JP2018159115A - Method for producing plastic bottle - Google Patents

Method for producing plastic bottle Download PDF

Info

Publication number
JP2018159115A
JP2018159115A JP2017057585A JP2017057585A JP2018159115A JP 2018159115 A JP2018159115 A JP 2018159115A JP 2017057585 A JP2017057585 A JP 2017057585A JP 2017057585 A JP2017057585 A JP 2017057585A JP 2018159115 A JP2018159115 A JP 2018159115A
Authority
JP
Japan
Prior art keywords
plastic bottle
dlc film
mouth
film
bottle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017057585A
Other languages
Japanese (ja)
Other versions
JP6848578B2 (en
Inventor
哲也 小澤
Tetsuya Ozawa
哲也 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2017057585A priority Critical patent/JP6848578B2/en
Publication of JP2018159115A publication Critical patent/JP2018159115A/en
Application granted granted Critical
Publication of JP6848578B2 publication Critical patent/JP6848578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Landscapes

  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a plastic bottle that includes the step for depositing a DLC film on the inner surface of a plastic bottle with a large volume of 5 liters or more, where, sufficient gas barrier properties are secured, and color irregularities in a mouth and a trunk are suppressed.SOLUTION: A method for producing a plastic bottle includes the step for depositing a DLC film on the inner surface of an undeposited plastic bottle by chemical vapor deposition. The undeposited plastic bottle has a mouth 1, a shoulder 2, a trunk 3 and a bottom 4, has a volume of 5-35 L, with the ratio between the mouth inner diameter (D) and the trunk inner diameter (D)(D/D) of 0.1-0.3, where, in depositing of the DLC film 5 by the chemical vapor deposition, high frequency power of 3000-5000 W is employed. In the method, the thickness of the DLC film 5 in the trunk 3 is 15-50 nm, and the thickness of the DLC film 5 in the mouth 1 is 500-1000 nm.SELECTED DRAWING: Figure 1

Description

本願は、口部、肩部、胴部、底部を有する、大容積のガスバリア性プラスチックボトルの内面に、ガスバリア性膜としてDLC膜を成膜する技術を開示する。   The present application discloses a technique for forming a DLC film as a gas barrier film on the inner surface of a large volume gas barrier plastic bottle having a mouth, a shoulder, a body, and a bottom.

ビール等の飲料のサーバー用容器として、ステンレス製容器が普及している。しかしながら、サーバー用容器は20リットル以上等と容積が大きいため、ステンレス製では容器そのものが重く、また再利用する為の容器運搬、洗浄に多大な費用・労力がかかっている。   Stainless steel containers are widely used as server containers for beverages such as beer. However, since the server container has a large volume of 20 liters or more and the like, the container itself is heavy when it is made of stainless steel, and much cost and labor are required for transporting and cleaning the container for reuse.

ステンレス製容器の代替として、近年では、欧州を中心にプラスチック製容器が広まりを見せている。但し、欧州の従来品では、プラスチックボトルにガスバリア性を付与する為に、主原料のポリエチレンテレフタレート樹脂(PET)に酸素バリア性樹脂や金属化合物を用いたスカベンジャーを含有させており、日本の容器包装リサイクル法に不適合となる。   As an alternative to stainless steel containers, plastic containers have recently become widespread mainly in Europe. However, conventional European products contain scavengers that use oxygen barrier resin and metal compounds in the main raw material polyethylene terephthalate resin (PET) to give gas barrier properties to plastic bottles. It becomes incompatible with the recycling law.

プラスチックボトルのリサイクル性とガスバリア性との両立のためには、上記したスカベンジャーを用いず、プラスチックボトルの内面にガスバリア性膜を設けることが有効である。例えば、口部、肩部、胴部、底部を有するプラスチックボトルの内面に、化学蒸着法(Chemical Vapor Deposition、CVD)で数10nm厚のダイアモンドライクカーボン(Diamond Like Carbon、DLC)を成膜したボトルが普及している。しかし、胴部に比べ径の小さい口部は、DLC成膜によって胴部に対し濃褐色化し、ボトル全体では色むらとなり易い。   In order to achieve both the recyclability of the plastic bottle and the gas barrier property, it is effective to provide a gas barrier film on the inner surface of the plastic bottle without using the above-mentioned scavenger. For example, a bottle in which diamond like carbon (DLC) having a thickness of several tens of nanometers is formed on the inner surface of a plastic bottle having a mouth portion, a shoulder portion, a body portion, and a bottom portion by a chemical vapor deposition (CVD) method. Is popular. However, the mouth portion having a diameter smaller than that of the body portion becomes dark brown with respect to the body portion due to DLC film formation, and the entire bottle tends to be uneven in color.

口部の淡色化、色むら緩和のためには、次の開示技術があるが、いずれも、容積5リットル以上の大きいプラスチックボトルに適用され得るものではない。例えば、特許文献1に開示された技術を用いても口部の濃褐色は解消され難い。また、特許文献2に開示された技術では、ボトルをCVDチャンバー(成膜室)に装填した後に筒状部材を設置する工程が必要であり、DLC成膜後に筒状部材を口部内側から外すため、成膜異物が発生し易い問題点がある。また、特許文献3に開示された技術では、一般的なCVD成膜装置がチャンバーの壁面の一部に排気口を設け排気を行うのに対し、新たに排気管を作製して設置する排気方法に変更しなければならず、投資が必要であり生産効率も低下する。さらに、特許文献4に開示された技術では、口部にDLC膜が成膜されないため、口部は着色しないが、反面、ボトル全体のガスバリア性が不十分となる。   Although there are the following disclosed techniques for lightening the mouth and reducing color unevenness, none of them can be applied to a large plastic bottle having a volume of 5 liters or more. For example, even if the technique disclosed in Patent Document 1 is used, the dark brown color of the mouth is difficult to be eliminated. The technique disclosed in Patent Document 2 requires a step of installing the cylindrical member after the bottle is loaded into the CVD chamber (deposition chamber), and the cylindrical member is removed from the inside of the mouth after the DLC film formation. Therefore, there is a problem in that film formation foreign matter is likely to occur. Further, in the technique disclosed in Patent Document 3, a general CVD film forming apparatus performs exhaust by providing an exhaust port on a part of the wall surface of the chamber, whereas an exhaust method in which a new exhaust pipe is produced and installed. It must be changed to an investment, which requires investment and reduces production efficiency. Furthermore, in the technique disclosed in Patent Document 4, since the DLC film is not formed on the mouth portion, the mouth portion is not colored, but on the other hand, the gas barrier property of the entire bottle becomes insufficient.

特開2003−237754号公報JP 2003-237754 A 特開2008−050050号公報JP 2008-050050 A 特開2006−160269号公報JP 2006-160269 A 特開2002−053119号公報JP 2002-053119 A

上記の背景技術に鑑み、本願では、5リットル以上の大容積のプラスチックボトルの内面にDLC膜を成膜する工程を備えたプラスチックボトルの製造方法において、十分なガスバリア性を確保するとともに、口部と胴部の色むらを低減することを可能とする方法を開示する。   In view of the above-described background art, in the present application, in the plastic bottle manufacturing method including the step of forming a DLC film on the inner surface of a large-capacity plastic bottle of 5 liters or more, a sufficient gas barrier property is secured, and the mouth portion And a method that makes it possible to reduce uneven color of the body.

本願は、上記課題を解決するための手段の一つとして、
未成膜プラスチックボトルの内面に化学蒸着法によってDLC膜を成膜する工程を備える、プラスチックボトルの製造方法であって、前記未成膜プラスチックボトルは、口部、肩部、胴部及び底部を有し、容積が5L以上35L以下であり、口部内径(D)と胴部内径(D)との比(D/D)が0.1以上0.3以下であり、前記化学蒸着法による前記DLC膜の成膜において3000W以上5000W以下の高周波電力を採用する、製造方法
を開示する。
This application is one of the means for solving the above-described problems.
A method of manufacturing a plastic bottle comprising a step of forming a DLC film on the inner surface of an undeposited plastic bottle by chemical vapor deposition, wherein the undeposited plastic bottle has a mouth, a shoulder, a trunk and a bottom , volume is less 35L least 5L, the ratio of the mouth inside diameter (D 1) and the barrel inner diameter (D 2) (D 1 / D 2) is 0.1 to 0.3, the chemical vapor deposition A manufacturing method is disclosed in which high-frequency power of 3000 W or more and 5000 W or less is employed in the formation of the DLC film by the method.

本開示の製造方法において、前記胴部の内面における前記DLC膜の厚みを15nm以上50nm以下とし、前記口部の内面における前記DLC膜の厚みを500nm以上1000nm以下とすることが好ましい。   In the manufacturing method of the present disclosure, it is preferable that the thickness of the DLC film on the inner surface of the body portion is 15 nm to 50 nm and the thickness of the DLC film on the inner surface of the mouth portion is 500 nm to 1000 nm.

本開示の製造方法において、前記胴部の内面における前記DLC膜は、ラマン分光分析におけるI(D)/I(G)が0.16以上の結合組成を有することが好ましい。   In the manufacturing method of the present disclosure, it is preferable that the DLC film on the inner surface of the body portion has a bond composition in which I (D) / I (G) in Raman spectroscopic analysis is 0.16 or more.

本開示の製造方法において、前記胴部の内面における前記DLC膜は、ラマン分光分析におけるI(S)/I(N)が1.0以上の結合組成を有することが好ましい。   In the manufacturing method of the present disclosure, it is preferable that the DLC film on the inner surface of the body portion has a bond composition in which I (S) / I (N) in Raman spectroscopic analysis is 1.0 or more.

本開示の製造方法において、前記プラスチックボトルの酸素透過率が0.10cc/m/day以下であることが好ましい。 In the manufacturing method of this indication, it is preferable that the oxygen permeability of the said plastic bottle is 0.10 cc / m < 2 > / day or less.

本開示の製造方法において、前記プラスチックボトルの酸素透過率が0.06cc/pkg/day以下であることが好ましい。   In the manufacturing method of this indication, it is preferable that the oxygen permeability of the said plastic bottle is 0.06 cc / pg / day or less.

本開示の製造方法において、ブロー成形によって前記未成膜プラスチックボトルを得ることが好ましい。   In the manufacturing method of the present disclosure, it is preferable to obtain the undeposited plastic bottle by blow molding.

本開示の製造方法において、前記プラスチックボトルは、炭酸を含む飲料が充填されるものであることが好ましい。   In the manufacturing method of the present disclosure, the plastic bottle is preferably filled with a beverage containing carbonic acid.

本開示の製造方法により、十分なガスバリア性を確保するとともに、口部と胴部とでDLC膜による色むらが低減された大容積のプラスチックボトルを製造できる。本開示の製造方法により製造されたプラスチックボトルは、樹脂層に酸素バリア性樹脂や金属化合物のスカベンジャーを用いないプラスチックボトルであるため、リサイクルが可能となり、プラスチック資源の有効活用、環境保護になる。また、大気の水蒸気や酸素ガスのボトル内への透過による酸化や腐敗の抑制、ボトル内の炭酸ガスや香味成分のボトル外への透過による炭酸抜けや香味低下の抑制ができる。   According to the manufacturing method of the present disclosure, it is possible to manufacture a large-capacity plastic bottle in which sufficient gas barrier properties are ensured and color unevenness due to the DLC film is reduced between the mouth and the body. Since the plastic bottle manufactured by the manufacturing method of the present disclosure is a plastic bottle that does not use an oxygen barrier resin or a metal compound scavenger in the resin layer, it can be recycled, and the plastic resources can be effectively used and the environment can be protected. Further, oxidation and decay due to permeation of atmospheric water vapor and oxygen gas into the bottle can be suppressed, and carbonation loss and flavor reduction due to permeation of carbon dioxide gas and flavor components inside the bottle to the outside of the bottle can be suppressed.

本開示の製造方法により製造されるプラスチックボトル10の形状の一例を説明するための概略図である。It is the schematic for demonstrating an example of the shape of the plastic bottle 10 manufactured with the manufacturing method of this indication. ラマン分光分析において確認できるDLC膜に由来するスペクトルの一例を示す図である。It is a figure which shows an example of the spectrum originating in the DLC film which can be confirmed in a Raman spectroscopic analysis. 実施例にて使用したCVD装置を概略的に示す図である。It is a figure which shows schematically the CVD apparatus used in the Example.

1.プラスチックボトルの製造方法
本開示のプラスチックボトルの製造方法は、未成膜プラスチックボトルの内面に化学蒸着法によってDLC膜を成膜する工程を備える。図1に示すように、本開示の製造方法に用いられる未成膜プラスチックボトルは、口部1、肩部2、胴部3及び底部4を有し、容積が5L以上35L以下であり、口部内径(D)と胴部内径(D)との比(D/D)が0.1以上0.3以下である。本開示の製造方法においては、化学蒸着法によるDLC膜5の成膜において3000W以上5000W以下の高周波電力を採用することに一つの特徴がある。
1. Method for Producing Plastic Bottle The method for producing a plastic bottle of the present disclosure includes a step of forming a DLC film on the inner surface of an undeposited plastic bottle by chemical vapor deposition. As shown in FIG. 1, the non-film-form plastic bottle used for the manufacturing method of this indication has the mouth part 1, the shoulder part 2, the trunk | drum 3, and the bottom part 4, and is 5L or more and 35L or less in volume, inside diameter (D 1) and the ratio of the barrel inner diameter (D 2) (D 1 / D 2) of 0.1 to 0.3. The manufacturing method of the present disclosure has one feature in that high-frequency power of 3000 W or more and 5000 W or less is employed in the formation of the DLC film 5 by chemical vapor deposition.

DLC膜を備えない未成膜プラスチックボトルについては、例えば、有底円筒形状のパリソン(プリフォーム)を加温し、金型内でブロー延伸するブロー成形法により容易に製造できる。パリソン形状やその製法、およびブロー延伸条件は、ボトルの容積や形状に応じて適宜決定すればよい。   An undeposited plastic bottle not provided with a DLC film can be easily manufactured by, for example, a blow molding method in which a bottomed cylindrical parison (preform) is heated and blown and stretched in a mold. What is necessary is just to determine a parison shape, its manufacturing method, and blow drawing conditions suitably according to the volume and shape of a bottle.

ブロー成形後の未成膜ボトルの内面に対して、汎用のCVD装置を用いてDLC膜を設けることで、プラスチックボトル10を製造することができる。例えば、プラスチック容器の大きさに合わせた外部電極の内側に未成膜プラスチック容器を収容し、且つ、内部電極を容器開口の内部又は外部の所定の位置に設置した後で、化学蒸着(プラズマ化学蒸着)によって容器内にガスバリア性膜を成膜することができる。プラズマ化学蒸着法とは、減圧下で発生させたプラズマによって原料ガスを解離、イオン化させて成膜種を生成させ、被着体に堆積、成膜させる方法である。例えば、特開2003−237754号公報に開示されたような装置と容器の口部および肩部の周囲に誘電体材料からなるスペーサー等とを利用することが可能である。この場合、ガス供給管機能を有する内部電極を、ボトルの内部の位置であってボトル高さの1/5(20%)〜4/5(80%)の位置に配設することが好ましく、1/4(25%)〜3/4(75%)の位置がより好ましい。   The plastic bottle 10 can be manufactured by providing a DLC film on the inner surface of the non-deposited bottle after blow molding using a general-purpose CVD apparatus. For example, a non-deposited plastic container is accommodated inside an external electrode that matches the size of the plastic container, and chemical vapor deposition (plasma chemical vapor deposition) is performed after the internal electrode is placed at a predetermined position inside or outside the container opening. ) Can form a gas barrier film in the container. The plasma chemical vapor deposition method is a method in which a source gas is dissociated and ionized by plasma generated under reduced pressure to generate a film-forming species, and is deposited and formed on an adherend. For example, it is possible to use an apparatus as disclosed in Japanese Patent Application Laid-Open No. 2003-237754 and a spacer made of a dielectric material around the mouth and shoulder of the container. In this case, the internal electrode having a gas supply pipe function is preferably disposed at a position inside the bottle and 1/5 (20%) to 4/5 (80%) of the bottle height, A position of 1/4 (25%) to 3/4 (75%) is more preferable.

DLC膜の原料ガスは、アセチレン、エチレン、プロピレン等の不飽和炭化水素化合物;メタン、エタン、プロパン、シクロヘキサン等の飽和炭化水素化合物;ベンゼン、トルエン、キシレン等の芳香族炭化水素化合物等が挙げられる。これらは単独でも2種以上を混合して用いてもよい。中でも、エチレン又はアセチレンガスを単独使用することが好ましい。   Examples of the source gas for the DLC film include unsaturated hydrocarbon compounds such as acetylene, ethylene and propylene; saturated hydrocarbon compounds such as methane, ethane, propane and cyclohexane; aromatic hydrocarbon compounds such as benzene, toluene and xylene. . These may be used alone or in admixture of two or more. Among these, it is preferable to use ethylene or acetylene gas alone.

上記の原料ガスには少量の水素、有機化合物が混合されていてもよい。また、原料ガスをアルゴン、ヘリウム等の希ガスで希釈してもよい。   A small amount of hydrogen or an organic compound may be mixed in the source gas. Further, the source gas may be diluted with a rare gas such as argon or helium.

プラズマ化学蒸着法によりDLC膜を成膜する場合、真空排気(減圧)とガス導入を行い、内部が所定の圧力(真空度)となった時点で原料ガスをプラズマ化させて成膜する。成膜時の内部圧力は、良好な膜質や物性と成膜所要時間との兼ね合いから、1Pa以上50Pa以下とすることが好ましい。原料ガスの導入は、内部電極を通しても、チャンバ内部に直接導入してもよい。特に、ガス導入管と内部電極を兼用することで、部品数を低減でき、成膜成分が部品に付着、落下し容器成膜へ異物混入することを防ぐことができる。   When a DLC film is formed by plasma chemical vapor deposition, evacuation (reduced pressure) and gas introduction are performed, and when the inside reaches a predetermined pressure (degree of vacuum), the source gas is turned into plasma and formed. The internal pressure at the time of film formation is preferably 1 Pa or more and 50 Pa or less in view of good film quality and physical properties and the required film formation time. The source gas may be introduced through the internal electrode or directly into the chamber. In particular, by using both the gas introduction pipe and the internal electrode, the number of parts can be reduced, and film formation components can be prevented from adhering to and falling from the parts and mixing foreign substances into the container film formation.

チャンバ内部を所定の真空度とし、原料ガスを供給し、且つ、外部電極とグランド電位の内部電極との間に電圧を印加して、外部電極に収容している容器の内部にプラズマを発生させることで、容器内面にガスバリア性膜を成膜することができる。例えば、電源として高周波電源を用いる場合、その周波数は例えば数MHz以上数100MHz以下、汎用性の観点から好ましくは6MHz又は13.56MHzとすることができる。また、後述するように十分なガスバリア性を確保するとともに、胴部と口部との色むらを低減する観点から、電力(出力)は3000W以上5000W以下とすることが重要である。成膜時間は例えば0.2〜20秒、好ましくは1.0〜10秒とすることができる。   The inside of the chamber is set to a predetermined degree of vacuum, source gas is supplied, and a voltage is applied between the external electrode and the internal electrode at the ground potential to generate plasma inside the container accommodated in the external electrode. Thus, a gas barrier film can be formed on the inner surface of the container. For example, when a high frequency power source is used as the power source, the frequency can be, for example, several MHz to several hundred MHz, and preferably 6 MHz or 13.56 MHz from the viewpoint of versatility. Further, as will be described later, it is important that the power (output) is 3000 W or more and 5000 W or less from the viewpoint of ensuring sufficient gas barrier properties and reducing color unevenness between the body portion and the mouth portion. The film formation time can be, for example, 0.2 to 20 seconds, preferably 1.0 to 10 seconds.

本発明者の知見では、大型プラスチックボトルの形状に合わせて、従来の小型プラスチックボトルにおけるガスバリア性膜の成膜条件(例えば特開平8−053116号公報)をスケールアップしただけでは、良質なガスバリア性膜(特にDLC膜)が得られない。その理由については以下の通りである。   According to the knowledge of the present inventor, high-quality gas barrier properties can be obtained only by scaling up the film-forming conditions (for example, JP-A-8-053116) of a gas barrier film in a conventional small plastic bottle in accordance with the shape of a large plastic bottle. A film (particularly a DLC film) cannot be obtained. The reason is as follows.

上述したように、一般に、胴部内径(D)比べ口部内径(D)が小さい容器のDLC成膜では、胴部3に比べ口部1のDLC膜厚が増大し、濃色となる。更に、5リットル以上の大型容器を、数100ミリリットルから3リットル等の容器の一般的な成膜条件、例えば高周波出力数100〜1000W程度で成膜し、胴部3の十分なガスバリア性を得ようとすると、口部の濃色が顕著となり且つ不透明性が強まってしまう。 As described above, in general, in DLC film formation of a container having a smaller inner diameter (D 1 ) than the inner diameter (D 2 ) of the body, the DLC film thickness of the mouth 1 is larger than that of the body 3, and Become. Furthermore, a large container of 5 liters or more is formed under a general film formation condition of a container of several hundred milliliters to 3 liters, for example, a high frequency output of about 100 to 1000 W, and a sufficient gas barrier property of the body 3 is obtained. If it tries to do so, the dark color of the mouth becomes conspicuous and the opacity increases.

これに対し、容積5リットル以上、口部内径(D)の胴部内径(D)に対する比(D/D)が0.1以上0.3以下であれば、高周波電力3000W以上の条件を用いることで、口部の着色が軽減され良好な外観が得られる。この現象の要因は、成膜出力を高出力にすると、原料ガスのプラズマ分解が進み、容器胴部への成膜と開口部側への成膜とのバランスが変化することであると考えられる。容器へのDLC成膜において、成膜条件は膜質に影響を与えるために、極めて重要であり、中でも、成膜出力は、原料ガスのプラズマ分解に大きな影響を与えるため、DLC膜の膜質や物性に、大きな影響を与える要件である。上記の通り、高周波電力を3000W以上とすることで、従来のような口部内側に筒状部材を装填したり、ガス排気管をボトル内部に配置したり、口部にマスキング部材を装着させたりしてDLC成膜を行わずとも、ボトルのガスバリア性と、口部の濃色化抑制および透明性とを兼備できる。高周波電力は4000W以上がより好ましい。一方、発熱や異常放電を抑制する観点等から、高周波電力の上限は5000W以下が好ましい。 In contrast, volume 5 liters or more, if the ratio (D 1 / D 2) is 0.1 or more and 0.3 or less relative to the barrel inner diameter of the mouth portion inner diameter (D 1) (D 2) , the high-frequency power 3000W more By using these conditions, the coloring of the mouth is reduced and a good appearance is obtained. The cause of this phenomenon is thought to be that the plasma decomposition of the source gas progresses when the film formation output is increased, and the balance between the film formation on the container body and the film formation on the opening side changes. . In the DLC film formation on the container, the film formation conditions are extremely important because they affect the film quality, and among them, the film formation output greatly affects the plasma decomposition of the source gas. It is a requirement that greatly affects As described above, by setting the high-frequency power to 3000 W or more, a cylindrical member is loaded inside the mouth as in the past, a gas exhaust pipe is placed inside the bottle, or a masking member is attached to the mouth. Even without performing DLC film formation, it is possible to combine the gas barrier properties of the bottle with the suppression of darkening of the mouth and transparency. The high frequency power is more preferably 4000 W or more. On the other hand, from the viewpoint of suppressing heat generation and abnormal discharge, the upper limit of the high frequency power is preferably 5000 W or less.

なお、高周波電力の出力が大きい場合は、成膜時圧力が高いと異常放電が発生し易く、膜自体や樹脂容器のみならず成膜装置を損傷させる可能性が高まる。異常放電の抑制には、容器内を効率よく排気させることが効果的である。この点、ボトルの口径/胴径比(D/D)が0.1以上、好ましくは0.15以上、より好ましくは0.2以上であれば、容器内部にガス排気管を配置せずとも、排気口を容器装填位置から離れた成膜チャンバー壁面に設置した従来設備条件において、容器内を効率的に排気できる。 When the output of the high-frequency power is large, if the pressure during film formation is high, abnormal discharge is likely to occur, and the possibility of damaging not only the film itself and the resin container but also the film forming apparatus increases. In order to suppress abnormal discharge, it is effective to exhaust the inside of the container efficiently. In this respect, if the bottle diameter / body diameter ratio (D 1 / D 2 ) is 0.1 or more, preferably 0.15 or more, more preferably 0.2 or more, a gas exhaust pipe is disposed inside the container. At least, the inside of the container can be efficiently evacuated under the conventional equipment conditions in which the exhaust port is installed on the wall surface of the film forming chamber away from the container loading position.

また、一般に、高出力ではその発熱により、容器の肩部等の比較的薄い樹脂厚の箇所が熱変形を受けやすいが、胴径130mm以上、より好ましくは180mm以上、樹脂厚0.2mm以上、より好ましくは0.3mm以上あれば被熱による熱変形は発生し難い。なお、樹脂厚は、大容積容器のボトル強度の点からも必然的に厚めに設計されるので、本開示のプラスチックボトル10を製造するにあたり、高周波電力条件のために特別な樹脂厚設計は不要である。   Further, generally, at a high output, due to the heat generation, a relatively thin resin thickness portion such as a shoulder portion of the container is easily subjected to thermal deformation, but a trunk diameter of 130 mm or more, more preferably 180 mm or more, a resin thickness of 0.2 mm or more, More preferably, if it is 0.3 mm or more, thermal deformation due to heat is unlikely to occur. In addition, since the resin thickness is inevitably designed from the viewpoint of the bottle strength of the large-capacity container, no special resin thickness design is required for the high-frequency power condition in manufacturing the plastic bottle 10 of the present disclosure. It is.

また、本発明者の知見では、成膜出力の増大と共に、DLC膜のラマンスペクトル分析のI(S)/I(N)が高くなり、有機成分に対し無機成分の比率が高くなる傾向にある。また、無機成分の比率が大きいほど、即ちI(S)/I(N)が大きいほど、DLC膜の硬度の増大や、屈折率の増大という傾向が得られている。このことは、DLC膜の無機成分比が高いほど、膜が緻密化(密度増大)し、概して膜の硬度および屈折率が増大するという相関性の現れであり、ひいては、容器のガスバリア性が高くなる(酸素透過率が小さくなる)効果が得られるものと考えられる。以上のことから、DLC膜の化学蒸着時に3000W以上5000W以下の高周波電力を採用することにより、口部の着色抑制による良好な外観性と高いガスバリア性とを兼備した容器を得ることができる。   Further, according to the inventor's knowledge, as the deposition output increases, I (S) / I (N) in the Raman spectrum analysis of the DLC film increases, and the ratio of the inorganic component to the organic component tends to increase. . Further, as the ratio of the inorganic component is larger, that is, as I (S) / I (N) is larger, the tendency of increasing the hardness of the DLC film and increasing the refractive index is obtained. This is a manifestation of the correlation that the higher the inorganic component ratio of the DLC film, the denser the film (density increases), and generally the hardness and refractive index of the film increase. As a result, the gas barrier property of the container increases. It is considered that the effect (being reduced oxygen permeability) is obtained. From the above, by adopting high frequency power of 3000 W or more and 5000 W or less at the time of chemical vapor deposition of the DLC film, it is possible to obtain a container having both good appearance and high gas barrier property by suppressing coloring of the mouth.

2.プラスチックボトル
本開示の製造方法により製造されるプラスチックボトル10について説明する。図1に示すように、プラスチックボトル10は、熱可塑性樹脂を主原料とする未成膜プラスチックボトルの内面にDLC膜5を設けたものである。未成膜プラスチックボトルは、口部1、肩部2、胴部3及び底部4を有し、容積が5L以上35L以下であり、口部内径(D)と胴部内径(D)との比(D/D)が0.1以上0.3以下である。
2. Plastic Bottle The plastic bottle 10 manufactured by the manufacturing method of the present disclosure will be described. As shown in FIG. 1, the plastic bottle 10 is obtained by providing a DLC film 5 on the inner surface of an undeposited plastic bottle made mainly of a thermoplastic resin. The undeposited plastic bottle has a mouth part 1, a shoulder part 2, a body part 3 and a bottom part 4, has a volume of 5L or more and 35L or less, and has a mouth inner diameter (D 1 ) and a body inner diameter (D 2 ). The ratio (D 1 / D 2 ) is 0.1 or more and 0.3 or less.

2.1.原料
未成膜プラスチックボトルは、熱可塑性樹脂を主原料とする。「主原料」とは、ガスバリア性膜5を除くプラスチックボトルを構成する原料の90質量%以上が熱可塑性樹脂であることを意味する。好ましくは、当該原料の95質量%以上、より好ましくは98質量%以上を熱可塑性樹脂とする。熱可塑性樹脂の具体例としては、ポリエチレンテレフタレート(PET)樹脂、ポリエチレンナフタレート(PEN)樹脂、ポリカーボネート(PC)樹脂等が挙げられる。特に、上述のブロー成形がより容易となることから、PET樹脂が好ましい。また、耐熱性を向上させるためにナイロン系樹脂を混合してもよい。一方、言うまでもないが、プラスチックボトル10は、原料として金属化合物のスカベンジャーを含まない。スカベンジャーを含む場合、リサイクルが困難となり、上記課題を解決することができない。
2.1. Raw material Non-deposited plastic bottles are mainly made of thermoplastic resin. The “main raw material” means that 90% by mass or more of the raw material constituting the plastic bottle excluding the gas barrier film 5 is a thermoplastic resin. Preferably, 95% by mass or more, more preferably 98% by mass or more of the raw material is thermoplastic resin. Specific examples of the thermoplastic resin include polyethylene terephthalate (PET) resin, polyethylene naphthalate (PEN) resin, polycarbonate (PC) resin, and the like. In particular, PET resin is preferable because the above-described blow molding becomes easier. Further, a nylon resin may be mixed in order to improve heat resistance. On the other hand, needless to say, the plastic bottle 10 does not contain a metal compound scavenger as a raw material. When a scavenger is included, recycling becomes difficult and the above problem cannot be solved.

2.2.形状
プラスチックボトル10は、図1に示すように、口部1、肩部2、胴部3及び底部4を有する。これら口部1、肩部2、胴部3及び底部4の形状は、特に限定されるものではない。特に図1に示すように、口部1、肩部2及び胴部3の水平断面形状が円形状であるものが好ましい。後述するガスバリア性膜5をボトル内面により均一に設けることができるためである。
2.2. Shape As shown in FIG. 1, the plastic bottle 10 has a mouth portion 1, a shoulder portion 2, a trunk portion 3, and a bottom portion 4. The shapes of the mouth part 1, the shoulder part 2, the trunk part 3 and the bottom part 4 are not particularly limited. In particular, as shown in FIG. 1, it is preferable that the horizontal cross-sectional shapes of the mouth part 1, the shoulder part 2 and the body part 3 are circular. This is because the gas barrier film 5 described later can be provided uniformly on the inner surface of the bottle.

プラスチックボトル10は、口部内径(D)と胴部内径(D)との比(D/D)が0.1以上0.3以下である必要がある。上述したように、胴径(D)に比べ口径(D)が小さい容器のDLC成膜では、胴部に比べ口部のDLC膜厚が増大し、濃色となる。さらに、一般的なガスバリア成膜条件によって胴部の十分なガスバリア性を得ようとすると、口部1の濃色が大変顕著となり且つ不透明性が強まる。容積5L以上35L以下の場合において、口部内径(D)と胴部内径(D)との比(D/D)が0.1以上0.3以下であれば、化学蒸着において3000W以上5000W以下の高周波電力を採用することで、ボトルのガスバリア性と、口部の濃色化抑制および透明性とを兼備できる。この場合、口部1の内側に筒状部材を装填したり、ガス排気管をボトル内部に配置したり、口部1にマスキング部材を装着させることなく、容易にDLC成膜を行うことができる。 Plastic bottle 10 needs the ratio of the mouth inside diameter (D 1) and the barrel inner diameter (D 2) (D 1 / D 2) of 0.1 to 0.3. As described above, when a DLC film is formed in a container having a smaller diameter (D 1 ) than the body diameter (D 2 ), the DLC film thickness at the mouth increases compared to the body, resulting in a dark color. Furthermore, when it is attempted to obtain a sufficient gas barrier property of the body portion by general gas barrier film forming conditions, the deep color of the mouth portion 1 becomes very remarkable and the opacity is increased. In the case of more volume 5L 35L or less, if the ratio of the mouth inside diameter (D 1) and the barrel inner diameter (D 2) (D 1 / D 2) of 0.1 to 0.3, in a chemical vapor deposition By adopting high-frequency power of 3000 W or more and 5000 W or less, it is possible to combine the gas barrier property of the bottle with the suppression of darkening of the mouth and transparency. In this case, DLC film formation can be easily performed without loading a cylindrical member inside the mouth portion 1, disposing a gas exhaust pipe inside the bottle, or attaching a masking member to the mouth portion 1. .

プラスチックボトル10は、例えば、口部の内径(D)が30mm以上100mm以下、胴部の内径(D)が150mm以上350mm以下、全体高さ(H)が250mm以上700mm以下、口部高さ(H)が20mm以上80mm以下、胴部高さ(H)が100mm以上600mm以下である。 The plastic bottle 10 has, for example, an inner diameter (D 1 ) of the mouth part of 30 mm to 100 mm, an inner diameter (D 2 ) of the body part of 150 mm to 350 mm, and an overall height (H 1 ) of 250 mm to 700 mm. The height (H 2 ) is 20 mm or more and 80 mm or less, and the body height (H 3 ) is 100 mm or more and 600 mm or less.

プラスチックボトル10の口部1、肩部2、胴部3及び底部4における厚み(ガスバリア性膜5の厚みを除く)は、特に限定されるものではない。例えば、上述したように、ボトル内面に化学蒸着によってDLC膜5を設ける場合にボトルの熱変形を抑制する観点からは、肩部2や胴部3が0.2mm以上の厚みを有することが好ましく、0.3mm以上がより好ましい。   The thickness (except for the thickness of the gas barrier film 5) at the mouth portion 1, the shoulder portion 2, the body portion 3 and the bottom portion 4 of the plastic bottle 10 is not particularly limited. For example, as described above, when the DLC film 5 is provided on the inner surface of the bottle by chemical vapor deposition, it is preferable that the shoulder portion 2 and the trunk portion 3 have a thickness of 0.2 mm or more from the viewpoint of suppressing thermal deformation of the bottle. 0.3 mm or more is more preferable.

プラスチックボトル10の容積は5L以上35L以下である。下限は、飲料サーバー用容器として運搬効率の良さの点から、好ましくは10L以上である。従来、このような大容積のプラスチックボトルに対しガスバリア性膜を設けることは想定されていなかった。   The volume of the plastic bottle 10 is 5L or more and 35L or less. The lower limit is preferably 10 L or more from the viewpoint of good transport efficiency as a beverage server container. Conventionally, it has not been assumed that a gas barrier film is provided on such a large volume plastic bottle.

2.3.DLC膜
プラスチックボトル10は、化学蒸着によって内面にDLC膜5が設けられる。DLC膜を成膜したプラスチックボトル(例えばPETボトル)のリサイクル可否の閾条件については、PETボトルリサイクル推進協議会の自主基準に基づいた評価によってリサイクル可否が判断される。この点、胴部3におけるDLC膜の厚みは、15nm以上50nm以下とすることが好ましく、ガスバリア安定性の点から20nm以上がより好ましい。このような厚みとすることで、リサイクル性に優れるとともに、酸素透過率が一層低いプラスチックボトルとすることができる。一方、口部1におけるDLC膜の厚みは、通常、胴部3のDLC膜の厚みよりも大きくなる。この場合、口部1におけるDLC膜の厚みは、500nm以上1000nm以下であることが好ましい。下限がより好ましくは600nm以上であり、上限がより好ましくは750nm以下である。口部1のDLC膜の厚みが大き過ぎると、口部1の濃色が顕著となり且つ不透明性が強まる。
2.3. DLC film The plastic bottle 10 is provided with the DLC film 5 on the inner surface by chemical vapor deposition. Regarding the threshold condition of whether or not a plastic bottle (for example, PET bottle) on which a DLC film is formed can be recycled, whether or not recycling is possible is determined by evaluation based on a voluntary standard of the PET bottle recycling promotion council. In this respect, the thickness of the DLC film in the body portion 3 is preferably 15 nm or more and 50 nm or less, and more preferably 20 nm or more from the viewpoint of gas barrier stability. By setting it as such thickness, while being excellent in recyclability, it can be set as a plastic bottle with a still lower oxygen permeability. On the other hand, the thickness of the DLC film at the mouth 1 is usually larger than the thickness of the DLC film at the body 3. In this case, it is preferable that the thickness of the DLC film in the mouth portion 1 is not less than 500 nm and not more than 1000 nm. The lower limit is more preferably 600 nm or more, and the upper limit is more preferably 750 nm or less. If the thickness of the DLC film at the mouth 1 is too large, the dark color of the mouth 1 becomes noticeable and the opacity increases.

また、この場合、胴部3の内面におけるDLC膜は、ラマン分光分析におけるI(D)/I(G)が0.16以上の結合組成を有することが好ましい。一方、I(D)/I(G)の上限は特に限定されないが、0.22以下とすることが好ましい。I(D)/I(G)は、DLC膜の六員環ネットワークの終端に起因すると考えられるピークと、sp結合由来のグラファイト構造に起因するピークの強度比であり、上記の範囲であれば、膜の透明性、強度、ガスバリア性を良好に兼備し易い。 In this case, it is preferable that the DLC film on the inner surface of the body portion 3 has a bond composition in which I (D) / I (G) in Raman spectroscopic analysis is 0.16 or more. On the other hand, the upper limit of I (D) / I (G) is not particularly limited, but is preferably 0.22 or less. I (D) / I (G) is the intensity ratio of the peak attributed to the end of the six-membered ring network of the DLC film and the peak attributed to the graphite structure derived from the sp 2 bond, and is within the above range. For example, the transparency, strength, and gas barrier properties of the film are easily combined.

さらに、この場合、胴部3の内面におけるDLC膜は、ラマン分光分析におけるI(S)/I(N)が1.0以上の結合組成を有することが好ましい。I(S)/I(N)が大きいことは、有機成分に対し無機成分の比率の高いことを意味し、DLC膜の緻密化による膜の硬度の増大や、屈折率の増大と相関性があり、それらがガスバリア性の向上に働き、ボトルの酸素透過率が小さくなる。この点、I(S)/I(N)の上限は特に限定されないが、通常15以下、好ましくは13以下、より好ましくは10以下である。   Furthermore, in this case, it is preferable that the DLC film on the inner surface of the body portion 3 has a bond composition in which I (S) / I (N) in Raman spectroscopic analysis is 1.0 or more. A large I (S) / I (N) means that the ratio of the inorganic component to the organic component is high, and there is a correlation with an increase in the hardness of the film due to the densification of the DLC film and an increase in the refractive index. Yes, they work to improve the gas barrier properties, and the oxygen permeability of the bottle is reduced. In this respect, the upper limit of I (S) / I (N) is not particularly limited, but is usually 15 or less, preferably 13 or less, more preferably 10 or less.

2.4.酸素透過率
プラスチックボトル10は、酸素透過率が0.10cc/m/day以下であることが好ましい。より好ましくは、0.09cc/m/day以下である。また、プラスチックボトル10は、酸素透過率が0.06cc/pkg/day以下であることが好ましい。より好ましくは0.05cc/pkg/day以下である。このような酸素透過率であれば、例えば、炭酸を含む飲料が充填されるサーバー用容器として用いることができる。
2.4. Oxygen permeability The plastic bottle 10 preferably has an oxygen permeability of 0.10 cc / m 2 / day or less. More preferably, it is 0.09 cc / m 2 / day or less. The plastic bottle 10 preferably has an oxygen permeability of 0.06 cc / pg / day or less. More preferably, it is 0.05 cc / pg / day or less. With such oxygen permeability, for example, it can be used as a server container filled with a beverage containing carbonic acid.

2.5.用途
プラスチックボトル10の用途は特に限定されるものではないが、内部に液体が充填されることが好ましい。液体の種類は特に限定されないが、例えばジュース、ビール等の炭酸飲料を含む各種飲料、食用油、工業用油等の各種油、醤油等の調味料などが挙げられ、炭酸ガスや風味の抜け防止や大気中の酸素透過に依る酸化防止に有効である。特に、上述の通り、本開示のプラスチックボトル10は、ガスバリア性に優れることから、炭酸を含む飲料のサーバー用容器として用いることもできる。
2.5. Use The use of the plastic bottle 10 is not particularly limited, but it is preferable that the inside be filled with a liquid. The type of liquid is not particularly limited, but examples include various beverages including carbonated beverages such as juice and beer, various oils such as edible oil and industrial oil, seasonings such as soy sauce, and prevention of loss of carbon dioxide and flavor. It is effective in preventing oxidation due to oxygen permeation in the atmosphere. In particular, as described above, the plastic bottle 10 of the present disclosure is excellent in gas barrier properties, and thus can be used as a container for a server for beverages containing carbonic acid.

以下、実施例に基づいて本開示のプラスチックボトルについてより詳細に説明する。   Hereinafter, the plastic bottle of the present disclosure will be described in more detail based on examples.

1.ガスバリア性膜(DLC膜)の評価方法について
<膜厚(nm)>
口部膜厚は、口部天面から下方へ10mmの位置の膜厚とした。
胴部膜厚は、容器全高の半分の高さ位置の膜厚とした。
膜厚測定は、容器内面に黒色マジックインキで線を書いてマスキングを行ってDLC成膜した後に、エタノールでマスキングを除去し、その箇所を小坂研究所株式会社製高精度微細形状測定器ET4000A機を用いて測定した。
1. About evaluation method of gas barrier film (DLC film) <film thickness (nm)>
The film thickness at the mouth was 10 mm downward from the top of the mouth.
The film thickness of the trunk portion was a film thickness at a height position that was half of the total height of the container.
Film thickness measurement is done by writing a line with black magic ink on the inner surface of the container to perform DLC film formation, and then removing the masking with ethanol. The location is a high-precision fine shape measuring instrument ET4000A manufactured by Kosaka Laboratory Ltd. It measured using.

<屈折率>
エリプソメーターJ.A.Woollam製M−2000X機を用いて、入射角45〜75度、測定波長380〜780nmの条件で偏光状態を表す振幅反射率Psi(Ψ)と位相差Delta(Δ)の2つの値を測定し、得られたスペクトルをフレネルの反射係数やスネルの法則などの光理論に基づいた光学モデルで解析し、屈折率を得た。
屈折率は、膜の密度に関係があり、一般的に、密度が大きければ屈折率は大きくなる。密度が大きければ、膜も緻密になり、バリア性も向上するものと考えられる。
<Refractive index>
Ellipsometer J.M. A. Using a Woollam M-2000X machine, two values of an amplitude reflectance Psi (Ψ) and a phase difference Delta (Δ) representing a polarization state are measured under conditions of an incident angle of 45 to 75 degrees and a measurement wavelength of 380 to 780 nm. The obtained spectrum was analyzed with an optical model based on optical theory such as Fresnel reflection coefficient and Snell's law to obtain the refractive index.
The refractive index is related to the density of the film. In general, the higher the density, the higher the refractive index. If the density is high, the film will be dense and the barrier property will be improved.

<3次元表面粗さSa(nm)>
容器全高の半分の高さ位置の容器の一部を切り出し、ブルカー製白色干渉顕微鏡Contour GTX機を用い、測定範囲720μm角、接眼レンズ倍率1.0倍、対物レンズ倍率10倍の条件で測定し、3次元表面粗さを解析した。
膜表面形状が粗過ぎると膜の状態が悪く、3次元表面粗さSaが10nm以下程度であると、概して良好なガスバリア性を得易い傾向がある。
<Three-dimensional surface roughness Sa (nm)>
A part of the container at half the height of the container is cut out and measured using a Bruker white interference microscope Contour GTX machine under the conditions of a measuring range of 720 μm square, an eyepiece magnification of 1.0 times, and an objective lens magnification of 10 times. Three-dimensional surface roughness was analyzed.
If the film surface shape is too rough, the film state is poor, and if the three-dimensional surface roughness Sa is about 10 nm or less, generally good gas barrier properties tend to be easily obtained.

<ナノインデンテーション法硬度(N/m)>
容器全高の半分の高さ位置の容器胴部内面に、シリコンウェハー20mm角を貼り付けてDLC成膜を行い、測定に供した。
株式会社エリオ二クス製ナノインデンテーション試験機ENT−2100、三角錐(バーコビッチ型)圧子を用い、3回測定した平均値を算出した。測定においては、基材(シリコンウェハー)の影響が現れないように、圧子押し込み深さはDLC膜表面から膜厚の5分の1から10分の1相当の深さとし、DLC膜の硬度を測定解析した。
<Nanoindentation hardness (N / m 2 )>
A DLC film was formed by attaching a 20 mm square silicon wafer to the inner surface of the container barrel at half the height of the entire container, and used for measurement.
The average value measured 3 times was calculated using a nanoindentation tester ENT-2100 manufactured by Erio Nix Co., Ltd. and a triangular pyramid (Berkovic type) indenter. In the measurement, the indenter indentation depth is set to a depth corresponding to 1/5 to 1/10 of the film thickness from the surface of the DLC film so that the influence of the substrate (silicon wafer) does not appear, and the hardness of the DLC film is measured. Analyzed.

<ラマン分光分析>
容器全高の半分の高さ位置の容器胴部内面に、シリコンウェハー20mm角を貼り付けてDLC成膜を行い、分析に供した。
測定は、Thermo Fisher Scientific製Nicolet Almega XR機を用い、 励起波長532nm、分解能約10cm−1、照射径1μφm(対物レンズ100倍、ピーンホール径25μm)、励起出力1%(試料位置において0.1mW以下)、露光時間30秒、積算回数6回の条件で行い、以下のスペクトル解析を行った。
<Raman spectroscopy>
A DLC film was formed by attaching a 20 mm square silicon wafer to the inner surface of the container body at half the height of the entire container, and was subjected to analysis.
Measurement was performed using a Nicolet Almega XR machine manufactured by Thermo Fisher Scientific, an excitation wavelength of 532 nm, a resolution of about 10 cm −1 , an irradiation diameter of 1 μφm (objective lens 100 times, a pein hole diameter of 25 μm), and an excitation output of 1% (0.1 mW at the sample position). The following spectrum analysis was performed under the conditions of an exposure time of 30 seconds and an integration count of 6 times.

<ラマン分光分析I(S)/I(N)>
DLC膜に由来するスペクトルは、およそ1800cm−1から1000cm−1の範囲のピークに現れ(例えば、図2参照。)、また、DLC膜中に含まれるDLCの原料由来の水素元素量に比例して蛍光強度が高くなり、ラマンスペクトルのベースライン強度が高くなる。
上記ピークの約1500cm−1のピークトップ波数位置におけるピーク強度I(t)、その位置のベースライン強度I(N)、I(t)からベースラインの強度I(N)を差し引いたピーク強度I(S)から、I(S)/I(N)を算出した。
I(S)/I(N)は、炭素−炭素結合量と炭素−水素結合量の相対的な比率が表れ、この値が高いほどDLC膜が硬質となり、概してガスバリア性が良好な傾向が得られる。
<Raman spectroscopic analysis I (S) / I (N)>
The spectrum derived from the DLC film appears at a peak in the range of approximately 1800 cm −1 to 1000 cm −1 (see, for example, FIG. 2), and is proportional to the amount of hydrogen element derived from the DLC raw material contained in the DLC film. As a result, the fluorescence intensity increases and the baseline intensity of the Raman spectrum increases.
The peak intensity I (t) at the peak top wavenumber position of about 1500 cm −1 of the above peak, the baseline intensity I (N) at that position, and the peak intensity I obtained by subtracting the baseline intensity I (N) from I (t). From (S), I (S) / I (N) was calculated.
I (S) / I (N) shows the relative ratio of the amount of carbon-carbon bonds and the amount of carbon-hydrogen bonds, and the higher this value, the harder the DLC film, and the better the gas barrier properties generally. It is done.

<ラマン分光分析 I(D)/I(G)>
およそ1800cm−1から1000cm−1の範囲のピークについて、フォークト関数を用いて、DLCの六員環ネットワークの終端に帰属すると考えられるピークトップ約1500cm−1のピーク(D−band)と、sp結合のグラファイト構造に帰属されるピークトップ約1330cm−1のピーク(G−band)と、帰属不明のピークトップ約1200cm−1のピークとの3つにピーク分離解析を行い、D−bandとG−bandの各ピークトップ強度I(D)、I(G)との比からI(D)/I(G)を算出した。
I(D)/I(G)値が高いほど、概してガスバリア性が良好な傾向が得られる。
<Raman spectroscopy I (D) / I (G)>
For a peak in the range of approximately 1800 cm −1 to 1000 cm −1 , a peak (D-band) of about 1500 cm −1 considered to be attributed to the end of the DLC six-membered ring network using a Forked function, sp 2 Peak separation analysis is performed on three peaks, a peak (G-band) having a peak top of about 1330 cm −1 attributed to the graphite structure of the bond and a peak having an unidentified peak top of about 1200 cm −1 , and D-band and G I (D) / I (G) was calculated from the ratio of each -band peak top intensity I (D), I (G).
Generally, the higher the I (D) / I (G) value, the better the gas barrier property.

<酸素透過率測定>
MOCON社製OX−TRAN2/61機を用い、ボトル開口に上記装置用のアダプターヘッドを装着して、測定23℃50RH%条件下でのボトル当たりの酸素透過率(cc/pkg/24h・air)を測定した。また、ボトル内表面積値を用い、単位面積当たりの酸素透過率(cc/m/24・air)を算出した。
<Oxygen permeability measurement>
Using an OX-TRAN 2/61 machine manufactured by MOCON, the adapter head for the above device was attached to the bottle opening, and the oxygen permeation rate per bottle (cc / pkg / 24h · air) at a measurement of 23 ° C. and 50 RH%. Was measured. Further, using the bottle surface area values were calculated oxygen permeability per unit area (cc / m 2/24 · air).

<口部の着色>
ボトルを正立させて目視観察し、次の基準で評価した。
◎ 極薄い黄褐色
○ 薄い黄褐色
△ やや濃い黄褐色
× 濃い黄褐色
<Coloring the mouth>
The bottle was upright and visually observed and evaluated according to the following criteria.
◎ Extremely light tan ○ Light tan △ Slightly dark tan × Dark tan

2.プラスチックボトルの作製
2.1.ブロー成形
<実施例1〜4、比較例1〜3(容積20L)>
ガスバリア性膜を成膜するための未成膜プラスチックボトルとして、ポリエチレンテレフタレート樹脂製の有底円筒状のパリソンとボトル形状の金型とを用い、2ステップブロー成形法(コールドパリソン法)によって得られたボトルを用意した。ボトルの容積は20L、胴部内径(D)は235mm、口部内径(D)と胴部内径(D)との比(D/D)は0.2とした。
2. Production of plastic bottle 2.1. Blow molding <Examples 1 to 4, Comparative Examples 1 to 3 (volume 20 L)>
It was obtained by a two-step blow molding method (cold parison method) using a bottomed cylindrical parison made of polyethylene terephthalate resin and a bottle-shaped mold as an undeposited plastic bottle for depositing a gas barrier film. A bottle was prepared. Volume of the bottle was 20L, barrel inner diameter (D 2) is 235 mm, the ratio of the mouth inside diameter (D 1) and the barrel inner diameter (D 2) (D 1 / D 2) is 0.2.

<比較例4(容積15L)>
実施例1とパリソン形状、金型形状を変えた他は同様の方法で、ガスバリア性膜を成膜するためのプラスチックボトルを得た。ボトルの容積は15L、胴部内径(D)は235mm、口部内径(D)と胴部内径(D)との比(D/D)は0.2とした。
<Comparative example 4 (volume 15L)>
A plastic bottle for forming a gas barrier film was obtained in the same manner as in Example 1 except that the parison shape and mold shape were changed. The volume of bottle 15L, barrel inner diameter (D 2) is 235 mm, the ratio of the mouth inside diameter (D 1) and the barrel inner diameter (D 2) (D 1 / D 2) was 0.2.

<参考例1(容積1L)>
実施例1とパリソン形状、金型形状を変えた他は同様の方法で、ガスバリア性膜を成膜するためのプラスチックボトルを得た。ボトルの容積は1L、胴部内径(D)は106mm、口部内径(D)と胴部内径(D)との比(D/D)は0.2とした。
<Reference Example 1 (Volume 1L)>
A plastic bottle for forming a gas barrier film was obtained in the same manner as in Example 1 except that the parison shape and mold shape were changed. Volume of the bottle was 1L, barrel inner diameter (D 2) is 106 mm, the ratio of the mouth inside diameter (D 1) and the barrel inner diameter (D 2) (D 1 / D 2) is 0.2.

<参考例2(容積0.5L)>
実施例1とパリソン形状、金型形状を変えた他は同様の方法で、ガスバリア性膜を成膜するためのプラスチックボトルを得た。ボトルの容積は0.5L、胴部内径(D)は70.5mm、口部内径(D)と胴部内径(D)との比(D/D)は0.3とした。
<Reference Example 2 (Volume 0.5 L)>
A plastic bottle for forming a gas barrier film was obtained in the same manner as in Example 1 except that the parison shape and mold shape were changed. Volume of the bottle is 0.5 L, barrel inner diameter (D 2) is 70.5 mm, the ratio of the mouth inside diameter (D 1) and the barrel inner diameter (D 2) (D 1 / D 2) is 0.3 and did.

2.2.DLC膜の成膜
図3に概略的に示すように、ボトルの大きさに合わせた外部電極と、容器口部上方のチャンバー壁に排気口を有するCVD装置に、ブロー成形した未成膜ボトルを収容し、細孔を先端部に設けたガス供給管を兼ねたφ10mmの内部電極をボトル内部のボトル全高1/2(50%)の位置に配設して真空排気を行い、容器内部の到達圧力が15Paとなった後に、高純度アセチレンガスを所定の流量で導入し、所定の高周波電源、出力(電力)、時間でプラズマ化学蒸着によって、ボトル内面にDLC膜を成膜した。成膜条件及び成膜されたDLC膜の性状について、下記表1に示す。
2.2. Film formation of DLC film As shown schematically in FIG. 3, a blow-molded non-film forming bottle is accommodated in a CVD apparatus having an external electrode matched to the size of the bottle and an exhaust port on the chamber wall above the container opening. Then, an internal electrode of φ10mm that also serves as a gas supply pipe with a fine hole at the tip is arranged at a position where the total bottle height in the bottle is ½ (50%), and evacuation is performed. After the pressure reached 15 Pa, a high purity acetylene gas was introduced at a predetermined flow rate, and a DLC film was formed on the inner surface of the bottle by plasma chemical vapor deposition at a predetermined high frequency power source, output (power), and time. The film formation conditions and the properties of the formed DLC film are shown in Table 1 below.

表1に示すように、DLC膜の成膜条件のうち、高周波出力を3000W以上5000W以下とすることで、ガスバリア性に優れるとともに、胴部と口部との色むらが低減されたプラスチックボトルが得られた(実施例1〜4)。
一方で、高周波出力を2000Wと小さくした場合、ガスバリア性に優れるものの、胴部と口部との色むらが顕著であった(比較例1)。
また、高周波出力を1000Wと小さくした場合、酸素透過率が0.13cc/m/dayと大きくなった(比較例2)。胴部のDLC膜の性状を確認したところ、DLC膜が実施例1〜4及び比較例1と比べて軟質であり、硬度測定において下地(Siウエハ)の影響が現れるほどであった。また、I(D)/I(G)やI(S)/I(N)(有機成分に対する無機成分の比)が実施例1〜5と比べて小さく、また、実施例1〜4及び比較例1に比べて膜が脆かった。
さらに、ガスバリア性膜を有さない場合、当然ながら、酸素透過率を十分小さなものとすることができなかった(比較例3、4)。
尚、実施例1〜4と参考例1、2とを比べた場合、実施例1〜4における酸素透過率が参考例1、2に匹敵するものであることがわかる。すなわち、上記した成膜条件にてボトルの内面にDLC膜を設けることで、ボトル容積を大容積とした場合においても、ガスバリア性に優れるプラスチックボトルが製造可能であることが分かった。
As shown in Table 1, among the conditions for forming the DLC film, by setting the high-frequency output to 3000 W or more and 5000 W or less, the plastic bottle has excellent gas barrier properties and reduced color unevenness between the body and the mouth. Obtained (Examples 1 to 4).
On the other hand, when the high frequency output was reduced to 2000 W, although the gas barrier property was excellent, the color unevenness between the trunk portion and the mouth portion was remarkable (Comparative Example 1).
Further, when the high-frequency output was reduced to 1000 W, the oxygen permeability increased to 0.13 cc / m 2 / day (Comparative Example 2). When the property of the DLC film of the trunk portion was confirmed, the DLC film was softer than those of Examples 1 to 4 and Comparative Example 1, and the influence of the base (Si wafer) appeared in the hardness measurement. Moreover, I (D) / I (G) and I (S) / I (N) (ratio of the inorganic component to the organic component) are smaller than those in Examples 1 to 5, and Examples 1 to 4 and Comparison Compared to Example 1, the membrane was brittle.
Furthermore, when the gas barrier film was not provided, it was obvious that the oxygen permeability could not be made sufficiently small (Comparative Examples 3 and 4).
In addition, when Examples 1-4 and Reference Examples 1 and 2 are compared, it turns out that the oxygen permeability in Examples 1-4 is comparable with Reference Examples 1 and 2. That is, it was found that by providing a DLC film on the inner surface of the bottle under the film forming conditions described above, a plastic bottle having excellent gas barrier properties can be manufactured even when the bottle volume is increased.

本発明により、十分なガスバリア性を確保するとともに、口部と胴部とでDLC膜による色むらが低減された、5リットル以上大容積のプラスチックボトルを製造できる。大容積のガスバリア性プラスチックボトルの製造によって、例えば、ビール用サーバー容器などの軽量化ができると共に、返却工程が不要となることから、それらの運搬、保管の労力を大幅に軽減できる。更には、容器口部の着色や胴部との色むらが少ないことから、容器全体の透明性が良好となり、使用者へ異質感や不安感を与えることもなく、特に飲料用途等のガスバリア性大型プラスチック容器の市場展開に有効である。   According to the present invention, it is possible to manufacture a plastic bottle having a large capacity of 5 liters or more in which sufficient gas barrier properties are secured and color unevenness due to the DLC film is reduced between the mouth and the body. By manufacturing a large-capacity gas barrier plastic bottle, for example, it is possible to reduce the weight of a server container for beer and the like, and since a return process becomes unnecessary, the labor for transporting and storing them can be greatly reduced. Furthermore, since there is little coloring of the container mouth and color unevenness with the body, the transparency of the entire container is improved, and it does not give the user a different texture or anxiety. It is effective for the market development of large plastic containers.

1 口部
2 肩部
3 胴部
4 底部
5 ガスバリア性膜
10 プラスチックボトル
1 mouth part 2 shoulder part 3 trunk part 4 bottom part 5 gas barrier film 10 plastic bottle

Claims (8)

未成膜プラスチックボトルの内面に化学蒸着法によってDLC膜を成膜する工程を備える、プラスチックボトルの製造方法であって、
前記未成膜プラスチックボトルは、口部、肩部、胴部及び底部を有し、容積が5L以上35L以下であり、口部内径(D)と胴部内径(D)との比(D/D)が0.1以上0.3以下であり、
前記化学蒸着法による前記DLC膜の成膜において3000W以上5000W以下の高周波電力を採用する、
製造方法。
A method for producing a plastic bottle comprising a step of forming a DLC film on the inner surface of an undeposited plastic bottle by chemical vapor deposition,
The undeposited plastic bottle has a mouth, a shoulder, a body, and a bottom, has a volume of 5L to 35L, and a ratio of a mouth inner diameter (D 1 ) to a body inner diameter (D 2 ) (D 1 / D 2 ) is 0.1 or more and 0.3 or less,
Adopting a high frequency power of 3000 W or more and 5000 W or less in the formation of the DLC film by the chemical vapor deposition method,
Production method.
前記胴部の内面における前記DLC膜の厚みを15nm以上50nm以下とし、
前記口部の内面における前記DLC膜の厚みを500nm以上1000nm以下とする、
請求項1に記載の製造方法。
The thickness of the DLC film on the inner surface of the trunk is 15 nm or more and 50 nm or less,
The thickness of the DLC film on the inner surface of the mouth is 500 nm or more and 1000 nm or less,
The manufacturing method according to claim 1.
前記胴部の内面における前記DLC膜は、ラマン分光分析におけるI(D)/I(G)が0.16以上の結合組成を有する、
請求項1又は2に記載の製造方法。
The DLC film on the inner surface of the trunk portion has a bond composition in which I (D) / I (G) in Raman spectroscopic analysis is 0.16 or more.
The manufacturing method of Claim 1 or 2.
前記胴部の内面における前記DLC膜は、ラマン分光分析におけるI(S)/I(N)が1.0以上の結合組成を有する、
請求項1〜3のいずれか1項に記載の製造方法。
The DLC film on the inner surface of the body portion has a bond composition in which I (S) / I (N) in Raman spectroscopic analysis is 1.0 or more.
The manufacturing method of any one of Claims 1-3.
前記プラスチックボトルの酸素透過率が0.10cc/m/day以下である、
請求項1〜4のいずれか1項に記載の製造方法。
The oxygen permeability of the plastic bottle is 0.10 cc / m 2 / day or less,
The manufacturing method of any one of Claims 1-4.
前記プラスチックボトルの酸素透過率が0.06cc/pkg/day以下である、
請求項1〜5のいずれか1項に記載の製造方法。
The oxygen permeability of the plastic bottle is 0.06 cc / pg / day or less,
The manufacturing method of any one of Claims 1-5.
ブロー成形によって前記未成膜プラスチックボトルを得る、
請求項1〜6のいずれか1項に記載の製造方法。
Obtaining the undeposited plastic bottle by blow molding,
The manufacturing method of any one of Claims 1-6.
前記プラスチックボトルは、炭酸を含む飲料が充填されるものである、
請求項1〜7のいずれか1項に記載の製造方法。
The plastic bottle is filled with a beverage containing carbonic acid,
The manufacturing method of any one of Claims 1-7.
JP2017057585A 2017-03-23 2017-03-23 How to make a plastic bottle Active JP6848578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017057585A JP6848578B2 (en) 2017-03-23 2017-03-23 How to make a plastic bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017057585A JP6848578B2 (en) 2017-03-23 2017-03-23 How to make a plastic bottle

Publications (2)

Publication Number Publication Date
JP2018159115A true JP2018159115A (en) 2018-10-11
JP6848578B2 JP6848578B2 (en) 2021-03-24

Family

ID=63795871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017057585A Active JP6848578B2 (en) 2017-03-23 2017-03-23 How to make a plastic bottle

Country Status (1)

Country Link
JP (1) JP6848578B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299331A (en) * 2005-04-19 2006-11-02 Mitsubishi Shoji Plast Kk Plasma cvd film deposition apparatus, and method of manufacturing plastic container having gas barrier property
JP2009542917A (en) * 2006-07-12 2009-12-03 ステイン, ラルフ Plasma assisted chemical vapor deposition method for inner wall of hollow body
JP2012012487A (en) * 2010-06-30 2012-01-19 Adeka Corp Method of manufacturing plastic bottle
JP2012172208A (en) * 2011-02-22 2012-09-10 All-Tech Inc Method and device for treating inner surface of plastic bottle
JP2016033044A (en) * 2014-07-31 2016-03-10 キリン株式会社 Method and device for producing disinfected container
JP2016055895A (en) * 2014-09-09 2016-04-21 大日本印刷株式会社 Composite container and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299331A (en) * 2005-04-19 2006-11-02 Mitsubishi Shoji Plast Kk Plasma cvd film deposition apparatus, and method of manufacturing plastic container having gas barrier property
JP2009542917A (en) * 2006-07-12 2009-12-03 ステイン, ラルフ Plasma assisted chemical vapor deposition method for inner wall of hollow body
JP2012012487A (en) * 2010-06-30 2012-01-19 Adeka Corp Method of manufacturing plastic bottle
JP2012172208A (en) * 2011-02-22 2012-09-10 All-Tech Inc Method and device for treating inner surface of plastic bottle
JP2016033044A (en) * 2014-07-31 2016-03-10 キリン株式会社 Method and device for producing disinfected container
JP2016055895A (en) * 2014-09-09 2016-04-21 大日本印刷株式会社 Composite container and manufacturing method of the same

Also Published As

Publication number Publication date
JP6848578B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
US6589619B1 (en) Recycling method
EP0773167B1 (en) Carbon film-coated plastic container manufacturing apparatus and method
US7754302B2 (en) DLC film coated plastic container, and device and method for manufacturing the plastic container
CA2822599C (en) Gas-barrier plastic molded product and manufacturing process therefor
WO2006126677A1 (en) Apparatus for manufacturing gas barrier plastic container, method for manufacturing the container, and the container
JP5695673B2 (en) Method for producing gas barrier plastic molding
JP4566719B2 (en) Carbon film coated plastic container manufacturing method, plasma CVD film forming apparatus and plastic container
CN103214186B (en) A kind of glass substrate and preparation method thereof
JP4372833B1 (en) Method for producing gas barrier thin film coated plastic container
JP2018159115A (en) Method for producing plastic bottle
JP6859785B2 (en) Plastic bottle
JP5706777B2 (en) Gas barrier plastic molding
JP2001158415A (en) Plastic bottle for atmospheric low temperature plasma treatment and its manufacturing method
JP2007070734A (en) Plastic container coated with diamond-like carbon film
Nakaya et al. Gas and flavor barrier thin film coating to plastic closures
JP4078326B2 (en) Film forming apparatus and method
JP2003335395A (en) Method of using beverage bottle coated with carbon film
JP7223611B2 (en) Gas barrier container and method for producing gas barrier container
JP4945398B2 (en) Manufacturing method of ultra-thin carbon film coated plastic container
JP7005256B2 (en) Gas barrier container
JP2003312670A (en) Carbon film coated drink bottle
JP2003327248A (en) Manufacturing method of beverage bottle coated with carbon film
JP2006225711A (en) Apparatus for forming carbon film and method for manufacturing vessel having inner face coated with carbon film
JP2007076658A (en) Film formed container, and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R151 Written notification of patent or utility model registration

Ref document number: 6848578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151