JP2018159669A - Method for measuring composition, subcriticality, delayed neutron ratio, neutron generation time, and prompt neutron lifespan of nuclear fissile material on the basis of only signals of neutron detector and the like - Google Patents

Method for measuring composition, subcriticality, delayed neutron ratio, neutron generation time, and prompt neutron lifespan of nuclear fissile material on the basis of only signals of neutron detector and the like Download PDF

Info

Publication number
JP2018159669A
JP2018159669A JP2017057974A JP2017057974A JP2018159669A JP 2018159669 A JP2018159669 A JP 2018159669A JP 2017057974 A JP2017057974 A JP 2017057974A JP 2017057974 A JP2017057974 A JP 2017057974A JP 2018159669 A JP2018159669 A JP 2018159669A
Authority
JP
Japan
Prior art keywords
neutron
subcriticality
ratio
delayed
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017057974A
Other languages
Japanese (ja)
Inventor
祐一 山根
Yuichi Yamane
祐一 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2017057974A priority Critical patent/JP2018159669A/en
Publication of JP2018159669A publication Critical patent/JP2018159669A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and device using the method that allow reactivity to be properly measured even in a situation where information on an inner structure of a nuclear fuel body system such as, for example, a post-incident nuclear reactor, or an entire shape thereof is not obtainable.SOLUTION: Using that n(t)=αq(t)+nof an expression is established where the number of neutrons, to be detected by a neutron detector, at a time t in a nuclear fuel is denoted as n(t), the number of neutrons when the neutron remains stable after a change in reactivity and the like is denoted as n, a coefficient of subcriticality is denoted as α, and a weighted time differential n(t) of the number of neutrons n(t) is denoted as q(t), and a ratio of αq and n - n(a difference between n serving as a calculation rate deducting a noise component from a neutron detection signal and a value nat a stable time of the neutron stands at 1 regardless of the time, a delayed neutron ratio and a delayed neutron decay constant are determined.SELECTED DRAWING: Figure 1

Description

本発明は、例えば事故後の原子炉における燃料デブリなど、あらかじめ内部構造や形状が不明である未臨界状態の核燃料体系の動特性を、中性子検出器の信号のみに基づいて測定する方法に関する。   The present invention relates to a method for measuring dynamic characteristics of a subcritical nuclear fuel system whose internal structure and shape are unknown in advance, such as fuel debris in a nuclear reactor after an accident, based only on signals from a neutron detector.

ウラン235、プルトニウム239など、中性子を吸収して核分裂を生じる核分裂性物質か、核分裂性物質と構造材等の核分裂性ではない物質の混在する物質(例えば原子炉では炉心全体)を以下では核燃料体系と呼ぶ。核燃料体系について、そのうちの核分裂性物質の組成(ウラン235が100%とか、ウラン235が90%で残りがプルトニウム239といった割合)を調べる主な方法は、少量のサンプルを採取して行う化学分析が知られている。   Nuclear fuel systems such as uranium 235 and plutonium 239 are fissile materials that absorb neutrons and cause fission or a mixture of non-fissile materials such as fissile materials and structural materials (for example, the entire core in a nuclear reactor) Call it. The main method for investigating the composition of fissile materials (100% uranium 235, 90% uranium 235 and the remaining plutonium 239) for nuclear fuel systems is a chemical analysis performed by collecting a small sample. Are known.

また、核燃料体系の未臨界度を測定する手法としては、従来、例えば稼働中の原子炉においては、未臨界度測定法の代表的なものとして、例えば(1)負のペリオド法、(2)制御棒落下法(特許文献1)、(3)補償法、(4)中性子源増倍法(特許文献2)、(5)逆動特性法(特許文献3)、(6)炉雑音解析法、(7)パルス中性子源法が知られている。   In addition, as a technique for measuring the subcriticality of a nuclear fuel system, for example, in a conventional reactor, for example, as a typical subcriticality measuring method, for example, (1) negative period method, (2) Control rod drop method (Patent Document 1), (3) Compensation method, (4) Neutron source multiplication method (Patent Document 2), (5) Reverse motion characteristic method (Patent Document 3), (6) Reactor noise analysis method (7) The pulse neutron source method is known.

上述の7つの従来手法の内、最初の3つの手法は、初期状態として臨界状態にしてやる必要や(負のペリオド法、制御棒落下法)、予め校正された制御棒がすでに存在する必要が(補償法)ある。また、中性子源増倍法では未臨界度が既知である基準体系を必要とする。また、逆動特性法は、動特性パラメータの精度良い推定が必要であり、臨界近傍の浅い未臨界(中性子束分布の形状が臨界時の形状と等しいとみなせる程度の未臨界)でのみ用いることができる。また、炉雑音法は、工程異常が起きる場合では溶液条件や 即発中性子寿命が時間とともに変化するために、異常と判定されるアルファ値が変動する。さらに測定システムの時間追随性が問題となる。高次モードの影響の除去が困難である。また、最後に掲げたパルス中性子源法は、一定周期のパルス中性子源を必要とする上、入射中性子に励起される中性子束分布の高次モードの影響を補正するためには、あらかじめ数値解析が必要である。   Of the seven conventional methods described above, the first three methods need to be in a critical state as an initial state (negative period method, control rod drop method), or a control rod that has already been calibrated must already exist ( Compensation method). Moreover, the neutron source multiplication method requires a reference system with a known subcriticality. The inverse dynamic characteristics method requires accurate estimation of dynamic characteristics parameters, and should be used only in shallow subcriticality near the criticality (subcriticality where the shape of the neutron flux distribution can be regarded as equal to the critical shape). Can do. In addition, when the process noise occurs in the furnace noise method, the solution condition and prompt neutron lifetime change with time, so the alpha value determined to be abnormal fluctuates. Furthermore, the time tracking of the measurement system becomes a problem. It is difficult to remove the effects of higher order modes. In addition, the pulse neutron source method listed last requires a pulse neutron source with a fixed period, and in order to correct the influence of higher-order modes of the neutron flux distribution excited by incident neutrons, numerical analysis must be performed in advance. is necessary.

実効遅発中性子割合の測定手法としては、252Cf中性子源法、Rossi-アルファ、Nelson 数法、改良Bennett 法、炉雑音法が知られている。これらの手法では、あらかじめ数値解析を行うために核燃料体系の内部構造に関する詳細な寸法を必要とする。252Cf中性子源法とNelson 数法では、核燃料体系が未臨界であるが臨界に近いことを前提としている。 Known methods for measuring the effective delayed neutron ratio include the 252 Cf neutron source method, Rossi-alpha, Nelson number method, improved Bennett method, and furnace noise method. These methods require detailed dimensions related to the internal structure of the nuclear fuel system in order to perform numerical analysis in advance. The 252 Cf neutron source method and the Nelson number method assume that the nuclear fuel system is subcritical but close to criticality.

さらにまた、中性子世代時間、即発中性子寿命については、通常、核分裂性物質やそれを含む(原子炉で言えば)炉心全体などの内部構造に関する詳細な寸法を用いて数値解析により求められる。   Furthermore, the neutron generation time and prompt neutron lifetime are usually obtained by numerical analysis using detailed dimensions relating to the internal structure of the fissile material and the entire core containing it (in the case of a nuclear reactor).

特開平8−313669号公報JP-A-8-313669 特開平09−178887号公報Japanese Patent Application Laid-Open No. 09-178887 特開2016−142623号公報Japanese Patent Laid-Open No. 2006-142623

核燃料体系内部の核分裂性物質の組成を調べるための化学分析では、対象のサンプルを採取する必要がある。また、従来の未臨界度測定手法のうち、上述のパルス中性子源法を除くいずれの方法も、動特性パラメータの解析値の精度に依存する。また、パルス中性子源法は補正用の数値解析の精度に依存する。またこれらの数値解析には、核燃料体系の内部の構造や全体の形状の情報もしくは制御棒等の反応度を必要とする。   In chemical analysis to examine the composition of fissile material within the nuclear fuel system, it is necessary to collect a sample of interest. In addition, any of the conventional subcriticality measurement methods other than the pulse neutron source method described above depends on the accuracy of the analysis value of the dynamic characteristic parameter. The pulse neutron source method depends on the accuracy of numerical analysis for correction. In addition, these numerical analyzes require information on the internal structure and overall shape of the nuclear fuel system or the reactivity of control rods.

総じて、従来の手法では、数値解析のために核燃料体系の内部構造に関する詳細な寸法を必要とする。それ故に、未臨界度、実効遅発中性子割合、中性子世代時間、即発中性子寿命の評価結果はそれらの寸法の精度や解析に用いる計算コードの計算精度に依存する。   In general, the conventional methods require detailed dimensions related to the internal structure of the nuclear fuel system for numerical analysis. Therefore, the evaluation results of subcriticality, effective delayed neutron ratio, neutron generation time, prompt neutron lifetime depend on the accuracy of their dimensions and the calculation accuracy of the calculation code used for analysis.

本発明の目的は、広範囲の未臨界(中性子束分布の形状を限定しない未臨界)において、通常の原子炉にあっては、炉内の寸法の精度や数値計算コードの精度の影響を受けないで、核分裂性物質の組成、未臨界度、遅発中性子割合、中性子世代時間、即発中性子寿命を測定する方法を提供することにある。   The purpose of the present invention is not affected by the accuracy of the dimensions of the reactor and the accuracy of the numerical calculation code in a normal reactor in a wide range of subcriticality (subcriticality that does not limit the shape of the neutron flux distribution). Therefore, the object is to provide a method for measuring the composition, subcriticality, delayed neutron ratio, neutron generation time, and prompt neutron lifetime of a fissile material.

例えば事故後の原子炉のように、核燃料体系の内部の構造や全体の形状の情報が得られない状況であっても、核分裂性物質の組成、未臨界度、遅発中性子割合、中性子世代時間、即発中性子寿命を適切に測定することができる方法を提供することにある。   For example, even in a situation where information on the internal structure and overall shape of the nuclear fuel system cannot be obtained, such as a nuclear reactor after an accident, the composition of fissile material, subcriticality, delayed neutron ratio, neutron generation time An object of the present invention is to provide a method capable of appropriately measuring the prompt neutron lifetime.

本発明は、未臨界状態の核燃料体系について、内部構造や全体の形状についてあらかじめ分かっていないために予備解析等によって正確なパラメータを事前に求めることができない状況又は、予備解析由来の誤差を排除したい状況、予め構成された制御棒等が使用できない状況、事前に臨界にできない状況、初めて到達した未臨界度において測定したい状況で、正又は負の反応度の添加により臨界に近づくもしくは遠ざかる場合かつ/又は外部中性子源の出力変動があった場合に、中性子検出器等からの核分裂率に比例する信号のみに基づいて、核分裂性物質の組成、未臨界度、遅発中性子割合、中性子世代時間、即発中性子寿命を測定する方法である。   The present invention eliminates a situation in which an accurate parameter cannot be obtained in advance by preliminary analysis because the internal structure and overall shape of the nuclear fuel system in a subcritical state are not known in advance, or an error derived from preliminary analysis. Situations, situations where pre-configured control rods cannot be used, situations where pre-criticality is not possible, situations where measurement is desired for the first time reached subcriticality, approaching or moving away from criticality by adding positive or negative reactivity and / Or, when the output of the external neutron source fluctuates, based on only the signal proportional to the fission rate from the neutron detector, etc., the composition of the fissile material, subcriticality, delayed neutron ratio, neutron generation time, prompt This is a method for measuring the neutron lifetime.

具体的には、中性子検出器によって検出される、核燃料体系内の時刻tにおける中性子数をn(t)、未臨界度をρ(t)、中性子源強度をS(t)とすると、未臨界度と中性子源強度のどちらかもしくは両方が変動した後でその変動がほとんど停止した時(ρ(t) ≒ S(t) ≒ 0)から最終的に安定した状態になってn(t)が一定の値nとなるまでの間に、以下の式が成り立つことを用いる。 Specifically, if the number of neutrons at time t in the nuclear fuel system detected by the neutron detector is n (t), the subcriticality is ρ (t), and the neutron source intensity is S (t), When the fluctuation almost stops after either or both of the intensity and the neutron source intensity fluctuate (ρ (t) ≒ S (t) ≒ 0), it finally becomes stable and n (t) becomes The fact that the following equation holds until the constant value n is reached is used.

Figure 2018159669
ここでαyは、実効遅発中性子割合をβとすると、ドル単位の未臨界度ρ$=ρ/βにより
αy = 1/ρ$−1と表され、q(t)はn(t)の時間的変化率n(t)と以下の式で表される時間の関数μ(t)の比(n(t)の重み付き時間微分)である。
Figure 2018159669
Here, α y is expressed as α y = 1 / ρ $ −1 by sub-criticality ρ $ = ρ / β in dollar units, and q (t) is n (t ) Is the ratio of the time change rate n · (t) to the time function μ (t) expressed by the following equation (weighted time derivative of n (t)).

Figure 2018159669
Figure 2018159669

Ci(t)は、n(t)が中性子数である場合には、第i群の遅発中性子先行核の量Ci(t)の時刻tにおける時間的変化率を表す。通常は6群が用いられるが、以下の測定では群数に制限はない。λiは第i群の遅発中性子先行核の崩壊定数である。 Ci · (t) represents the temporal rate of change at time t of the amount Ci (t) of the delayed neutron leading nuclei of the i-th group when n (t) is the number of neutrons. Normally, 6 groups are used, but the number of groups is not limited in the following measurements. λ i is the decay constant of the delayed neutron precursor nucleus of group i.

式1において、αyはドル単位の未臨界度ρ$のみ、nは未臨界度ρ及び中性子源強度Sの関数で、βは未臨界度ρの関数であるから、ρ及びSの時間的変化が十分に小さければ、αyとnは定数とみなせる。このとき、式1はαyを傾き、nを切片とする直線の方程式とみなすことができる。以下の測定では、このことを利用する。 In Equation 1, α y is only the subcriticality ρ $ in dollars, n is a function of the subcriticality ρ and the neutron source strength S, and β is a function of the subcriticality ρ. If the change is sufficiently small, α y and n can be regarded as constants. At this time, Equation 1 can be regarded as a linear equation with α y as a slope and n as an intercept. This is used in the following measurements.

中性子源強度としては、中性子源から放出される中性子のうち、対象となる核燃料体系に到達するもののみを考慮する(実効的な中性子源強度)。   As the neutron source intensity, only those neutrons emitted from the neutron source that reach the target nuclear fuel system are considered (effective neutron source intensity).

n(t)については、中性子検出器信号(計数率)から校正定数が求められている場合にはそれを用いれば容易に得ることができる。あらかじめ校正できない場合には、中性子検出器信号を用いる。不感時間の補正など、必要かつ実施可能な補正や変換を行う。   n (t) can be easily obtained by using a calibration constant obtained from a neutron detector signal (counting rate). If it cannot be calibrated in advance, the neutron detector signal is used. Make necessary and feasible corrections and conversions, such as dead time correction.

具体的には、本発明は、式1が成り立つことを用いた、以下の方法にある。   Specifically, the present invention resides in the following method using the fact that Equation 1 holds.

(1)αyqとn-nの比の時系列データと1との差が最も小さくなるように、遅発中性子比率と遅発中性子減衰定数を定める方法。 (1) A method of determining the delayed neutron ratio and the delayed neutron decay constant so that the difference between the time series data of the ratio of α y q and nn and 1 is minimized.

(2)時系列データ(q, n)が直線n(t)=αyq(t)+n上にあることを利用して、未臨界度ρ$とn(t)の安定時の値nを求める方法。 (2) Using the fact that time series data (q, n) is on the straight line n (t) = α y q (t) + n , the subcriticality ρ $ and n (t) are stable. How to find the value n∞ .

(3)上記項目(1)または(2)において、n = exp(f (t))を用いて(n, n)の組を求める方法。 (3) A method of obtaining a set of (n · , n) using n = exp (f (t)) in the above item (1) or (2).

(4)上記項目(2)において、a = 1/ρ0-1/ρk、b = 1-r、r = n0∞/nk∞とすると、ρk$→ρ0$ のとき、a/bが未臨界度ρ0におけるβに収束することを用いて実効遅発中性子割合βを求める方法。 (4) In the above item (2), if a = 1 / ρ 0 -1 / ρ k , b = 1-r, r = n 0∞ / n k∞ , then ρ k $ → ρ 0 $ A method for obtaining the effective delayed neutron ratio β by using a / b to converge to β at the subcriticality ρ 0 .

(5)上記項目(2)において、Λ/β=l(-ρ)+l/β が成り立つことを利用してl[s]、Λ[s]を求める方法。 (5) A method for obtaining l [s] and Λ [s] using the fact that Λ / β = l (−ρ) + l / β holds in the above item (2).

未臨界状態の核燃料について、内部構造や全体の形状についてあらかじめ分かっていないために予備解析等によって正確なパラメータを事前に求めることができない状況又は、予備解析由来の誤差を排除したい状況、予め構成された制御棒等が使用できない状況、事前に臨界にできない状況、初めて到達した未臨界度において測定したい状況で、正又は負の反応度の添加により臨界に近づくもしくは遠ざかる場合かつ/又は外部中性子源の出力変動があった場合に、中性子検出器等からの信号のみに基づいて、遅発中性子比率と遅発中性子減衰定数、ドル単位の反応度を求めることが可能となった。   For nuclear fuel in a subcritical state, the internal structure and overall shape are not known in advance, so accurate parameters cannot be obtained in advance by preliminary analysis, etc., or situations where it is desired to eliminate errors derived from preliminary analysis. In situations where control rods cannot be used, situations where criticality cannot be achieved in advance, or situations where measurement is desired at the first criticality level, and when approaching or moving away from criticality by adding positive or negative reactivity, and / or external neutron source When the output fluctuates, it is possible to obtain the delayed neutron ratio, delayed neutron decay constant, and reactivity in dollars based only on the signal from the neutron detector.

本発明に係る未臨界状態の核燃料体系の反応度測定装置の概略説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 検出器信号(青色マーカー)に直線をフィッティングして傾きαyと切片nの値を求めた図(フィッティングの結果はαy = −1.094、n = 6.902×10-5)。A figure in which a straight line is fitted to the detector signal (blue marker) to obtain the values of slope α y and intercept n (fitting results are α y = −1.094, n = 6.902 × 10 −5 ). ウラン235が100%であるような場合に、時々刻々のαyq/(n−n) の値を、遅発中性子比率と遅発中性子先行核崩壊定数の値としてウラン235の値を用いた場合(青)とプルトニウム239の値を用いた場合(赤)の比較を示した図。When uranium 235 is 100%, the value of α y q / (n−n ) is used every moment, and the value of uranium 235 is used as the value of delayed neutron ratio and delayed neutron preceding nuclear decay constant. The figure which showed the comparison of the case where the value of plutonium 239 was used (red) when it was (blue). 反応度が添加され、未臨界度が浅くなったあとの中性子検出器信号の変化の様子を表した図。The figure which showed the mode of change of the signal of a neutron detector after reactivity was added and subcriticality became shallow. 図4の時系列データを加工して(n−n)の時系列データを作成した図。The figure which processed the time series data of FIG. 4, and created the time series data of (n < infinity > -n). 図5の時系列データを加工して(n−n)の自然対数、ln(n−n)、 の時系列データを作成しこれに直線y=at+bをフィッティングして、係数a、bを求めた図。When by processing the sequence data in Figure 5 (n -n) of natural logarithm, ln (n -n), the time series data created this by fitting a straight line y = at + b and the coefficients a The figure which calculated | required b. 図6で求めた係数a, bの値を用いてn = n + eat+bの時系列データを作成し、元の図4のデータと比較した図。FIG. 7 is a diagram in which time series data of n = n∞ + e at + b is created using the values of coefficients a and b obtained in FIG. 6 and compared with the original data in FIG. 4. 異なった反応度ρ0$, ρ1$, ρ2$,・・・に対して(1-r)をx軸、(1/ρ0$-r/ρk$)をy軸(r = n0∞/nk∞)としてプロットし、原点と最も原点に近い点を用いて傾きβを求めた図。For different reactivities ρ 0 $ , ρ 1 $ , ρ 2 $ , ..., (1-r) is the x-axis and (1 / ρ 0 $ -r / ρ k $ ) is the y-axis (r = n 0∞ / n k∞ ), plotting the slope β using the origin and the point closest to the origin.

本発明に係る未臨界状態の核燃料体系の反応度測定装置の基本構成を図1に示す。反応度測定装置10は、中性子検出器等から成る検出部1、数値計算を行うためのデータを入力するための入力部2、数値計算を行う演算部3、演算部3に接続された、数値計算に必要なデータを保存する記憶部4、測定結果を外部に伝える出力部5からなる。検出部1の信号は核分裂で放出される出力の値に相当するように予め校正しておく。出力部5は、数値データを外部機器に伝送したり、結果を分かり易く画面に表示したりすることができる構成になっている。   FIG. 1 shows a basic configuration of a reactivity measuring device for a subcritical nuclear fuel system according to the present invention. A reactivity measuring device 10 includes a detection unit 1 composed of a neutron detector and the like, an input unit 2 for inputting data for numerical calculation, a calculation unit 3 for performing numerical calculation, and a numerical value connected to the calculation unit 3 It comprises a storage unit 4 for storing data necessary for calculation and an output unit 5 for transmitting measurement results to the outside. The signal from the detector 1 is calibrated in advance so as to correspond to the value of the output emitted by fission. The output unit 5 is configured to be able to transmit numerical data to an external device and display the result on a screen in an easy-to-understand manner.

本発明に係る反応度測定装置10の内、検出部1を除く部分は、基本的にマイクロコンピューターで構成できる。したがって、臨界安全管理されていない容器に本発明に係る装置を据え付けることで、核燃料物質の誤移送による臨界近接を検知することもできる。   Of the reactivity measuring device 10 according to the present invention, the portion excluding the detection unit 1 can be basically constituted by a microcomputer. Therefore, by installing the apparatus according to the present invention in a container that is not critically controlled, it is possible to detect critical proximity due to erroneous transfer of nuclear fuel material.

次に、上述の反応度測定装置10の演算部3で行う、未臨界状態の核燃料体系の反応度測定方法の演算手順について説明する。   Next, the calculation procedure of the reactivity measurement method for the subcritical nuclear fuel system, which is performed by the calculation unit 3 of the reactivity measurement apparatus 10 described above, will be described.

本発明で使用する方程式は、次の考え方に基づいて一点炉動特性方程式から導出したものである。核燃料体系に対して未臨界度ρの変化や中性子源強度Sの変化といった外的擾乱が与えられたとき、それに対する応答としての中性子数nの変動は未臨界度ρと密接に結びついているはずであり、特にρとSの時間的変化率(dρ/dt及びdS/dt)が非常に小さい場合には、中性子数nの変動(nの値及びその時間変化率dn/dt)は未臨界度ρの影響を受けつつ、遅発中性子先行核の崩壊(遅発中性子先行核濃度Ci、遅発中性子先行核崩壊定数λi、遅発中性子比率βiで特徴づけられる)、により供給される中性子に支配されると考えられるので、一点炉動特性方程式にρとSの時間的変化率(dρ/dt及びdS/dt)が非常に小さい条件を適用して当該方程式を導出した。なお、本明細書では、便宜上、例えば、nの時間微分をnのように示す。また、Ciについても同様にCiのように示す。 The equation used in the present invention is derived from a one-point furnace dynamic characteristic equation based on the following concept. When an external disturbance such as a change in subcriticality ρ or a change in neutron source strength S is given to the nuclear fuel system, the change in the number of neutrons in response to it should be closely related to the subcriticality ρ. In particular, when the rate of change in time of ρ and S (dρ / dt and dS / dt) is very small, the fluctuation of the number of neutrons n (value of n and its rate of change dn / dt) is subcritical. To neutrons supplied by decay of delayed neutron precursor nuclei (characterized by delayed neutron precursor nucleus concentration Ci, delayed neutron precursor nuclear decay constant λi, delayed neutron ratio βi) Since it is considered to be dominated, the equation was derived by applying a condition with very small rate of change of ρ and S (dρ / dt and dS / dt) to the one-point reactor dynamics equation. In this specification, for the sake of convenience, for example, time differentiation of n is indicated as n · . Similarly, Ci is indicated as Ci · .

<(1)反応度測定方法>
検出部からの信号をnとし、その時間微分をnで表す。nより次式でμを求める。
<(1) Reactivity measurement method>
The signal from the detector is n, and its time derivative is represented by n · . From n, μ is obtained by the following equation.

Figure 2018159669
Figure 2018159669

Figure 2018159669
Figure 2018159669

ここで、βは実効遅発中性子割合、βiは第i群の遅発中性子比率、Λは中性子世代時間、λiは第i群の遅発中性子先行核崩壊定数、Ciは第i群の遅発中性子先行核量である。 CiはCiの時間微分を表す。
nとμより次式でqを求める。
Where β is the effective delayed neutron ratio, β i is the delayed neutron ratio of group i, Λ is the neutron generation time, λ i is the delayed neutron leading nuclear decay constant of group i , and C i is group i. Of late neutrons. Ci · represents the time derivative of C i.
q is obtained from n · and μ by the following equation.

Figure 2018159669

データの組(q, n)を用いて自己回帰分析によりαyとn を求める。αyよりドル単位の反応度ρ$を次式で求める。
Figure 2018159669

Α y and n are obtained by autoregressive analysis using the data set (q, n). The reactivity ρ $ in dollar units is obtained from α y by the following equation.

Figure 2018159669
Figure 2018159669

<(2)遅発中性子比率測定方法>
図3を参照する。(1)において、αyq とn - nの比を時系列データとして求める。この比が計算対象となる時間の範囲においてできる限り1に近くなるように、(βi、λi)の値を調整する。多変量回帰分析の手法を用いても良い。あらかじめ想定される核分裂性物質がある場合は、その値の組(βi、λi)を物質の種類ごとに用意し、(例えばU-235, Pu-239など)それらの混合割合に応じて(βi、λi)の内挿値をもとめ、得られた値の組(βi、λi)を適用してαyq とn - nとの比を計算する。この比が最も1に近くなったときの混合割合が、核分裂性物質の混合割合となる。
<(2) Delayed neutron ratio measurement method>
Please refer to FIG. In (1), the ratio between α y q and n −n is obtained as time series data. The values of (β i , λ i ) are adjusted so that this ratio is as close to 1 as possible in the time range to be calculated. A multivariate regression analysis method may be used. If there are presumed fissile materials, prepare a set of values (β i , λ i ) for each material type (for example, U-235, Pu-239, etc.) according to their mixing ratio (β i, λ i) determine the interpolated values, the set of obtained values (β i, λ i) by applying the alpha y q and n - calculate the ratio between n ∞. The mixing ratio when this ratio is closest to 1 is the mixing ratio of the fissile material.

<(3)時刻tにおける(n, n)の値の組を求める方法>
n(図4)もしくはn - nまたはn - n(図5)の時系列データの対数をとって得られたデータをn1とする(図6)。得られたn1データを時間の関数で近似し(図7)、その関数をもとに、時刻tにおける(n, n)値の組を求める。
<(3) Method of obtaining a set of (n · , n) values at time t>
Data obtained by taking the logarithm of time series data of n (FIG. 4) or n −n or n -n (FIG. 5) is defined as n 1 (FIG. 6). The obtained n 1 data is approximated by a function of time (FIG. 7), and a set of (n · , n) values at time t is obtained based on the function.

<(4)あらたな未臨界度においてαy とnの値を推定する方法>
(3)において、(1)を一度以上実施した後であれば、αy とnの最初の推定値を以下のように得ることができる。先に実施して得られた未臨界度ρ0 ( = ρ$0×β )と安定時中性子数n0∞を用いて得られる次の値p0を用いると、
<(4) Method for estimating values of α y and n ∞ at a new subcriticality>
In (3), after performing (1) once or more, the first estimated values of α y and n can be obtained as follows. Using the following value p 0 obtained using the subcriticality ρ 0 (= ρ $ 0 × β) obtained previously and the number of stable neutrons n 0∞ ,

Figure 2018159669

未臨界度がそれほど大きく変わらなければ、前述の式1は常に点(p0, −p0)を通るので、あらたな未臨界度ρ1におけるα1y とn1∞の最初の推定値を次のようにして得ることができる。
Figure 2018159669

If the subcriticality does not change so much, Equation 1 above always passes through the point (p 0 , −p 0 ), so the first estimate of α 1y and n 1∞ at the new subcriticality ρ 1 It can be obtained as follows.

Figure 2018159669

ここで、t0は未臨界度と中性子源強度の変動が停止した直後(未臨界度はρ1)以降の任意の時刻である。
Figure 2018159669

Here, t 0 is an arbitrary time immediately after the change of the subcriticality and the neutron source intensity stops (subcriticality is ρ 1 ).

<(4)実行遅発中性子割合βを求める方法>
上記(1)により求めた、互いに異なった未臨界度の二組以上のデータ(ρk$, nk∞)(うち実効遅発中性子割合を求めたい反応度におけるデータの組を(ρ0$, n0∞)とする)を用いて、a= 1/ρ0$ -r/ρk$ 及びb = 1 - rkを求める(ここで rk = n0∞/ nk∞ とする)。データの組(a, b)が原点に近づくにつれて比a/bが実効遅発中性子割合βに収束することを用いて、βを求める。
<(4) Method for obtaining execution delayed neutron ratio β>
Two or more sets of data with different subcriticality (ρ k $ , n k∞ ) obtained by (1) above (of which the data set for the reactivity for which the effective delayed neutron ratio is to be calculated is (ρ 0 $ , with n 0∞) to), a = 1 / ρ 0 $ -r / ρ k $ and b = 1 - Request r k (and where r k = n 0∞ / n k∞ ) . Β is obtained using the fact that the ratio a / b converges to the effective delayed neutron ratio β as the data set (a, b) approaches the origin.

以下、核燃料物質に設置された中性子検出器からの信号(中性子計数率n[数/s])を用いたデータ処理手順をさらに詳細に説明する。   Hereinafter, a data processing procedure using a signal (neutron count rate n [number / s]) from a neutron detector installed in the nuclear fuel material will be described in more detail.

中性子検出器の信号もしくはそれを校正、加工した信号は、一定もしくは任意の時間間隔(Δt)で得られるものとし、その得られたデータ列n1、n2、n3、・・・、nj、を以下では時系列データと呼ぶ。以下ではこれらをまとめてn(t)と書く。 The signal of the neutron detector or a signal obtained by calibrating and processing the neutron detector is obtained at a constant or arbitrary time interval (Δt), and the obtained data string n 1 , n 2 , n 3 ,. Hereinafter, j is referred to as time-series data. Below, these are collectively written as n (t).

ここで取り扱う物理量について説明する。
ウランなどの核分裂により生じる核分裂片のうち、一定の時定数で崩壊して中性子を放出する核種を遅発中性子先行核という。有限の大きさを持つ現実の体系で遅発中性子の中性子の全数(即発中性子と遅発中性子の和)に対する割合が実効遅発中性子割合(βであらわす)である。遅発中性子先行核は多数存在するが、通常、崩壊定数の近いものをまとめて一つの群として扱い、その濃度(単位体積当たりの数)を遅発中性子先行核濃度と呼び、Ci(r,t)であらわす。iは群の番号で、通常6個の群が用いられる。Ci(r,t)を体系全体で空間積分したものをCi(t)であらわす。これは第i群の遅発中性子先行核の時刻tにおける総量を表す。遅発中性子のうち、Ci(t)から生じたものの比率(第i群の遅発中性子比率)をbiであらわす。biは式9を満たす。第i群の遅発中性子先行核の崩壊定数をλiとする。6個の(bi、λi)の組は、核分裂性物質(ウラン235、プルトニウム239など)ごとに異なった値が提案されている(文献James J. Duderstadt and Louis J. Hamilton, “Nuclear Reactor Analysis”, John Wiley & Sons, ISBN 0-471-22363-8を参照)。
The physical quantity handled here will be described.
Among the fission fragments produced by fission such as uranium, the nuclide that decays with a certain time constant and emits neutrons is called delayed neutron precursor nucleus. In an actual system with a finite size, the ratio of delayed neutrons to the total number of neutrons (the sum of prompt neutrons and delayed neutrons) is the effective delayed neutron ratio (expressed as β). There are many delayed neutron precursor nuclei, but usually the ones with close decay constants are collectively treated as one group, and their concentration (number per unit volume) is called the delayed neutron precursor nucleus concentration, Ci (r, t) i is a group number, and usually 6 groups are used. Ci (t, t) is the result of spatial integration of Ci (r, t) over the whole system. This represents the total amount of the delayed neutron precursor nuclei of group i at time t. The ratio of delayed neutrons generated from Ci (t) (the delayed neutron ratio of the i-th group) is represented by bi. bi satisfies Equation 9. Let λi be the decay constant of the delayed neutron precursor nucleus of group i. For the set of 6 (bi, λi), different values have been proposed for each fissile material (uranium 235, plutonium 239, etc.) (literature James J. Duderstadt and Louis J. Hamilton, “Nuclear Reactor Analysis”. , John Wiley & Sons, ISBN 0-471-22363-8).

Figure 2018159669
Figure 2018159669

評価する物理量は順に、中性子検出器信号からノイズ成分を除いた係数率n [数/s]、この中性子計数率の時間変化率n(=dn/dt)[数/s2]、遅発中性子先行核相当量Ci(t)、Ci(t)の時間変化率Ci(t)、変数μ(t)[1/s]、変数q(t)[1/s]、未臨界度ρの関数α(ρ)[-]および安定時のnの値n(ρ)[数/s]、ドル単位の未臨界度ρ$(=ρ/β)[-]、第i群の遅発中性子先行核崩壊定数λi[1/s]、第i群の遅発中性子比率bi[-]、実効遅発中性子割合β[-]、即発中性子寿命l[s]、中性子世代時間Λ[s]である。nと nを含む時間の関数となっている変数は時系列データである。手順は、未臨界度の変化もしくは中性子源強度の変化により中性子検出器信号が上昇する場合、手順A、下降する場合、手順Bを用いる。 The physical quantities to be evaluated are, in order, the coefficient rate n [number / s] excluding the noise component from the neutron detector signal, the time change rate n · (= dn / dt) [number / s 2 ] of this neutron count rate, Neutron predecessor equivalents Ci (t), time variation rate Ci (t) of Ci (t), variable μ (t) [1 / s], variable q (t) [1 / s], subcriticality ρ Function α (ρ) [-] and the value of n at stability n (ρ) [number / s], subcriticality ρ $ (= ρ / β) [-] in dollars, delayed i group Neutron leading nuclear decay constant λi [1 / s], group i delayed neutron ratio bi [-], effective delayed neutron ratio β [-], prompt neutron lifetime l [s], neutron generation time Λ [s] It is. Variables that are functions of time including n and n · are time-series data. The procedure uses procedure A when the neutron detector signal rises due to a change in subcriticality or neutron source strength, and procedure B when it falls.

<手順1-A(ノイズ成分を除いたnおよび nの評価)>
検出器の信号が安定した後ならば、nの測定値を、変動中であれば適当な予測値を用いてx = ln(n-n )を計算し、この時系列データx(t)を適当な時間の関数f(t)で近似する。たとえばx(t)のデータに対してy=at+bをフィッティングして定数a,bを求めることで、f(t)=at+bでx(t)を近似する。このf(t)を用いてnと nはそれぞれ下式10、11とあらわされる。
<Procedure 1-A (Evaluation of n and n · excluding noise components)>
After the detector signal has stabilized, calculate x = ln (n -n) using the measured value of n ∞ and the appropriate predicted value if it is changing, and this time series data x (t ) Is approximated by a function f (t) of an appropriate time. For example, x (t) is approximated by f (t) = at + b by fitting y = at + b to the data of x (t) to obtain constants a and b. Using this f (t), n and n · are expressed by the following equations 10 and 11, respectively.

Figure 2018159669
Figure 2018159669

Figure 2018159669
Figure 2018159669

<手順1-B(ノイズ成分を除いたnおよびnの評価)>
検出器の信号が安定した後ならば、nの測定値を、変動中であれば適当な予測値を用いてx = ln(n-n)を計算し、この時系列データx(t)を適当な時間の関数f(t)で近似する。たとえばx(t)のデータに対してy=at+bをフィッティングして定数a,bを求めることで、f(t)=at+bでx(t)を近似する。このf(t)を用いてnと nはそれぞれ下式12、13とあらわされる。
<Procedure 1-B (Evaluation of n and n excluding noise components)>
After the detector signal stabilizes, calculate x = ln (nn ) using the measured value of n ∞ and the appropriate predicted value if it is changing, and calculate this time series data x (t) Approximate with a function f (t) of appropriate time. For example, x (t) is approximated by f (t) = at + b by fitting y = at + b to the data of x (t) to obtain constants a and b. Using this f (t), n and n · are expressed by the following equations 12 and 13, respectively.

Figure 2018159669
Figure 2018159669

Figure 2018159669
Figure 2018159669

上述の手順1-A、1-Bにおいて、nに予測値を使った場合は、得られたnの時系列データと中性子検出器信号の時系列データを比較して、すべてのデータの二乗和を評価し、これが最も小さくなるようにnの値を調節して、手順1-A,1-Bを再度実施する。この手順を繰り返して、差が最も小さくなるようにする。 In the above steps 1-A and 1-B, if the predicted value is used for n , the time series data of n obtained and the time series data of the neutron detector signal are compared, and the square of all data It evaluates the sum, which is to adjust the value of n so becomes minimum, to perform the procedure 1-a, 1-B again. Repeat this procedure until the difference is minimized.

手順1において、手順5を一度以上実施した後であれば、nの最初の推定値を以下のように得ることができる。先に実施して得られた未臨界度ρ0 ( = ρ$0×β )と安定時中性子数n0∞を用いて得られる次の値p0を用いると、 In Step 1, if the step 5 after it has carried out more than once, the initial estimate of n can be obtained as follows. Using the following value p 0 obtained using the subcriticality ρ 0 (= ρ $ 0 × β) obtained previously and the number of stable neutrons n 0∞ ,

Figure 2018159669

未臨界度がそれほど大きく変わらなければ、式1は常に点(p0, -p0)を通るので、あらたな未臨界度ρ1におけるn1∞の最初の推定値を
Figure 2018159669

If the subcriticality does not change so much, Equation 1 always passes through the point (p 0 , -p 0 ), so the first estimate of n 1∞ at the new subcriticality ρ 1 is

Figure 2018159669

ここで、t0は未臨界度と中性子源強度の変動が停止した直後(未臨界度はρ1)以降の任意の時刻である。
Figure 2018159669

Here, t 0 is an arbitrary time immediately after the change of the subcriticality and the neutron source intensity stops (subcriticality is ρ 1 ).

これまでのやり方では、一点炉動特性方程式に基づくため、その解の形から、例えば手順1-Aの場合、n = n - ΣAief(ti) のような関数形を考える必要があった。しかし、n = αyq - n が成立つことにもとづく本手法では、n = αyq - n より解の形はn =n - ef(t) となることが示されるため、より簡単にノイズ成分のないnと nの値を求めることができる。 In the conventional method, since it is based on the one-point reactor dynamic characteristic equation, it was necessary to consider a function form such as n = n -ΣAie f (ti) in the case of procedure 1-A from the form of the solution. . However, n = α y q - In n this technique ∞ based is true that, n = α y q - n the form of than solution n = n ∞ - e f ( t) because it is shown comprising The values of n and n · with no noise component can be obtained more easily.

<手順2(Ci(t)、Ci(t)の評価)>
bi、λi、Λ、について、想定される核燃料物質の値もしくは、もっとも近いと想定できる仮の値を用いて、以下の式により、Ci(t)を求める。ここでβi=β×biである。
<Procedure 2 (Evaluation of Ci (t), Ci · (t))>
For bi, λi, and Λ, Ci · (t) is obtained by the following equation using the assumed nuclear fuel material value or a provisional value that can be assumed to be closest. Here, βi = β × bi.

Figure 2018159669

Δt後のCi(t+Δt)を以下により求める。
Figure 2018159669

Ci (t + Δt) after Δt is obtained as follows.

Figure 2018159669

このような数値積分はルンゲクッタ法や陰解法など多数存在するので、どれを用いてもよい。Ciの初期値は、中性子検出器信号が安定している状態のときに
Figure 2018159669

There are many such numerical integrations such as the Runge-Kutta method and the implicit method, and any of them can be used. The initial value of Ci is when the neutron detector signal is stable

Figure 2018159669

として求めておく。
Figure 2018159669

I ask for it.

<手順3(μの評価)>
時刻tにおけるμ(t)の値は以下の計算により評価する。
<Procedure 3 (Evaluation of μ)>
The value of μ (t) at time t is evaluated by the following calculation.

Figure 2018159669
Figure 2018159669

<手順4(qの評価)>
時刻tにおけるq(t)の値は以下の計算により評価する。
<Procedure 4 (Evaluation of q)>
The value of q (t) at time t is evaluated by the following calculation.

Figure 2018159669
Figure 2018159669

<手順5(αy、n、ρ$評価)>
上述の手順4で求めたq(t)の時系列データと手順(1)で求めたn(t)の時系列データを用いる。横軸にq(t)、縦軸にnをとって、時刻ごとに点(q(t),n(t))をプロットする。このとき、の点の軌跡に直線の方程式をフィッティングして得られる傾きの値がαy 、切片の値がnである。次式でρ$を計算する。
<Procedure 5 (Evaluation of α y , n , ρ $ )>
The time series data of q (t) obtained in the above procedure 4 and the time series data of n (t) obtained in procedure (1) are used. A point (q (t), n (t)) is plotted for each time with q (t) on the horizontal axis and n on the vertical axis. At this time, the value of the slope obtained by fitting a linear equation to the locus of the point is α y , and the value of the intercept is n . Calculate ρ $ by the following formula.

Figure 2018159669
Figure 2018159669

<手順6(λi[1/s]、bi[-]の評価)>
上述の手順5で得られたαy 、nの値を用いて以下の時系列データy(t)を計算する。
<Procedure 6 (Evaluation of λi [1 / s], bi [-])>
The following time series data y (t) is calculated using the values of α y and n obtained in the above procedure 5.

Figure 2018159669

縦軸をy、横軸をtとして点(t,y(t))をプロットする。このとき、y(t)が直線y=1に最も近くなるように、λi[1/s]、bi[-]を調整する。このとき、biの全群の総和は1となるようにする。
Figure 2018159669

Plot the point (t, y (t)) with y on the vertical axis and t on the horizontal axis. At this time, λi [1 / s] and bi [−] are adjusted so that y (t) is closest to the straight line y = 1. At this time, the sum of all groups of bi is set to 1.

より簡単には、核分裂性物質の種類に応じて、ウラン235、プルトニウム239など、それぞれに(λi[1/s]、bi[-])の組(i=1,・・・,6)が文献で与えられている。以下では、ウラン235のそれをλ5i[1/s]、b5i[-]、プルトニウム239のそれをλ9i[1/s]、b9i[-]とする。たとえば対象としている核燃料物質中にウラン235とプルトニウム239が存在することが想定されているが、その割合が不明のときにλi[1/s]、bi[-]を調整する場合、核分裂性物質全体のうちのウラン235の個数割合をRとすると、λi[1/s]、bi[-]は以下の式で表される。   More simply, depending on the type of fissile material, there are (λi [1 / s], bi [-]) pairs (i = 1, ..., 6), such as uranium 235 and plutonium 239, respectively. Is given in the literature. In the following, it is assumed that uranium 235 is λ5i [1 / s] and b5i [−], and plutonium 239 is λ9i [1 / s] and b9i [−]. For example, it is assumed that uranium 235 and plutonium 239 are present in the target nuclear fuel material, but when λi [1 / s] and bi [-] are adjusted when the ratio is unknown, the fissile material If the number ratio of uranium 235 in the whole is R, λi [1 / s] and bi [−] are expressed by the following equations.

Figure 2018159669
Figure 2018159669

Figure 2018159669

この計算をi=1〜6のすべてで同時に行う。λi[1/s]、bi[-]を個別に変更しない。Rを変えて上述の手順2から手順6を繰り返し、(y(t)-1)2の総和が最も小さくなったときのRが、対象とする核燃料物質におけるウラン235の個数割合である。
Figure 2018159669

This calculation is performed simultaneously for all i = 1 to 6. Do not change λi [1 / s] and bi [-] individually. Steps 2 to 6 described above are repeated while changing R, and R when the sum of (y (t) -1) 2 becomes the smallest is the number ratio of uranium 235 in the target nuclear fuel material.

<手順7(βの評価)>
上述の手順5で求めたn、ρ$の値が一組あるとする。それをn∞0、ρ$0であらわす。未臨界度が変化して新たな未臨界度ρ$になったとき、上述の手順1から手順6を適用してnを求める。二つの安定出力の比をr(=n/ n∞0)とすると、βは次式で求められる。
<Procedure 7 (Evaluation of β)>
It is assumed that there is a set of values of n and ρ $ obtained in the above procedure 5. This is expressed as n ∞0 and ρ $ 0 . When the subcriticality changes to a new subcriticality ρ $ , n is obtained by applying the above procedure 1 to procedure 6. When the two stable output ratio of the r (= n ∞ / n ∞0 ), β is given by the following equation.

Figure 2018159669

別の例としては、複数の値の組(n∞i、ρ$i)を用いて、点(n∞0、ρ$0)に対してyi = 1/ρ$0-r/ρ$i とxi = 1 - ri (ri=n∞0/ n∞i)を求め、これらの点(xi, yi)をプロットする。これらの点に原点を通る直線をフィッティングしたとき、この直線の傾きからβを得る。ここで得られたβの値を手順2で用いることにより、仮の値であったβの値を正確な値とすることができるため、手順2を安定的に実施することができる。
Figure 2018159669

As another example, yi = 1 / ρ $ 0 -r / ρ $ i and xi for a point (n ∞0 , ρ $ 0 ) using a set of values (n ∞i , ρ $ i ) = 1-ri (ri = n∞0 / n∞i ) and plot these points (xi, yi). When a straight line passing through the origin is fitted to these points, β is obtained from the slope of this straight line. By using the value of β obtained here in the procedure 2, the value of β, which was a temporary value, can be set to an accurate value, so that the procedure 2 can be stably performed.

<手順8(l[s]、Λ[s]の評価)>
未臨界度がρ$で一定の状態が続き、中性子検出器信号が安定した値nとなっている状態を初期状態とする。外部中性子源強度はSとする。外部中性子源(パルサトロンなど)の電源をOFFにしたり遮蔽したりして、瞬時にS=0の状態にする。上述の手順1-Bで得られたnとnからn/nの最大値ωを求める。Λ/β=ρ$/ωによりΛ/βを求める。未臨界度が異なる2組以上のデータの組(−ρ$k、Λk/β)をプロットする。直線y=ax+bをこれらの点にフィッティングして得られるa, bから、l = aもしくは l=b×βによりlを評価する。Λ=βρ$/ωもしくは、Λ= l/keff (keff=1/(1−ρ))によりΛを求める。ここで得たΛの値を上述の手順2で用いることで、仮の値であったΛの値を正確な値とすることができるため、上述の手順2を安定的に実施することができる。
<Procedure 8 (Evaluation of l [s], Λ [s])>
A state in which the subcriticality is ρ $ and a constant state continues, and a state where the neutron detector signal has a stable value n is defined as an initial state. The external neutron source intensity is S. Turn off or shield the external neutron source (such as Pulsatron) to instantly set S = 0. The maximum value ω of n · / n is obtained from n and n · obtained in the procedure 1-B. Λ / β is obtained by Λ / β = ρ $ / ω. Two or more data sets (−ρ $ k , Λk / β) with different subcriticality are plotted. From a and b obtained by fitting a straight line y = ax + b to these points, l is evaluated by l = a or l = b × β. Λ is obtained by Λ = βρ $ / ω or Λ = l / keff (keff = 1 / (1−ρ)). By using the value of Λ obtained here in the above-described procedure 2, the value of Λ, which was a temporary value, can be set to an accurate value, so that the above-described procedure 2 can be stably performed. .

未臨界状態の核燃料について、内部構造や全体の形状についてあらかじめ分かっていないために予備解析等によって正確なパラメータを事前に求めることができない状況又は、予備解析由来の誤差を排除したい状況、予め構成された制御棒等が使用できない状況で、正又は負の反応度の添加により臨界に近づくもしくは遠ざかる場合かつ/又は外部中性子源の出力変動があった場合に、上述の手順1により、中性子検出器等からの核分裂率に比例する信号からノイズのない信号を抽出することが可能となった。上述の手順2から4により中性子数の重み付き時間微分を計算できる。手順5により、中性子検出器等からの核分裂率に比例する信号のみに基づいてドル単位の未臨界度を求めることが可能となった。手順6により遅発中性子比率と遅発中性子先行核崩壊定数を求めることが可能となり、さらにここで求めた遅発中性子比率と遅発中性子先行核崩壊定数を用いて上述の手順1から5の計算を行うことにより、初期値として与えた遅発中性子比率等の値に依存しない、中性子検出器等からの核分裂率に比例する信号のみに基づいた、ドル単位の未臨界度を求めることが可能となった。さらに、上述の手順7により実効遅発中性子割合を求めることが可能となり、これをドル単位の反応度に乗ずることで、ドル単位ではない未臨界度を求めることが可能となった。手順8により中性子世代時間及び即発中性子寿命を測定することが可能となった。   For nuclear fuel in a subcritical state, the internal structure and overall shape are not known in advance, so accurate parameters cannot be obtained in advance by preliminary analysis, etc., or situations where it is desired to eliminate errors derived from preliminary analysis. When the control rods cannot be used, and when approaching or moving away from the criticality due to the addition of positive or negative reactivity and / or when the output of the external neutron source fluctuates, the neutron detector etc. It became possible to extract a noise-free signal from the signal proportional to the fission rate. The weighted time derivative of the number of neutrons can be calculated by steps 2 to 4 above. Procedure 5 makes it possible to determine the subcriticality in dollars based only on signals proportional to the fission rate from neutron detectors. Step 6 makes it possible to obtain the delayed neutron ratio and the delayed neutron leading nuclear decay constant, and further calculate the above steps 1 to 5 using the delayed neutron ratio and the delayed neutron leading nuclear decay constant obtained here. It is possible to determine the subcriticality in dollars based only on the signal proportional to the fission rate from the neutron detector etc., which does not depend on the value of the delayed neutron ratio etc. given as the initial value. became. Furthermore, the effective delayed neutron ratio can be obtained by the above-mentioned procedure 7, and it is possible to obtain the subcriticality not in dollars by multiplying this by the reactivity in dollars. Procedure 8 made it possible to measure the neutron generation time and prompt neutron lifetime.

本発明は、再処理施設においても、使用済み燃料を受け入れる際に中性子を照射することで核分裂性物質の比率(U-235, Pu-239, 241 など)を測定できるので、本発明は燃焼度測定に利用できる。また、臨界安全管理されていない容器に本発明に係る装置を据え付けることで、核燃料物質の誤移送による臨界近接を検知することができる。その際、流入する核燃料物質の種類が変化しても、自動的に補正して中性子実効増倍率を計算し続けることができる。中身が不明な物質に対して中性子を照射することで、核分裂性物質の同定ができる。原子炉の臨界近接の自動化が可能となる。また、本発明は、ADS(加速器駆動未臨界炉)での運転制御に必要な未臨界度測定方法の有力な候補となる。   In the present invention, the ratio of fissile material (U-235, Pu-239, 241 etc.) can be measured by irradiating neutrons when receiving spent fuel even in a reprocessing facility. Can be used for measurement. Further, by installing the apparatus according to the present invention in a container that is not critically controlled, it is possible to detect critical proximity due to erroneous transfer of nuclear fuel material. At that time, even if the type of nuclear fuel material flowing in changes, it is possible to continue to calculate the neutron effective multiplication factor by automatically correcting. By irradiating materials with unknown contents with neutrons, fissionable materials can be identified. It is possible to automate the critical proximity of nuclear reactors. Further, the present invention is a promising candidate for a subcriticality measurement method necessary for operation control in an ADS (accelerator-driven subcritical reactor).

1・・・検出部
2・・・入力部
3・・・演算部
4・・・記憶装置
5・・・出力部
DESCRIPTION OF SYMBOLS 1 ... Detection part 2 ... Input part 3 ... Calculation part 4 ... Memory | storage device 5 ... Output part

Claims (6)

中性子検出器の検出信号もしくはこれを校正することによって得られる、核燃料内の時刻tにおける中性子数をn(t)、反応度等の変動後に安定した状態となった時の検出信号もしくはこれを校正することによって得られる中性子数をn、未臨界度の関数をαy、検出信号もしくはこれを校正することによって得られる中性子数n(t)の重み付き時間微分n(t)をq(t)としたとき、
n(t) = αq(t) + n の式が成り立つことを利用して、αyqとn - n(中性子検出信号からノイズ成分を除いた計数率であるn とその安定時の値n の差)の比が測定期間中のいずれの時刻においても最も1に近くなるように、遅発中性子比率と遅発中性子崩壊定数を定める方法。
The detection signal of the neutron detector or the calibration of the detection signal when it becomes stable after fluctuations in n (t), reactivity, etc. N , the function of subcriticality α y , the detection signal or the weighted time derivative n (t) of the neutron number n (t) obtained by calibrating this is q ( t)
Using the fact that n (t) = αq (t) + n holds, α y q and n − n (the count rate excluding noise components from the neutron detection signal, n and its stable The method of determining the delayed neutron ratio and the delayed neutron decay constant so that the ratio of the difference of the value n∞ is closest to 1 at any time during the measurement period.
請求項1において、中性子検出器の検出信号を基に求められる、時系列データ(q, n)が、直線n = αyq + n 上にあることを利用して、未臨界度ρ$とn(t)の安定値n を求める方法。 The subcriticality ρ $ according to claim 1, wherein the time series data (q, n) obtained based on the detection signal of the neutron detector is on the straight line n = α y q + n ∞. And obtaining a stable value n of n (t). 請求項1又は2において、n = exp(f (t))を用いて(n, n)の組を求める方法。
ここで、f(t) はn(t)が検出器信号を再現するように定めたtの関数である。
3. The method according to claim 1 or 2, wherein n = exp (f (t)) is used to determine a set of (n · , n).
Here, f (t) is a function of t determined so that n (t) reproduces the detector signal.
請求項1又は3において、前回の測定値(未臨界度ρ0$、中性子検出器の安定値n0∞ )を用いて新たな未臨界度におけるn を推定する方法。 According to claim 1 or 3, a method of estimating the n in new subcriticality with previous measurement values (subcriticality [rho 0 $, stable value n 0∞ neutron detector). 請求項2において、a = 1/ρ0 - r/ρk、b = 1 - r, r = n0∞/nk∞とすると、ρk→ρ0のとき、a/bが未臨界度ρ0におけるβに収束することを用いて実効遅発中性子割合βを求める方法。 In claim 2, when a = 1 / ρ 0 -r / ρ k , b = 1-r, r = n 0∞ / n k∞ , a / b is subcriticality when ρ k → ρ 0 A method for obtaining the effective delayed neutron ratio β by using convergence to β at ρ 0 . 請求項2において、Λ/β= l(-ρ)+ l/β が成り立つことを利用して、即発中性子寿命l [s]、中性子世代時間Λ[s]を求める方法。   3. The method for obtaining prompt neutron lifetime l [s] and neutron generation time Λ [s] using the fact that Λ / β = l (−ρ) + l / β holds in claim 2.
JP2017057974A 2017-03-23 2017-03-23 Method for measuring composition, subcriticality, delayed neutron ratio, neutron generation time, and prompt neutron lifespan of nuclear fissile material on the basis of only signals of neutron detector and the like Pending JP2018159669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017057974A JP2018159669A (en) 2017-03-23 2017-03-23 Method for measuring composition, subcriticality, delayed neutron ratio, neutron generation time, and prompt neutron lifespan of nuclear fissile material on the basis of only signals of neutron detector and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017057974A JP2018159669A (en) 2017-03-23 2017-03-23 Method for measuring composition, subcriticality, delayed neutron ratio, neutron generation time, and prompt neutron lifespan of nuclear fissile material on the basis of only signals of neutron detector and the like

Publications (1)

Publication Number Publication Date
JP2018159669A true JP2018159669A (en) 2018-10-11

Family

ID=63795081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017057974A Pending JP2018159669A (en) 2017-03-23 2017-03-23 Method for measuring composition, subcriticality, delayed neutron ratio, neutron generation time, and prompt neutron lifespan of nuclear fissile material on the basis of only signals of neutron detector and the like

Country Status (1)

Country Link
JP (1) JP2018159669A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109903867A (en) * 2019-02-28 2019-06-18 西安交通大学 A kind of method that circuit composition and its parameter are eliminated in determining self-power neutron detector delay
CN109903866A (en) * 2019-03-18 2019-06-18 中国原子能科学研究院 A kind of reactive method of monitoring subcritical reactor
CN110111917A (en) * 2019-04-17 2019-08-09 中广核工程有限公司 Out-pile neutrons in nuclei flux monitoring method, apparatus and readable storage medium storing program for executing after accident

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109903867A (en) * 2019-02-28 2019-06-18 西安交通大学 A kind of method that circuit composition and its parameter are eliminated in determining self-power neutron detector delay
CN109903866A (en) * 2019-03-18 2019-06-18 中国原子能科学研究院 A kind of reactive method of monitoring subcritical reactor
CN110111917A (en) * 2019-04-17 2019-08-09 中广核工程有限公司 Out-pile neutrons in nuclei flux monitoring method, apparatus and readable storage medium storing program for executing after accident
CN110111917B (en) * 2019-04-17 2020-11-06 中广核工程有限公司 Method and device for monitoring neutron flux of out-of-reactor nuclear reactor after accident and readable storage medium

Similar Documents

Publication Publication Date Title
KR20100042281A (en) Doppler reactivity coefficient measuring method
JP2018159669A (en) Method for measuring composition, subcriticality, delayed neutron ratio, neutron generation time, and prompt neutron lifespan of nuclear fissile material on the basis of only signals of neutron detector and the like
JP2015148524A (en) Method, program, recording medium, and system for determining control rod worth of nuclear reactor
US20070076839A1 (en) Axial void fraction distribution measurement method and neutron multiplication factor evaluating method
US9494695B2 (en) Radiation monitor
CN100459936C (en) Radiological image diagnostic system and data processing method thereof
JP7227959B2 (en) Method for scaling isolated nuclear instrumentation output signals and system using same
JP4918345B2 (en) Subcriticality measuring method, subcriticality measuring program, and subcriticality measuring apparatus
JP5121695B2 (en) Burnup measurement apparatus and burnup measurement method
JP2008139306A (en) System and method for stabilizing measurement of radioactivity
JP2014070920A (en) Nuclear fuel burnup estimation device, method, and program
KR101440273B1 (en) Plutonium(Pu) amount determination System and Method in Uranium(U)/Transuranium(TRU) Ingot of Pyroprocessing product
JP2012163379A (en) Fuel assembly gamma ray measuring apparatus
JP5491879B2 (en) Neutron multiplication system subcriticality determination device and subcriticality determination program
WO2016007094A1 (en) Method for measuring reactivity in a light water reactor
JP2019219251A (en) Radiation measurement device
JP4334256B2 (en) Radiation output monitoring device
Radaideh et al. Sensitivity and uncertainty analysis of the fundamental delayed neutron data in lwrs
CN111505703A (en) Method, apparatus, device and medium for measuring plutonium quality of plutonium substance
Ball The inverse kinetics method and its application to the annular core research reactor
JP4388446B2 (en) Subcriticality evaluation apparatus, subcriticality evaluation method, and subcriticality evaluation program
WO2016196799A1 (en) Systems and methods for determining an amount of fissile material in a reactor
JP3137569B2 (en) Method for evaluating neutron source intensity and gamma ray intensity of reactor
JP6416039B2 (en) Radiation detector
JP7378069B2 (en) Radioactivity evaluation method, radioactivity evaluation program, and radioactivity evaluation device