material 9) and the required strength. For example, the average thickness of the base material 9 The lower limit of the thickness is preferably 5 μm, and more preferably 12 μm. On the other hand, the upper limit of the average thickness of the substrate 9 is preferably 0.5 mm, and more preferably 0.2 mm. When the average thickness of the base material 9 is less than the above lower limit, the strength of the base material 9 becomes small, and thus the inner coil 3 may not be sufficiently damaged before being attached to the peripheral surface of the shaft-shaped member 1. There is. On the contrary, when the average thickness of the base material 9 exceeds the above upper limit, the inner coil 3 can be adhered along the peripheral surface of the shaft-like member 1 due to insufficient flexibility of the base material 9. May not be easy.

内側コイル3の平面形状は、図4の展開図に示すように、軸状部材1の周方向に延在する少なくとも一対の直線部(1又は複数の第1直線部3a、及び1又は複数の第2直線部3b)と、第1直線部3a及び第2直線部3bを、互いの電流の向きが異なるよう接続する1又は複数の接続部3cとを有する。具体的には、内側コイル3は、軸状部材1の周面を平面状に展開した場合に、1つの扁平な渦巻き状である平面コイルであることが好ましい。   As shown in the development view of FIG. 4, the planar shape of the inner coil 3 has at least a pair of straight portions (one or a plurality of first straight portions 3 a and one or a plurality of straight portions) extending in the circumferential direction of the shaft-shaped member 1. The second straight line portion 3b) and one or a plurality of connection portions 3c for connecting the first straight line portion 3a and the second straight line portion 3b so that the directions of the currents are different from each other. Specifically, the inner coil 3 is preferably a flat coil having a flat spiral shape when the peripheral surface of the shaft-shaped member 1 is developed in a flat shape.

第1直線部3a及び第2直線部3bの長さの下限としては、軸状部材1を1周する長さの1/2が好ましく、3/5がより好ましい。一方、第1直線部3a及び第2直線部3bの長さの上限としては、軸状部材1を1周する長さの19/20が好ましく、9/10がより好ましい。第1直線部3a及び第2直線部3bの長さが上記下限に満たない場合、外側コイル4との結合が小さくなることで給電効率が不十分となるおそれや、出力電圧が不安定になるおそれがある。逆に、第1直線部3a及び第2直線部3bの長さが上記上限を超える場合、内側コイル3の両端が干渉して軸状部材1の周面への配設が困難となるおそれがある。   As a minimum of the length of the 1st straight part 3a and the 2nd straight part 3b, 1/2 of the length which makes the circumference of shaft-like member 1 is preferred, and 3/5 is more preferred. On the other hand, as an upper limit of the length of the 1st linear part 3a and the 2nd linear part 3b, 19/20 of the length which makes the shaft-shaped member 1 1 round is preferable, and 9/10 is more preferable. If the lengths of the first straight portion 3a and the second straight portion 3b are less than the lower limit, the coupling with the outer coil 4 may be reduced, leading to insufficient power supply efficiency and unstable output voltage. There is a fear. Conversely, when the lengths of the first straight portion 3a and the second straight portion 3b exceed the above upper limit, the both ends of the inner coil 3 may interfere with each other, making it difficult to dispose the shaft-like member 1 on the peripheral surface. is there.

内側コイル3の展開状態での平面形状のアスペクト比(軸状部材1の周方向の最大径Daの軸方向の最大径Dbに対する比)の下限としては、5が好ましく、7がより好ましい。一方、内側コイル3のアスペクト比の上限としては、20が好ましく、15がより好ましい。内側コイル3のアスペクト比が上記下限に満たない場合、内側コイル3が不必要に大きくなることで当該非接触給電機構の配設が困難となるおそれがある。逆に、内側コイル3のアスペクト比が上記上限を超える場合、内側コイル3と外側コイル4との軸状部材1の軸方向の位置ずれにより出力が変動し易くなるおそれがある。   The lower limit of the planar aspect ratio (the ratio of the circumferential maximum diameter Da of the axial member 1 to the axial maximum diameter Db) in the deployed state of the inner coil 3 is preferably 5, and more preferably 7. On the other hand, the upper limit of the aspect ratio of the inner coil 3 is preferably 20, and more preferably 15. When the aspect ratio of the inner coil 3 is less than the lower limit, the inner coil 3 becomes unnecessarily large, which may make it difficult to dispose the non-contact power feeding mechanism. On the other hand, when the aspect ratio of the inner coil 3 exceeds the upper limit, the output may easily fluctuate due to the axial displacement of the shaft member 1 between the inner coil 3 and the outer coil 4.

内側コイル3の平面形状、配線断面積、巻き数等は、例えば供給しようとする電力等に応じて適宜選択することができる。例えば、給電側の内側コイル3の平面状に展開した状態でのインダクタンスとしては、0.00001μH以上10000μH以下とすることができる。   The planar shape, wiring cross-sectional area, number of turns, and the like of the inner coil 3 can be appropriately selected according to, for example, the power to be supplied. For example, the inductance in a state where the inner coil 3 on the power feeding side is expanded in a planar shape can be 0.00001 μH or more and 10000 μH or less.

内側コイル3の材質としては、導電性を有するものであればよく、銅、アルミニウム、金、銀、ニッケル、鉄等を用いることができるが、比較的安価で導電性及び変形性に優れる銅が好適に用いられる。また、内側コイル3は、表面が金、銀、錫等でめっきされてもよい。   The inner coil 3 may be made of any material as long as it has conductivity, and copper, aluminum, gold, silver, nickel, iron, and the like can be used. However, copper that is relatively inexpensive and excellent in conductivity and deformability is used. Preferably used. Moreover, the surface of the inner coil 3 may be plated with gold, silver, tin, or the like.

また、内側コイル3を有するフレキシブルプリント配線板は、図1及び図2に示すように、内側コイル3よりも軸状部材1側に軟磁性材料(透磁率が比較的大きく、保磁力が比較的小さい材料)から形成される磁束案内層10を有することが好ましい。このように、内側コイル3を形成したフレキシブルプリント配線板が磁束案内層10を有することにより、内側コイル3と外側コイル4との磁気的結合をより大きくすることができ、当該非接触給電機構の電力伝達効率を向上できる。   Further, as shown in FIGS. 1 and 2, the flexible printed wiring board having the inner coil 3 has a soft magnetic material (having a relatively large permeability and a relatively low coercive force on the side of the shaft member 1 relative to the inner coil 3. It is preferable to have a magnetic flux guide layer 10 formed from a small material. Thus, since the flexible printed wiring board in which the inner coil 3 is formed has the magnetic flux guide layer 10, the magnetic coupling between the inner coil 3 and the outer coil 4 can be increased, and the contactless power feeding mechanism Power transmission efficiency can be improved.

この磁束案内層10としては、合成樹脂中に強磁性体を分散したものが使用でき、ノイズ抑制シート等の名称で市販されているものが利用可能である。   As the magnetic flux guide layer 10, a material in which a ferromagnetic material is dispersed in a synthetic resin can be used, and a commercially available material such as a noise suppression sheet can be used.

<外側コイル>
外側コイル4は、図2に示すように、外周部材2の内周面に貼着されることで、内側コイル3との距離を小さくして磁気的な結合を大きくすることができるが、外周部材2の磁気抵抗(透磁率及び厚さ)が十分に小さい場合には、外側コイル4を外周部材2の外周面に貼着したり、外周部材2の内部に挿入したりすることで配設を容易化してもよい。
<Outer coil>
As shown in FIG. 2, the outer coil 4 can be attached to the inner peripheral surface of the outer peripheral member 2 to reduce the distance to the inner coil 3 and increase the magnetic coupling. When the magnetic resistance (magnetic permeability and thickness) of the member 2 is sufficiently small, the outer coil 4 is disposed on the outer peripheral surface of the outer peripheral member 2 or is inserted into the outer peripheral member 2. May be simplified.

この外側コイル4の材質としては、内側コイル3と同様とすることができる。   The material of the outer coil 4 can be the same as that of the inner coil 3.

また、外側コイル4は、内側コイル3と同様に、フレキシブルプリント配線板の導電パターンとして形成するとよい。つまり、外側コイル4は、可撓性及び絶縁性を有するシート状の基材11に積層される導電パターンから形成されるとよい。また、外側コイル4を有するフレキシブルプリント配線板は、内側コイル3を有するフレキシブルプリント配線板と同様に、外側コイル4よりも軸状部材1から遠い側に軟磁性材料から形成される磁束案内層12を有するとよい。   Further, the outer coil 4 may be formed as a conductive pattern of a flexible printed wiring board, similarly to the inner coil 3. That is, the outer coil 4 may be formed from a conductive pattern that is laminated on a sheet-like base material 11 having flexibility and insulation. Also, the flexible printed wiring board having the outer coil 4 is a magnetic flux guide layer 12 formed of a soft magnetic material on the side farther from the shaft-like member 1 than the outer coil 4 in the same manner as the flexible printed wiring board having the inner coil 3. It is good to have.

外側コイル4は、内側コイル3が形成した磁束を効率よく電力に変換するために、軸状部材1の周方向の両端が重ならないよう形成されることが好ましい。   The outer coil 4 is preferably formed so that both ends in the circumferential direction of the shaft-shaped member 1 do not overlap in order to efficiently convert the magnetic flux formed by the inner coil 3 into electric power.

外周部材2を複数に分割して形成する場合、外側コイル4を形成するフレキシブルプリント配線板を外周部材2の複数の部分を開環可能に接続するヒンジとして利用してもよい。このように、外側コイル4を形成するフレキシブルプリント配線板によって外周部材2の複数の部分間を接続することで、径方向外側から軸状部材1の周囲に外周部材2及び外側コイル4を同時に配設することができる。   When the outer peripheral member 2 is divided and formed, a flexible printed wiring board that forms the outer coil 4 may be used as a hinge that connects a plurality of portions of the outer peripheral member 2 so that the ring can be opened. As described above, the outer peripheral member 2 and the outer coil 4 are simultaneously arranged around the shaft-shaped member 1 from the radially outer side by connecting the portions of the outer peripheral member 2 with the flexible printed wiring board that forms the outer coil 4. Can be set.

外側コイル4の平面形状は、内側コイル3と同様に、外周部材2の周方向に延在する少なくとも一対の直線部(第1直線部4a及び第2直線部4b)と、この第1直線部4a及び第2直線部4bを、互いの電流の向きが異なるよう接続する複数の接続部4cとを有する。具体的には、外側コイル4は、外周部材2の周面を平面状に展開した場合に、1つの扁平な渦巻き状の平面コイルであることが好ましい。   As in the case of the inner coil 3, the planar shape of the outer coil 4 is at least a pair of straight portions (first straight portion 4a and second straight portion 4b) extending in the circumferential direction of the outer peripheral member 2, and the first straight portion. 4a and the 2nd linear part 4b have the some connection part 4c which connects so that the direction of an electric current may mutually differ. Specifically, the outer coil 4 is preferably a single flat spiral coil when the peripheral surface of the outer peripheral member 2 is developed into a flat shape.

第1直線部4a及び第2直線部4bの長さの下限としては、外周部材2を1周する長さの1/2が好ましく、3/5がより好ましい。一方、第1直線部4a及び第2直線部4bの長さの上限としては、外周部材2を1周する長さの19/20が好ましく、9/10がより好ましい。第1直線部4a及び第2直線部4bの長さが上記下限に満たない場合、内側コイル3との結合が小さくなることで給電効率が不十分となるおそれや、出力電圧が不安定になるおそれがある。逆に、第1直線部4a及び第2直線部4bの長さが上記上限を超える場合、外側コイル4の両端が干渉して外周部材2の周面への配設が困難となるおそれがある。   As a minimum of the length of the 1st straight part 4a and the 2nd straight part 4b, 1/2 of the length which makes a round of outer peripheral member 2 is preferred, and 3/5 is more preferred. On the other hand, as an upper limit of the length of the 1st linear part 4a and the 2nd linear part 4b, 19/20 of the length which makes the outer periphery member 2 1 round is preferable, and 9/10 is more preferable. If the lengths of the first straight portion 4a and the second straight portion 4b are less than the lower limit, the coupling with the inner coil 3 may be reduced, leading to insufficient power supply efficiency and unstable output voltage. There is a fear. Conversely, when the lengths of the first straight portion 4a and the second straight portion 4b exceed the upper limit, it is possible that both ends of the outer coil 4 interfere with each other and it becomes difficult to dispose the outer peripheral member 2 on the peripheral surface. .

外側コイル4の展開状態での平面形状のアスペクト比の下限としては、5が好ましく、7がより好ましい。一方、外側コイル4のアスペクト比の上限としては、20が好ましく、15がより好ましい。外側コイル4のアスペクト比が上記下限に満たない場合、外側コイル4が不必要に大きくなることで当該非接触給電機構の配設が困難となるおそれがある。逆に、外側コイル4のアスペクト比が上記上限を超える場合、内側コイル3と外側コイル4との軸状部材1の軸方向の位置ずれにより出力が変動し易くなるおそれがある。   The lower limit of the aspect ratio of the planar shape in the developed state of the outer coil 4 is preferably 5, and more preferably 7. On the other hand, the upper limit of the aspect ratio of the outer coil 4 is preferably 20, and more preferably 15. When the aspect ratio of the outer coil 4 is less than the lower limit, the outer coil 4 becomes unnecessarily large, which may make it difficult to dispose the non-contact power feeding mechanism. On the other hand, when the aspect ratio of the outer coil 4 exceeds the upper limit, the output may easily fluctuate due to the axial displacement of the shaft member 1 between the inner coil 3 and the outer coil 4.

外側コイル4の配線断面積、巻き数は、例えば供給しようとする電力等に応じて必要とされるインダクタンス及び電気抵抗等を満足するよう適宜選択することができる。   The wiring cross-sectional area and the number of turns of the outer coil 4 can be appropriately selected so as to satisfy, for example, the required inductance and electric resistance according to the power to be supplied.

具体的には、受電側の外側コイル4のインダクタンスの下限としては、給電側の内側コイル3のインダクタンスの1倍が好ましく、3倍がより好ましい。一方、受電側の外側コイル4のインダクタンスの上限としては、給電側の内側コイル3のインダクタンスの20倍が好ましく、10倍がより好ましい。受電側の外側コイル4のインダクタンスが上記下限に満たない場合、受電側の外側コイル4の誘導起電力が不十分となるおそれがある。逆に、受電側の外側コイル4のインダクタンスが上記上限を超える場合、受電の外側コイル4の抵抗値が大きくなることで非効率となるおそれがある。   Specifically, the lower limit of the inductance of the outer coil 4 on the power receiving side is preferably 1 times the inductance of the inner coil 3 on the power feeding side, and more preferably 3 times. On the other hand, the upper limit of the inductance of the outer coil 4 on the power receiving side is preferably 20 times the inductance of the inner coil 3 on the power feeding side, and more preferably 10 times. When the inductance of the outer coil 4 on the power receiving side is less than the lower limit, the induced electromotive force of the outer coil 4 on the power receiving side may be insufficient. On the contrary, when the inductance of the outer coil 4 on the power receiving side exceeds the above upper limit, the resistance value of the outer coil 4 on the power receiving side may increase, resulting in inefficiency.

内側コイル3と外側コイル4との平均間隔の下限としては、0.5mmが好ましく、1mmがより好ましい。一方、内側コイル3と外側コイル4との平均間隔の上限としては、15mmが好ましく、10mmがより好ましい。内側コイル3と外側コイル4との平均間隔が上記下限に満たない場合、軸状部材1と外周部材2との相対位置のずれによって内側コイル3と外側コイル4とが接触するおそれがある。逆に、内側コイル3と外側コイル4との平均間隔が上記上限を超える場合、内側コイル3と外側コイル4との磁気結合が小さくなることで給電効率が小さくなるおそれがある。   As a minimum of the average space | interval of the inner side coil 3 and the outer side coil 4, 0.5 mm is preferable and 1 mm is more preferable. On the other hand, the upper limit of the average distance between the inner coil 3 and the outer coil 4 is preferably 15 mm, and more preferably 10 mm. When the average interval between the inner coil 3 and the outer coil 4 is less than the lower limit, the inner coil 3 and the outer coil 4 may come into contact with each other due to a relative positional shift between the shaft-shaped member 1 and the outer peripheral member 2. On the contrary, when the average interval between the inner coil 3 and the outer coil 4 exceeds the upper limit, the magnetic coupling between the inner coil 3 and the outer coil 4 may be reduced, so that the power supply efficiency may be reduced.

<キャパシタ>
内側キャパシタ5は、内側コイル3と直列に接続されており、この内側コイル3及び内側キャパシタ5の直列回路に交流電流源8からで交流電流が印加される。一方、外側キャパシタ6は、外側コイル4と直列に接続されており、この外側コイル4及び外側キャパシタ6の直列回路の両端が当該非接触給電機構の出力端である。
<Capacitor>
The inner capacitor 5 is connected in series with the inner coil 3, and an alternating current is applied to the series circuit of the inner coil 3 and the inner capacitor 5 from the alternating current source 8. On the other hand, the outer capacitor 6 is connected in series with the outer coil 4, and both ends of the series circuit of the outer coil 4 and the outer capacitor 6 are output terminals of the non-contact power feeding mechanism.

内側コイル3及び内側キャパシタ5を含む給電側の回路の共振周波数(内側コイル3と内側キャパシタ5との共振周波数)は、外側コイル4及び外側キャパシタ6を含む受電側の回路の共振周波数(外側コイル4と外側キャパシタ6との共振周波数)と等しい。さらに、これら給電側の回路の周波数及び受電側の回路周波数は、後述する交流電流源8が出力する交流電流の周波数と等しい。   The resonance frequency (resonance frequency between the inner coil 3 and the inner capacitor 5) of the power supply side circuit including the inner coil 3 and the inner capacitor 5 is the resonance frequency (outer coil of the power receiving side circuit including the outer coil 4 and the outer capacitor 6). 4 and the resonance frequency of the outer capacitor 6). Furthermore, the frequency of the circuit on the power feeding side and the circuit frequency on the power receiving side are equal to the frequency of the alternating current output from the alternating current source 8 described later.

このため、内側コイル3及び内側キャパシタ5を含む給電側の回路と、外側コイル4及び外側キャパシタ6を含む受電側の回路とは、内側コイル3と外側コイル4との磁気結合により相互に電流を高め合う。つまり、当該非接触給電機構において、給電側の回路と受電側の回路とは、電磁界共振結合(magnetic resonant coupling)する。   For this reason, the circuit on the power feeding side including the inner coil 3 and the inner capacitor 5 and the circuit on the power receiving side including the outer coil 4 and the outer capacitor 6 mutually exchange current due to magnetic coupling between the inner coil 3 and the outer coil 4. Build up. In other words, in the non-contact power feeding mechanism, the power feeding side circuit and the power receiving side circuit are electromagnetically resonantly coupled (magnetic resonant coupling).

これにより、当該非接触給電機構は、内側コイル3と外側コイル4との結合係数が比較的小さい場合にも、給電側の回路から受電側の回路への電力の伝送効率が比較的高い。従って、内側コイル3と外側コイル4との回転位置がずれて内側コイル3と外側コイル4との結合係数が低下したときにも電力供給効率が大きく低下せず、安定した出力を得ることができる。   Thereby, the contactless power supply mechanism has a relatively high power transmission efficiency from the power supply side circuit to the power reception side circuit even when the coupling coefficient between the inner coil 3 and the outer coil 4 is relatively small. Therefore, even when the rotational positions of the inner coil 3 and the outer coil 4 are shifted and the coupling coefficient between the inner coil 3 and the outer coil 4 is reduced, the power supply efficiency is not greatly reduced, and a stable output can be obtained. .

<電源>
交流電流源8が出力する交流電流の周波数は、上記給電側の回路及び受電側の回路の共振周波数と等しい。逆にいうと、内側キャパシタ5の容量は、給電側の回路の共振周波数が交流電流源8が出力周波数と等しくなるよう選択され、かつ外側キャパシタ6の容量は、受電側の回路の共振周波数が交流電流源8の出力周波数と等しくなるよう選択される。これにより、給電側の回路及び受電側の回路の共振に同期して給電側の回路に電力を供給し、受電側の回路に効率よく伝達することができる。
<Power supply>
The frequency of the alternating current output from the alternating current source 8 is equal to the resonance frequency of the power supply side circuit and the power reception side circuit. In other words, the capacity of the inner capacitor 5 is selected such that the resonance frequency of the circuit on the power supply side is equal to the output frequency of the AC current source 8, and the capacity of the outer capacitor 6 is the resonance frequency of the circuit on the power reception side. It is selected to be equal to the output frequency of the alternating current source 8. Thus, power can be supplied to the power supply side circuit in synchronization with the resonance of the power supply side circuit and the power reception side circuit, and can be efficiently transmitted to the power reception side circuit.

交流電流源8が出力する交流電流は、正弦波であってもよいが、直流電源のスイッチングにより比較的簡単に得られる矩形波であってもよい。   The alternating current output from the alternating current source 8 may be a sine wave, but may be a rectangular wave that is relatively easily obtained by switching of a direct current power source.

交流電流源8が出力する交流電流の周波数の下限としては、1kHzが好ましく、10kHzがより好ましい。一方、交流電流源8が出力する交流電流の周波数の上限としては、10GHzが好ましく、10MHzがより好ましい。交流電流源8が出力する交流電流の周波数が上記下限に満たない場合、内側コイル3及び内側キャパシタ5並びに外側コイル4及び外側キャパシタ6が共振するような内側キャパシタ5及び外側キャパシタ6を選定することが困難となるおそれがある。逆に、交流電流源8が出力する交流電流の周波数が上記上限を超える場合、給電側の回路及び受電側の回路のインピーダンスが大きくなって給電効率が小さくなるおそれがある。   The lower limit of the frequency of the alternating current output from the alternating current source 8 is preferably 1 kHz, and more preferably 10 kHz. On the other hand, the upper limit of the frequency of the alternating current output from the alternating current source 8 is preferably 10 GHz, and more preferably 10 MHz. When the frequency of the alternating current output from the alternating current source 8 is less than the lower limit, the inner capacitor 5 and the outer capacitor 6 are selected so that the inner coil 3 and the inner capacitor 5 and the outer coil 4 and the outer capacitor 6 resonate. May become difficult. On the other hand, when the frequency of the alternating current output from the alternating current source 8 exceeds the upper limit, the impedance of the power supply circuit and the power reception circuit may increase and power supply efficiency may decrease.

<利点>
当該非接触給電機構は、内側コイル3と外側コイル4との相互誘導により内側コイル3への電力の入力により、外側コイル4から電力の出力を得ることができる。
<Advantages>
The non-contact power feeding mechanism can obtain an output of electric power from the outer coil 4 by inputting electric power to the inner coil 3 by mutual induction of the inner coil 3 and the outer coil 4.

ここで、内側コイル3が、軸状部材1の周方向に延在し、互いに電流の向きが異なるよう接続される第1直線部3a及び第2直線部3bを有し、かつ、外側コイル4が、軸状部材1の周方向に延在し、互いに電流の向きが異なるよう接続される第1直線部4a及び第2直線部4bを有するので、内側コイル3と外側コイル4との磁気結合が比較的大きく、内側コイル3から外側コイル4へ比較的効率よく電力を伝達できる。   Here, the inner coil 3 has a first straight portion 3 a and a second straight portion 3 b that extend in the circumferential direction of the shaft-like member 1 and are connected so that the directions of currents are different from each other, and the outer coil 4. However, since it has the 1st linear part 4a and the 2nd linear part 4b which are extended in the circumferential direction of the shaft-shaped member 1, and are connected so that the direction of an electric current may mutually differ, the magnetic coupling of the inner side coil 3 and the outer side coil 4 is carried out Is relatively large, and power can be transmitted from the inner coil 3 to the outer coil 4 relatively efficiently.

また、当該非接触給電機構は、平面状に形成した内側コイル3を軸状部材1の周面に径方向外側から巻き付けることにより、比較的容易に配設できる。   Further, the non-contact power feeding mechanism can be disposed relatively easily by winding the planarly formed inner coil 3 around the peripheral surface of the shaft-shaped member 1 from the outside in the radial direction.

[第二実施形態]
図5に示す本発明の別の実施形態に係る給電機構は、軸状部材1とこの軸状部材1の周囲に相対回転可能に配設される外周部材2との間で電力を授受する非接触給電機構である。本実施形態における軸状部材1及び外周部材2は、図1の給電機構における軸状部材1及び外周部材2と同様である。
[Second Embodiment]
The power supply mechanism according to another embodiment of the present invention shown in FIG. 5 is a non-electric power supply / reception unit that exchanges electric power between the shaft-shaped member 1 and the outer peripheral member 2 disposed around the shaft-shaped member 1 so as to be relatively rotatable. It is a contact power supply mechanism. The shaft-like member 1 and the outer peripheral member 2 in the present embodiment are the same as the shaft-like member 1 and the outer peripheral member 2 in the power feeding mechanism of FIG.

当該非接触給電機構は、軸状部材1の周面に沿って配設される内側コイル13と、この内側コイル13に対向するよう外周部材2に配設され、内側コイル13と磁気結合する外側コイル14とを備える。   The non-contact power feeding mechanism includes an inner coil 13 disposed along the peripheral surface of the shaft-shaped member 1, and an outer member disposed on the outer member 2 so as to face the inner coil 13 and magnetically coupled to the inner coil 13. A coil 14.

当該非接触給電機構は、図6に示すように、内側コイル13と直列に接続される内側キャパシタ15と、内側コイル13と並列に接続される並列キャパシタ16と、外側コイル14と直列に接続される外側キャパシタ17と、外側コイル14と外側キャパシタ17との直列回路に交流電流を印加する交流電流源18とをさらに備える。つまり、図6の非接触給電機構は、外周部材2から軸状部材1に給電する機構であり、給電側の外側コイル14から、受電側の内側コイル13に電力を受け渡すものである。   As shown in FIG. 6, the non-contact power feeding mechanism is connected in series with the inner capacitor 15 connected in series with the inner coil 13, the parallel capacitor 16 connected in parallel with the inner coil 13, and the outer coil 14. An outer capacitor 17 and an alternating current source 18 for applying an alternating current to the series circuit of the outer coil 14 and the outer capacitor 17. That is, the non-contact power feeding mechanism in FIG. 6 is a mechanism that feeds power from the outer peripheral member 2 to the shaft-like member 1 and delivers power from the outer coil 14 on the power feeding side to the inner coil 13 on the power receiving side.

図6の回路における外側コイル14、外側キャパシタ17、内側コイル13、内側キャパシタ15、並列キャパシタ16及び交流電流源18は、電気的には図1の回路における内側コイル3、内側キャパシタ5と、外側コイル4、外側キャパシタ6、並列キャパシタ7及び交流電流源8と同様とされる。但し、内側コイル13を受電側コイルとし、外側コイル14を給電側コイルとした図6の回路は、内側コイル13と外側コイル14との結合を大きくし易いため、図3の回路と比べて給電効率を大きくすることが容易となると考えられる。   The outer coil 14, the outer capacitor 17, the inner coil 13, the inner capacitor 15, the parallel capacitor 16 and the alternating current source 18 in the circuit of FIG. 6 are electrically connected to the inner coil 3 and the inner capacitor 5 in the circuit of FIG. The coil 4, the outer capacitor 6, the parallel capacitor 7, and the alternating current source 8 are the same. However, in the circuit of FIG. 6 in which the inner coil 13 is a power receiving coil and the outer coil 14 is a power feeding coil, the coupling between the inner coil 13 and the outer coil 14 is easy to increase, and therefore the power feeding is performed as compared with the circuit of FIG. It is considered easy to increase the efficiency.

[その他の実施形態]
今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Other Embodiments]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is not limited to the configuration of the embodiment described above, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims. The

当該非接触給電機構において、内側コイル及び外側コイルは、電線を巻回することにより形成されてもよい。   In the non-contact power feeding mechanism, the inner coil and the outer coil may be formed by winding an electric wire.

当該非接触給電機構の内側コイル又は外側コイルは、周方向に並んで配設され、電気的に直列又は並列に接続される複数のコイルであってもよい。   The inner coil or the outer coil of the non-contact power feeding mechanism may be a plurality of coils that are arranged side by side in the circumferential direction and are electrically connected in series or in parallel.

また、当該非接触給電機構において、内側コイル及び外側コイルは、多層の平面コイルであってもよい。つまり、内側コイル及び外側コイルは多層配線板の複数の導電パターンにより形成されてもよい。   In the non-contact power feeding mechanism, the inner coil and the outer coil may be multilayer planar coils. That is, the inner coil and the outer coil may be formed by a plurality of conductive patterns of the multilayer wiring board.

本発明の実施形態に係る非接触給電機構は、回転体に電力を供給するために好適に利用することができる。   The non-contact power feeding mechanism according to the embodiment of the present invention can be suitably used for supplying power to the rotating body.

1 軸状部材
2 外周部材
3,13 内側コイル
3a 第1直線部
3b 第2直線部
3c 接続部
4,14 外側コイル
4a 第1直線部
4b 第2直線部
4c 接続部
5,15 内側キャパシタ
6,17 外側キャパシタ
7,16 並列キャパシタ
8,18 交流電流源
9 基材
10 磁束案内層
11 基材
12 磁束案内層
DESCRIPTION OF SYMBOLS 1 Shaft-shaped member 2 Outer periphery member 3,13 Inner coil 3a 1st linear part 3b 2nd linear part 3c Connection part 4,14 Outer coil 4a 1st linear part 4b 2nd linear part 4c Connection part 5,15 Inner capacitor 6, 17 Outer capacitors 7, 16 Parallel capacitors 8, 18 AC current source 9 Base material 10 Magnetic flux guide layer 11 Base material 12 Magnetic flux guide layer

Claims (5)

軸状部材とこの軸状部材の周囲に相対回転可能に配設される外周部材との間で電力を授受する非接触給電機構であって、
上記軸状部材の周面に沿って配設される内側コイルと、
上記内側コイルに対向するよう外周部材に配設され、上記内側コイルと磁気結合する外側コイルと
を備え、
上記内側コイル及び外側コイルが、軸状部材の周方向に延在し、互いに電流の向きが異なる少なくとも一対の直線部をそれぞれ有する非接触給電機構。
A non-contact power feeding mechanism for transferring power between a shaft-shaped member and an outer peripheral member disposed so as to be relatively rotatable around the shaft-shaped member,
An inner coil disposed along the circumferential surface of the shaft-shaped member;
An outer coil disposed on the outer circumferential member so as to face the inner coil, and magnetically coupled to the inner coil;
A non-contact power feeding mechanism in which the inner coil and the outer coil each have at least a pair of linear portions extending in the circumferential direction of the shaft-like member and having different current directions.
上記直線部が軸状部材の周りに1/2周以上の長さを有する請求項1に記載の非接触給電機構。   The non-contact power feeding mechanism according to claim 1, wherein the linear portion has a length of ½ or more around the shaft-like member. 上記内側コイル及び外側コイルのうち受電側のインピーダンスが給電側のインピーダンス以上である請求項1又は請求項2に記載の非接触給電機構。   The non-contact power feeding mechanism according to claim 1, wherein an impedance on a power receiving side of the inner coil and the outer coil is equal to or higher than an impedance on a power feeding side. 上記内側コイル及び外側コイルが、可撓性及び絶縁性を有するシート状の基材の少なくとも一方の面側に積層される導電パターンから形成される請求項1、請求項2又は請求項3に記載の非接触給電機構。   The said inner coil and an outer coil are formed from the electrically conductive pattern laminated | stacked on the at least one surface side of the sheet-like base material which has flexibility and insulation. Non-contact power feeding mechanism. 上記内側コイルと直列に接続される内側キャパシタと、
上記外側コイルと直列に接続される外側キャパシタと、
上記内側コイルと内側キャパシタとの直列回路又は外側コイルと外側キャパシタとの直列回路に交流電流を印加する電源と
をさらに備え、
内側コイル及び内側キャパシタの共振周波数と外側コイル及び外側キャパシタの共振周波数とが電源の交流電流の周波数と等しい請求項1から請求項4のいずれか1項に記載の非接触給電機構。
An inner capacitor connected in series with the inner coil;
An outer capacitor connected in series with the outer coil;
A power supply for applying an alternating current to the series circuit of the inner coil and the inner capacitor or the series circuit of the outer coil and the outer capacitor;
5. The non-contact power feeding mechanism according to claim 1, wherein a resonance frequency of the inner coil and the inner capacitor and a resonance frequency of the outer coil and the outer capacitor are equal to a frequency of an alternating current of the power source.
JP2017057838A 2017-03-23 2017-03-23 Non-contact power feeding mechanism Pending JP2018160605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017057838A JP2018160605A (en) 2017-03-23 2017-03-23 Non-contact power feeding mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017057838A JP2018160605A (en) 2017-03-23 2017-03-23 Non-contact power feeding mechanism

Publications (1)

Publication Number Publication Date
JP2018160605A true JP2018160605A (en) 2018-10-11

Family

ID=63796778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017057838A Pending JP2018160605A (en) 2017-03-23 2017-03-23 Non-contact power feeding mechanism

Country Status (1)

Country Link
JP (1) JP2018160605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111384785A (en) * 2018-12-27 2020-07-07 博西华电器(江苏)有限公司 Household appliance
EP4287225A1 (en) * 2022-06-03 2023-12-06 Deere & Company Assembly for contactless transfer of electrical energy to a rotor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758845A (en) * 1969-05-12 1973-09-11 Gen Electric Canada Signal transmitting system for rotating apparatus
JPH01212131A (en) * 1988-02-19 1989-08-25 Nippon Syst Kenkyusho:Kk Transmission device using shunt coil type coaxial coupler
JPH01212416A (en) * 1988-02-19 1989-08-25 Nippon Syst Kenkyusho:Kk Split coil type coaxial coupler
JP2007208201A (en) * 2006-02-06 2007-08-16 Nippon Soken Inc Noncontact power supply apparatus
WO2013125072A1 (en) * 2012-02-20 2013-08-29 レキオ・パワー・テクノロジー株式会社 Power supply device, power reception device, and power supply/reception device
JP2015053850A (en) * 2013-08-07 2015-03-19 菊地 秀雄 Wireless power transmission system
JP2016063683A (en) * 2014-09-19 2016-04-25 株式会社 日立産業制御ソリューションズ Wireless power transmission device, rotor sensing device and power receiving coil thin film substrate
JP2016197965A (en) * 2015-04-06 2016-11-24 株式会社 日立産業制御ソリューションズ Wireless power feeding power transmission device and wireless power feeding system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758845A (en) * 1969-05-12 1973-09-11 Gen Electric Canada Signal transmitting system for rotating apparatus
JPH01212131A (en) * 1988-02-19 1989-08-25 Nippon Syst Kenkyusho:Kk Transmission device using shunt coil type coaxial coupler
JPH01212416A (en) * 1988-02-19 1989-08-25 Nippon Syst Kenkyusho:Kk Split coil type coaxial coupler
JP2007208201A (en) * 2006-02-06 2007-08-16 Nippon Soken Inc Noncontact power supply apparatus
WO2013125072A1 (en) * 2012-02-20 2013-08-29 レキオ・パワー・テクノロジー株式会社 Power supply device, power reception device, and power supply/reception device
JP2015053850A (en) * 2013-08-07 2015-03-19 菊地 秀雄 Wireless power transmission system
JP2016063683A (en) * 2014-09-19 2016-04-25 株式会社 日立産業制御ソリューションズ Wireless power transmission device, rotor sensing device and power receiving coil thin film substrate
JP2016197965A (en) * 2015-04-06 2016-11-24 株式会社 日立産業制御ソリューションズ Wireless power feeding power transmission device and wireless power feeding system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111384785A (en) * 2018-12-27 2020-07-07 博西华电器(江苏)有限公司 Household appliance
EP4287225A1 (en) * 2022-06-03 2023-12-06 Deere & Company Assembly for contactless transfer of electrical energy to a rotor

Similar Documents

Publication Publication Date Title
US10404091B2 (en) Coil substrate
JP6493351B2 (en) Rotary magnetic coupling device
JP4788850B2 (en) Antenna module
TWI425533B (en) Transformer device
US10804029B2 (en) Rotary type magnetic coupling device
JP6286800B2 (en) Printed wiring board, antenna and wireless power feeder
US9413196B2 (en) Wireless power transfer
WO2008066141A1 (en) Coil device
JP2011045045A (en) Power transmitting/receiving antenna and power transmitter
US20190252768A1 (en) Antenna module and electronic device having the same
JP2014150649A (en) Wireless power transmission system
JP2018160605A (en) Non-contact power feeding mechanism
JP2013005523A (en) Wireless power transmission device
JP2012190882A (en) Coil device, and non-contact power transmission device using the same
KR20180132205A (en) wireless power transfer module
CN109037921B (en) Wireless charging antenna for portable terminal
JP2011035980A (en) Power supply system
JP7255784B2 (en) Planar coil substrate
KR20170142848A (en) Linear vibrator
US10699837B2 (en) PCB inductive coupling for torque monitoring system
JP6879477B2 (en) Flat coil substrate
CN111292932B (en) Rotatable transmission mechanism for non-contact signal coupling
JP4904503B2 (en) Coil device
JP2020108102A (en) Antenna device and electronic equipment
JP2016162369A (en) Communication medium

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20190924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210105