JP2018157809A - Aging macular degeneration model animal of nonhuman primate and its creation method - Google Patents

Aging macular degeneration model animal of nonhuman primate and its creation method Download PDF

Info

Publication number
JP2018157809A
JP2018157809A JP2017242163A JP2017242163A JP2018157809A JP 2018157809 A JP2018157809 A JP 2018157809A JP 2017242163 A JP2017242163 A JP 2017242163A JP 2017242163 A JP2017242163 A JP 2017242163A JP 2018157809 A JP2018157809 A JP 2018157809A
Authority
JP
Japan
Prior art keywords
model animal
age
macular degeneration
related macular
amd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017242163A
Other languages
Japanese (ja)
Inventor
宏幸 ▲高▼松
宏幸 ▲高▼松
Hiroyuki Takamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Pharma Res Inc
Hamamatsu Pharma Research Inc
Original Assignee
Hamamatsu Pharma Res Inc
Hamamatsu Pharma Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Pharma Res Inc, Hamamatsu Pharma Research Inc filed Critical Hamamatsu Pharma Res Inc
Priority to US15/853,190 priority Critical patent/US10532112B2/en
Publication of JP2018157809A publication Critical patent/JP2018157809A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of creating an AMD model animal of a nonhuman primate, and a method of evaluating an effect of a test substance for the prevention or the treatment of the AMD and a method of screening the substance having the effect of the prevention or the treatment of the AMD by using the AMD model animal created by the method.SOLUTION: A method of creating an AMD model animal is characterized by administering a sodium Iodate in a vitreous body of an animal individual of a nonhuman primate. Also, the AMD model animal of the nonhuman primate is created by the method of creating the AMD model animal. By using the created AMD model animal, a method of evaluating an effect of the test substance for prevention or treatment of the AMD is provided for evaluating the prevention or treatment effect of the AMD of the test substance.SELECTED DRAWING: None

Description

本発明は、非ヒト霊長類の加齢黄斑変性(AMD)のモデル動物を作製する方法、当該方法により作製されたAMDモデル動物を用いて被験物質のAMDの予防又は治療に対する効果を評価する方法、及び前記AMDモデル動物を用いてAMDの予防又は治療効果を有する物質をスクリーニングする方法に関する。
本願は、2017年3月23日に、日本に出願された特願2017−57515号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing a model animal for non-human primate age-related macular degeneration (AMD), and a method for evaluating the effect of a test substance on the prevention or treatment of AMD using the AMD model animal produced by the method. And a method for screening a substance having an effect of preventing or treating AMD using the AMD model animal.
This application claims priority on March 23, 2017 based on Japanese Patent Application No. 2017-57515 for which it applied to Japan, and uses the content here.

AMDは、眼底中央にあたる黄斑の網膜視細胞が障害される疾患であり、中途失明疾患の原因の一つである。AMDは主に、萎縮型(ドライ型)と滲出型(ウェット型)に分けられる。萎縮型は、視細胞とそれに隣接する網膜色素上皮細胞、脈絡膜毛細血管が徐々に変性萎縮する。滲出型は、脈絡膜から新生血管が発生して、出血や浮腫により比較的急激に病状が進行する。ヒトの萎縮型AMDでは、網膜において、網膜色素上皮(RPE)の変性(菲薄化や縮小)、外顆粒層(ONL)の菲薄化や消失が観察される。   AMD is a disease in which macular retinal photoreceptor cells in the center of the fundus are impaired, and is one of the causes of premature blindness. AMD is mainly divided into an atrophy type (dry type) and an exudation type (wet type). In the atrophic type, the photoreceptor cells, retinal pigment epithelial cells adjacent to the photoreceptor cells, and choroidal capillaries gradually degenerately atrophy. In the exudative type, new blood vessels are generated from the choroid and the disease progresses relatively rapidly due to bleeding and edema. In human atrophic AMD, retinal pigment epithelium (RPE) degeneration (thinning and shrinking) and outer granular layer (ONL) thinning and disappearance are observed in the retina.

萎縮型AMD様モデル動物としては、光網膜障害モデルが知られている(例えば、非特許文献1参照。)。強い光は網膜の障害を引き起こす。実際に、マウスの光網膜障害モデルでは、網膜に変性が生じていることが確認されている。その他、AMD様モデル動物としては、ヨウ素酸ナトリウムを全身投与又は硝子体に投与することによりRPEを変性させたげっ歯類及びウサギのモデル動物が知られている(例えば、非特許文献2又は3参照。)。   A photoretinal disorder model is known as an atrophic AMD-like model animal (see, for example, Non-Patent Document 1). Intense light causes retinal damage. In fact, in the mouse photoretinal disorder model, it has been confirmed that degeneration has occurred in the retina. In addition, as AMD-like model animals, rodent and rabbit model animals in which RPE is denatured by systemic administration of sodium iodate or administration to the vitreous are known (for example, Non-Patent Document 2 or 3). reference.).

一般的に、疾患の治療薬の開発においては、被験物質の治療効果を調べるために、当該疾患のモデル動物が利用されている。モデル動物により適正な薬効評価を得るためには、使用するモデル動物が対象とする疾患の病態を精確に反映していることが肝要である。非ヒト霊長類は、遺伝的にも、神経解剖学的にも、薬物動態学的にも、げっ歯類よりもヒトに近いため、よりヒトに投与した際の作用効果と近似した作用効果が得られると期待できる。このため、ヒトに対して有効な治療薬の開発のためには、モデル動物として、げっ歯類よりも、ヒト以外の霊長類を用いることが好ましい。特に、黄斑があるのは霊長類のみであることから、げっ歯類又はウサギのAMDモデル動物は、ヒトのAMDの病態を反映できていない。そこで、AMDの予防薬や治療薬の開発のため、AMDの病態をより精確に反映した非ヒト霊長類のAMDモデル動物が必要とされている。   In general, in the development of a therapeutic drug for a disease, a model animal for the disease is used to examine the therapeutic effect of a test substance. In order to obtain an appropriate evaluation of drug efficacy by a model animal, it is important that the model animal to be used accurately reflects the pathology of the target disease. Non-human primates are genetically, neuroanatomically, and pharmacokinetically closer to humans than rodents, so they are more effective than humans. You can expect to get it. For this reason, in order to develop a therapeutic agent effective for humans, it is preferable to use primates other than humans as rodents rather than rodents. In particular, since only primates have macula, rodent or rabbit AMD model animals cannot reflect the pathology of human AMD. Therefore, in order to develop preventive and therapeutic drugs for AMD, non-human primate AMD model animals that more accurately reflect the pathology of AMD are needed.

奥野勉、他3名、労働安全衛生総合研究所特別研究報告、2014年、第44巻、第67〜70ページ。Tsutomu Okuno, 3 others, Occupational Safety and Health Research Institute Special Research Report, 2014, Vol. 44, 67-70. 石田順子、他2名、川崎医学会誌、2016年、第42巻、第2号、第85〜93ページ。Junko Ishida, two others, Journal of Kawasaki Medical Society, 2016, Vol. 42, No. 2, pages 85-93. Cho et al.,Japanese Journal of Ophthalmology,2016,vol.60,p.226−237.Cho et al., Japanese Journal of Ophthalmology, 2016, vol.60, p.226-237.

本発明は、非ヒト霊長類のAMDモデル動物を作製する方法、非ヒト霊長類のAMDモデル動物、並びに当該方法により作製されたAMDモデル動物を用いて、被験物質のAMDの予防又は治療に対する効果の評価方法及びAMDの予防又は治療効果を有する物質のスクリーニング方法を提供することを目的とする。   The present invention relates to a method for producing a non-human primate AMD model animal, a non-human primate AMD model animal, and an effect of the test substance on the prevention or treatment of AMD using the AMD model animal produced by the method. It is an object of the present invention to provide a method for evaluating the above and a method for screening a substance having an effect of preventing or treating AMD.

本発明者は、上記課題を解決すべく鋭意研究した結果、非ヒト霊長類の硝子体内に直接ヨウ素酸ナトリウムを投与することによって、全身に対するヨウ素酸ナトリウムの影響を抑えつつ、ヒトの加齢黄斑変性と同様の網膜のONLの菲薄化及びRPEの変性を、視機能の大半を担っている黄斑中心窩周辺に引き起こすことができることを見出し、本発明を完成させた。   As a result of earnest research to solve the above problems, the present inventor has administered sodium iodate directly into the vitreous body of a non-human primate, thereby suppressing the effect of sodium iodate on the whole body, and human aging macular The inventors have found that retinal ONL thinning and RPE degeneration similar to degeneration can be caused around the central macular fovea, which is responsible for the majority of visual functions.

すなわち、本発明に係るAMDモデル動物の作製方法、非ヒト霊長類のAMDモデル動物、並びに当該方法により作製されたAMDモデル動物を用いる、被験物質のAMDの予防又は治療に対する効果の評価方法及びAMDの予防又は治療効果を有する物質のスクリーニング方法は、下記[1]〜[11]の通りである。
[1] 非ヒト霊長類の動物個体の硝子体内に、ヨウ素酸ナトリウムを投与することを特徴とする、AMDモデル動物の作製方法。
[2] 硝子体1個当たりのヨウ素酸ナトリウムの投与量が0.5〜2.5mgである、前記[1]のAMDモデル動物の作製方法。
[3] ヨウ素酸ナトリウムを水又はリン酸生理食塩水に溶解させたヨウ素酸ナトリウム溶液を、硝子体内に注入する、前記[1]又は[2]のAMDモデル動物の作製方法。
[4] 前記動物個体が、カニクイザル又はアカゲザルである、前記[1]〜[3]のいずれかのAMDモデル動物の作製方法。
[5] 作製されたAMDモデル動物において、網膜のONLの菲薄化及びRPEの変性が、黄斑中心窩周辺に観察される、前記[1]〜[4]のいずれかのAMDモデル動物の作製方法。
[6] 作製されたAMDモデル動物の眼底に、地図状萎縮が生じている、前記[1]〜[4]のいずれかのAMDモデル動物の作製方法。
[7] 作製されたAMDモデル動物が、萎縮型AMDモデル動物である、前記[1]〜[6]のいずれかのAMDモデル動物の作製方法。
[8] 黄斑中心窩周辺に、網膜のONLの菲薄化及びRPEの変性を有する、非ヒト霊長類のAMDモデル動物。
[9] 眼底に地図状萎縮が生じている、非ヒト霊長類のAMDモデル動物。
[10] 前記[1]〜[7]のいずれかのAMDモデル動物の作製方法により非ヒト霊長類のAMDモデル動物を作製し、
作製されたAMDモデル動物を用いて、被験物質のAMDの予防又は治療効果について評価する、被験物質のAMDの予防又は治療に対する効果の評価方法。
[11] 前記[1]〜[7]のいずれかのAMDモル動物の作製方法により非ヒト霊長類のAMDモデル動物を作製し、
作製されたAMDモデル動物を用いて、被験物質のAMDの予防又は治療効果について評価し、
網膜のONLの菲薄化及びRPEの変性からなる群より選択される1種以上が、前記被験物質を摂取する前と比較して前記被験物質を摂取した後のほうが改善されている場合に、当該被験物質を、AMDの予防又は治療効果を有する物質として選抜する、AMDの予防又は治療効果を有する物質のスクリーニング方法。
That is, a method for producing an AMD model animal according to the present invention, a non-human primate AMD model animal, a method for evaluating the effect of a test substance on the prevention or treatment of AMD using an AMD model animal produced by the method, and AMD The methods for screening for substances having the preventive or therapeutic effects are [1] to [11] below.
[1] A method for producing an AMD model animal, comprising administering sodium iodate into a vitreous body of a non-human primate animal individual.
[2] The method for producing an AMD model animal according to [1], wherein the dose of sodium iodate per vitreous is 0.5 to 2.5 mg.
[3] The method for producing an AMD model animal according to [1] or [2] above, wherein a sodium iodate solution in which sodium iodate is dissolved in water or phosphate physiological saline is injected into the vitreous body.
[4] The method for producing an AMD model animal according to any one of [1] to [3], wherein the animal individual is a cynomolgus monkey or a rhesus monkey.
[5] The method for producing an AMD model animal according to any one of the above [1] to [4], wherein in the produced AMD model animal, thinning of the ONL of the retina and degeneration of RPE are observed around the macular fovea .
[6] The method for producing an AMD model animal according to any one of [1] to [4], wherein map-like atrophy occurs in the fundus of the produced AMD model animal.
[7] The method for producing an AMD model animal according to any one of [1] to [6], wherein the produced AMD model animal is an atrophic AMD model animal.
[8] A non-human primate AMD model animal having retinal ONL thinning and RPE degeneration around the macular fovea.
[9] A non-human primate AMD model animal having a map-like atrophy in the fundus.
[10] A non-human primate AMD model animal is produced by the method for producing an AMD model animal of any one of [1] to [7],
The evaluation method of the effect with respect to the prevention or the treatment of AMD of a test substance which evaluates the prevention or the treatment effect of the test substance with AMD using the produced AMD model animal.
[11] A non-human primate AMD model animal is produced by the method for producing an AMD mole animal according to any one of [1] to [7],
Using the produced AMD model animal, evaluate the preventive or therapeutic effect of test substance AMD,
When at least one selected from the group consisting of thinning of the retina ONL and degeneration of RPE is improved after taking the test substance compared to before taking the test substance, A screening method for a substance having a preventive or therapeutic effect for AMD, wherein a test substance is selected as a substance having a preventive or therapeutic effect for AMD.

本発明に係るAMDモデル動物の作製方法により、ヒトのAMDの特徴的な病態である網膜におけるONLの菲薄化とRPEの変性を備える非ヒト霊長類のモデル動物を作製することができる。
当該作製方法により作製されたAMDモデル動物を用いることによって、被験物質のAMDの予防又は治療に対する効果の評価や、AMDの予防又は治療効果を有する物質のスクリーニングをより精度良く行うことができる。
By the method for producing an AMD model animal according to the present invention, a non-human primate model animal having ONL thinning and RPE degeneration in the retina, which is a characteristic pathology of human AMD, can be produced.
By using the AMD model animal produced by the production method, it is possible to evaluate the effect of the test substance on the prevention or treatment of AMD and to screen the substance having the prevention or treatment effect of AMD with higher accuracy.

実施例1において、ヨウ素酸ナトリウム溶液の投与前(投与0日目)、投与後10日目、及び投与後26日目における、ヨウ素酸ナトリウム硝子体内投与モデル動物の網膜のOCT画像を示す。In Example 1, the OCT image of the retina of the model animal administered with sodium iodate intravitreally before administration of the sodium iodate solution (day 0 of administration), 10 days after administration, and 26 days after administration is shown. 実施例1において、ヨウ素酸ナトリウム溶液の投与前(投与0日目)及び投与後66日目における、ヨウ素酸ナトリウム硝子体内投与モデル動物の網膜のOCT画像を示す。In Example 1, the OCT image of the retina of a model animal with sodium iodate intravitreal administration before administration of the sodium iodate solution (day 0 of administration) and 66 days after administration is shown. 実施例2において、ヨウ素酸ナトリウム溶液の投与前(投与0日目)、投与後38日目、及び投与後66日目における、ヨウ素酸ナトリウム硝子体内投与モデル動物の眼底所見(上段)及び眼底自発蛍光所見(下段)を示す。In Example 2, the fundus findings (upper stage) and spontaneous fundus of the model animal with sodium iodate intravitreal administration before administration of the sodium iodate solution (day 0 of administration), 38 days after administration, and 66 days after administration Fluorescence findings (bottom) are shown. 実施例2において、ヨウ素酸ナトリウム溶液の投与後66日目のヨウ素酸ナトリウム硝子体内投与モデル動物のフルオレセイン蛍光眼底所見を示す。In Example 2, the fluorescein fluorescence fundus findings of the model animal administered sodium iodate intravitreally on the 66th day after administration of the sodium iodate solution are shown. 実施例2において、ヨウ素酸ナトリウム溶液の投与後66日目のヨウ素酸ナトリウム硝子体内投与モデル動物の中心窩周辺部位の組織のHE染色像を示す。In Example 2, the HE dyeing | staining image of the structure | tissue of the foveal periphery site | part of the sodium iodate intravitreal administration model animal of the 66th day after administration of a sodium iodate solution is shown. 参考例1において、光網膜障害モデル動物の中心窩周辺部位の組織のHE染色像を示す。In Reference Example 1, an HE-stained image of the tissue around the fovea of a photoretinal disorder model animal is shown.

本発明に係るAMDモデル動物の作製方法は、非ヒト霊長類の動物個体の硝子体内に、ヨウ素酸ナトリウムを投与する。硝子体内に直接、ヨウ素酸ナトリウムを投与することにより、全身に対するヨウ素酸ナトリウムの影響を抑えつつ、ヒトのAMD、特にヒトの萎縮型AMDと同様の網膜の変性、すなわち、網膜のONLの菲薄化、RPEの変性、及び地図状萎縮を引き起こすことができる。   In the method for producing an AMD model animal according to the present invention, sodium iodate is administered into the vitreous body of a non-human primate animal individual. By administering sodium iodate directly into the vitreous, the effects of sodium iodate on the whole body are suppressed, while retinal degeneration similar to that of human AMD, particularly human atrophic AMD, that is, thinning of the retinal ONL Can cause degeneration of RPE and map-like atrophy.

なお、本発明に係るAMDモデル動物の作製方法により作製されたAMDモデル動物の網膜の変性は、ヒトのAMD患者における観察と同様にして、光干渉断層計(OCT)、眼底検査、眼底自発蛍光検査、フルオレセイン蛍光眼底造影、インドシアニングリーン蛍光眼底造影などの、一般的に網膜の状態を調べる各種検査を組み合わせることによって観察することができる。具体的には、本発明に係るAMDモデル動物の作製方法により作製されたAMDモデル動物の網膜のONLの菲薄化及びRPEの変性は、ヒトのAMD患者における観察と同様にして観察することができる。例えば、光干渉断層計(OCT)により、眼球の網膜のONLと黄斑とRPEを、直接観察することができる。本発明に係るAMDモデル動物の眼球のOCT画像では、ヒトの萎縮型AMDと同様に、ONLの菲薄化、外境界膜の途絶、脈絡膜信号の増強、並びに、視細胞内節/外節層ライン(ellipsoid zone)、錐体外節先端ライン(interdigitation zone)、及び外顆粒層の消失が観察される。また、AMDモデル動物の眼底の地図状萎縮は、ヒトの萎縮型AMDと同様に、眼底検査により観察される。この地図状萎縮の萎縮部位では、眼底自発蛍光検査では低蛍光を示し、フルオレセイン蛍光眼底所見では強い過蛍光を示す。   In addition, degeneration of the retina of an AMD model animal produced by the method for producing an AMD model animal according to the present invention is similar to the observation in human AMD patients, such as optical coherence tomography (OCT), fundus examination, and fundus autofluorescence. Observation can be made by combining various examinations for examining the state of the retina, such as examination, fluorescein fluorescence fundus angiography, indocyanine green fluorescence fundus angiography. Specifically, ONL thinning and RPE degeneration in the retina of AMD model animals produced by the method for producing AMD model animals according to the present invention can be observed in the same manner as in human AMD patients. . For example, the optical retina tomography (OCT) can directly observe the ONL, macular and RPE of the retina of the eyeball. In the OCT image of the eyeball of an AMD model animal according to the present invention, as in human atrophic AMD, ONL thinning, outer boundary membrane disruption, choroidal signal enhancement, and photoreceptor inner / outer layer line (Ellipsoid zone), cone outer segment tip line (interdigitation zone), and disappearance of outer granule layer are observed. Further, the map-like atrophy of the fundus of the AMD model animal is observed by a fundus examination in the same manner as human atrophic AMD. At the atrophic site of this map-like atrophy, the fundus autofluorescence examination shows low fluorescence, and the fluorescein fluorescence fundus findings show strong hyperfluorescence.

本発明において、硝子体内に投与するヨウ素酸ナトリウムの量は、網膜の変性を引き起すために充分な量であればよく、投与する非ヒト霊長類の種類や年齢等を考慮して適宜決定することができる。ヨウ素酸ナトリウムの投与量が多すぎる場合には、網膜等への障害が大き過ぎ、AMDモデル動物としては使用し難い場合がある。そこで、本発明においては、硝子体1個当たりのヨウ素酸ナトリウムの投与量は、0.5〜2.5mgとすることが好ましく、1.0〜1.5mgとすることがより好ましい。また、硝子体内へのヨウ素酸ナトリウムの投与は、単回投与であってもよく、適当な間隔で複数回に分けて投与してもよい。   In the present invention, the amount of sodium iodate administered into the vitreous body may be an amount sufficient to cause degeneration of the retina, and is appropriately determined in consideration of the type and age of the non-human primate to be administered. be able to. When the dose of sodium iodate is too large, damage to the retina and the like is too great, and it may be difficult to use as an AMD model animal. Therefore, in the present invention, the dose of sodium iodate per vitreous body is preferably 0.5 to 2.5 mg, more preferably 1.0 to 1.5 mg. In addition, the administration of sodium iodate into the vitreous may be a single dose or may be divided into a plurality of times at an appropriate interval.

硝子体内へヨウ素酸ナトリウムを投与する方法は特に限定されるものではない。例えば、ヨウ素酸ナトリウムを適当な溶媒に溶解させたヨウ素酸ナトリウム溶液を、硝子体内に直接注入することができる。本発明においては、ヨウ素酸ナトリウム溶液を溶解させる溶媒としては、硝子体への溶媒自体による影響を小さくできることから、水、リン酸生理食塩水(PBS)、又は適当な緩衝液であることが好ましく、水又はリン酸生理食塩水がより好ましい。   The method for administering sodium iodate into the vitreous is not particularly limited. For example, a sodium iodate solution in which sodium iodate is dissolved in a suitable solvent can be directly injected into the vitreous. In the present invention, the solvent for dissolving the sodium iodate solution is preferably water, phosphate physiological saline (PBS), or an appropriate buffer because the influence of the solvent itself on the vitreous body can be reduced. Water or phosphate physiological saline is more preferable.

本発明に係るAMDモデル動物の作製方法において、AMD様の網膜の変性を生じさせる動物個体は、ヒト以外の霊長類であればよく、原猿類であってもよく、真猿類であってもよい。原猿類としては、キツネザル類、ロリス類、ガラゴ類、メガネザル類が挙げられ、真猿類としては、クモザル類、オマキザル類、マーモセット類、オナガザル類、コロブス類、類人猿が挙げられる。本発明に係るAMDモデル動物の作製方法において、AMDモデル動物を作製する非ヒト霊長類としては、AMD発症のメカニズムや薬剤に対する反応がよりヒトに近いことから、真猿類であることが好ましく、オナガザル類、コロブス類、又は類人猿であることがより好ましく、カニクイザル、アカゲザル、ニホンザル、シロテナガザル、ゴリラ、オランウータン、チンパンジー、又はボノボであることがさらに好ましく、カニクイザル又はアカゲザルであることがよりさらに好ましい。   In the method for producing an AMD model animal according to the present invention, the animal individual causing the AMD-like retina degeneration may be a non-human primate, may be a primate, or may be a monkey. . Examples of the original monkeys include lemurs, loris, galagos and tarsiers, and examples of the true monkeys include spider monkeys, capuchin monkeys, marmosets, rhododendrons, colobus, and apes. In the method for producing an AMD model animal according to the present invention, the non-human primate for producing the AMD model animal is preferably a monkey since the mechanism of AMD onset and the response to the drug are closer to humans. More preferably, it is a cynomolgus, a colobus, or an ape, more preferably a cynomolgus monkey, a rhesus monkey, a Japanese monkey, a white gibbon, a gorilla, an orangutan, a chimpanzee, or a bonobo, and even more preferably a cynomolgus monkey or a rhesus monkey.

硝子体内へのヨウ素酸ナトリウムの投与により、網膜のONLの菲薄化、RPEの変性、及び眼底の地図状萎縮を引き起こすことができる。ヨウ素酸ナトリウムの投与前及び投与後の動物個体は、通常の飼育の際に与えられる飼料と同様の飼料を摂取させて飼育することができる。   Administration of sodium iodate into the vitreous can cause retinal ONL thinning, RPE degeneration, and fundus map atrophy. The animal individual before and after administration of sodium iodate can be bred by ingesting the same feed as that given during normal breeding.

ヒトのAMD、特にヒトの萎縮型AMDでは、網膜において、ONLの菲薄化及びRPEの変性からなる群より選択される1種以上の所見が観察される。本発明に係るAMDモデル動物の作製方法により作製された非ヒト霊長類のAMDモデル動物も、網膜に、ONLの菲薄化及びRPEの変性からなる群より選択される1種以上の所見が観察される。   In human AMD, particularly human atrophic AMD, one or more findings selected from the group consisting of ONL thinning and RPE degeneration are observed in the retina. In the non-human primate AMD model animal produced by the method for producing an AMD model animal according to the present invention, one or more findings selected from the group consisting of ONL thinning and RPE degeneration are also observed in the retina. The

ヒトのAMD、特にヒトの萎縮型AMDでは、眼底に地図状萎縮が観察される。本発明に係るAMDモデル動物の作製方法により作製された非ヒト霊長類のAMDモデル動物も、眼底に地図状萎縮が観察される。地図状萎縮の判定は、ヒトの萎縮型AMDと同様の基準で行うことができる(例えば、高橋寛二、「ガイドライン 萎縮型加齢黄斑変性の診断基準」、日眼会誌、2015年10月10日、第119巻第10号、第671〜677ページ)。具体的には、地図状萎縮は、主に、眼底の中心窩を中心とする直径6000mm以内の領域に生じる萎縮である。地図状萎縮は、一般的に、円形、卵円形、房状、又は地図状の形態であって、境界が鮮明であり、その直径は250μm(視神経乳頭縁での網膜静脈径の直径の約2倍)以上である。また、網膜色素上皮の低色素又は脱色素変化も観察されるため、脈絡膜中大血管が明瞭に透見可能であり、さらに、眼底自発蛍光所見では、明らかな低蛍光を示し、蛍光眼底所見では過蛍光を示す。   In human AMD, particularly human atrophic AMD, map-like atrophy is observed in the fundus. Non-human primate AMD model animals produced by the method for producing AMD model animals according to the present invention also have map-like atrophy observed on the fundus. Judgment of map-like atrophy can be performed according to the same standard as human atrophic AMD (for example, Koji Takahashi, “Guidelines for Diagnosis of Atrophic Age-Related Macular Degeneration”, Jinkai, October 10, 2015) 119, No. 10, pp. 671-677). Specifically, the map-like atrophy is mainly atrophy that occurs in a region within a diameter of 6000 mm centered on the fovea of the fundus. Geographic atrophy is generally in the form of a circle, oval, tuft, or map with a sharp boundary and a diameter of 250 μm (approximately 2 times the diameter of the retinal vein diameter at the optic disc edge). Times) or more. In addition, since low pigment or depigmentation changes of the retinal pigment epithelium are observed, the choroidal middle and large blood vessels can be clearly seen.Further, the fundus autofluorescence shows clear low fluorescence. Shows hyperfluorescence.

作製されたAMDモデル動物は、AMDの病態解析や、被験物質のAMDの予防又は治療に対する効果の評価や、AMDの予防又は治療効果を有する物質のスクリーニングに非常に有用である。当該AMDモデル動物は、ヒトの萎縮型AMDで観察される病態を備えているため、特に、萎縮型AMDの病態解析や、被験物質の萎縮型AMDの予防又は治療に対する効果の評価や、萎縮型AMDの予防又は治療効果を有する物質のスクリーニングに非常に有用である。   The produced AMD model animal is very useful for analyzing the pathophysiology of AMD, evaluating the effect of the test substance on the prevention or treatment of AMD, and screening for a substance having an effect of preventing or treating AMD. Since the AMD model animal has a pathological condition observed in human atrophic AMD, in particular, pathological analysis of atrophic AMD, evaluation of the effect of the test substance on the prevention or treatment of atrophic AMD, and atrophic type It is very useful for screening for substances having preventive or therapeutic effects for AMD.

具体的には、本発明に係るAMDモデル動物の作製方法により作製されたAMDモデル動物に対して、AMDの治療剤の候補化合物である被験物質を投与し、眼、特に網膜におけるAMD特有の組織学的特徴に対する影響を調べ、被験物質のAMDに対する治療効果について評価する。投与した被験物質によって、当該被験物質を摂取する前と比較して、網膜のONLの菲薄化、RPEの変性、及び眼底の地図状萎縮からなる群より選択される1種以上が改善されていた場合に、当該被験物質はAMDに対する治療効果があると評価する。AMDモデル動物への被験物質の投与方法は特に限定されるものではなく、経口投与であってもよく、注腸投与であってもよく、経静脈投与であってもよく、経鼻投与であってもよく、硝子体等の眼の組織に直接注入してもよい。   Specifically, a test substance which is a candidate compound for a therapeutic agent for AMD is administered to an AMD model animal produced by the method for producing an AMD model animal according to the present invention, and the tissue peculiar to AMD in the eye, particularly the retina. The influence on the clinical characteristics is examined, and the therapeutic effect of the test substance on AMD is evaluated. One or more selected from the group consisting of retinal ONL thinning, RPE degeneration, and fundus map-like atrophy were improved by the administered test substance compared to before taking the test substance. In some cases, the test substance is evaluated as having a therapeutic effect on AMD. The method of administering the test substance to the AMD model animal is not particularly limited and may be oral administration, enema administration, intravenous administration, or nasal administration. Alternatively, it may be directly injected into an eye tissue such as a vitreous body.

複数の被験物質に対して同様にしてAMDに対する治療効果又は予防効果があるかどうかを評価し、治療効果又は予防効果があると評価された被験物質を、AMDの予防又は治療効果を有する物質として選抜することにより、AMDの予防又は治療効果を有する物質のスクリーニングを行うこともできる。   Similarly, a plurality of test substances are evaluated as to whether they have a therapeutic effect or a preventive effect on AMD, and a test substance evaluated as having a therapeutic effect or a preventive effect is defined as a substance having a preventive or therapeutic effect on AMD. By selecting, it is possible to screen for substances having an effect of preventing or treating AMD.

次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Next, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to a following example.

なお、以降の実施例において行われた動物実験及び使用された動物の飼育等は、日本国における「動物の愛護及び管理に関する法律」(昭和48年法律第105号)、「実験動物の飼養及び保管並びに苦痛の軽減に関する基準」(平成18年環境省告示第88号)、「厚生労働省の所管する実施機関における動物実験等の実施に関する基本指針」(平成18年厚生労働省通知)、及び「動物実験の適正な実施に向けたガイドライン」(平成18年日本学術会議策定)等を遵守して行われた。   The animal experiments conducted in the following examples and the breeding of the used animals were conducted in Japan under the Act on the Protection and Management of Animals (Act No. 105 of 1973), “Standards for Storage and Pain Reduction” (2006 Ministry of the Environment Notification No. 88), “Basic Guidelines for Conducting Animal Experiments at Executing Organizations Controlled by the Ministry of Health, Labor and Welfare” (2006 Notification by the Ministry of Health, Labor and Welfare), and “Animals” It was conducted in compliance with the “Guidelines for Proper Implementation of Experiments” (Formed by the 2006 Science Council of Japan).

[実施例1]
カニクイザルAMDモデル動物を作製し、網膜におけるヒトAMD特有の組織学的特徴を備えているか否かを調べた。
[Example 1]
Cynomolgus monkey AMD model animals were prepared and examined for histological features unique to human AMD in the retina.

<カニクイザルのヨウ素酸ナトリウム硝子体内投与モデル動物の作製>
カニクイザルの片眼の硝子体内に、ケタミン麻酔下で、50μLの20mg/mL又は30mg/mLのヨウ素酸ナトリウム溶液(硝子体1個当たりのヨウ素酸ナトリウムの投与量が1mg又は1.5mg)を投与した。なお、ヨウ素酸ナトリウム溶液は、ヨウ素酸ナトリウムを注射用水に溶解させた溶液であり、予め0.22μmの孔径のフィルターを通すことにより滅菌処理を施した。
<Production of cynomolgus monkey sodium iodate intravitreal administration model animal>
50 μL of 20 mg / mL or 30 mg / mL sodium iodate solution (the dose of sodium iodate per vitreous is 1 mg or 1.5 mg) in the vitreous body of one eye of a cynomolgus monkey did. The sodium iodate solution was a solution in which sodium iodate was dissolved in water for injection, and was sterilized by passing through a filter having a pore size of 0.22 μm in advance.

作製されたヨウ素酸ナトリウム硝子体内投与モデル動物について、ヨウ素酸ナトリウム溶液の投与前(投与0日目)、投与後10日目、及び投与後26日目に、網膜厚を測定した。測定により得られた、黄斑中心窩付近の網膜のOCT画像を図1に示す。上段は、網膜の膜厚を濃淡で表現した図であり、下段は網膜の断面図である。網膜の膜厚の測定は、OCT画像上で網膜外層に当たる部分をトレースし、厚さを測定することにより行った。当該モデル動物をさらに飼育し、ヨウ素酸ナトリウム溶液投与後66日目の網膜のOCT画像を図2に示す。図2中、上段がヨウ素酸ナトリウム溶液の投与前の網膜の断面図であり、下段がヨウ素酸ナトリウム溶液投与後66日目の網膜の断面図である。   About the produced sodium iodate intravitreal administration model animal, the retinal thickness was measured before administration of the sodium iodate solution (day 0 of administration), 10 days after administration, and 26 days after administration. The OCT image of the retina near the macular fovea obtained by the measurement is shown in FIG. The upper part is a diagram expressing the thickness of the retina in shades, and the lower part is a sectional view of the retina. The thickness of the retina was measured by tracing the portion of the OCT image that hits the outer retina and measuring the thickness. The model animal is further bred, and an OCT image of the retina 66 days after administration of the sodium iodate solution is shown in FIG. In FIG. 2, the upper part is a cross-sectional view of the retina before administration of the sodium iodate solution, and the lower part is a cross-sectional view of the retina on the 66th day after administration of the sodium iodate solution.

図1及び図2中、中心部の膜厚が薄くなっている領域が黄斑中心窩である。図1に示すように、ヨウ素酸ナトリウム溶液の投与後10日目には、黄斑中心窩を中心に網膜厚が薄くなっており、この厚みの薄い部分は、ヨウ素酸ナトリウム溶液の投与後26日目にはより広がっていた。この黄斑中心窩及びその近傍の膜厚の菲薄化は、主にONLが菲薄化していることを示している。さらに、図2の網膜の断面図から、投与から66日目には、ONLの菲薄化に加えて、中心窩において、RPE、視細胞層(視細胞内節/外節層ライン、錐体外節先端ライン)が消失しており、外境界膜の途絶及び脈絡膜信号の増強が観察された。これらの結果から、硝子体内へのヨウ素酸ナトリウムの投与により、ONLの菲薄化及びRPEの変性が黄斑中心窩周辺に引き起こされること、及び、非ヒト霊長類のヨウ素酸ナトリウム硝子体内投与モデル動物は、ヒトの萎縮型AMDでみられる典型的な臨床所見を示すこと、がわかった。   In FIG. 1 and FIG. 2, the region where the thickness of the central portion is thin is the macular fovea. As shown in FIG. 1, on the 10th day after administration of the sodium iodate solution, the retinal thickness is thin centered on the macular fovea, and this thin portion is 26 days after administration of the sodium iodate solution. It was more spread to the eyes. This thinning of the thickness of the macular fovea and the vicinity thereof mainly indicates that the ONL is thinned. Furthermore, from the cross-sectional view of the retina shown in FIG. 2, on the 66th day after administration, in addition to the thinning of the ONL, in the fovea, RPE, photoreceptor layer (photocell inner / outer segment layer line, cone outer segment) The tip line) disappeared, and disruption of the outer boundary membrane and enhancement of the choroidal signal were observed. From these results, administration of sodium iodate into the vitreous caused ONL thinning and RPE degeneration around the foveal fovea, and non-human primate sodium iodate intravitreal administration model animals It was found to show typical clinical findings seen in human atrophic AMD.

[実施例2]
カニクイザルAMDモデル動物を作製し、眼底と黄斑中心窩におけるヒトAMD特有の組織学的特徴を備えているか否かを調べた。
[Example 2]
Cynomolgus monkey AMD model animals were prepared and examined for the presence of histological features peculiar to human AMD in the fundus and macular fovea.

<眼底検査、眼底自発蛍光検査、及びフルオレセイン蛍光眼底造影>
具体的には、実施例1と同様にして、9歳のカニクイザルの右眼の硝子体1個当たり1.5mgのヨウ素酸ナトリウムを投与して作製したヨウ素酸ナトリウム硝子体内投与モデル動物について、ヨウ素酸ナトリウム溶液の投与前(投与0日目)、投与後38日目、及び投与後66日目に、眼底を、眼底検査及び眼底自発蛍光検査により調べた。眼底検査及び眼底自発蛍光検査は、自発蛍光撮影機能が搭載された眼底カメラを用いて常法により行った。また、投与後66日目のモデル動物については、フルオレセイン蛍光眼底造影も行った。フルオレセイン蛍光眼底造影は、モデル動物にフルオレセインを静注した後、蛍光観察可能な眼底カメラを用いて常法により行った。
<Fundation examination, fundus autofluorescence examination, and fluorescein fluorescence fundus imaging>
Specifically, in the same manner as in Example 1, a sodium iodate intravitreal administration model animal prepared by administering 1.5 mg of sodium iodate per vitreous body of the right eye of a 9-year-old cynomolgus monkey The fundus was examined by fundus examination and fundus autofluorescence before administration of the sodium acid solution (day 0 of administration), 38 days after administration, and 66 days after administration. The fundus examination and the fundus autofluorescence examination were performed by a conventional method using a fundus camera equipped with an autofluorescence imaging function. In addition, fluorescein fluorescence fundus angiography was also performed on the model animals on day 66 after administration. Fluorescein fluorescence fundus angiography was performed by a conventional method using a fundus camera capable of fluorescence observation after intravenous injection of fluorescein to a model animal.

眼底検査及び眼底自発蛍光検査の結果を図3に示す。図中、上段が眼底所見であり、下段が眼底自発蛍光所見である。投与前(図中、「Day 0」)には萎縮は観察されなかったが、投与後38日目(図中、「Day 38」)及び投与後66日目(図中、「Day 66」)には、黄斑中心窩を中心に、直径が乳頭径(視神経乳頭縁での網膜静脈径の直径)の約2〜2.5倍の大きさの萎縮病巣(図中、矢印で示した領域)が認められた。また、この萎縮病巣は、眼底自発蛍光所見では著明な低蛍光を示した。この萎縮病巣は、地図状の形態及びその直径の大きさに加えて、境界が鮮明であること、及び眼底自発蛍光所見で明らかな低蛍光を示したことから、地図状萎縮であると判別された。この地図状萎縮は、中心窩に萎縮が及んでいたため、臨床では中心性地図状萎縮に分類された。   The results of the fundus examination and the fundus autofluorescence examination are shown in FIG. In the figure, the upper row shows the fundus findings, and the lower row shows the fundus autofluorescence findings. No atrophy was observed before administration (“Day 0” in the figure), but 38 days after administration (“Day 38” in the figure) and 66 days after administration (“Day 66” in the figure). In the center of the macular fovea, the diameter of the atrophy is about 2 to 2.5 times the diameter of the nipple (the diameter of the retinal vein at the edge of the optic nerve head) (the area indicated by the arrow in the figure). Was recognized. The atrophy lesion showed markedly low fluorescence in the fundus autofluorescence. This atrophic lesion was determined to be map-like atrophy because it had a clear border and a low fluorescence that was evident in the fundus autofluorescence, in addition to the map-like morphology and the size of its diameter. It was. This map-like atrophy was classified as central map-like atrophy clinically because it had atrophy in the fovea.

フルオレセイン蛍光眼底所見を図4に示す。この結果、ヒトの萎縮型AMDと同様に、萎縮病巣領域は、window defect(RPEに異常を来しており、脈絡膜の蛍光が透過している状態)により、強い過蛍光を示した。また、萎縮病巣領域の周辺には、ドルーゼン様の過蛍光部位が散在していた。これらの所見からも、この萎縮病巣領域が、地図状萎縮であると判別できた。   Fluorescein fluorescent fundus findings are shown in FIG. As a result, similar to human atrophic AMD, the atrophic lesion area showed strong hyperfluorescence due to window defects (a state in which RPE is abnormal and choroidal fluorescence is transmitted). In addition, drusen-like hyperfluorescent sites were scattered around the atrophy lesion area. From these findings, it was possible to determine that this atrophy lesion area was map-like atrophy.

<中心窩周辺部位の組織のHE染色>
ヨウ素酸ナトリウム溶液の投与後66日目のヨウ素酸ナトリウム硝子体内投与モデル動物について、中心窩周辺部位の組織のHE(ヘマトキシリン・エオジン)染色を行い、RPE層の形態を調べた。動物を安楽殺後、眼球を摘出し、2.5%グルタールアルデヒド液で固定後、常法によりHE染色を行った。
<HE staining of tissue around the fovea>
A model animal of sodium iodate intravitreal administration on the 66th day after administration of the sodium iodate solution was subjected to HE (hematoxylin and eosin) staining of the tissue around the fovea to examine the morphology of the RPE layer. After euthanizing the animal, the eyeball was removed, fixed with 2.5% glutaraldehyde solution, and then stained with HE by a conventional method.

中心窩周辺部位の組織のHE染色像を図5に示す。RPE層(図中、黒枠内)の変性及び消失が確認できた。また、網膜全層が変性を起こしており、視細胞が消失していた。   An HE-stained image of the tissue around the fovea is shown in FIG. Denaturation and disappearance of the RPE layer (in the black frame in the figure) could be confirmed. In addition, the entire retina was degenerated, and the photoreceptor cells were lost.

これらの所見から、作製されたヨウ素酸ナトリウム硝子体内投与モデル動物は、ヒトの萎縮型AMDにおける特徴的な所見である地図状萎縮とRPEの変性及び視細胞障害が生じており、よってヒト萎縮型AMDモデル動物として好適であることが確認された。   Based on these findings, the produced model animal with sodium iodate intravitreal administration had the map-like atrophy, degeneration of RPE, and photoreceptor damage, which are characteristic findings in human atrophic AMD. It was confirmed that it is suitable as an AMD model animal.

[参考例1]
カニクイザルで光網膜障害モデル動物を作製し、その網膜組織の形態を、HE染色で調べた。
[Reference Example 1]
A model animal of photoretinal injury was prepared from cynomolgus monkeys, and the morphology of the retinal tissue was examined by HE staining.

<カニクイザルの光網膜障害モデル動物の作製>
ケタミン麻酔下で、上を向かせた状態で固定したカニクイザルの片眼に、波長可変光源を用いて1800luxの照度の波長460nmの青色光を、眼の5cm上方から垂直に30分間照射した。この照射を3日間行うことで、光網膜障害モデル動物を作製した。
<Production of cynomolgus monkey photoretinopathy model animal>
Under ketamine anesthesia, one eye of a cynomolgus monkey fixed in an upward state was irradiated with blue light having a wavelength of 460 nm and an illuminance of 1800 lux for 30 minutes vertically from above 5 cm of the eye using a variable wavelength light source. By performing this irradiation for 3 days, a photoretinal disorder model animal was produced.

<中心窩周辺部位の組織のHE染色>
作製された光網膜障害モデル動物について、中心窩周辺部位の組織のHE染色を行い、RPE層の形態を調べた。HE染色は、実施例2と同様にして行った。
<HE staining of tissue around the fovea>
The produced photoretinal disorder model animal was subjected to HE staining of the tissue around the fovea and examined the morphology of the RPE layer. HE staining was performed in the same manner as in Example 2.

中心窩周辺部位の組織のHE染色像を図6に示す。RPE層はさほど変性は観察されなかった。視細胞層がRPE層から剥離している像は、標本作製時のアーチファクトである。図中、視細胞層中の長細い細胞が視細胞である。つまり、光網膜障害モデル動物は、網膜に障害を生じているものの、その病態はヒトの萎縮型AMDにおいて観察される所見とは異なっており、ヒト萎縮型AMDモデル動物としては適切とは言い難いことが判明した。   FIG. 6 shows an HE-stained image of the tissue around the fovea. No significant modification was observed in the RPE layer. The image in which the photoreceptor layer is detached from the RPE layer is an artifact at the time of specimen preparation. In the figure, long and narrow cells in the photoreceptor layer are photoreceptors. That is, the photoretinal disorder model animal has a disorder in the retina, but its pathological condition is different from the observation observed in human atrophic AMD, and is not suitable as a human atrophic AMD model animal. It has been found.

Claims (11)

非ヒト霊長類の動物個体の硝子体内に、ヨウ素酸ナトリウムを投与することを特徴とする、加齢黄斑変性モデル動物の作製方法。   A method for producing an age-related macular degeneration model animal, comprising administering sodium iodate into a vitreous body of a non-human primate animal individual. 硝子体1個当たりのヨウ素酸ナトリウムの投与量が0.5〜2.5mgである、請求項1に記載の加齢黄斑変性モデル動物の作製方法。   The method for producing an age-related macular degeneration model animal according to claim 1, wherein the dose of sodium iodate per vitreous is 0.5 to 2.5 mg. ヨウ素酸ナトリウムを水又はリン酸生理食塩水に溶解させたヨウ素酸ナトリウム溶液を、硝子体内に注入する、請求項1又は2に記載の加齢黄斑変性モデル動物の作製方法。   The method for producing an age-related macular degeneration model animal according to claim 1 or 2, wherein a sodium iodate solution obtained by dissolving sodium iodate in water or phosphate physiological saline is injected into the vitreous. 前記動物個体が、カニクイザル又はアカゲザルである、請求項1〜3のいずれか一項に記載の加齢黄斑変性モデル動物の作製方法。   The method for producing an age-related macular degeneration model animal according to any one of claims 1 to 3, wherein the animal individual is a cynomolgus monkey or a rhesus monkey. 作製された加齢黄斑変性モデル動物において、網膜の外顆粒層の菲薄化及び網膜色素上皮の変性が、黄斑中心窩周辺に観察される、請求項1〜4のいずれか一項に記載の加齢黄斑変性モデル動物の作製方法。   In the produced age-related macular degeneration model animal, thinning of the outer granular layer of the retina and degeneration of the retinal pigment epithelium are observed in the periphery of the macular fovea. A method for producing an age-related macular degeneration model animal. 作製された加齢黄斑変性モデル動物の眼底に、地図状萎縮が生じている、請求項1〜4のいずれか一項に記載の加齢黄斑変性モデル動物の作製方法。   The method for producing an age-related macular degeneration model animal according to any one of claims 1 to 4, wherein map-like atrophy has occurred on the fundus of the produced age-related macular degeneration model animal. 作製された加齢黄斑変性モデル動物が、萎縮型加齢黄斑変性モデル動物である、請求項1〜6のいずれか一項に記載の加齢黄斑変性モデル動物の作製方法。   The method for producing an age-related macular degeneration model animal according to any one of claims 1 to 6, wherein the produced age-related macular degeneration model animal is an atrophic age-related macular degeneration model animal. 黄斑中心窩周辺に、網膜のONLの菲薄化及びRPEの変性を有する、非ヒト霊長類の加齢黄斑変性モデル動物。   A non-human primate age-related macular degeneration model animal having retinal ONL thinning and RPE degeneration around the macular fovea. 眼底に地図状萎縮が生じている、非ヒト霊長類の加齢黄斑変性モデル動物。   A non-human primate age-related macular degeneration model animal having a map-like atrophy in the fundus. 請求項1〜7のいずれか一項に記載の加齢黄斑変性モデル動物の作製方法により非ヒト霊長類の加齢黄斑変性モデル動物を作製し、
作製された加齢黄斑変性モデル動物を用いて、被験物質の加齢黄斑変性の予防又は治療効果について評価する、被験物質の加齢黄斑変性の予防又は治療に対する効果の評価方法。
A non-human primate age-related macular degeneration model animal is produced by the method for producing an age-related macular degeneration model animal according to any one of claims 1 to 7,
A method for evaluating the effect of a test substance on the prevention or treatment of age-related macular degeneration, which evaluates the effect of the test substance on age-related macular degeneration using the produced age-related macular degeneration model animal.
請求項1〜7のいずれか一項に記載の加齢黄斑変性モデル動物の作製方法により非ヒト霊長類の加齢黄斑変性モデル動物を作製し、
作製された加齢黄斑変性モデル動物を用いて、被験物質の加齢黄斑変性の予防又は治療効果について評価し、
網膜の外顆粒層の菲薄化及び網膜色素上皮の変性からなる群より選択される1種以上が、前記被験物質を摂取する前と比較して前記被験物質を摂取した後のほうが改善されている場合に、当該被験物質を、加齢黄斑変性の予防又は治療効果を有する物質として選抜する、加齢黄斑変性の予防又は治療効果を有する物質のスクリーニング方法。
A non-human primate age-related macular degeneration model animal is produced by the method for producing an age-related macular degeneration model animal according to any one of claims 1 to 7,
Using the produced age-related macular degeneration model animal, evaluate the preventive or therapeutic effect of age-related macular degeneration of the test substance,
One or more selected from the group consisting of thinning of the outer granular layer of the retina and degeneration of the retinal pigment epithelium are improved after ingesting the test substance compared to before ingesting the test substance In this case, a screening method for a substance having a preventive or therapeutic effect on age-related macular degeneration, wherein the test substance is selected as a substance having a preventive or therapeutic effect on age-related macular degeneration.
JP2017242163A 2017-03-23 2017-12-18 Aging macular degeneration model animal of nonhuman primate and its creation method Pending JP2018157809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/853,190 US10532112B2 (en) 2017-03-23 2017-12-22 Non-human primate model of age-related macular degeneration and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017057515 2017-03-23
JP2017057515 2017-03-23

Publications (1)

Publication Number Publication Date
JP2018157809A true JP2018157809A (en) 2018-10-11

Family

ID=63794842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017242163A Pending JP2018157809A (en) 2017-03-23 2017-12-18 Aging macular degeneration model animal of nonhuman primate and its creation method

Country Status (1)

Country Link
JP (1) JP2018157809A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101990250B1 (en) * 2018-07-05 2019-06-17 고려대학교 산학협력단 A novel preparation method of retinal degeneration animal model using sodium iodate and retinal degeneration animal model using the same
KR20200005453A (en) * 2018-07-05 2020-01-15 고려대학교 산학협력단 A novel preparation method of retinal degeneration animal model using pars plana vitrectomy combined with intraoperative N-methyl-N-nitrosourea solution infusion and removal and retinal degeneration animal model using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103720524A (en) * 2014-01-10 2014-04-16 南京医科大学第一附属医院 Method for making primate dry age-related macular degeneration disease model

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103720524A (en) * 2014-01-10 2014-04-16 南京医科大学第一附属医院 Method for making primate dry age-related macular degeneration disease model

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
川崎医学会誌, vol. 42, no. 2, JPN6021034366, 2016, pages 85 - 93, ISSN: 0004587468 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101990250B1 (en) * 2018-07-05 2019-06-17 고려대학교 산학협력단 A novel preparation method of retinal degeneration animal model using sodium iodate and retinal degeneration animal model using the same
KR20200005425A (en) * 2018-07-05 2020-01-15 고려대학교 산학협력단 A novel preparation method of retinal degeneration animal dog model using sodium iodate and retinal degeneration animal dog model using the same
KR20200005453A (en) * 2018-07-05 2020-01-15 고려대학교 산학협력단 A novel preparation method of retinal degeneration animal model using pars plana vitrectomy combined with intraoperative N-methyl-N-nitrosourea solution infusion and removal and retinal degeneration animal model using the same
KR102228401B1 (en) 2018-07-05 2021-03-16 고려대학교 산학협력단 A novel preparation method of retinal degeneration animal model using pars plana vitrectomy combined with intraoperative N-methyl-N-nitrosourea solution infusion and removal and retinal degeneration animal model using the same
KR102293398B1 (en) 2018-07-05 2021-08-26 고려대학교 산학협력단 A novel preparation method of retinal degeneration animal dog model using sodium iodate and retinal degeneration animal dog model using the same

Similar Documents

Publication Publication Date Title
US10512699B2 (en) Optical method for the detection of Alzheimer&#39;s disease using curcumin
JP6837522B2 (en) Methods for treating and diagnosing blindness disorders
CN107865830A (en) Method for treating diabetic retinopathy and other ophthalmology diseases
ES2789849T3 (en) Compositions and procedures for the treatment and diagnosis of eye disorders
Henrich et al. Anatomical and functional outcome in brilliant blue G assisted chromovitrectomy
JP2001503370A (en) Use of (2-imidazolin-2-ylamino) quinoxaline in the treatment of ocular nerve injury
Penha et al. Retinal and ocular toxicity in ocular application of drugs and chemicals–part I: animal models and toxicity assays
Huang et al. VB 8. Vitreous floaters and vision: current concepts and management paradigms
US10532112B2 (en) Non-human primate model of age-related macular degeneration and method for producing same
Gionfriddo Ophthalmology of South american camelids
Murata et al. Imaging mouse retinal ganglion cells and their loss in vivo by a fundus camera in the normal and ischemia-reperfusion model
JP2018157809A (en) Aging macular degeneration model animal of nonhuman primate and its creation method
Strazzeri et al. Focal damage to macaque photoreceptors produces persistent visual loss
Tran et al. Quantitative fundus autofluorescence in rhesus macaques in aging and age-related drusen
Brooks et al. Functional and structural analysis of the visual system in the rhesus monkey model of optic nerve head ischemia
Walia et al. ILM peeling a vital intervention for many vitreoretinal disorders
Framme et al. Noninvasive imaging and monitoring of retinal pigment epithelium patterns using fundus autofluorescence-review
Li et al. Retinal safety evaluation of photoacoustic microscopy
Nork et al. Regional choroidal blood flow and multifocal electroretinography in experimental glaucoma in rhesus macaques
Çalışkan et al. Optical coherence tomography angiography evaluation of retinal and optic disc microvascular morphological characteristics in retinal vein occlusion
Battaglia Parodi et al. Iris fluorescein angiography and iris indocyanine green videoangiography in pseudoexfoliation syndrome
Braga-Sá et al. Retina assessment by optical coherence tomography of diabetic dogs
US20220096633A1 (en) Long-acting photoreceptor-binding nanoparticles, and compositions and methods thereof
Miller Study design and methodologies for evaluation of anti-glaucoma drugs
Wassmer et al. The development of a cat model of retinal detachment and re-attachment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220301