JP2018159480A - Ovality measuring sensor - Google Patents

Ovality measuring sensor Download PDF

Info

Publication number
JP2018159480A
JP2018159480A JP2017055476A JP2017055476A JP2018159480A JP 2018159480 A JP2018159480 A JP 2018159480A JP 2017055476 A JP2017055476 A JP 2017055476A JP 2017055476 A JP2017055476 A JP 2017055476A JP 2018159480 A JP2018159480 A JP 2018159480A
Authority
JP
Japan
Prior art keywords
measuring
rotary furnace
measurement
transmission member
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017055476A
Other languages
Japanese (ja)
Inventor
秀夫 土井
Hideo Doi
秀夫 土井
博喜 上條
Hiroki Kamijo
博喜 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017055476A priority Critical patent/JP2018159480A/en
Publication of JP2018159480A publication Critical patent/JP2018159480A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ovality measuring sensor for a rotary furnace capable of continuously measuring the deformation of an outer surface of the rotary furnace and monitoring over a long period.SOLUTION: An ovality measuring sensor 101 has a contact surface (a tip surface 11a of a contact rod 11) disposed in contact with an outer surface 91 of a rotary furnace 90, and a measuring surface (a measuring surface 12a of a measuring board 12) disposed on an opposite side of the contact surface, and has a transmission member 1A transmitting the deformation of the outer surface 91 to the measuring surface 12a, and measuring means 2A for measuring the deviation of the measuring surface 12a of the measuring board 12 of the transmission member 1A.SELECTED DRAWING: Figure 1

Description

本発明は、ロータリーキルンの回転炉に取り付けられ、その回転炉の変位を計測するための回転炉用のオーバリティ計測センサに関する。   TECHNICAL FIELD The present invention relates to a rotary furnace overlay measuring sensor that is attached to a rotary kiln rotary furnace and measures the displacement of the rotary kiln.

ごみ焼却設備やセメント製造設備等で使用されているロータリーキルン(回転炉)は、例えば特許文献1に記載されているように、筒状に形成された長尺な重量物(胴体)により構成され、胴体の軸心方向に沿って並列に配置された複数のタイヤと、このタイヤに転動するローラで支持されている。このため、特許文献1にも記載されているように、ロータリキルンを長時間稼働させると、タイヤやローラの偏摩耗、キルン支持基礎の沈降(胴体の落ち込み)や熱劣化が生じる。そして、これらの現象が生じる初期段階では、胴体に歪みが生じ、オーバリティ(胴体の変形率)が大きくなることが知られている。そこで、定期的に胴体の歪みを測定することにより、胴体の摩耗や劣化の状況を把握し、胴体の不具合を管理することが行われている。   A rotary kiln (rotary furnace) used in a garbage incineration facility, a cement manufacturing facility, or the like is constituted by a long heavy object (body) formed in a cylindrical shape, as described in, for example, Patent Document 1, The tires are supported by a plurality of tires arranged in parallel along the axial direction of the fuselage and rollers that roll on the tires. For this reason, as described in Patent Document 1, when the rotary kiln is operated for a long time, uneven wear of the tires and rollers, sedimentation of the kiln support foundation (depression of the body) and thermal degradation occur. It is known that in the initial stage where these phenomena occur, the fuselage is distorted, and the overhead (deformation rate of the fuselage) increases. Therefore, by periodically measuring the distortion of the fuselage, it is possible to grasp the situation of wear and deterioration of the fuselage and manage the malfunction of the fuselage.

例えば特許文献2に記載されているように、ロータリキルンのオーバリティ計測では、オーバリティ計測センサ(オーバリティーテスター、変形測定装置)を回転炉(シェル)外面から一定距離、離して保持することで一定長の弦を決め、その一定長の弦の上に立てた弧の高さがキルン回転に伴って変化する量を機械式にテコの原理で拡大したり、差動トランス等の測定器を用いたりして測定記録することにより、回転炉の変形量の測定が行われている。   For example, as described in Patent Document 2, in the measurement of the rotary kiln's overflow, a fixed length is obtained by holding an overflow measurement sensor (overity tester, deformation measuring device) at a fixed distance from the outer surface of the rotary furnace (shell). The amount of change in the height of the arc that stands on the string of a certain length with the kiln rotation is mechanically expanded by the lever principle, or a measuring instrument such as a differential transformer is used. By measuring and recording, the deformation amount of the rotary furnace is measured.

また、特許文献2には、回転炉の直径方向の変形を測定する測定器として、差動トランスを用いた変形測定装置の例が記載されている。この変形測定装置では、差動トランスを固定した細長いビームを回転炉の外面から一定距離に保持し、差動トランスの作動軸先端の接触子をバネにより常に下方に押し下げられるようにして回転炉の外面に接触させ、回転炉の外面の変形状態によって上下に変位する作動軸の変位量を測定することにより、回転炉の変形量(オーバリティ)を算出している。この変形測定装置では、ビームの左右両端部に脚が固定されており、これらの脚の先端が回転炉外面と接触することで、ビームが回転炉の外面から一定距離に保持されるようになっている。また、ビームの中央箇所には、差動トランスの挿入孔があけられ、差動トランスの作動軸、バネ、接触子が、ビームの下方に顕出する構成とされる。   Patent Document 2 describes an example of a deformation measuring apparatus using a differential transformer as a measuring instrument for measuring the deformation in the diameter direction of a rotary furnace. In this deformation measuring apparatus, a long and narrow beam to which a differential transformer is fixed is held at a certain distance from the outer surface of the rotary furnace, and the contact at the tip of the differential transformer operating shaft is always pushed downward by a spring so that the rotary furnace The amount of deformation (overity) of the rotary furnace is calculated by measuring the amount of displacement of the working shaft that is brought into contact with the outer surface and displaced up and down depending on the deformation state of the outer surface of the rotary furnace. In this deformation measuring device, legs are fixed to the left and right ends of the beam, and the tip of these legs comes into contact with the outer surface of the rotary furnace, so that the beam is held at a certain distance from the outer surface of the rotary furnace. ing. In addition, an insertion hole for the differential transformer is formed at the center of the beam, and the operation shaft, the spring, and the contact of the differential transformer are exposed below the beam.

特開2014‐185788号公報JP 2014-185788 A 特開昭62‐34002号公報Japanese Patent Laid-Open No. 62-34002

しかし、特許文献2に記載されるような変形測定装置では、差動トランス(測定器)の作動軸先端の接触子を高熱の回転炉外面に直接接触させることから、長期的に継続して測定を行うことができない。つまり、差動トランス自体が高温にさらされることで、長期使用において不具合を生じることが懸念される。一方で、このような過酷な動作環境下で使用されるオーバリティ計測センサにおいては、トラブルの発生を事前に予測し、トラブルに即時に対応可能とするため、継続して長期的に計測できることが求められる。   However, in the deformation measuring apparatus as described in Patent Document 2, since the contact at the tip of the operating shaft of the differential transformer (measuring instrument) is brought into direct contact with the outer surface of the high-temperature rotary furnace, measurement is continuously performed over a long period. Can not do. That is, there is a concern that the differential transformer itself is exposed to a high temperature, thereby causing problems in long-term use. On the other hand, in an overhead measurement sensor used in such a harsh operating environment, it is required to be able to measure continuously over a long period in order to predict the occurrence of trouble in advance and to be able to respond immediately to trouble. It is done.

本発明は、このような事情に鑑みてなされたもので、回転炉の外面の変形を継続して計測でき、長期間にわたって監視できる回転炉用のオーバリティ計測センサを提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an overflow measuring sensor for a rotary furnace that can continuously measure the deformation of the outer surface of the rotary furnace and can be monitored over a long period of time.

本発明のオーバリティ計測センサは、回転炉の外面に接触して配設される接触面と、該接触面とは反対側に配設される測定面とを有し、前記外面の変形を前記測定面に伝達する伝達部材と、前記伝達部材の前記測定面の変位を測定する測定手段とを有する。   The overlap measurement sensor of the present invention has a contact surface disposed in contact with the outer surface of the rotary furnace and a measurement surface disposed on the opposite side of the contact surface, and the deformation of the outer surface is measured by the measurement. A transmission member that transmits to the surface; and a measurement unit that measures the displacement of the measurement surface of the transmission member.

本発明のオーバリティ計測センサでは、回転炉の外面を直接測定するのではなく、回転炉の外面の変形を伝達する伝達部材を設け、伝達部材の測定面の変位を測定する構成としたので、測定手段を高温の回転炉の外面に対面させて配置することなく、測定手段自体が高温にさらされることを回避できる。したがって、回転炉の外面の変形を継続して計測でき、長期間にわたって監視できる。   In the overlay measuring sensor of the present invention, the outer surface of the rotary furnace is not directly measured, but a transmission member that transmits the deformation of the outer surface of the rotary furnace is provided to measure the displacement of the measurement surface of the transmission member. The measuring means itself can be prevented from being exposed to high temperatures without arranging the means facing the outer surface of the high-temperature rotary furnace. Therefore, the deformation of the outer surface of the rotary furnace can be continuously measured and monitored over a long period of time.

また、伝達部材を、セラミックスやチタン等の熱伝導性の低い部材により形成することにより、回転炉からの測定手段への熱の影響を一層低減できる。したがって、回転炉を長期にわたって安定して監視できる。   Further, by forming the transmission member with a member having low thermal conductivity such as ceramics or titanium, the influence of heat from the rotary furnace to the measuring means can be further reduced. Therefore, the rotary furnace can be stably monitored over a long period.

本発明のオーバリティ計測センサは、前記回転炉の前記外面と前記測定手段との間に、遮熱又は断熱の少なくとも一方の機能を有する閉鎖板を有し、前記伝達部材が、前記回転炉の外面に接触する接触棒を有しており、前記閉鎖板が、前記接触棒を挿通し、該接触棒を前記回転炉の径方向に進退移動可能に支持する挿通孔を有する構成であってもよい。   The overlap measurement sensor of the present invention has a closing plate having at least one function of heat insulation or heat insulation between the outer surface of the rotary furnace and the measuring means, and the transmission member is an outer surface of the rotary furnace. The closing plate may have an insertion hole that inserts the contact rod and supports the contact rod so as to move forward and backward in the radial direction of the rotary furnace. .

回転炉と測定手段との間に閉鎖板を配置することにより、測定手段に与えられる熱の影響をより一層抑制できる。また、測定手段の測定回路等を保護することもできる。   By disposing the closing plate between the rotary furnace and the measuring means, the influence of heat applied to the measuring means can be further suppressed. In addition, the measuring circuit of the measuring means can be protected.

また、本発明のオーバリティ計測センサにおいて、前記伝達部材が、前記接触棒の基端部に取り付けられた測定板を有しており、前記測定板に前記測定面が形成され、前記測定手段が、前記接触棒の進退移動に追従して移動する前記測定板の前記測定面の変位を測定するレーザ変位センサとされるとよい。   Further, in the overflow measurement sensor of the present invention, the transmission member has a measurement plate attached to a base end portion of the contact rod, the measurement surface is formed on the measurement plate, and the measurement unit includes: A laser displacement sensor that measures the displacement of the measurement surface of the measurement plate that moves following the forward and backward movement of the contact rod may be used.

閉鎖板と伝達部材とを有する構成とすることで、耐熱性や耐防塵性等の面で比較的不利なセンサであるレーザ変位センサを測定手段に用いることができる。   By adopting a configuration having a closing plate and a transmission member, a laser displacement sensor, which is a relatively disadvantageous sensor in terms of heat resistance and dust resistance, can be used as the measuring means.

本発明のオーバリティ計測センサにおいて、前記伝達部材が、前記接触棒の基端部に接続された弾性変形部を有しており、前記弾性変形部に前記測定面が形成され、前記測定手段が、前記弾性変形部の前記測定面に取り付けられ、該測定面の変形を測定する歪ゲージとされる構成であってもよい。   In the overlay measurement sensor of the present invention, the transmission member has an elastic deformation portion connected to a base end portion of the contact rod, the measurement surface is formed on the elastic deformation portion, and the measurement means includes: The strain gauge may be a strain gauge that is attached to the measurement surface of the elastic deformation portion and measures the deformation of the measurement surface.

耐熱性と耐防塵性に優れる歪ゲージを用いることで、オーバリティ計測センサの長期使用を安定して確保できる。   By using a strain gauge with excellent heat resistance and dust resistance, it is possible to stably ensure the long-term use of the overflow measurement sensor.

本発明のオーバリティ計測センサにおいて、前記伝達部材が、弾性板からなり、前記測定手段が、前記伝達部材の前記測定面に取り付けられ、該測定面の変形を測定する歪ゲージとされる構成であってもよい。   In the overlay measurement sensor of the present invention, the transmission member is made of an elastic plate, and the measurement means is a strain gauge that is attached to the measurement surface of the transmission member and measures deformation of the measurement surface. May be.

伝達部材を弾性板により形成することで、単純な組み合わせによりオーバリティ計測センサを構成しているにもかかわらず、回転炉の外面の変形を伝達部材に高精度に反映できる。また、伝達部材を、遮熱又は断熱の少なくとも一方の機能を有する部材により構成することにより、閉鎖板として兼用できる。さらに、耐熱性と耐防塵性に優れる歪ゲージを用いることで、オーバリティ計測センサの長期使用を安定して確保できる。   By forming the transmission member with an elastic plate, the deformation of the outer surface of the rotary furnace can be reflected on the transmission member with high accuracy despite the fact that the overlap measurement sensor is configured by a simple combination. Moreover, it can serve as a closing board by comprising a transmission member with the member which has at least one function of heat insulation or heat insulation. Furthermore, by using a strain gauge that is excellent in heat resistance and dust resistance, it is possible to stably ensure the long-term use of the overflow measurement sensor.

本発明のオーバリティ計測センサは、前記回転炉の外面に着脱可能に設けられた固定手段を有しており、前記固定手段が、磁石を用いて形成されているとよい。   The overflow measuring sensor of the present invention preferably has fixing means detachably provided on the outer surface of the rotary furnace, and the fixing means is preferably formed using a magnet.

固定手段を、例えばアルニコ磁石やサマリウムコバルト磁石等のキュリー温度が高く、高温使用が可能な耐熱磁石を用いて形成した場合、高温に加熱される回転炉にも磁力により安定して固定でき、回転炉の変形を高精度に計測できる。   If the fixing means is made of a heat-resistant magnet that has a high Curie temperature, such as an Alnico magnet or a samarium cobalt magnet, and can be used at high temperatures, it can be stably fixed by a magnetic force even in a rotary furnace heated to a high temperature. The deformation of the furnace can be measured with high accuracy.

本発明によれば、回転炉の外面の変形を継続して計測でき、長期間にわたって監視できるので、トラブルの発生を事前に予測し、回転炉の保全に役立てることができる。   According to the present invention, deformation of the outer surface of the rotary furnace can be continuously measured and monitored over a long period of time, so that occurrence of trouble can be predicted in advance and can be used for maintenance of the rotary furnace.

本発明の第1実施形態のオーバリティ計測センサの斜視図である。It is a perspective view of the overflow measurement sensor of 1st Embodiment of this invention. 図2に示すオーバリティ計測センサの動作状況を説明する正面図である。It is a front view explaining the operation | movement condition of the overflow measurement sensor shown in FIG. 本発明の第2実施形態のオーバリティ計測センサの斜視図である。It is a perspective view of the overflow measurement sensor of 2nd Embodiment of this invention. 図3に示すオーバリティ計測センサの動作状況を説明する正面図である。It is a front view explaining the operation | movement condition of the overflow measurement sensor shown in FIG. 本発明の第3実施形態のオーバリティ計測センサの斜視図である。It is a perspective view of the overflow measurement sensor of 3rd Embodiment of this invention. 図5に示すオーバリティ計測センサの動作状況を説明する正面図である。It is a front view explaining the operation | movement condition of the overflow measurement sensor shown in FIG.

以下、本発明の実施形態について、図面を参照しながら説明する。
図1及び図2に、第1実施形態のオーバリティ計測センサ101を示す。このオーバリティ計測センサ101は、図1及び図2に示されるように、高温に加熱されるロータリキルンの回転炉(鋼管、シェル)90の外面91に設置され、回転する回転炉90の歪み(変形量)を計測するものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 show an overflow measurement sensor 101 according to the first embodiment. As shown in FIG. 1 and FIG. 2, this overlay measuring sensor 101 is installed on the outer surface 91 of a rotary kiln rotary furnace (steel pipe, shell) 90 heated to a high temperature, and the distortion (deformation) of the rotating rotary furnace 90 rotates. Quantity).

オーバリティ計測センサ101は、図1及び図2に示すように、回転炉90の外面91に接触して配置される伝達部材1Aと、その伝達部材1Aの変形を測定する測定手段2Aと、回転炉90の外面91と測定手段2Aとの間に配設される閉鎖板3と、回転炉90の外面91に着脱可能に設けられた固定手段4Aと、測定手段2Aやその測定回路21等を収容する筐体5Aと、を有する。   As shown in FIGS. 1 and 2, the overhead measurement sensor 101 includes a transmission member 1 </ b> A disposed in contact with the outer surface 91 of the rotary furnace 90, measurement means 2 </ b> A for measuring deformation of the transmission member 1 </ b> A, and the rotary furnace 90, the closing plate 3 disposed between the outer surface 91 and the measuring means 2A, the fixing means 4A detachably provided on the outer surface 91 of the rotary furnace 90, and the measuring means 2A and its measuring circuit 21 are accommodated. And a housing 5A.

伝達部材1Aは、円柱状の接触棒11と、平板状の測定板12とを有する構成とされ、セラミックスやチタン等のように、熱伝達性の低い部材により形成される。また、伝達部材1Aの接触棒11は、その先端部の先端面11aが回転炉90の外面91に接触可能に設けられている。また、伝達部材1Aの接触棒11の基端部には測定板12が取り付けられており、接触棒11と測定板12とが一体に設けられている。このように、伝達部材1Aは、回転炉90の外面91に接触して配設される接触面(接触棒11の先端面11a)と、この接触面とは反対側に配設される測定面(測定板12の測定面12a)とを有しており、回転炉90の外面91の変形を測定面12aに伝達する構成とされる。   The transmission member 1A is configured to include a cylindrical contact bar 11 and a flat measurement plate 12, and is formed of a member having low heat transfer properties such as ceramics or titanium. Further, the contact rod 11 of the transmission member 1 </ b> A is provided so that the tip surface 11 a of the tip portion can contact the outer surface 91 of the rotary furnace 90. Further, a measurement plate 12 is attached to the base end portion of the contact rod 11 of the transmission member 1A, and the contact rod 11 and the measurement plate 12 are integrally provided. As described above, the transmission member 1A has a contact surface (tip surface 11a of the contact bar 11) disposed in contact with the outer surface 91 of the rotary furnace 90, and a measurement surface disposed on the opposite side of the contact surface. (Measurement surface 12a of the measurement plate 12), and the deformation of the outer surface 91 of the rotary furnace 90 is transmitted to the measurement surface 12a.

伝達部材1Aの測定板12は、図1及び図2に示すように筐体5Aの内部に収容され、閉鎖板3と筐体5Aの仕切り板51との間に配置されており、測定板12と仕切り板51との間に配設されたコイルばね52により、常に下方に向けて付勢されている。したがって、コイルばね52の弾性復元力により、伝達部材1Aの接触棒11の先端面11aを、常に回転炉90の外面91に接触させておくことができる。そして、測定板12は。回転炉90の外面91の径方向の変形に応じて、接触棒11が回転炉90の径方向に進退移動するのに伴って、接触棒11の進退移動に追従して測定板12も回転炉90の径方向に進退移動可能とされる。   As shown in FIGS. 1 and 2, the measurement plate 12 of the transmission member 1 </ b> A is housed inside the housing 5 </ b> A and is disposed between the closing plate 3 and the partition plate 51 of the housing 5 </ b> A. Is always biased downward by a coil spring 52 arranged between the partition plate 51 and the partition plate 51. Therefore, the distal end surface 11a of the contact rod 11 of the transmission member 1A can always be brought into contact with the outer surface 91 of the rotary furnace 90 by the elastic restoring force of the coil spring 52. And the measuring plate 12 is. As the contact bar 11 moves back and forth in the radial direction of the rotary furnace 90 in accordance with the radial deformation of the outer surface 91 of the rotary furnace 90, the measurement plate 12 follows the forward and backward movement of the contact bar 11 as well. It is possible to move forward and backward in 90 radial directions.

測定手段2Aは、非接触式のレーザ変位センサからなり、伝達部材1Aの測定板12の測定面12aの変位を測定可能とされる。このように、測定手段2Aは、回転炉90の外面91の変形を伝達する伝達部材1Aを介して、回転炉90の外面91の変形を測定可能とされる。また、測定手段2Aは、筐体5Aの内部に収容されており、筐体5Aの仕切り板51を介して、測定板12の測定面12aに対向して配置される。   The measuring means 2A comprises a non-contact type laser displacement sensor, and can measure the displacement of the measuring surface 12a of the measuring plate 12 of the transmission member 1A. As described above, the measuring unit 2A can measure the deformation of the outer surface 91 of the rotary furnace 90 via the transmission member 1A that transmits the deformation of the outer surface 91 of the rotary furnace 90. The measurement means 2A is housed inside the housing 5A and is disposed to face the measurement surface 12a of the measurement plate 12 via the partition plate 51 of the housing 5A.

仕切り板51には、厚み方向に貫通する測定孔53が形成されており、この測定孔53を通じて、測定板12の測定面12aにレーザ変位センサの測定光(レーザ光)が照射されるようになっている。なお、仕切り板51には、測定孔53の代わりに、セラムガラス等の赤外線(測定光)を通すガラスにより形成された窓部を形成してもよい。   The partition plate 51 is formed with a measurement hole 53 penetrating in the thickness direction, and the measurement surface 12a of the measurement plate 12 is irradiated with the measurement light (laser light) of the laser displacement sensor through the measurement hole 53. It has become. In addition, you may form in the partition plate 51 the window part formed with the glass which lets infrared rays (measurement light), such as serum glass, pass instead of the measurement hole 53. FIG.

閉鎖板3は、遮熱又は断熱の少なくとも一方の機能を有するもので構成される。閉鎖板3には、例えばセラミックス等の遮熱・断熱材料により形成した断熱材を用いることができる。また、この断熱材の上面に、アルミニウム等からな遮熱フィルム、又はアルミニウム板を積層した多層構造(アルミニウム多層板)とすることで、断熱機能と遮熱機能とを備えた閉鎖板3を構成できる。また、アルミニウム板の下面にアルマイト処理を施すことで、遮熱性能を向上させた閉鎖板3を構成することもできる。   The closing plate 3 is composed of a material having at least one function of heat insulation or heat insulation. For the closing plate 3, for example, a heat insulating material formed of a heat shielding / heat insulating material such as ceramics can be used. In addition, a heat shield film made of aluminum or the like and a multilayer structure (aluminum multilayer board) in which an aluminum plate is laminated on the upper surface of the heat insulating material constitutes a closing plate 3 having a heat insulating function and a heat shielding function. it can. Moreover, the closure board 3 which improved the heat-shielding performance can also be comprised by performing an alumite process on the lower surface of an aluminum plate.

また、閉鎖板3には、図2(a)及び(b)に図示したように、その厚み方向(回転炉90の径方向)に貫通し、伝達部材1Aの接触棒11を挿通・係合可能な挿通孔31が設けられている。そして、この挿通孔31との係合によって、接触棒11が回転炉90の径方向に進退移動可能に支持されている。また、閉鎖板3は、図1及び図2に示すように、回転炉90の外面91と測定手段2Aとの間に配置されるようになっており、閉鎖板3により、回転炉90の外面91の熱が遮られるようになっている。したがって、測定手段2Aや測定回路21等が回転炉90の外面91の熱により受ける影響を抑制でき、測定手段2A等を保護できる。   Further, as shown in FIGS. 2A and 2B, the closing plate 3 penetrates in the thickness direction (the radial direction of the rotary furnace 90), and the contact rod 11 of the transmission member 1A is inserted and engaged. A possible insertion hole 31 is provided. The contact rod 11 is supported by the engagement with the insertion hole 31 so as to be movable back and forth in the radial direction of the rotary furnace 90. 1 and 2, the closing plate 3 is arranged between the outer surface 91 of the rotary furnace 90 and the measuring means 2A, and the outer surface of the rotary furnace 90 is provided by the closing plate 3. The heat of 91 is interrupted. Therefore, the influence which the measurement means 2A, the measurement circuit 21, etc. receive with the heat of the outer surface 91 of the rotary furnace 90 can be suppressed, and the measurement means 2A etc. can be protected.

固定手段4Aは、円柱状の磁石41により形成されており、磁石41が閉鎖板3の下面(回転炉90の外面91との対向面)に取り付けられている。磁石41は、閉鎖板3の長手方向に間隔をおいて複数(ここでは2個)配置されている。この場合、磁石41は、閉鎖板3の長手方向の両端部に1個ずつ配置され、合計2個の磁石41が取り付けられている。そして、オーバリティ計測センサ101は、固定手段4Aの磁石41の磁力により、鋼材で形成された回転炉90の外面91に固定されるようになっている。   The fixing means 4A is formed of a columnar magnet 41, and the magnet 41 is attached to the lower surface of the closing plate 3 (the surface facing the outer surface 91 of the rotary furnace 90). A plurality (two in this case) of magnets 41 are arranged at intervals in the longitudinal direction of the closing plate 3. In this case, one magnet 41 is disposed at each end of the closing plate 3 in the longitudinal direction, and a total of two magnets 41 are attached. And the overflow measurement sensor 101 is fixed to the outer surface 91 of the rotary furnace 90 formed of steel by the magnetic force of the magnet 41 of the fixing means 4A.

磁石41は、例えばアルニコ磁石やサマリウムコバルト磁石等のキュリー温度が高く、高温使用が可能な耐熱磁石により形成される。固定手段4Aにこのような耐熱磁石を用いることで、320℃〜400℃の高温に加熱されるロータリキルンの回転炉90に、オーバリティ計測センサ101を、磁石41の磁力により安定して固定できる。なお、回転炉90の内部温度は、1450℃以上の最高温度になる。   The magnet 41 is formed of a heat-resistant magnet that has a high Curie temperature and can be used at a high temperature, such as an alnico magnet or a samarium cobalt magnet. By using such a heat-resistant magnet for the fixing means 4A, the overflow measuring sensor 101 can be stably fixed to the rotary kiln rotary furnace 90 heated to a high temperature of 320 ° C. to 400 ° C. by the magnetic force of the magnet 41. The internal temperature of the rotary furnace 90 is a maximum temperature of 1450 ° C. or higher.

また、オーバリティ計測センサ101には、前述したように筐体5Aが備えられている。筐体5Aは、放熱性の高いアルミニウム等により構成される。   Further, the overhead measurement sensor 101 is provided with the housing 5A as described above. The housing 5A is made of aluminum or the like with high heat dissipation.

このように構成される第1実施形態のオーバリティ計測センサ101は、図1及び図2に示されるように、回転炉90の外面91に固定手段4Aにより取り付けられた状態で使用される。このような使用環境下において、回転炉90に膨張、収縮が生じた場合、図2(a)及び(b)に示すように、回転炉90の外面91の変形に伴って伝達部材1Aが径方向に進退移動する。そして、その進退移動された伝達部材1Aにおいて、測定手段2Aによって測定板12の測定面12aまでの距離を計測することにより、回転炉90の外面91の変形を計測できる。   The overlay measurement sensor 101 of the first embodiment configured as described above is used in a state where it is attached to the outer surface 91 of the rotary furnace 90 by the fixing means 4A as shown in FIGS. In such a use environment, when expansion and contraction occur in the rotary furnace 90, the transmission member 1A has a diameter as the outer surface 91 of the rotary furnace 90 is deformed as shown in FIGS. Move forward and backward in the direction. The deformation of the outer surface 91 of the rotary furnace 90 can be measured by measuring the distance to the measurement surface 12a of the measurement plate 12 by the measurement unit 2A in the transmission member 1A moved forward and backward.

このように、オーバリティ計測センサ101では、回転炉90の外面91を直接測定するのではなく、回転炉90の外面91の変形を伝達する伝達部材1Aを設け、伝達部材1Aの測定面(測定板12の測定面12a)の変位を測定する構成とされているので、測定手段2Aが高温の回転炉90の外面91に対面させて配置されることがなく、測定手段2A自体が高温にさらされることを回避できる。   As described above, the overhead measurement sensor 101 does not directly measure the outer surface 91 of the rotary furnace 90, but includes the transmission member 1A that transmits the deformation of the outer surface 91 of the rotary furnace 90, and the measurement surface (measurement plate) of the transmission member 1A. The measurement means 2A is not arranged so as to face the outer surface 91 of the high-temperature rotary furnace 90, and the measurement means 2A itself is exposed to a high temperature. You can avoid that.

また、高温となる回転炉90の外面91に接触する伝達部材1Aが、セラミックス等の熱伝導性の低い部材により形成されているので、測定板12の測定面12aが加熱されることを抑制でき、回転炉90からの測定手段2Aへの熱の影響を一層低減できる。さらに、回転炉90と測定手段2Aとの間に閉鎖板3が配置されているので、回転炉90の外面91からの熱を閉鎖板3で遮ることができ、測定手段2Aに与えられる熱の影響をより一層抑制できる。また、これにより、測定手段2Aの測定回路21等を保護することもできる。   Moreover, since the transmission member 1A that comes into contact with the outer surface 91 of the rotary furnace 90 that is at a high temperature is formed of a member having low thermal conductivity such as ceramics, the measurement surface 12a of the measurement plate 12 can be prevented from being heated. The influence of heat from the rotary furnace 90 on the measuring means 2A can be further reduced. Further, since the closing plate 3 is disposed between the rotary furnace 90 and the measuring means 2A, the heat from the outer surface 91 of the rotary furnace 90 can be blocked by the closing plate 3, and the heat given to the measuring means 2A can be blocked. The influence can be further suppressed. This also protects the measurement circuit 21 and the like of the measurement means 2A.

また、オーバリティ計測センサ101では、回転炉90の外面91と測定手段2Aとの間に、閉鎖板3と伝達部材1Aとを有する構成としたので、回転炉90の外面91から測定手段2Aへの熱の影響を抑制できる。したがって、測定手段2Aに、耐熱性や耐防塵性等の面で比較的不利なセンサであるレーザ変位センサを用いても、オーバリティ計測センサ101の長期使用を実現できる。また、測定手段2Aを筐体5Aの内部に収容したので、より一層、耐熱性や耐防塵性の効果を高めることができ、測定手段2Aを保護できる。   In addition, the overlap measurement sensor 101 is configured to include the closing plate 3 and the transmission member 1A between the outer surface 91 of the rotary furnace 90 and the measuring means 2A, so that the outer surface 91 of the rotary furnace 90 is connected to the measuring means 2A. The influence of heat can be suppressed. Therefore, even if a laser displacement sensor, which is a relatively disadvantageous sensor in terms of heat resistance and dust resistance, is used as the measuring means 2A, long-term use of the overflow measurement sensor 101 can be realized. Further, since the measuring means 2A is accommodated in the housing 5A, the effects of heat resistance and dust resistance can be further enhanced, and the measuring means 2A can be protected.

このように、オーバリティ計測センサ101を用いることにより、回転炉90の外面91の変形を継続して計測でき、この回転炉90の変形を長期間にわたって監視できる。したがって、回転炉90に対するトラブルの発生を事前に予測することが可能となり、回転炉90の保全に役立てることができる。   Thus, by using the overflow measuring sensor 101, the deformation of the outer surface 91 of the rotary furnace 90 can be continuously measured, and the deformation of the rotary furnace 90 can be monitored over a long period of time. Therefore, it is possible to predict in advance the occurrence of troubles with respect to the rotary furnace 90, which can be used for maintenance of the rotary furnace 90.

次に、図3及び図4に示される本発明の第2実施形態のオーバリティ計測センサ102について説明する。第1実施形態のオーバリティ計測センサ101は、測定手段2Aにレーザ変位センサを用いたが、第2実施形態のオーバリティ計測センサ102は、測定手段2Bに歪ゲージを用いて構成される。   Next, a description will be given of the overflow measurement sensor 102 according to the second embodiment of the present invention shown in FIGS. The overlap measurement sensor 101 of the first embodiment uses a laser displacement sensor as the measurement means 2A, but the overlap measurement sensor 102 of the second embodiment is configured using a strain gauge as the measurement means 2B.

第2実施形態のオーバリティ計測センサ102は、図3及び図4に示すように、第1実施形態と同様に、伝達部材1Bと、測定手段2Bと、閉鎖板3と、固定手段4Aと、筐体5Bとを有する構成とされる。以下、第2実施形態のオーバリティ計測センサ102において、第1実施形態のオーバリティ計測センサ101と共通する要素には、同一符号を付して説明を省略する。   As shown in FIGS. 3 and 4, the overhead measurement sensor 102 of the second embodiment is similar to the first embodiment in that the transmission member 1 </ b> B, the measurement means 2 </ b> B, the closing plate 3, the fixing means 4 </ b> A, It is set as the structure which has the body 5B. Hereinafter, in the overflow measurement sensor 102 of the second embodiment, elements common to the overlap measurement sensor 101 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.

伝達部材1Bは、円柱状の接触棒11と、弾性変形部13とを有する構成とされる。接触棒11は、セラミックスやチタン等のように、熱伝達性の低い部材により形成される。また、弾性変形部13は、鋼板又はアルミニウム多層板等の板ばねにより形成される。
伝達部材1Bの接触棒11は、閉鎖板3の挿通孔31に係合し、回転炉90の径方向に進退移動可能に設けられるとともに、先端部の先端面11aが回転炉90の外面91に接触可能に設けられている。また、伝達部材1Bの接触棒11の基端部には弾性変形部13が取り付けられており、接触棒11と弾性変形部13とが一体に設けられ、弾性変形部13に測定面13aが形成されている。
The transmission member 1 </ b> B has a cylindrical contact rod 11 and an elastic deformation portion 13. The contact bar 11 is formed of a member having a low heat transfer property such as ceramics or titanium. Moreover, the elastic deformation part 13 is formed with leaf | plate springs, such as a steel plate or an aluminum multilayer board.
The contact rod 11 of the transmission member 1 </ b> B engages with the insertion hole 31 of the closing plate 3 and is provided so as to be movable forward and backward in the radial direction of the rotary furnace 90, and the front end surface 11 a of the front end portion is on the outer surface 91 of the rotary furnace 90. It is provided so that contact is possible. Further, an elastic deformation portion 13 is attached to the base end portion of the contact rod 11 of the transmission member 1B, and the contact rod 11 and the elastic deformation portion 13 are integrally provided, and a measurement surface 13a is formed on the elastic deformation portion 13. Has been.

前述したように、伝達部材1Bの弾性変形部13は板ばねにより形成され、長手方向(回転炉90の周方向に沿う方向)の両端部が筐体5Bに支持(固定)されている。そして、伝達部材1Bは、常に下方に向けて付勢されたような状態に保持されており、接触棒11に取り付けられた弾性変形部(板ばね)13の弾性復元力により、伝達部材1Bの接触棒11の先端面11aを、常に回転炉90の外面91に接触させておくことができる。そして、回転炉90の外面91の径方向への変形に応じて、接触棒11が回転炉90の径方向に進退移動するのに伴い、弾性変形部13が撓んで変形するようになっている。このように、伝達部材1Bは、回転炉90の外面91に接触して配設される接触面(接触棒11の先端面11a)と、この接触面とは反対側に配設される測定面(弾性変形部13の測定面13a)とを有しており、回転炉90の外面91の変形を測定面13aに伝達する構成とされる。   As described above, the elastically deforming portion 13 of the transmission member 1B is formed by a leaf spring, and both end portions in the longitudinal direction (the direction along the circumferential direction of the rotary furnace 90) are supported (fixed) on the housing 5B. And the transmission member 1B is always hold | maintained at the state urged | biased below, The elastic member (Blade spring) 13 attached to the contact rod 11 is elastically restoring force of the transmission member 1B by the elastic restoring force. The tip end surface 11 a of the contact bar 11 can always be in contact with the outer surface 91 of the rotary furnace 90. As the contact rod 11 moves forward and backward in the radial direction of the rotary furnace 90 according to the radial deformation of the outer surface 91 of the rotary furnace 90, the elastic deformation portion 13 is bent and deformed. . As described above, the transmission member 1B has a contact surface (tip surface 11a of the contact bar 11) disposed in contact with the outer surface 91 of the rotary furnace 90, and a measurement surface disposed on the opposite side of the contact surface. (The measurement surface 13a of the elastic deformation portion 13) and the deformation of the outer surface 91 of the rotary furnace 90 is transmitted to the measurement surface 13a.

測定手段2Bは、歪ゲージからなる。また、測定手段2Bは、伝達部材1Bの弾性変形部13の測定面13aに取り付けられており、弾性変形部13の測定面13aの変形を測定可能とされる。このように、第2実施形態のオーバリティ計測センサ102においても、測定手段2Bは、回転炉90の外面91の変形を伝達する伝達部材1Bを介して、回転炉90の外面91の変形を測定可能とされる。   The measuring means 2B consists of a strain gauge. Moreover, the measurement means 2B is attached to the measurement surface 13a of the elastic deformation portion 13 of the transmission member 1B, and can measure the deformation of the measurement surface 13a of the elastic deformation portion 13. As described above, also in the overlay measurement sensor 102 of the second embodiment, the measuring means 2B can measure the deformation of the outer surface 91 of the rotary furnace 90 via the transmission member 1B that transmits the deformation of the outer surface 91 of the rotary furnace 90. It is said.

このように構成される第2実施形態のオーバリティ計測センサ102においては、使用環境下において回転炉90に膨張、収縮が生じた場合、図4(a)及び(b)に示すように、回転炉90の外面91の変形に伴って伝達部材1Bの接触棒11が径方向に進退移動する。そして、接触棒11が進退移動することにより、弾性変形部13が変形する。この弾性変形部13の変形を測定手段(歪ゲージ)2Bによって計測することにより、回転炉90の外面91の変形を計測できる。   In the overlay measurement sensor 102 of the second embodiment configured as described above, when expansion and contraction occur in the rotary furnace 90 under the use environment, as shown in FIGS. 4A and 4B, the rotary furnace With the deformation of the outer surface 91 of 90, the contact rod 11 of the transmission member 1B moves forward and backward in the radial direction. And the elastic deformation part 13 deform | transforms when the contact rod 11 moves forward and backward. By measuring the deformation of the elastic deformation portion 13 by the measuring means (strain gauge) 2B, the deformation of the outer surface 91 of the rotary furnace 90 can be measured.

このように、第2実施形態のオーバリティ計測センサ102においても、回転炉90の外面91を直接測定するのではなく、回転炉90の外面91の変形を伝達する伝達部材1Bを設け、伝達部材1Bを構成する弾性変形部13の測定面13aの変位を測定することにしたので、測定手段2Bが高温の回転炉90の外面91に対面して配置されることがなく、測定手段2B自体が高温にさらされることを回避できる。また、測定手段2Bに耐熱性と耐防塵性に優れる歪ゲージを用いることで、オーバリティ計測センサ102の長期使用を安定して確保できる。さらに、歪ゲージを用いた測定手段2Bは、レーザ変位センサを用いる場合と比較して、低消費電力で構成できる。   As described above, the overhead measurement sensor 102 of the second embodiment also includes the transmission member 1B that transmits the deformation of the outer surface 91 of the rotary furnace 90, instead of directly measuring the outer surface 91 of the rotary furnace 90, and the transmission member 1B. Since the displacement of the measuring surface 13a of the elastically deforming portion 13 constituting the measuring unit 13 is measured, the measuring unit 2B is not arranged to face the outer surface 91 of the high-temperature rotary furnace 90, and the measuring unit 2B itself has a high temperature. Can be avoided. Further, by using a strain gauge having excellent heat resistance and dust resistance as the measuring means 2B, it is possible to stably ensure the long-term use of the overflow measuring sensor 102. Furthermore, the measuring means 2B using a strain gauge can be configured with low power consumption as compared with the case where a laser displacement sensor is used.

図5及び図6は、本発明の第3実施形態のオーバリティ計測センサ103を示している。第3実施形態のオーバリティ計測センサ103は、図5及び図6に示すように、伝達部材1Cと、測定手段2Cと、固定手段4Cとを有する構成とされる。なお、オーバリティ計測センサ103においても、測定手段2Cの測定回路及び筐体等が備えられるが、本実施形態の説明においては省略する。また、以下の第3実施形態のオーバリティ計測センサ103においても、第1実施形態のオーバリティ計測センサ101及び第2実施形態のオーバリティ計測センサ102と共通する要素には、同一符号を付して説明を省略する。   5 and 6 show an overflow measurement sensor 103 according to a third embodiment of the present invention. As shown in FIGS. 5 and 6, the overflow measurement sensor 103 according to the third embodiment is configured to include a transmission member 1 </ b> C, a measurement unit 2 </ b> C, and a fixing unit 4 </ b> C. It should be noted that the overflow measurement sensor 103 is also provided with a measurement circuit, a housing, and the like of the measurement unit 2C, but is omitted in the description of this embodiment. Also, in the following measurement sensor 103 of the third embodiment, the same reference numerals are given to the same elements as those of the first measurement sensor 101 and the second measurement sensor 102 of the second embodiment. Omitted.

伝達部材1Cは、平板状の弾性板からなり、例えば鋼板又はアルミニウム多層板等の板ばねにより形成される。伝達部材1Cは、その下面10aが回転炉90の外面91に接触して配設される接触面とされ、この下面10aとは反対側に配設される上面10bが測定面とされる。伝達部材1Cの上面10bの長手方向(回転炉90の周方向に沿う方向)の両端部に、磁石41からなる固定手段4Cが取り付けられている。伝達部材1Cは、回転炉90の外面91と固定手段4Cとの間で挟持されることにより、下面10aが回転炉90の外面91に密着させられ、回転炉90の外面91の曲率に沿って弾性変形した状態で配設される。そして、回転炉90の外面91の径方向への変形に応じて、伝達部材1Cも撓んで変形するようになっている。このように、伝達部材1Cは、回転炉90の外面91の変形を測定面である上面10bに伝達する構成とされる。   The transmission member 1C is made of a flat elastic plate, and is formed by a plate spring such as a steel plate or an aluminum multilayer plate, for example. The lower surface 10a of the transmission member 1C is a contact surface disposed in contact with the outer surface 91 of the rotary furnace 90, and an upper surface 10b disposed on the opposite side of the lower surface 10a is a measurement surface. Fixing means 4C made up of magnets 41 are attached to both ends of the longitudinal direction of the upper surface 10b of the transmission member 1C (the direction along the circumferential direction of the rotary furnace 90). The transmission member 1C is sandwiched between the outer surface 91 of the rotary furnace 90 and the fixing means 4C, whereby the lower surface 10a is brought into close contact with the outer surface 91 of the rotary furnace 90, and along the curvature of the outer surface 91 of the rotary furnace 90. It is arranged in an elastically deformed state. And according to the deformation | transformation to the radial direction of the outer surface 91 of the rotary furnace 90, 1 C of transmission members are also bent and deform | transformed. Thus, 1 C of transmission members are set as the structure which transmits the deformation | transformation of the outer surface 91 of the rotary furnace 90 to the upper surface 10b which is a measurement surface.

また、伝達部材1Cを、遮熱又は断熱の少なくとも一方の機能を有する構成とすることが望ましい。例えば、アルミニウム多層板からなる板ばねの表面にアルマイト処理を施すことにより、遮熱性能を有する伝達部材1Cを構成できる。   Further, it is desirable that the transmission member 1C has a configuration having at least one function of heat insulation or heat insulation. For example, the transmission member 1C having heat shielding performance can be configured by subjecting the surface of a leaf spring made of an aluminum multilayer plate to an alumite treatment.

測定手段2Cは、歪ゲージからなる。測定手段2Cは、図5及び図6に示すように、伝達部材1Cの下面10a(回転炉90の外面91との接触面)とは反対側の上面10b(測定面)に取り付けられており、伝達部材1Cの上面10bの変形を測定可能とされる。   The measuring means 2C is composed of a strain gauge. As shown in FIGS. 5 and 6, the measuring means 2C is attached to the upper surface 10b (measurement surface) opposite to the lower surface 10a of the transmission member 1C (contact surface with the outer surface 91 of the rotary furnace 90). The deformation of the upper surface 10b of the transmission member 1C can be measured.

このように構成される第3実施形態のオーバリティ計測センサ103においては、使用環境下において回転炉90に膨張、収縮が生じた場合、図6(a)及び(b)に示すように、回転炉90の外面91の変形に伴って伝達部材1Cが変形する。そして、この伝達部材1Cの変形を測定手段(歪ゲージ)2Cによって計測することにより、回転炉90の外面91の変形を計測できる。   In the overflow measuring sensor 103 of the third embodiment configured as described above, when the rotary furnace 90 expands and contracts in the use environment, as shown in FIGS. 6A and 6B, the rotary furnace 90 With the deformation of the outer surface 91 of 90, the transmission member 1C is deformed. The deformation of the outer surface 91 of the rotary furnace 90 can be measured by measuring the deformation of the transmission member 1 </ b> C by the measuring means (strain gauge) 2 </ b> C.

このように、第3実施形態のオーバリティ計測センサ103においても、回転炉90の外面91を直接測定するのではなく、回転炉90の外面91の変形を伝達する伝達部材1Cを設け、伝達部材1Cの上面10bの変位を測定することにしたので、測定手段2Cが高温の回転炉90の外面91に対面して配置されることがなく、測定手段2C自体が直接高温にさらされることを回避できる。また、測定手段2Cに耐熱性と耐防塵性に優れる歪ゲージを用いることで、オーバリティ計測センサ103の長期使用を安定して確保できる。さらに、歪ゲージを用いた測定手段2Cは、レーザ変位センサを用いる場合と比較して、低消費電力で構成できる。   As described above, the overhead measurement sensor 103 according to the third embodiment also includes the transmission member 1C that transmits the deformation of the outer surface 91 of the rotary furnace 90, instead of directly measuring the outer surface 91 of the rotary furnace 90. Since the displacement of the upper surface 10b is measured, the measuring means 2C is not arranged facing the outer surface 91 of the high-temperature rotary furnace 90, and the measuring means 2C itself can be prevented from being directly exposed to a high temperature. . Further, by using a strain gauge having excellent heat resistance and dust resistance as the measuring means 2C, it is possible to stably ensure long-term use of the overflow measurement sensor 103. Furthermore, the measuring means 2C using the strain gauge can be configured with low power consumption as compared with the case where the laser displacement sensor is used.

また、第3実施形態のオーバリティ計測センサ103では、伝達部材1Cを弾性板により形成することで、単純な組み合わせによりオーバリティ計測センサを構成しているにもかかわらず、回転炉90の外面91の変形を伝達部材1Cに高精度に反映できる。   Further, in the overflow measurement sensor 103 of the third embodiment, the outer surface 91 of the rotary furnace 90 is deformed even though the transmission member 1C is formed of an elastic plate to constitute the overflow measurement sensor by a simple combination. Can be reflected to the transmission member 1C with high accuracy.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態においては、固定手段に磁石を用いて、この磁石の磁力により、オーバリティ計測センサを回転炉の外面に固定する構成としていたが、磁石を用いることなく、例えばねじ止めや溶接等、他の固定手段を用いることも可能である。
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, in the above embodiment, a magnet is used as the fixing means, and the overhead measurement sensor is fixed to the outer surface of the rotary furnace by the magnetic force of the magnet. However, for example, screwing or welding without using the magnet. It is also possible to use other fixing means.

1A,1B,1C 伝達部材
2A,2B,2C 測定手段
3 閉鎖板
4A,4C 固定手段
5A,5B 筐体
11 接触棒
12 測定板
13 弾性変形部
21 測定回路
31 挿通孔
41 磁石
51 仕切り板
52 コイルばね
53 測定孔
90 回転炉
101,102,103 オーバリティ計測センサ
1A, 1B, 1C Transmission members 2A, 2B, 2C Measuring means 3 Closing plates 4A, 4C Fixing means 5A, 5B Housing 11 Contact rod 12 Measuring plate 13 Elastic deformation portion 21 Measuring circuit 31 Insertion hole 41 Magnet 51 Partition plate 52 Coil Spring 53 Measuring hole 90 Rotary furnace 101, 102, 103 Overity measuring sensor

Claims (6)

回転炉の外面に接触して配設される接触面と、該接触面とは反対側に配設される測定面とを有し、前記外面の変形を前記測定面に伝達する伝達部材と、
前記伝達部材の前記測定面の変位を測定する測定手段と、
を有することを特徴とするオーバリティ計測センサ。
A contact surface disposed in contact with the outer surface of the rotary furnace, a measurement surface disposed on the opposite side of the contact surface, and a transmission member that transmits deformation of the outer surface to the measurement surface;
Measuring means for measuring the displacement of the measurement surface of the transmission member;
An overhead measurement sensor characterized by comprising:
前記回転炉の前記外面と前記測定手段との間に、遮熱又は断熱の少なくとも一方の機能を有する閉鎖板を有し、
前記伝達部材が、前記回転炉の外面に接触する接触棒を有しており、
前記閉鎖板が、前記接触棒を挿通し、該接触棒を前記回転炉の径方向に進退移動可能に支持する挿通孔を有することを特徴とする請求項1に記載のオーバリティ計測センサ。
Between the outer surface of the rotary furnace and the measuring means, a closing plate having at least one function of heat insulation or heat insulation,
The transmission member has a contact bar that contacts the outer surface of the rotary furnace,
2. The overflow measuring sensor according to claim 1, wherein the closing plate has an insertion hole that passes through the contact rod and supports the contact rod so as to move forward and backward in a radial direction of the rotary furnace.
前記伝達部材が、前記接触棒の基端部に取り付けられた測定板を有しており、
前記測定板に前記測定面が形成され、
前記測定手段が、前記接触棒の進退移動に追従して移動する前記測定板の前記測定面の変位を測定するレーザ変位センサとされることを特徴とする請求項2に記載のオーバリティ計測センサ。
The transmission member has a measuring plate attached to a proximal end portion of the contact rod;
The measurement surface is formed on the measurement plate;
3. The overflow measuring sensor according to claim 2, wherein the measuring means is a laser displacement sensor that measures the displacement of the measuring surface of the measuring plate that moves following the advancing and retreating movement of the contact bar.
前記伝達部材が、前記接触棒の基端部に接続された弾性変形部を有しており、
前記弾性変形部に前記測定面が形成され、
前記測定手段が、前記弾性変形部の前記測定面に取り付けられ、該測定面の変形を測定する歪ゲージとされることを特徴とする請求項2に記載のオーバリティ計測センサ。
The transmission member has an elastic deformation portion connected to a proximal end portion of the contact rod;
The measurement surface is formed on the elastic deformation part,
3. The overflow measuring sensor according to claim 2, wherein the measuring means is a strain gauge that is attached to the measuring surface of the elastically deforming portion and measures the deformation of the measuring surface.
前記伝達部材が、弾性板からなり、
前記測定手段が、前記伝達部材の前記測定面に取り付けられ、該測定面の変形を測定する歪ゲージとされることを特徴とする請求項1に記載のオーバリティ計測センサ。
The transmission member is made of an elastic plate,
2. The overflow measuring sensor according to claim 1, wherein the measuring means is a strain gauge that is attached to the measuring surface of the transmission member and measures deformation of the measuring surface.
前記回転炉の外面に着脱可能に設けられた固定手段を有しており、
前記固定手段が、磁石を用いて形成されていることを特徴とする請求項1から5のいずれか一項に記載のオーバリティ計測センサ。
It has fixing means detachably provided on the outer surface of the rotary furnace,
The overhead measuring sensor according to any one of claims 1 to 5, wherein the fixing means is formed using a magnet.
JP2017055476A 2017-03-22 2017-03-22 Ovality measuring sensor Pending JP2018159480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017055476A JP2018159480A (en) 2017-03-22 2017-03-22 Ovality measuring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017055476A JP2018159480A (en) 2017-03-22 2017-03-22 Ovality measuring sensor

Publications (1)

Publication Number Publication Date
JP2018159480A true JP2018159480A (en) 2018-10-11

Family

ID=63795543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017055476A Pending JP2018159480A (en) 2017-03-22 2017-03-22 Ovality measuring sensor

Country Status (1)

Country Link
JP (1) JP2018159480A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109282785A (en) * 2018-12-13 2019-01-29 合肥工业大学 A kind of deformation monitoring method of the elastically supported plate based on strain monitoring
CN109623696A (en) * 2019-01-15 2019-04-16 浙江工业大学之江学院 Bend pipe ellipticity measurement adjustable-angle positioning mechanism

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109282785A (en) * 2018-12-13 2019-01-29 合肥工业大学 A kind of deformation monitoring method of the elastically supported plate based on strain monitoring
CN109282785B (en) * 2018-12-13 2020-04-14 合肥工业大学 Deformation monitoring method of elastic support plate based on strain monitoring
CN109623696A (en) * 2019-01-15 2019-04-16 浙江工业大学之江学院 Bend pipe ellipticity measurement adjustable-angle positioning mechanism
CN109623696B (en) * 2019-01-15 2024-02-23 浙江工业大学之江学院 Angle-adjustable positioning mechanism for measuring ellipticity of bent pipe section

Similar Documents

Publication Publication Date Title
JP2018159480A (en) Ovality measuring sensor
ITMI20081886A1 (en) SPECIAL THERMOCOUPLE FOR BURNERS
JP5650538B2 (en) Method and associated device for measuring the inner surface temperature of a pipe
US9389101B2 (en) Readhead control mechanism which maintains a constant gap between a readhead and a scale of an optical encoder
Walker et al. High temperature measurement of a low emission, high pressure combustor using femtosecond laser written fiber Bragg gratings
JP2019148434A (en) Ovality measurement sensor
US20230172431A1 (en) Apparatus for heat dissipation and use of such apparatus
JP2019500655A (en) Component shift device with shape memory alloy actuator
JP5727807B2 (en) Fiber optic temperature sensor
BR112021017897A2 (en) Apparatus, aerosol generating device, aerosol generating system, method for a control arrangement
KR101775611B1 (en) Wireless temperature sensor module
JP3177887U (en) Sheath type temperature measuring device
US8789430B2 (en) Force measuring device
JP4926543B2 (en) Strain measuring device
JP7119388B2 (en) Ovality measurement sensor
Percival et al. A Theoretical and experimental investigation of the dynamic response of rolamite
JP5265307B2 (en) Contact temperature sensor
JP6374658B2 (en) Optical fiber mounting structure
JPH0356713A (en) Fixing structure of ceramic bearing
RU2795385C1 (en) Device for measuring displacements of notch edges in specimens at elevated temperatures during testing
JP5878053B2 (en) Thermoelectric generator and clock
RU2657130C1 (en) Device for relative movement indication of objects
JP2008308315A (en) Carrying device
JP2020169762A (en) Ovality measurement sensor and method for producing cement
JPS61124828A (en) Flame monitor apparatus