JP2018157758A - Cell culture apparatus and biological sample production method - Google Patents

Cell culture apparatus and biological sample production method Download PDF

Info

Publication number
JP2018157758A
JP2018157758A JP2015165550A JP2015165550A JP2018157758A JP 2018157758 A JP2018157758 A JP 2018157758A JP 2015165550 A JP2015165550 A JP 2015165550A JP 2015165550 A JP2015165550 A JP 2015165550A JP 2018157758 A JP2018157758 A JP 2018157758A
Authority
JP
Japan
Prior art keywords
electrode
culture
biological sample
dielectric layer
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015165550A
Other languages
Japanese (ja)
Inventor
田畑 泰彦
Yasuhiko Tabata
泰彦 田畑
正迪 井手
Masamichi Ide
正迪 井手
哲平 小西
Teppei Konishi
哲平 小西
亮平 小口
Ryohei Oguchi
亮平 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2015165550A priority Critical patent/JP2018157758A/en
Priority to PCT/JP2016/074404 priority patent/WO2017033898A1/en
Publication of JP2018157758A publication Critical patent/JP2018157758A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/42Apparatus for the treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cell culture apparatus and a biological sample production method in which various types of cells can be adsorbed on a container surface while the cells are cultured, formation of the cells into tissue can be promoted, obtained biological sample can be released without losing the original functions of the cell, and cells being cultured can be prevented from being released.SOLUTION: A cell culture apparatus 1 comprises: a transparent culture container 10 in which culture solution is housed; a dielectric layer 12 which is formed such that an inner bottom surface 10a of the culture container 10 and a first surface 12a come into contact with the culture solution; a first electrode 14 provided at a second surface 12b on the opposite side to the first surface 12a of the dielectric layer 12; a second electrode 16 provided in the culture container 10 separately from the dielectric layer 12; and a voltage application mechanism 18 which applies voltage between the first electrode 14 and the second electrode 16, and the surface potential of the first surface 12a of the dielectric layer 12 is designed to change by applying voltage between the first electrode 14 and the second electrode 16.SELECTED DRAWING: Figure 1

Description

本発明は、細胞培養装置および生体試料製造方法に関する。   The present invention relates to a cell culture device and a biological sample manufacturing method.

近年、再生医療の分野では、細胞を高密度に培養して得た厚みのある細胞シートを患部に配置し、生着させることで治療効果を高めることが試みられている。細胞シートのような組織化された生体試料を製造するための細胞培養においては、細胞を組織化させるための足場が必要である。従来、培養容器としては、内表面が疎水性で、培養時に細胞が内表面に吸着するシャーレ等が用いられていた。しかし、細胞の吸着性が高い培養容器で培養を行うと、形成された生体試料が培養容器から脱離しにくく、脱離の際に生体試料に損傷が生じやすくなる。   In recent years, in the field of regenerative medicine, attempts have been made to enhance the therapeutic effect by placing a thick cell sheet obtained by culturing cells at high density in an affected area and engrafting it. In cell culture for producing an organized biological sample such as a cell sheet, a scaffold for organizing the cells is required. Conventionally, as a culture container, a petri dish or the like in which the inner surface is hydrophobic and cells are adsorbed on the inner surface during culture has been used. However, when culturing is performed in a culture vessel having high cell adsorptivity, the formed biological sample is difficult to be detached from the culture vessel, and the biological sample is easily damaged during the separation.

また、細胞接着性ペプチド部分であるRGDペプチドに光解離性保護基を導入したケージドペプチドを基板上に結合し、培養中の任意のタイミングで紫外線を照射して保護基を脱離させて細胞を接着させる方法が知られている(特許文献1)。しかし、該方法では細胞の脱着を可逆的に制御できず、また光解離性保護基を脱離させるために照射する紫外線や、脱離した保護基による細胞への悪影響が懸念されるため、低刺激、低負荷で脱離させることが難しい。   In addition, a caged peptide in which a photolabile protecting group is introduced to an RGD peptide that is a cell adhesive peptide portion is bound on a substrate, and ultraviolet rays are irradiated at any timing during culture to remove the protecting group, thereby removing cells. A method of bonding is known (Patent Document 1). However, this method cannot control the desorption of cells reversibly, and there is a concern about the adverse effect on cells caused by ultraviolet rays irradiated to desorb the photolabile protecting group or the detached protecting group. Difficult to remove with stimulation and low load.

また、培養時の温度(例えば37℃)では疎水性で、室温(20〜25℃)では親水性となる温度応答性ポリマーを容器の内表面にコーティングした培養容器を用いて生体試料を製造する方法が提案されている(特許文献2、3)。該方法では、培養時には容器表面の温度応答性ポリマーが疎水性で収縮した状態のため、細胞が容器表面に吸着してその組織化が促進される。また、培養後に培養容器の温度を室温まで下げると、温度応答性ポリマーが親水性で膨潤した状態になり、形成された生体試料と容器表面の間に水が入り込むことで、生体試料が容器表面から無傷で脱離する。こうして得られた生体試料は、細胞本来の機能が失われていないため、生体組織に速やかに生着できる。   In addition, a biological sample is produced using a culture vessel in which the inner surface of the vessel is coated with a temperature-responsive polymer that is hydrophobic at the culture temperature (eg, 37 ° C.) and hydrophilic at room temperature (20-25 ° C.). Methods have been proposed (Patent Documents 2 and 3). In this method, since the temperature-responsive polymer on the surface of the container is hydrophobic and contracted during culture, the cells are adsorbed on the surface of the container and the organization thereof is promoted. In addition, when the temperature of the culture vessel is lowered to room temperature after culturing, the temperature-responsive polymer becomes hydrophilic and swelled, and water enters between the formed biological sample and the surface of the vessel, so that the biological sample becomes the surface of the vessel. Detaches intact. Since the biological sample obtained in this way does not lose the original function of the cell, it can be rapidly engrafted in the biological tissue.

特許第4682364号公報Japanese Patent No. 4682364 特許第3441530号公報Japanese Patent No. 3441530 特許第3641301号公報Japanese Patent No. 3641301

しかし、温度応答性ポリマーを用いた培養容器では、観察や培地交換等のためにインキュベーターから培養容器を取り出した際に温度が下がり、培養途中の細胞が剥がれることがある。また、該培養容器では容器表面を細胞の種類ごとに接着に適した条件に調節することができないため、細胞の種類によっては容器表面への接着性が不充分となり、細胞シート等の生体試料の製造が困難になる。   However, in a culture container using a temperature-responsive polymer, the temperature may drop when the culture container is taken out of the incubator for observation, medium replacement, or the like, and the cells in the middle of the culture may peel off. In addition, in the culture container, the surface of the container cannot be adjusted to conditions suitable for adhesion for each type of cell, and depending on the type of cell, the adhesion to the surface of the container becomes insufficient, and biological samples such as cell sheets Manufacturing becomes difficult.

本発明は、様々な種類の細胞を培養時に容器表面に吸着させてその組織化を促進でき、得られた生体試料を細胞本来の機能を損なわずに脱離させることができ、かつ培養途中の細胞が脱離することを抑制できる細胞培養装置、および生体試料製造方法を提供することを目的とする。   In the present invention, various types of cells can be adsorbed on the surface of a container at the time of culturing to promote the organization thereof, and the obtained biological sample can be detached without impairing the original function of the cells, It is an object of the present invention to provide a cell culture device and a biological sample manufacturing method capable of suppressing the detachment of cells.

本発明は、以下の構成を有する。
[1]培養液が収容される透明な培養容器と、前記培養容器の内表面側に、第1の面が前記培養液に接するように形成された誘電体層と、前記誘電体層の前記第1の面と反対側の第2の面に設けられた第1の電極と、前記培養容器内に前記誘電体層と離間して設けられた第2の電極と、前記第1の電極と前記第2の電極との間に電圧を印加する加電圧機構とを備え、前記第1の面の表面電位が、前記第1の電極と前記第2の電極との間に電圧が印加されることにより変化するようになっている、細胞培養装置。
[2]前記[1]に記載の細胞培養装置を用いた細胞培養により生体試料を製造する生体試料製造方法であって、前記加電圧機構により、前記第2の電極に対する前記第1の電極の電位をE(V)として細胞を培養し、前記第1の面に吸着した生体試料を得る培養工程と、前記加電圧機構により、前記第2の電極に対する前記第1の電極の電位をE(V)よりも低いE(V)とし、前記第1の面から前記生体試料を脱離させる脱離工程と、を有する、生体試料製造方法。
[3]前記生体試料が細胞シートである、[2]に記載の生体試料製造方法。
The present invention has the following configuration.
[1] A transparent culture container in which a culture solution is stored, a dielectric layer formed on the inner surface side of the culture vessel so that a first surface is in contact with the culture solution, and the dielectric layer A first electrode provided on a second surface opposite to the first surface, a second electrode provided in the culture vessel and spaced apart from the dielectric layer, and the first electrode An applied voltage mechanism for applying a voltage between the second electrode and the surface potential of the first surface is applied between the first electrode and the second electrode. A cell culture device that changes depending on the situation.
[2] A biological sample manufacturing method for manufacturing a biological sample by cell culture using the cell culture device according to [1], wherein the first electrode is applied to the second electrode by the applied voltage mechanism. By culturing the cell with a potential of E 1 (V) and obtaining a biological sample adsorbed on the first surface, and the applied voltage mechanism, the potential of the first electrode with respect to the second electrode is changed to E And a desorption step of desorbing the biological sample from the first surface, wherein E 2 (V) is lower than 1 (V).
[3] The biological sample manufacturing method according to [2], wherein the biological sample is a cell sheet.

本発明の細胞培養装置を用いれば、様々な種類の細胞を培養時に容器表面に吸着させてその組織化を促進でき、得られた生体試料を細胞本来の機能を損なわずに脱離させることができるうえ、培養途中の細胞が脱離することを抑制できる。
本発明の生体試料製造方法によれば、様々な種類の細胞を培養時に容器表面に吸着させてその組織化を促進でき、得られた生体試料を細胞本来の機能を損なわずに脱離させることができ、かつ培養途中の細胞が脱離することを抑制できる。
By using the cell culture apparatus of the present invention, various types of cells can be adsorbed on the surface of the container during culture to promote their organization, and the obtained biological sample can be detached without impairing the original function of the cells. In addition, detachment of cells during the culture can be suppressed.
According to the method for producing a biological sample of the present invention, various types of cells can be adsorbed on the surface of a container at the time of culturing to promote the organization thereof, and the obtained biological sample can be detached without impairing the original function of the cells. And the detachment of cells during the culture can be suppressed.

本発明の細胞培養装置の一例を示した模式図である。It is the schematic diagram which showed an example of the cell culture apparatus of this invention. 図1の細胞培養装置を用いた生体試料製造方法の一例を示した図であって、図2(A)は培養工程の様子を示した模式図であり、図2(B)は脱離工程の様子を示した模式図である。FIGS. 2A and 2B are diagrams showing an example of a biological sample manufacturing method using the cell culture apparatus of FIG. 1, FIG. 2A is a schematic diagram showing a state of a culture process, and FIG. 2B is a desorption process. It is the schematic diagram which showed the mode of. 実施例のタンパク質接着性試験における凹部の内底面の表面電位とタンパク質吸着率Qの関係を示したグラフである。It is the graph which showed the relationship between the surface potential of the inner bottom face of a recessed part, and the protein adsorption rate Q in the protein adhesiveness test of an Example. 実施例のタンパク質脱着試験における凹部の内底面の表面電位−3Vでの静置時間とタンパク質吸着率Qの関係を示したグラフである。It is the graph which showed the relationship between the stationary time and the protein adsorption rate Q in the surface potential -3V of the inner bottom face of the recessed part in the protein desorption test of an Example.

以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
「含フッ素重合体」とは、分子中にフッ素原子を有する高分子化合物を意味する。
「単位」とは、重合体中に存在して重合体を構成する、単量体に由来する部分を意味する。炭素−炭素不飽和二重結合を有する単量体の付加重合により生じる、該単量体に由来する単位は、該不飽和二重結合が開裂して生じた2価の単位である。また、ある単位の構造を重合体形成後に化学的に変換したものも単位という。なお、以下、場合により、個々の単量体に由来する単位をその単量体名に「単位」を付した名称で呼ぶ。
「含フッ素重合体が主鎖に脂肪族環を有する」とは、脂肪族環の環骨格を構成する炭素原子のうち、少なくとも1つが、含フッ素重合体の主鎖を構成する炭素原子であることを意味する。
「透明」とは、可視光(360nm〜830nm)の透過率の平均が10%以上であることを意味する。培地等の導電性流体が収容された状態の培養容器内を底面側から観察する場合には、その状態で測定した可視光の透過ヘイズが30%以下であることが好ましい。
The following definitions of terms apply throughout this specification and the claims.
The “fluorinated polymer” means a polymer compound having a fluorine atom in the molecule.
The “unit” means a part derived from a monomer that exists in the polymer and constitutes the polymer. The unit derived from the monomer resulting from addition polymerization of a monomer having a carbon-carbon unsaturated double bond is a divalent unit generated by cleavage of the unsaturated double bond. Moreover, what unitally converted the structure of a unit after polymer formation is also called a unit. Hereinafter, in some cases, a unit derived from an individual monomer is referred to as a name obtained by adding “unit” to the monomer name.
“The fluoropolymer has an aliphatic ring in the main chain” means that at least one of the carbon atoms constituting the ring skeleton of the aliphatic ring is a carbon atom constituting the main chain of the fluoropolymer. Means that.
“Transparent” means that the average transmittance of visible light (360 nm to 830 nm) is 10% or more. When observing the inside of a culture vessel in a state where a conductive fluid such as a medium is accommodated from the bottom side, the visible light transmission haze measured in that state is preferably 30% or less.

[細胞培養装置]
本発明の細胞培養装置は、培養液が収容される透明な培養容器と、前記培養容器の内表面側に、第1の面が前記培養液に接するように形成された誘電体層と、前記誘電体層の前記第1の面と反対側の第2の面に設けられた第1の電極と、前記培養容器内に前記誘電体層と離間して設けられた第2の電極と、前記第1の電極と前記第2の電極との間に電圧を印加する加電圧機構とを備えたものである。本発明の細胞培養装置の培養容器においては、誘電体層の第1の面の表面電位が、第1の電極と第2の電極との間に電圧が印加されることにより変化するようになっている。
本発明の細胞培養装置は、各種生体試料とその使用目的に応じた最適な基材表面性状の探索や、細胞シートを製造するための細胞培養に好適に使用できる。
[Cell culture equipment]
The cell culture device of the present invention includes a transparent culture container that contains a culture solution, a dielectric layer formed on the inner surface side of the culture vessel so that a first surface is in contact with the culture solution, A first electrode provided on a second surface opposite to the first surface of the dielectric layer; a second electrode provided in the culture container and spaced apart from the dielectric layer; A voltage applying mechanism for applying a voltage between the first electrode and the second electrode is provided. In the culture container of the cell culture device of the present invention, the surface potential of the first surface of the dielectric layer is changed by applying a voltage between the first electrode and the second electrode. ing.
The cell culturing apparatus of the present invention can be suitably used for searching for optimal substrate surface properties according to various biological samples and their intended use, and for cell culturing for producing cell sheets.

図1は、本発明の細胞培養装置の一例を示す断面図である。
細胞培養装置1は、培養液が収容される透明な培養容器10と、誘電体層12と、第1の電極14と、第2の電極16と、加電圧機構18とを備えている。
誘電体層12は、培養容器10の内底面10a側に、第1の面12aが培養液に接するように形成されている。第1の電極14は、誘電体層12の第1の面12aと反対側の第2の面12bに設けられている。この例では、培養容器10の内底面10aに第1の電極14が形成され、さらに第1の電極14の表面に誘電体層12が形成されている。
FIG. 1 is a cross-sectional view showing an example of the cell culture apparatus of the present invention.
The cell culture device 1 includes a transparent culture vessel 10 in which a culture solution is accommodated, a dielectric layer 12, a first electrode 14, a second electrode 16, and a voltage application mechanism 18.
The dielectric layer 12 is formed on the inner bottom surface 10a side of the culture vessel 10 so that the first surface 12a is in contact with the culture solution. The first electrode 14 is provided on the second surface 12 b opposite to the first surface 12 a of the dielectric layer 12. In this example, the first electrode 14 is formed on the inner bottom surface 10 a of the culture vessel 10, and the dielectric layer 12 is further formed on the surface of the first electrode 14.

第2の電極16は、培養容器10内に、誘電体層12と離間して設けられている。加電圧機構18は、第1の電極14と第2の電極16にそれぞれ電気的に接続されており、第1の電極14と第2の電極16との間に電圧を印加できるようになっている。
誘電体層12の第1の面12aの表面電位は、加電圧機構18により第1の電極14と第2の電極16との間に電圧が印加されることで変化するようになっている。
The second electrode 16 is provided in the culture vessel 10 so as to be separated from the dielectric layer 12. The applied voltage mechanism 18 is electrically connected to the first electrode 14 and the second electrode 16, respectively, so that a voltage can be applied between the first electrode 14 and the second electrode 16. Yes.
The surface potential of the first surface 12 a of the dielectric layer 12 is changed by applying a voltage between the first electrode 14 and the second electrode 16 by the applied voltage mechanism 18.

(培養容器)
培養容器としては、培養液を収容できる透明なものであればよく、例えば、シャーレ等の培養に用いられる公知の容器を使用できる。
培養容器を形成する材料としては、特に限定されず、ポリスチレン等の樹脂、ガラス等が挙げられる。
培養容器を形成する材料は、1種であってもよく、2種以上であってもよい。
(Culture container)
The culture vessel may be any transparent vessel that can accommodate the culture solution, and for example, a known vessel used for culturing a petri dish or the like can be used.
It does not specifically limit as a material which forms a culture container, Resin, such as a polystyrene, Glass etc. are mentioned.
The material forming the culture vessel may be one type or two or more types.

(誘電体層)
培養容器内に形成された誘電体層の第1の面が、培養時に細胞の吸着面となる。誘電体層は、培養容器の内表面側の一部に設けられていてもよく、培養容器の内表面側の全体に設けられていてもよい。
誘電体層は、第1の面に細胞が吸着して組織化が促進されやすい点から、細胞培養装置1における誘電体層12のように、培養容器の内底面側に設けられることが好ましい。なお、誘電体層は、培養容器の内側面側に設けられていてもよい。
(Dielectric layer)
The first surface of the dielectric layer formed in the culture vessel serves as a cell adsorption surface during culture. The dielectric layer may be provided on a part of the inner surface side of the culture vessel, or may be provided on the entire inner surface side of the culture vessel.
The dielectric layer is preferably provided on the inner bottom surface side of the culture vessel like the dielectric layer 12 in the cell culture device 1 from the viewpoint that the cells are adsorbed on the first surface and the organization is easily promoted. The dielectric layer may be provided on the inner side surface of the culture vessel.

誘電体層を形成する材料としては、特に限定されず、例えば、含フッ素重合体、ポリエチレンテレフタレート、ポリイミド、ポリカーボネート、アクリル樹脂、パリレンC等の有機高分子材料等が挙げられ、なかでも含フッ素重合体が好ましい。
誘電体層を形成する材料は、1種でもよく、2種以上でもよい。
The material for forming the dielectric layer is not particularly limited, and examples thereof include organic polymer materials such as a fluorine-containing polymer, polyethylene terephthalate, polyimide, polycarbonate, acrylic resin, parylene C, and the like. Coalescence is preferred.
The material for forming the dielectric layer may be one type or two or more types.

含フッ素重合体としては、特に限定されず、例えば、フルオロオレフィン単位を有する含フッ素重合体、芳香環を有する含フッ素重合体、フルオロポリエーテル鎖を有する含フッ素重合体、主鎖に脂肪族環を有する含フッ素重合体、フッ素ゴム等が挙げられる。   The fluorine-containing polymer is not particularly limited, and examples thereof include a fluorine-containing polymer having a fluoroolefin unit, a fluorine-containing polymer having an aromatic ring, a fluorine-containing polymer having a fluoropolyether chain, and an aliphatic ring in the main chain. And fluorine-containing polymers, fluororubbers and the like.

フルオロオレフィン単位を有する含フッ素重合体としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ペルフルオロ(アルキルビニルエーテル)共重合体(PFA)等が挙げられる。
芳香環を有する含フッ素重合体としては、例えば、含フッ素芳香族化合物(ペルフルオロ(1,3,5−トリフェニルベンゼン)等)と、フェノール系化合物(1,3,5−トリヒドロキシベンゼン等)と、架橋性官能基含有芳香族化合物(ペンタフルオロスチレン等)とを、脱ハロゲン化水素剤(炭酸カリウム等)の存在下で反応させて得られる重合体が挙げられる。
フルオロポリエーテル鎖を有する含フッ素重合体としては、例えば、オプツール DSX(登録商標、ダイキン工業社製)、KY−100シリーズ(信越化学社製)等が挙げられる。
主鎖に脂肪族環を有する含フッ素重合体としては、例えば、CYTOP(登録商標、旭硝子社製)、テフロン(登録商標)AF(DuPont社製)等が挙げられる。
フッ素ゴムとしては、例えば、ビニリデンフルオリド(VDF)を主成分とするビニリデンフルオリド系フッ素ゴム、プロピレン−テトラフルオロエチレン系フッ素ゴム、テトラフルオロエチレン−ペルフルオロアルキルビニルエーテル系フッ素ゴム等が挙げられる。
含フッ素重合体としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
Examples of the fluoropolymer having a fluoroolefin unit include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (PFA), and the like.
Examples of the fluorine-containing polymer having an aromatic ring include fluorine-containing aromatic compounds (perfluoro (1,3,5-triphenylbenzene) and the like) and phenolic compounds (1,3,5-trihydroxybenzene and the like). And a polymer obtained by reacting a crosslinkable functional group-containing aromatic compound (such as pentafluorostyrene) in the presence of a dehydrohalogenating agent (such as potassium carbonate).
Examples of the fluoropolymer having a fluoropolyether chain include OPTOOL DSX (registered trademark, manufactured by Daikin Industries), KY-100 series (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like.
Examples of the fluorine-containing polymer having an aliphatic ring in the main chain include CYTOP (registered trademark, manufactured by Asahi Glass Co., Ltd.), Teflon (registered trademark) AF (manufactured by DuPont), and the like.
Examples of the fluororubber include vinylidene fluoride-based fluororubbers mainly composed of vinylidene fluoride (VDF), propylene-tetrafluoroethylene-based fluororubber, tetrafluoroethylene-perfluoroalkylvinylether-based fluororubber, and the like.
As a fluoropolymer, 1 type may be used independently and 2 or more types may be used in combination.

誘電体層を形成する材料としては、シリカ、アルミナ、セリア、チタニアおよびジルコニアからなる群から選ばれる1種以上の金属酸化物を用いてもよい。   As a material for forming the dielectric layer, one or more metal oxides selected from the group consisting of silica, alumina, ceria, titania and zirconia may be used.

誘電体層の厚さは、0.1〜10μmが好ましく、0.5〜1μmがより好ましい。誘電体層の厚さが下限値以上であれば、実用的な使用電圧内での絶縁破壊が起きにくい。誘電体層の厚さが上限値以下であれば、電圧印加により誘電体層の分極を効率的に行うことができる。   The thickness of the dielectric layer is preferably 0.1 to 10 μm, and more preferably 0.5 to 1 μm. If the thickness of the dielectric layer is equal to or greater than the lower limit, dielectric breakdown is less likely to occur within a practical working voltage. If the thickness of the dielectric layer is not more than the upper limit value, the dielectric layer can be efficiently polarized by applying a voltage.

(第1の電極)
第1の電極を形成する材料は、導電性材料であればよく、例えば、酸化インジウムスズ(ITO);Pt、Au、Ni、Al等の金属;SnO、In、RuO等の導電性を有する金属酸化物;Ge、Si、GaAs等の半導体;グラファイト、グラッシーカーボン、ダイヤモンド等の炭素系材料;ポリアセチレン、ポリピロール、ポリアニリン、ポリチオフェン等の伝導性高分子等が挙げられる。
第1の電極の形状は、特に限定されず、例えば、平板状、櫛状等が挙げられる。
第1の電極の数は、1つには限定されず、2つ以上であってもよい。
(First electrode)
The material for forming the first electrode may be a conductive material, such as indium tin oxide (ITO); metal such as Pt, Au, Ni, Al; SnO 2 , In 2 O 3 , RuO 2, etc. Examples include conductive metal oxides; semiconductors such as Ge, Si, and GaAs; carbon-based materials such as graphite, glassy carbon, and diamond; and conductive polymers such as polyacetylene, polypyrrole, polyaniline, and polythiophene.
The shape of the first electrode is not particularly limited, and examples thereof include a flat plate shape and a comb shape.
The number of first electrodes is not limited to one and may be two or more.

(第2の電極)
第2の電極は、誘電体層と離間するように設けられ、培養容器内に培養液が収容されたときには該培養溶液と接する。
第2の電極を形成する材料は、導電性材料であればよく、例えば、第1の電極を形成する材料として挙げたものと同じものが挙げられる。
第2の電極の形状は、特に限定されず、例えば、平板状、棒状等が挙げられる。
(Second electrode)
The second electrode is provided so as to be separated from the dielectric layer, and comes into contact with the culture solution when the culture solution is stored in the culture vessel.
The material for forming the second electrode may be any conductive material, and examples thereof include the same materials as those described for forming the first electrode.
The shape of the second electrode is not particularly limited, and examples thereof include a flat plate shape and a rod shape.

(加電圧機構)
加電圧機構としては、第1の電極と第2の電極との間に任意の電圧を印加できるものであればよく、公知のものを採用することができる。
加電圧機構としては、電圧の印加のON/OFFを切り替えるスイッチを備えるものが好ましい。また、加電圧機構としては、正電圧出力部、負電圧出力部、および、前記正電圧出力部と前記負電圧出力部のいずれから第1の電極と第2の電極との間に電圧を印加するかを切り替えるスイッチを備えているものが好ましい。さらに、加電圧機構としては、第1の電極と第2の電極との間に印加する電圧を調節できる電圧調節機構を備えるものが好ましい。
(Applied voltage mechanism)
As the applied voltage mechanism, any mechanism can be used as long as an arbitrary voltage can be applied between the first electrode and the second electrode, and a known mechanism can be adopted.
As the applied voltage mechanism, a mechanism including a switch for switching ON / OFF of voltage application is preferable. Further, as a voltage application mechanism, a voltage is applied between the first electrode and the second electrode from any one of the positive voltage output unit, the negative voltage output unit, and the positive voltage output unit and the negative voltage output unit. What is provided with the switch which switches whether to do is preferable. Furthermore, as an applied voltage mechanism, what is equipped with the voltage adjustment mechanism which can adjust the voltage applied between a 1st electrode and a 2nd electrode is preferable.

(製造方法)
本発明の細胞培養装置の製造方法は、特に限定されず、例えば、以下の方法が挙げられる。
培養容器の内表面に、スパッタリング、蒸着等によって第1の電極を形成した後、含フッ素重合体等を溶媒に溶解した塗布液を該第1の電極上に塗布し、ベーク等により乾燥して誘電体層を形成する。次いで、該培養容器内に前記誘電体層と離間するように第2の電極を配置し、第1の電極と第2の電極とを加電圧機構と電気的に接続することで、細胞培養装置を得る。
(Production method)
The method for producing the cell culture device of the present invention is not particularly limited, and examples thereof include the following methods.
After the first electrode is formed on the inner surface of the culture vessel by sputtering, vapor deposition or the like, a coating solution in which a fluoropolymer or the like is dissolved in a solvent is applied on the first electrode and dried by baking or the like. A dielectric layer is formed. Next, the second electrode is disposed in the culture container so as to be separated from the dielectric layer, and the first electrode and the second electrode are electrically connected to the applied voltage mechanism, thereby the cell culture device Get.

塗布液の塗布方法としては、特に限定されず、例えば、スピンコート法、ディップコート法、キャストコート法、スプレーコート法、ダイコート法、スキャンコート法、はけ塗り法、ポッティング法等が挙げられる。   The coating method for the coating solution is not particularly limited, and examples thereof include spin coating, dip coating, cast coating, spray coating, die coating, scan coating, brush coating, and potting.

[生体試料製造方法]
本発明の生体試料製造方法は、本発明の細胞培養装置を用いた細胞培養により生体試料を製造する方法である。本発明の生体試料製造方法は、下記の培養工程と脱離工程を有する。
培養工程:本発明の細胞培養装置を用い、加電圧機構により、第2の電極に対する第1の電極の電位をE(V)として細胞を培養し、誘電体層の第1の面に吸着した生体試料を得る。
脱離工程:加電圧機構により、第2の電極に対する第1の電極の電位をE(V)よりも低いE(V)とし、誘電体層の第1の面から生体試料を脱離させる。
[Biological sample manufacturing method]
The biological sample manufacturing method of the present invention is a method of manufacturing a biological sample by cell culture using the cell culture apparatus of the present invention. The biological sample manufacturing method of the present invention includes the following culture process and desorption process.
Culturing step: Using the cell culturing apparatus of the present invention, the cell is cultured by applying a voltage mechanism to the potential of the first electrode with respect to the second electrode as E 1 (V), and adsorbed on the first surface of the dielectric layer A biological sample is obtained.
Desorption step: The potential of the first electrode with respect to the second electrode is set to E 2 (V) lower than E 1 (V) by the applied voltage mechanism, and the biological sample is desorbed from the first surface of the dielectric layer. Let

(培養工程)
本発明の細胞培養装置における培養容器内に培養液を収容した状態で、加電圧機構により、第2の電極に対する第1の電極の電位をE(V)として培養を行う。これにより、誘電体層の第1の面の細胞吸着性が良好になることで、細胞が誘電体層の第1の面に吸着した状態で増殖して組織化された生体試料が得られる。
(Culture process)
In a state where the culture solution is accommodated in the culture vessel in the cell culture apparatus of the present invention, the culture is performed with the potential of the first electrode with respect to the second electrode as E 1 (V) by the applied voltage mechanism. Thereby, the cell adsorbability of the first surface of the dielectric layer is improved, so that a biological sample in which cells are grown and organized in a state where the cells are adsorbed on the first surface of the dielectric layer is obtained.

図1に例示した細胞培養装置1を用いる場合、図2(A)に示すように、培養容器10内に培養液100を収容した状態で、加電圧機構18により、第2の電極16に対する第1の電極14の電位をE(V)として培養を行う。これにより、培養容器10内の誘電体層12の第1の面12aに吸着した状態の生体試料110が得られる。 When the cell culture apparatus 1 illustrated in FIG. 1 is used, as shown in FIG. 2 (A), the second voltage 16 is applied to the second electrode 16 by the applied voltage mechanism 18 while the culture solution 100 is accommodated in the culture vessel 10. Incubation is performed with the potential of one electrode 14 being E 1 (V). Thereby, the biological sample 110 in a state of being adsorbed on the first surface 12a of the dielectric layer 12 in the culture vessel 10 is obtained.

培養工程における第2の電極に対する第1の電極の電位E(V)は、培養する細胞の種類に応じて適宜決定することができる。
細胞は通常負電荷を帯びている。そのため、電位E(V)を正電位とし、誘電体層の第1の面の表面電位が正電位となって該第1の面が正電荷を帯びると、細胞との静電的な相互作用によって細胞の吸着性が高まる。
誘電体層の第1の面が疎水性で細胞の吸着性が高い場合には、電位E(V)を0(V)としてもよい。
The potential E 1 (V) of the first electrode with respect to the second electrode in the culturing step can be appropriately determined according to the type of cells to be cultured.
Cells are usually negatively charged. Therefore, when the potential E 1 (V) is a positive potential, and the surface potential of the first surface of the dielectric layer is a positive potential and the first surface is positively charged, electrostatic interaction with the cells is performed. The action increases the adsorptivity of the cells.
In the case where the first surface of the dielectric layer is hydrophobic and the adsorptivity of cells is high, the potential E 1 (V) may be set to 0 (V).

また、細胞には、静電吸着に比べると吸着に時間を要するが、表面電位が低くなるにつれてその表面に対する細胞の生物学的な吸着性が高まるものがある。このような細胞を培養する場合、培養中において、誘電体層の第1の面と細胞との静電的な反発力よりも生物学的な吸着力が優勢となる範囲であれば、電位E(V)を負電位としてもよい。
培養工程においては、培養初期において細胞が誘電体層の第1の面に吸着しやすく、細胞の組織化が促進されやすくなる点から、電位E(V)を正電位とすることが好ましい。
In addition, some cells require more time for adsorption than electrostatic adsorption, but there are some cells whose biological adsorption to the surface increases as the surface potential decreases. When culturing such a cell, the potential E is applied as long as the biological adsorption force is more dominant than the electrostatic repulsion force between the first surface of the dielectric layer and the cell during the culturing. 1 (V) may be a negative potential.
In the culturing step, it is preferable to set the potential E 1 (V) to a positive potential from the viewpoint that cells are easily adsorbed to the first surface of the dielectric layer and the organization of the cells is easily promoted.

培養に用いる細胞としては、特に限定されず、例えば、歯肉線維芽細胞、歯周靭帯細胞、表皮細胞、線維芽細胞、肝実質細胞、肝非実質細胞(内皮細胞、クッパー細胞、星細胞等)、骨芽細胞、上皮細胞、軟骨細胞、神経細胞、筋細胞、間葉系幹細胞、膵島細胞、マクロファージ、各種の腫瘍細胞や機能細胞等が挙げられる。培養に用いる細胞は、人工細胞であってもよい。   The cells used for the culture are not particularly limited. For example, gingival fibroblasts, periodontal ligament cells, epidermis cells, fibroblasts, liver parenchymal cells, liver non-parenchymal cells (endothelial cells, Kupffer cells, stellate cells, etc.) Osteoblasts, epithelial cells, chondrocytes, nerve cells, muscle cells, mesenchymal stem cells, islet cells, macrophages, various tumor cells and functional cells, and the like. The cell used for culture may be an artificial cell.

培養液に用いる液体培地としては、特に限定されず、培養する細胞に応じた公知の液体培地を使用できる。   It does not specifically limit as a liquid medium used for a culture solution, The well-known liquid medium according to the cell to culture can be used.

(脱離工程)
培養終了後、加電圧機構により、第2の電極に対する第1の電極の電位をE(V)よりも低いE(V)とする。これにより、誘電体層の第1の面に吸着した状態で組織化された生体試料が該第1の面から脱離する。
図1に例示した細胞培養装置1を用いる場合、図2(B)に示すように、加電圧機構18により、第2の電極16に対する第1の電極14の電位をE(V)よりも低いE(V)とし、誘電体層12の第1の面12aから生体試料110を脱離させる。
(Desorption process)
After completion of the culture, the potential of the first electrode with respect to the second electrode is set to E 2 (V) lower than E 1 (V) by the applied voltage mechanism. As a result, the biological sample organized in a state of being adsorbed to the first surface of the dielectric layer is detached from the first surface.
When the cell culture apparatus 1 illustrated in FIG. 1 is used, as shown in FIG. 2B, the potential of the first electrode 14 with respect to the second electrode 16 is set to be higher than E 1 (V) by the applied voltage mechanism 18. The biological sample 110 is desorbed from the first surface 12a of the dielectric layer 12 with a low E 2 (V).

脱離工程における第2の電極に対する第1の電極の電位E(V)は、培養工程における第2の電極に対する第1の電極の電位E(V)よりも低くする。
培養工程で電位E(V)を正電位とし、静電的な相互作用によって誘電体層の第1の面に細胞を吸着させた場合、脱離工程では電位E(V)を負電位とすることが好ましい。これにより、誘電体層の負電荷を帯びた第1の面との静電反発の影響により、該第1の面から生体試料を容易に脱離させることができる。
The potential E 2 (V) of the first electrode with respect to the second electrode in the desorption process is set lower than the potential E 1 (V) of the first electrode with respect to the second electrode in the culture process.
When the potential E 1 (V) is set to a positive potential in the culturing step and the cells are adsorbed on the first surface of the dielectric layer by electrostatic interaction, the potential E 2 (V) is set to a negative potential in the detachment step. It is preferable that Accordingly, the biological sample can be easily detached from the first surface due to the influence of electrostatic repulsion with the negatively charged first surface of the dielectric layer.

誘電体層の第1の面が疎水性で、培養工程で電位E(V)を0(V)としていた場合は、脱離工程では電位E(V)を負電位とする。これにより、誘電体層の第1の面から生体試料を脱離させることができる。この場合、負電荷を帯びた第1の面と生体試料の静電反発による効果に加えて、エレクトウェッティングによって第1の面に対する水の濡れ性が向上し、第1の面と生体試料との間に水分子が浸入してくることが生体試料の脱離に影響すると考えられる。 When the first surface of the dielectric layer is hydrophobic and the potential E 1 (V) is set to 0 (V) in the culture process, the potential E 2 (V) is set to a negative potential in the desorption process. Thereby, the biological sample can be detached from the first surface of the dielectric layer. In this case, in addition to the effect due to electrostatic repulsion of the negatively charged first surface and the biological sample, the wettability of water to the first surface is improved by electwetting, and the first surface and the biological sample It is thought that the intrusion of water molecules during this period affects the detachment of the biological sample.

培養工程で電位E(V)を負電位とし、生物学的な吸着力によって誘電体層の第1の面に細胞を吸着させた場合、脱離工程では生物学的な吸着力よりも静電的な反発力が優勢となるまで電位E(V)を低くする。これにより、誘電体層の第1の面から生体試料を脱離させることができる。 When the potential E 1 (V) is set to a negative potential in the culturing process and the cells are adsorbed on the first surface of the dielectric layer by the biological adsorption force, the detachment process is more static than the biological adsorption force. The potential E 2 (V) is lowered until the electric repulsive force becomes dominant. Thereby, the biological sample can be detached from the first surface of the dielectric layer.

脱離工程で誘電体層の第1の面から脱離させた生体試料の用途は、特に限定されない。例えば、脱離させた生体試料を不織布等により保持して搬送し、患部に配置することで、該患部の治療に利用できる。
本発明の生体試料製造方法では、細胞シートを製造することが好ましい。
The use of the biological sample desorbed from the first surface of the dielectric layer in the desorption step is not particularly limited. For example, the desorbed biological sample can be held and transported by a nonwoven fabric or the like, and placed in the affected area to be used for treatment of the affected area.
In the biological sample manufacturing method of the present invention, it is preferable to manufacture a cell sheet.

以上説明したように、本発明では、誘電体層の第1の面の表面電位を調節し、該第1の面の表面性状を変化させて細胞の接着性を変化させることにより、該第1の面への細胞の脱着を制御できる。そのため、培養時に細胞を誘電体層の第1の面に吸着させてその組織化を促進でき、また得られた生体試料を細胞本来の機能を損なわずに脱離させることができる。また、本発明では、細胞の脱着が温度に影響されないため、観察や培地交換等の際に培養途中の細胞が意図せず脱離することも抑制できる。また、本発明では、誘電体層の第1の面の表面電位を調節して、該第1の面の表面性状を細胞ごとに吸着に適した条件に調節できるため、様々な種類の細胞を培養して生体試料を製造することができる。さらに、本発明では、熱や光や振動等の刺激を与えずに低負荷で生体試料を回収できるため、生体試料が有する本来の機能が損なわれることも抑制できる。   As described above, in the present invention, by adjusting the surface potential of the first surface of the dielectric layer and changing the surface properties of the first surface to change the cell adhesion, Can control the detachment of cells to the surface. Therefore, the cells can be adsorbed on the first surface of the dielectric layer during the culture to promote the organization thereof, and the obtained biological sample can be detached without impairing the original function of the cells. In the present invention, since the desorption of the cells is not affected by the temperature, it is possible to suppress unintentional detachment of the cells in the middle of the culture during observation or medium exchange. In the present invention, the surface potential of the first surface of the dielectric layer can be adjusted to adjust the surface properties of the first surface to conditions suitable for adsorption for each cell. A biological sample can be produced by culturing. Furthermore, in the present invention, since the biological sample can be collected with a low load without applying a stimulus such as heat, light, vibration, etc., it is possible to suppress the loss of the original function of the biological sample.

以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。
[例1]
(塗布液の調製)
CYTOP(登録商標、旭硝子社製)を用い、その濃度が0.9質量%となるようにCT−solv100E(旭硝子社製)に溶解させ、塗布液を調製した。
(評価用デバイスの作製)
ガラス基板上に、電極として厚み150nm、シート抵抗値10Ω/cmのITOを成膜した。さらに電極上に、スピンコートにより前記塗布液を塗布し、厚み0.5μmの誘電体層を形成した。スピンコートにおいては、ガラス基板を500rpmで10秒スピンさせた後に、1000rpmで20秒スピンさせた。
次いで、底面部に直径35mmの貫通穴が形成されたポリスチレンシャーレを、前記誘電体層上に接着剤を用いて接着し、内底面が誘電体層で形成された凹部を備える評価用デバイスを作製した。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by the following description.
[Example 1]
(Preparation of coating solution)
Using CYTOP (registered trademark, manufactured by Asahi Glass Co., Ltd.), a coating solution was prepared by dissolving in CT-solv100E (manufactured by Asahi Glass Co., Ltd.) so that the concentration thereof was 0.9% by mass.
(Production of evaluation device)
An ITO film having a thickness of 150 nm and a sheet resistance value of 10 Ω / cm 2 was formed as an electrode on a glass substrate. Further, the coating solution was applied onto the electrode by spin coating to form a dielectric layer having a thickness of 0.5 μm. In spin coating, the glass substrate was spun at 500 rpm for 10 seconds and then spun at 1000 rpm for 20 seconds.
Next, a polystyrene petri dish having a through hole having a diameter of 35 mm formed on the bottom surface portion is adhered to the dielectric layer using an adhesive, and an evaluation device including a recess having an inner bottom surface formed of the dielectric layer is manufactured. did.

[タンパク質接着性試験]
評価用デバイスの細胞接着性を簡易的に評価するために、接着性に関して細胞と同様の挙動を示すと考えられるタンパク質の接着性を測定して評価を行った。測定には、Advances in Polymer Science 57 Polymers in Medicine.(洋書)とSurface modification of polymers for medical applications. Biomaterials 1994. Vol.15 No.10 725-736を参考にした。
(1)発色液、タンパク質溶液の準備
発色液として、ペルオキシダーゼ発色液(3,3’,5,5’−テトラメチルベンジジン(TMBZ)、KPL社製)の50mLと、TMB Peroxidase Substrate(KPL社製)の50mLとを混合したものを使用した。
タンパク質溶液として、タンパク質(POD−goat anti mouse IgG、Biorad社)をリン酸緩衝溶液(D−PBS、Sigma社製)で16,000倍に希釈したものを使用した。
(2)タンパク質吸着
評価用デバイスの凹部内にタンパク質溶液の3mLを分注し、対向電極を配置して評価用デバイスに3Vの電圧を印加し、評価用デバイスの電極電位を3Vとして、室温で1時間放置してタンパク質を吸着させた。また、これとは別に、評価用デバイスの電極電位を−3Vとする以外は同様の操作を行った。また、評価用デバイスに電圧を印加せず、評価用デバイスの電極電位を0Vとしたものについても、上記と同様に室温で1時間放置した。これらにおいては、評価用デバイスの凹部の内底面の表面電位は、電極電位と同等であると見なせる。
ブランクとして、タンパク質溶液を96ウェルマイクロプレートにおける3ウェルに、1ウェル毎に2μL分注した。
(3)ウェル洗浄
タンパク質を吸着させた評価用デバイスの凹部を、界面活性剤(Tween20、和光純薬社製)を0.05質量%含ませたリン酸緩衝溶液(D−PBS、Sigma社製)の4mLで4回洗浄した(16mL使用)。
(4)発色液分注
洗浄を終えた評価用デバイスの凹部に、発色液の3mLを分注し、7分間発色反応を行った。2N硫酸の1.5mLを加えることで発色反応を停止させた。
ブランクについては、96ウェルマイクロプレートの3ウェルに、1ウェル毎に発色液の100μLを分注して7分間発色反応を行った後、1ウェル毎に2N硫酸の50μLを加えることで発色反応を停止させた。
(5)吸光度測定準備
評価用デバイスの凹部から150μLの液を取り、96ウェルマイクロプレートに移した。
(6)吸光度測定およびタンパク質吸着率Q
吸光度は、MTP−810Lab(コロナ電気社製)により450nmの吸光度を測定した。ブランクの吸光度の平均値(N=3)をAとした。凹部の内底面の表面電位(評価用デバイスの電極電位)を3V、−3V、0Vとしたもののそれぞれについて、評価用デバイスから96ウェルマイクロプレートに移動させた液の吸光度をAとした。
タンパク質吸着率Qを下式により求めた。
Q=A/{A×(100/ブランクのタンパク質溶液の分注量)}×100
=A/{A×(100/2μL)}×100 [%]
結果を図3に示す。
[Protein adhesion test]
In order to simply evaluate the cell adhesiveness of the evaluation device, the adhesiveness of a protein considered to behave in the same manner as a cell with respect to the adhesiveness was measured and evaluated. For the measurement, Advances in Polymer Science 57 Polymers in Medicine. (Western book) and Surface modification of polymers for medical applications. Biomaterials 1994. Vol.15 No.10 725-736 were referred.
(1) Preparation of color developing solution and protein solution As a color developing solution, 50 mL of peroxidase coloring solution (3,3 ′, 5,5′-tetramethylbenzidine (TMBZ), manufactured by KPL) and TMB Peroxidase Substrate (manufactured by KPL) ) Was mixed with 50 mL.
As a protein solution, a protein (POD-goat anti mouse IgG, Biorad) diluted 16,000 times with a phosphate buffer solution (D-PBS, Sigma) was used.
(2) Protein adsorption 3 mL of the protein solution is dispensed into the recess of the evaluation device, the counter electrode is arranged, a voltage of 3 V is applied to the evaluation device, and the electrode potential of the evaluation device is set to 3 V at room temperature. The protein was adsorbed by standing for 1 hour. Separately from this, the same operation was performed except that the electrode potential of the evaluation device was set to -3V. In addition, a voltage was not applied to the evaluation device and the electrode potential of the evaluation device was set to 0 V, and the device was left at room temperature for 1 hour in the same manner as described above. In these, it can be considered that the surface potential of the inner bottom surface of the recess of the evaluation device is equivalent to the electrode potential.
As a blank, 2 μL of the protein solution was dispensed into 3 wells in a 96-well microplate per well.
(3) Well Washing Phosphate buffer solution (D-PBS, manufactured by Sigma) containing 0.05% by mass of a surfactant (Tween 20, manufactured by Wako Pure Chemical Industries, Ltd.) in the recess of the evaluation device on which the protein is adsorbed ) 4 times (using 16 mL).
(4) Coloring solution dispensing 3 mL of the coloring solution was dispensed into the recesses of the evaluation device that had been washed, and a coloring reaction was performed for 7 minutes. The color reaction was stopped by adding 1.5 mL of 2N sulfuric acid.
For the blank, 100 μL of the coloring solution was dispensed into 3 wells of a 96-well microplate for 7 minutes, and then the coloring reaction was performed by adding 50 μL of 2N sulfuric acid to each well. Stopped.
(5) Preparation for absorbance measurement 150 μL of the liquid was taken from the recess of the evaluation device and transferred to a 96-well microplate.
(6) Absorbance measurement and protein adsorption rate Q
Absorbance was measured at 450 nm using MTP-810Lab (Corona Electric Co., Ltd.). Mean absorbance of blank (N = 3) was A 0. The inner bottom surface of the surface potential of the recess (electrode potential of the evaluation device) 3V, -3 V, for each of those and 0V, the absorbance of the liquid is moved from the evaluation device to a 96-well microplate was A 1.
The protein adsorption rate Q was determined by the following equation.
Q = A 1 / {A 0 × (100 / amount of dispensed blank protein solution)} × 100
= A 1 / {A 0 × (100/2 μL)} × 100 [%]
The results are shown in FIG.

図3に示すように、例1の評価用デバイスにおいては、凹部の内底面の表面電位(評価用デバイスの電極電位)が−3V、0V、3Vの順でタンパク質吸着率Qが高くなった。この結果は、誘電体層の第1の面の表面電位を制御することにより、培養中の細胞の該第1の面への吸着性を制御できることを示すものである。   As shown in FIG. 3, in the evaluation device of Example 1, the protein adsorption rate Q increased in the order of the surface potential of the inner bottom surface of the recess (electrode potential of the evaluation device) of −3V, 0V, and 3V. This result shows that the adsorptivity of the cells in culture to the first surface can be controlled by controlling the surface potential of the first surface of the dielectric layer.

[タンパク質脱着試験]
(1)タンパク質吸着
評価用デバイスの凹部に、前記タンパク質溶液の3mLを分注し、対向電極を配置して評価用デバイスに3Vの電圧を印加し、凹部の内底面の表面電位(評価用デバイスの電極電位)を3Vとして、室温で1時間放置してタンパク質を吸着させた。
ブランクとして、前記タンパク質溶液を96ウェルマイクロプレートにおける3ウェルに、1ウェル毎に2μL分注した。
(2)タンパク質脱着
タンパク質を吸着させた評価用デバイスに−3Vの電圧を印加し、凹部の内底面の表面電位(評価用デバイスの電極電位)を−3Vとして、室温で1分間静置した。次いで、界面活性剤(Tween20、和光純薬社製)を0.05質量%含ませたリン酸緩衝溶液(D−PBS、Sigma社製)の4mLで凹部を4回洗浄した。
また、凹部の内底面の表面電位を−3Vとした状態での静置時間を0分間、5分間、10分間としたものについても、同様にして行った。なお、前記静置時間が0分間であるとは、凹部の内底面の表面電位(評価用デバイスの電極電位)を0Vとして洗浄を行ったことを意味する。
(3)発色液分注、吸光度測定準備、吸光度測定およびタンパク質吸着率Q
前記[タンパク質接着性試験]の(4)〜(6)と同様にして、静置時間を0分間、1分間、5分間、10分間としたもののそれぞれについて、タンパク質吸着率Qを測定した。
結果を図4に示す。
[Protein desorption test]
(1) Protein adsorption 3 mL of the protein solution is dispensed into the concave portion of the evaluation device, a counter electrode is placed, a voltage of 3 V is applied to the evaluation device, and the surface potential of the inner bottom surface of the concave portion (device for evaluation) The electrode potential was set at 3 V and allowed to stand at room temperature for 1 hour to adsorb proteins.
As a blank, 2 μL of the protein solution was dispensed per well into 3 wells in a 96-well microplate.
(2) Protein Desorption A voltage of −3 V was applied to the evaluation device on which the protein was adsorbed, and the surface potential of the inner bottom surface of the recess (the electrode potential of the evaluation device) was set to −3 V, and left at room temperature for 1 minute. Next, the recess was washed four times with 4 mL of a phosphate buffer solution (D-PBS, manufactured by Sigma) containing 0.05% by mass of a surfactant (Tween 20, manufactured by Wako Pure Chemical Industries, Ltd.).
Moreover, it carried out similarly about what set the standing time in the state which set the surface potential of the inner bottom face of a recessed part to -3V as 0 minute, 5 minutes, and 10 minutes. Note that the standing time of 0 minutes means that cleaning was performed with the surface potential of the inner bottom surface of the recess (electrode potential of the evaluation device) set to 0V.
(3) Coloring solution dispensing, absorbance measurement preparation, absorbance measurement, and protein adsorption rate Q
In the same manner as in (4) to (6) of [Protein Adhesion Test], the protein adsorption rate Q was measured for each of the standing times of 0 minutes, 1 minute, 5 minutes, and 10 minutes.
The results are shown in FIG.

図4に示すように、例1の評価用デバイスにおいては、タンパク質を吸着させた後、凹部の内底面の表面電位(評価用デバイスの電極電位)を−3Vとする静置時間を10分間としたとき、静置時間0Vの場合に比べてタンパク質吸着率Qが有意に低くなった。この結果は、誘電体層の第1の面の表面電位を制御することにより、培養後に細胞の該第1の面への吸着性を制御して、生体試料を任意のタイミングで脱離させることが可能なことを示すものである。   As shown in FIG. 4, in the evaluation device of Example 1, after allowing the protein to be adsorbed, the standing time with the surface potential of the inner bottom surface of the recess (electrode potential of the evaluation device) being −3 V was 10 minutes. As a result, the protein adsorption rate Q was significantly lower than that when the standing time was 0V. As a result, by controlling the surface potential of the first surface of the dielectric layer, the adsorptivity of the cells to the first surface is controlled after culturing, and the biological sample can be detached at an arbitrary timing. Indicates that is possible.

1 細胞培養装置
10 培養容器
10a 内底面
12 誘電体層
12a 第1の面
12b 第2の面
14 第1の電極
16 第2の電極
18 加電圧機構
DESCRIPTION OF SYMBOLS 1 Cell culture apparatus 10 Culture container 10a Inner bottom surface 12 Dielectric layer 12a 1st surface 12b 2nd surface 14 1st electrode 16 2nd electrode 18 Applied voltage mechanism

Claims (3)

培養液が収容される透明な培養容器と、前記培養容器の内表面側に、第1の面が前記培養液に接するように形成された誘電体層と、前記誘電体層の前記第1の面と反対側の第2の面に設けられた第1の電極と、前記培養容器内に前記誘電体層と離間して設けられた第2の電極と、前記第1の電極と前記第2の電極との間に電圧を印加する加電圧機構とを備え、
前記第1の面の表面電位が、前記第1の電極と前記第2の電極との間に電圧が印加されることにより変化するようになっている、細胞培養装置。
A transparent culture container in which a culture solution is accommodated; a dielectric layer formed on the inner surface side of the culture vessel so that a first surface is in contact with the culture solution; and the first of the dielectric layers A first electrode provided on a second surface opposite to the surface, a second electrode provided in the culture vessel so as to be separated from the dielectric layer, the first electrode, and the second electrode An applied voltage mechanism for applying a voltage between the electrode and
The cell culture device, wherein the surface potential of the first surface is changed by applying a voltage between the first electrode and the second electrode.
請求項1に記載の細胞培養装置を用いた細胞培養により生体試料を製造する生体試料製造方法であって、
前記加電圧機構により、前記第2の電極に対する前記第1の電極の電位をE(V)として細胞を培養し、前記第1の面に吸着した生体試料を得る培養工程と、
前記加電圧機構により、前記第2の電極に対する前記第1の電極の電位をE(V)よりも低いE(V)とし、前記第1の面から前記生体試料を脱離させる脱離工程と、を有する、生体試料製造方法。
A biological sample production method for producing a biological sample by cell culture using the cell culture apparatus according to claim 1,
A culture step of culturing cells by the applied voltage mechanism with the potential of the first electrode with respect to the second electrode as E 1 (V) to obtain a biological sample adsorbed on the first surface;
Desorption that causes the potential of the first electrode with respect to the second electrode to be E 2 (V) lower than E 1 (V) and desorbs the biological sample from the first surface by the applied voltage mechanism. A biological sample manufacturing method comprising: a step.
前記生体試料が細胞シートである、請求項2に記載の生体試料製造方法。   The biological sample manufacturing method according to claim 2, wherein the biological sample is a cell sheet.
JP2015165550A 2015-08-25 2015-08-25 Cell culture apparatus and biological sample production method Pending JP2018157758A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015165550A JP2018157758A (en) 2015-08-25 2015-08-25 Cell culture apparatus and biological sample production method
PCT/JP2016/074404 WO2017033898A1 (en) 2015-08-25 2016-08-22 Cell culture device and biological sample production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015165550A JP2018157758A (en) 2015-08-25 2015-08-25 Cell culture apparatus and biological sample production method

Publications (1)

Publication Number Publication Date
JP2018157758A true JP2018157758A (en) 2018-10-11

Family

ID=58100053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015165550A Pending JP2018157758A (en) 2015-08-25 2015-08-25 Cell culture apparatus and biological sample production method

Country Status (2)

Country Link
JP (1) JP2018157758A (en)
WO (1) WO2017033898A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7032263B2 (en) * 2017-10-25 2022-03-08 シャープ株式会社 Cell stimulator, cell culture device and cell stimulating method
WO2019082621A1 (en) * 2017-10-25 2019-05-02 シャープ株式会社 Cell stimulation device, cell culture device, and cell stimulation method
CN111808815A (en) * 2019-04-11 2020-10-23 北京基石生命科技有限公司 Method for culturing primary cells of gastric cancer solid tumor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814550A (en) * 1995-10-06 1998-09-29 Corning Incorporated Colloidal silica films for cell culture
JP4281479B2 (en) * 2003-09-05 2009-06-17 ソニー株式会社 Bioassay substrate for detecting an interaction between an electrode unit and a substance using the electrode unit
JP4496962B2 (en) * 2005-01-05 2010-07-07 株式会社島津製作所 Microwell plate
JP2008306977A (en) * 2007-06-14 2008-12-25 Nitto Denko Corp Cell culture substrate
CA2639954C (en) * 2008-02-11 2017-08-15 Aaron R. Wheeler Droplet-based cell culture and cell assays using digital microfluidics
JP2010252649A (en) * 2009-04-22 2010-11-11 Olympus Corp Cell separator
JP5847446B2 (en) * 2011-06-10 2016-01-20 株式会社日立製作所 Cell culture vessel and culture apparatus using the same
WO2013128630A1 (en) * 2012-03-02 2013-09-06 株式会社日立製作所 Cell culture container, cell culture device using same, and cell culture method
EP2896684A4 (en) * 2012-09-14 2015-12-23 Sumitomo Bakelite Co Microwell plate
JP2014117220A (en) * 2012-12-17 2014-06-30 Olympus Corp Cell separator

Also Published As

Publication number Publication date
WO2017033898A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
Hu et al. Superhydrophobic liquid–solid contact triboelectric nanogenerator as a droplet sensor for biomedical applications
WO2017033898A1 (en) Cell culture device and biological sample production method
Su et al. Bioinspired interfaces with superwettability: from materials to chemistry
Zhang et al. Hierarchical nanowire arrays as three-dimensional fractal nanobiointerfaces for high efficient capture of cancer cells
Li et al. Self-propelled nanomotors autonomously seek and repair cracks
Yong et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion
Miao et al. Bioinspired superspreading surface: from essential mechanism to application
Hoyer Formation of a titanium dioxide nanotube array
Peng et al. Whole genome expression analysis reveals differential effects of TiO2 nanotubes on vascular cells
Dhindsa et al. Reliable and low-voltage electrowetting on thin parylene films
Uguz et al. Autoclave sterilization of PEDOT: PSS electrophysiology devices
CN101559914B (en) Digital micro-droplet drive with deep submicron pore structure and manufacturing method thereof
Perry et al. Sliding droplets on superomniphobic zinc oxide nanostructures
O'shaughnessy et al. Stable biopassive insulation synthesized by initiated chemical vapor deposition of poly (1, 3, 5-trivinyltrimethylcyclotrisiloxane)
Gumus et al. Control of cell migration using a conducting polymer device
Lu et al. Electrically tunable organic bioelectronics for spatial and temporal manipulation of neuron-like pheochromocytoma (PC-12) cells
Lu et al. Drying enhanced adhesion of polythiophene nanotubule arrays on smooth surfaces
Iwai et al. The effect of electrically charged polyion complex nanoparticle-coated surfaces on adipose-derived stromal progenitor cell behaviour
Lai Bacterial attachment, aggregation, and alignment on subcellular nanogratings
US9437823B2 (en) Production device for a graphene thin film
Ye et al. Research on micro-structure and hemo-compatibility of the artificial heart valve surface
Wang et al. Microfluidic cell electroporation using a mechanical valve
JP2008259445A (en) Cell-separating device
JP2008306977A (en) Cell culture substrate
WO2017033896A1 (en) Biological sample conveyance device and biological sample conveyance method