JP2018157757A - Biological sample conveying device and biological sample conveyance method - Google Patents

Biological sample conveying device and biological sample conveyance method Download PDF

Info

Publication number
JP2018157757A
JP2018157757A JP2015165533A JP2015165533A JP2018157757A JP 2018157757 A JP2018157757 A JP 2018157757A JP 2015165533 A JP2015165533 A JP 2015165533A JP 2015165533 A JP2015165533 A JP 2015165533A JP 2018157757 A JP2018157757 A JP 2018157757A
Authority
JP
Japan
Prior art keywords
biological sample
electrode
dielectric layer
potential
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015165533A
Other languages
Japanese (ja)
Inventor
田畑 泰彦
Yasuhiko Tabata
泰彦 田畑
正迪 井手
Masamichi Ide
正迪 井手
哲平 小西
Teppei Konishi
哲平 小西
亮平 小口
Ryohei Oguchi
亮平 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2015165533A priority Critical patent/JP2018157757A/en
Priority to PCT/JP2016/074400 priority patent/WO2017033896A1/en
Publication of JP2018157757A publication Critical patent/JP2018157757A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor

Abstract

PROBLEM TO BE SOLVED: To provide a biological sample conveying device and a biological sample conveyance method by which a biological sample can be easily conveyed without damaging the sample and arranged on a desired place.SOLUTION: A biological sample conveying device 1 comprises: a dielectric layer 12 having an adsorbing surface 12a which adsorbs a biological sample; an electrode 14 provided on the opposite side to the adsorbing surface 12a of the dielectric layer 12; a grounding part 16 provided separately from the dielectric layer 12; and a voltage application mechanism 18 which applies voltage between the electrode 14 and the grounding part 16, in which the surface potential of the adsorbing surface 12a of the dielectric layer 12 is designed to change by applying voltage between the electrode 14 and the grounding part 16. Further, in a biological sample conveyance method, the biological sample is conveyed by using the biological sample conveying device 1, and is released at a desired place.SELECTED DRAWING: Figure 1

Description

本発明は、生体試料搬送装置および生体試料搬送方法に関する。   The present invention relates to a biological sample transport apparatus and a biological sample transport method.

近年、再生医療の分野では、細胞を高密度に培養して得た厚みのある細胞シートを患部に配置し、生着させることで治療効果を高めることが試みられている。細胞シートのような組織化された生体試料の製造方法としては、例えば、培養時の温度(例えば37℃)では疎水性で、室温(20〜25℃)では親水性となる温度応答性ポリマーを容器の内表面にコーティングした培養容器を用いて生体試料を製造する方法が知られている(特許文献1、2)。   In recent years, in the field of regenerative medicine, attempts have been made to enhance the therapeutic effect by placing a thick cell sheet obtained by culturing cells at high density in an affected area and engrafting it. As a method for producing an organized biological sample such as a cell sheet, for example, a temperature-responsive polymer that is hydrophobic at a culture temperature (for example, 37 ° C.) and hydrophilic at room temperature (20 to 25 ° C.) is used. A method for producing a biological sample using a culture vessel coated on the inner surface of the vessel is known (Patent Documents 1 and 2).

該方法では、培養時には容器表面の温度応答性ポリマーが疎水性で収縮した状態のため、細胞が容器表面に吸着してその組織化が促進される。また、培養後に培養容器の温度を室温まで下げると、温度応答性ポリマーが親水性で膨潤した状態になり、形成された生体試料と容器表面の間に水が入り込むことで、生体試料が容器表面から無傷で脱離する。こうして得られた生体試料は、脱離の際に熱や光による刺激がないため、細胞本来の機能が失われない。   In this method, since the temperature-responsive polymer on the surface of the container is hydrophobic and contracted during culture, the cells are adsorbed on the surface of the container and the organization thereof is promoted. In addition, when the temperature of the culture vessel is lowered to room temperature after culturing, the temperature-responsive polymer becomes hydrophilic and swelled, and water enters between the formed biological sample and the surface of the vessel, so that the biological sample becomes the surface of the vessel. Detaches intact. Since the biological sample obtained in this way is not stimulated by heat or light upon detachment, the original function of the cell is not lost.

容器表面から脱離させた生体試料は、培養容器から不織布等の搬送用部材上に載せて搬送し、別の生体試料や移植部位に張り付ける。しかし、不織布等を使用する場合、生体試料の脱離が課題となる。生体試料を別の生体試料や移植部位に張り付けた後、生体試料が患部の生体組織に生着する前に不織布等を取り除こうとすると、生体試料が不織布等に追従して別の生体試料や移植部位から剥がれてしまう。さらに、生体試料が移植先の生体組織に生着するまで不織布等を付けたままにしておくと、生体試料と不織布等の接着がより強固になり、不織布等を取り除く際に生体試料が損傷することがある。   The biological sample desorbed from the surface of the container is transported from a culture container on a transporting member such as a non-woven fabric, and is attached to another biological sample or a transplant site. However, when a nonwoven fabric or the like is used, the detachment of the biological sample becomes a problem. After attaching a biological sample to another biological sample or transplantation site, if you attempt to remove the non-woven fabric before the biological sample is engrafted on the affected living tissue, the biological sample follows the non-woven fabric and another biological sample or transplant. It will peel off from the part. Furthermore, if the non-woven fabric or the like is left attached until the biological sample is engrafted in the transplanted biological tissue, the adhesion between the biological sample and the non-woven fabric becomes stronger, and the biological sample is damaged when the non-woven fabric is removed. Sometimes.

特許第3441530号公報Japanese Patent No. 3441530 特許第3641301号公報Japanese Patent No. 3641301

本発明は、生体試料を損傷させずに容易に搬送して目的の場所に配置できる生体試料搬送装置および生体試料搬送方法を提供することを目的とする。   An object of the present invention is to provide a biological sample transport apparatus and a biological sample transport method that can easily transport a biological sample without damaging it and place it at a target location.

本発明は、以下の構成を有する。
[1]生体試料を吸着する吸着面を有する誘電体層と、前記誘電体層の前記吸着面と反対側に設けられた電極と、前記誘電体層と離間して設けられたアース部と、前記電極と前記アース部との間に電圧を印加する加電圧機構と、を備え、前記吸着面の表面電位が、前記電極と前記アース部との間に電圧が印加されることにより変化するようになっている、生体試料搬送装置。
[2]前記[1]に記載された生体試料搬送装置を用いた生体試料搬送方法であって、前記加電圧機構により前記アース部に対する前記電極の電位を0(V)よりも高いE(V)とし、導電性流体が付着した状態の生体試料を前記吸着面に吸着させて搬送する搬送工程と、前記加電圧機構により前記アース部に対する前記電極の電位をE(V)よりも低いE(V)とし、搬送した前記生体試料を前記吸着面から脱離させる脱離工程と、を有する、生体試料搬送方法。
The present invention has the following configuration.
[1] A dielectric layer having an adsorption surface for adsorbing a biological sample, an electrode provided on the opposite side of the dielectric layer from the adsorption surface, and a ground portion provided apart from the dielectric layer; An applied voltage mechanism for applying a voltage between the electrode and the ground part, and the surface potential of the adsorption surface is changed by applying a voltage between the electrode and the ground part. A biological sample transport device.
[2] The [1] A biological sample conveying method using the biological sample transporting device described in said higher than the potential of the electrode relative to the grounded portion by applying a voltage mechanism 0 (V) E 1 ( V), and the transporting step of transporting the biological sample with the conductive fluid adhering to the suction surface, and the potential of the electrode with respect to the ground portion is lower than E 1 (V) by the applied voltage mechanism A biological sample transport method, comprising: E 2 (V), and a desorption step of desorbing the transported biological sample from the adsorption surface.

本発明の生体試料搬送装置を用いれば、生体試料を損傷させずに容易に搬送して目的の場所に配置できる。
本発明の生体試料搬送方法によれば、生体試料を損傷させずに容易に搬送して目的の場所に配置できる。
If the biological sample transport apparatus of the present invention is used, the biological sample can be easily transported without being damaged and placed at a target location.
According to the biological sample transport method of the present invention, the biological sample can be easily transported without being damaged and placed at a target location.

本発明の生体試料搬送装置の一例を示した模式図である。It is the schematic diagram which showed an example of the biological sample conveyance apparatus of this invention. 図1の生体試料搬送装置を用いて生体試料を搬送する様子を示した模式図である。It is the schematic diagram which showed a mode that a biological sample was conveyed using the biological sample conveyance apparatus of FIG. 実施例のタンパク質接着性試験における凹部の内底面の表面電位とタンパク質吸着率Qの関係を示したグラフである。It is the graph which showed the relationship between the surface potential of the inner bottom face of a recessed part, and the protein adsorption rate Q in the protein adhesiveness test of an Example. 実施例のタンパク質脱着試験における凹部の内底面の表面電位−3Vでの静置時間とタンパク質吸着率Qの関係を示したグラフである。It is the graph which showed the relationship between the stationary time and the protein adsorption rate Q in the surface potential -3V of the inner bottom face of the recessed part in the protein desorption test of an Example.

以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
「含フッ素重合体」とは、分子中にフッ素原子を有する高分子化合物を意味する。
「単位」とは、重合体中に存在して重合体を構成する、単量体に由来する部分を意味する。炭素−炭素不飽和二重結合を有する単量体の付加重合により生じる、該単量体に由来する単位は、該不飽和二重結合が開裂して生じた2価の単位である。また、ある単位の構造を重合体形成後に化学的に変換したものも単位という。なお、以下、場合により、個々の単量体に由来する単位をその単量体名に「単位」を付した名称で呼ぶ。
「含フッ素重合体が主鎖に脂肪族環を有する」とは、脂肪族環の環骨格を構成する炭素原子のうち、少なくとも1つが、含フッ素重合体の主鎖を構成する炭素原子であることを意味する。
The following definitions of terms apply throughout this specification and the claims.
The “fluorinated polymer” means a polymer compound having a fluorine atom in the molecule.
The “unit” means a part derived from a monomer that exists in the polymer and constitutes the polymer. The unit derived from the monomer resulting from addition polymerization of a monomer having a carbon-carbon unsaturated double bond is a divalent unit generated by cleavage of the unsaturated double bond. Moreover, what unitally converted the structure of a unit after polymer formation is also called a unit. Hereinafter, in some cases, a unit derived from an individual monomer is referred to as a name obtained by adding “unit” to the monomer name.
“The fluoropolymer has an aliphatic ring in the main chain” means that at least one of the carbon atoms constituting the ring skeleton of the aliphatic ring is a carbon atom constituting the main chain of the fluoropolymer. Means that.

[生体試料搬送装置]
本発明の生体試料搬送装置は、生体試料を吸着する吸着面を有する誘電体層と、前記誘電体層の前記吸着面と反対側に設けられた電極と、前記誘電体層と離間して設けられたアース部と、前記電極と前記アース部との間に電圧を印加する加電圧機構と、を備えたものである。
本発明の生体試料搬送装置においては、誘電体層の吸着面の表面電位が、加電圧機構により電極とアース部との間に電圧が印加されることにより変化するようになっている。誘電体層の吸着面の表面電位が変化することで、該吸着面に対する生体試料の吸着性が変化するため、生体試料の脱着を制御できる。
[Biological sample transport device]
The biological sample transport apparatus of the present invention is provided with a dielectric layer having an adsorption surface for adsorbing a biological sample, an electrode provided on the opposite side of the dielectric layer from the adsorption surface, and a distance from the dielectric layer. And an applied voltage mechanism for applying a voltage between the electrode and the earth part.
In the biological sample transport apparatus of the present invention, the surface potential of the adsorption surface of the dielectric layer is changed by applying a voltage between the electrode and the ground portion by the applied voltage mechanism. Since the surface potential of the adsorption surface of the dielectric layer changes, the adsorptivity of the biological sample to the adsorption surface changes, so that desorption of the biological sample can be controlled.

本発明の生体試料搬送装置においては、細胞シート等の生体試料の搬送および脱着が容易になる点から、生体試料を吸着する吸着面全体の表面電位を一様に正電位または負電位に制御できるようになっていることが好ましい。   In the biological sample transport apparatus of the present invention, the surface potential of the entire adsorption surface for adsorbing the biological sample can be uniformly controlled to a positive potential or a negative potential because the biological sample such as a cell sheet can be easily transported and desorbed. It is preferable that it is such.

図1は、本発明の生体試料搬送装置の一例を示す断面図である。
生体試料搬送装置1は、収容体10と、誘電体層12と、電極14と、アース部16と、加電圧機構18と、を備えている。
収容体10は、誘電体層12および電極14を収容する吸着部20と、吸着部20の電極14側から突出するように一体に形成され、アース部16および加電圧機構18を収容する把持部22とを備えている。
FIG. 1 is a cross-sectional view showing an example of the biological sample transport apparatus of the present invention.
The biological sample transport apparatus 1 includes a container 10, a dielectric layer 12, an electrode 14, a ground unit 16, and a voltage application mechanism 18.
The accommodating body 10 is integrally formed so as to protrude from the electrode 14 side of the attracting portion 20 and the attracting portion 20 accommodating the dielectric layer 12 and the electrode 14, and the gripping portion accommodating the ground portion 16 and the applied voltage mechanism 18. 22.

誘電体層12は、生体試料を吸着する吸着面12aを有し、吸着面12aが収容体10から露出するように設けられている。電極14は、吸着部20内に誘電体層12の吸着面12aと反対側に設けられている。この例では、平板状の電極14上に誘電体層12が設けられている。
アース部16は、把持部22内において、誘電体層12と離間し、誘電体層12とは電気的に接続されない状態で設けられている。加電圧機構18は、把持部22内における電極14とアース部16の間に、電極14とアース部16にそれぞれ電気的に接続された状態で設けられている。加電圧機構18により電極14とアース部16との間に電圧を印加できるようになっている。
誘電体層12の吸着面12aの表面電位は、加電圧機構18により電極14とアース部16との間に電圧が印加されることにより変化するようになっている。
The dielectric layer 12 has an adsorption surface 12 a that adsorbs a biological sample, and is provided so that the adsorption surface 12 a is exposed from the container 10. The electrode 14 is provided in the adsorption portion 20 on the side opposite to the adsorption surface 12 a of the dielectric layer 12. In this example, the dielectric layer 12 is provided on the flat electrode 14.
The ground portion 16 is provided in the gripping portion 22 so as to be separated from the dielectric layer 12 and not electrically connected to the dielectric layer 12. The applied voltage mechanism 18 is provided between the electrode 14 and the ground portion 16 in the grip portion 22 while being electrically connected to the electrode 14 and the ground portion 16. A voltage can be applied between the electrode 14 and the ground portion 16 by the applied voltage mechanism 18.
The surface potential of the attracting surface 12 a of the dielectric layer 12 is changed when a voltage is applied between the electrode 14 and the ground portion 16 by the applied voltage mechanism 18.

(収容体)
収容体の形状は、特に限定されず、吸着層の露出した吸着面に生体試料を吸着させた状態で搬送することを考慮して適宜設計すればよい。例えば、収容体としては、生体試料搬送装置1のように、誘電体層および電極を収容する吸着部と、アース部および加電圧機構を収容し、手で把持される把持部とを備えるものが挙げられる。把持部は、加電圧機構およびアース部を内蔵し、手で把持できる形状であればよく、例えば、円柱状等が挙げられる。
収容体を形成する材料としては、手で触れたときに手に電気が流れないように電極や加電圧機構から絶縁できる公知の材料を使用でき、例えば、ポリアセタール、ABS樹脂等の樹脂等が挙げられる。
(Container)
The shape of the container is not particularly limited, and may be appropriately designed in consideration of transporting the biological sample in a state of being adsorbed on the adsorption surface where the adsorption layer is exposed. For example, as the biological sample transport apparatus 1, the container includes an adsorption unit that accommodates a dielectric layer and an electrode, a grounding unit and a voltage applying mechanism, and a gripping unit that is gripped by hand. Can be mentioned. The gripping part may be any shape that incorporates an applied voltage mechanism and a grounding part and can be gripped by hand. Examples thereof include a columnar shape.
As a material for forming the container, a known material that can be insulated from an electrode or an applied voltage mechanism so that electricity does not flow to the hand when touched by a hand can be used, and examples thereof include resins such as polyacetal and ABS resin. It is done.

(誘電体層)
誘電体層の吸着面は、搬送時に生体試料が吸着される面である。
誘電体層を形成する材料としては、特に限定されず、例えば、含フッ素重合体、ポリエチレンテレフタレート、ポリイミド、ポリカーボネート、アクリル樹脂、パリレンC等の有機高分子材料等が挙げられ、なかでも含フッ素重合体が好ましい。
誘電体層を形成する材料は、1種でもよく、2種以上でもよい。
(Dielectric layer)
The adsorption surface of the dielectric layer is a surface on which a biological sample is adsorbed during transportation.
The material for forming the dielectric layer is not particularly limited, and examples thereof include organic polymer materials such as a fluorine-containing polymer, polyethylene terephthalate, polyimide, polycarbonate, acrylic resin, parylene C, and the like. Coalescence is preferred.
The material for forming the dielectric layer may be one type or two or more types.

含フッ素重合体としては、特に限定されず、例えば、フルオロオレフィン単位を有する含フッ素重合体、芳香環を有する含フッ素重合体、フルオロポリエーテル鎖を有する含フッ素重合体、主鎖に脂肪族環を有する含フッ素重合体、フッ素ゴム等が挙げられる。   The fluorine-containing polymer is not particularly limited, and examples thereof include a fluorine-containing polymer having a fluoroolefin unit, a fluorine-containing polymer having an aromatic ring, a fluorine-containing polymer having a fluoropolyether chain, and an aliphatic ring in the main chain. And fluorine-containing polymers, fluororubbers and the like.

フルオロオレフィン単位を有する含フッ素重合体としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ペルフルオロ(アルキルビニルエーテル)共重合体(PFA)等が挙げられる。
芳香環を有する含フッ素重合体としては、例えば、含フッ素芳香族化合物(ペルフルオロ(1,3,5−トリフェニルベンゼン)等)と、フェノール系化合物(1,3,5−トリヒドロキシベンゼン等)と、架橋性官能基含有芳香族化合物(ペンタフルオロスチレン等)とを、脱ハロゲン化水素剤(炭酸カリウム等)の存在下で反応させて得られる重合体が挙げられる。
フルオロポリエーテル鎖を有する含フッ素重合体としては、例えば、オプツール DSX(登録商標、ダイキン工業社製)、KY−100シリーズ(信越化学社製)等が挙げられる。
主鎖に脂肪族環を有する含フッ素重合体としては、例えば、CYTOP(登録商標、旭硝子社製)、テフロン(登録商標)AF(DuPont社製)等が挙げられる。
フッ素ゴムとしては、例えば、ビニリデンフルオリド(VDF)を主成分とするビニリデンフルオリド系フッ素ゴム、プロピレン−テトラフルオロエチレン系フッ素ゴム、テトラフルオロエチレン−ペルフルオロアルキルビニルエーテル系フッ素ゴム等が挙げられる。
含フッ素重合体としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
Examples of the fluoropolymer having a fluoroolefin unit include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (PFA), and the like.
Examples of the fluorine-containing polymer having an aromatic ring include fluorine-containing aromatic compounds (perfluoro (1,3,5-triphenylbenzene) and the like) and phenolic compounds (1,3,5-trihydroxybenzene and the like). And a polymer obtained by reacting a crosslinkable functional group-containing aromatic compound (such as pentafluorostyrene) in the presence of a dehydrohalogenating agent (such as potassium carbonate).
Examples of the fluoropolymer having a fluoropolyether chain include OPTOOL DSX (registered trademark, manufactured by Daikin Industries), KY-100 series (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like.
Examples of the fluorine-containing polymer having an aliphatic ring in the main chain include CYTOP (registered trademark, manufactured by Asahi Glass Co., Ltd.), Teflon (registered trademark) AF (manufactured by DuPont), and the like.
Examples of the fluororubber include vinylidene fluoride-based fluororubbers mainly composed of vinylidene fluoride (VDF), propylene-tetrafluoroethylene-based fluororubber, tetrafluoroethylene-perfluoroalkylvinylether-based fluororubber, and the like.
As a fluoropolymer, 1 type may be used independently and 2 or more types may be used in combination.

誘電体層を形成する材料としては、シリカ、アルミナ、セリア、チタニアおよびジルコニアからなる群から選ばれる1種以上の金属酸化物を用いてもよい。   As a material for forming the dielectric layer, one or more metal oxides selected from the group consisting of silica, alumina, ceria, titania and zirconia may be used.

誘電体層の厚さは、0.1〜10μmが好ましく、0.5〜1μmがより好ましい。誘電体層の厚さが下限値以上であれば、実用的な使用電圧内での絶縁破壊が起きにくい。誘電体層の厚さが上限値以下であれば、電圧印加により誘電体層の分極を効率的に行うことができる。   The thickness of the dielectric layer is preferably 0.1 to 10 μm, and more preferably 0.5 to 1 μm. If the thickness of the dielectric layer is equal to or greater than the lower limit, dielectric breakdown is less likely to occur within a practical working voltage. If the thickness of the dielectric layer is not more than the upper limit value, the dielectric layer can be efficiently polarized by applying a voltage.

(電極)
電極を形成する材料は、導電性材料であればよく、例えば、酸化インジウムスズ(ITO);Pt、Au、Ni、Al等の金属;SnO、In、RuO等の導電性を有する金属酸化物;Ge、Si、GaAs等の半導体;グラファイト、グラッシーカーボン、ダイヤモンド等の炭素系材料;ポリアセチレン、ポリピロール、ポリアニリン、ポリチオフェン等の伝導性高分子等が挙げられる。
電極の形状は、特に限定されず、例えば、平板状、櫛状等が挙げられる。
電極の数は、1つには限定されず、2つ以上であってもよい。
(electrode)
The material for forming the electrode may be a conductive material, for example, indium tin oxide (ITO); metal such as Pt, Au, Ni, Al, etc .; conductivity such as SnO 2 , In 2 O 3 , RuO 2, etc. Metal oxides having: semiconductors such as Ge, Si and GaAs; carbon-based materials such as graphite, glassy carbon and diamond; conductive polymers such as polyacetylene, polypyrrole, polyaniline and polythiophene.
The shape of the electrode is not particularly limited, and examples thereof include a flat plate shape and a comb shape.
The number of electrodes is not limited to one and may be two or more.

(アース部)
アース部としては、装置内に内蔵された状態でアースが可能であるものであれば特に限定されず、公知のものを採用できる。アース部の具体例としては、例えば、把持部に人体と接触するように設けられた胴やアルミニウム等の金属プレート等が挙げられる。この場合、該金属プレートから人体を介してアースされる。
(Earth part)
The grounding part is not particularly limited as long as it can be grounded while being built in the apparatus, and a known part can be adopted. Specific examples of the ground portion include, for example, a body provided on the grip portion so as to come into contact with the human body, a metal plate such as aluminum, and the like. In this case, the metal plate is grounded through the human body.

(加電圧機構)
加電圧機構としては、電極とアース部との間に任意の電圧を印加できるものであればよく、公知のものを採用することができる。
加電圧機構としては、電圧の印加のON/OFFを切り替えるスイッチを備えるものが好ましい。また、加電圧機構としては、正電圧出力部、負電圧出力部、および、前記正電圧出力部と前記負電圧出力部のいずれから電極とアース部との間に電圧を印加するかを切り替えるスイッチを備えているものが好ましい。さらに、加電圧機構としては、電極とアース部との間に印加する電圧を調節できる電圧調節機構を備えるものが好ましい。
(Applied voltage mechanism)
As the applied voltage mechanism, any mechanism can be used as long as an arbitrary voltage can be applied between the electrode and the ground portion, and a known mechanism can be adopted.
As the applied voltage mechanism, a mechanism including a switch for switching ON / OFF of voltage application is preferable. Further, as a voltage application mechanism, a switch for switching a positive voltage output unit, a negative voltage output unit, and whether to apply a voltage between the positive voltage output unit or the negative voltage output unit between the electrode and the ground unit The thing provided with is preferable. Furthermore, as an applied voltage mechanism, what is equipped with the voltage adjustment mechanism which can adjust the voltage applied between an electrode and an earth | ground part is preferable.

(製造方法)
本発明の生体試料搬送装置の製造方法は、特に限定されず、例えば、以下の方法が挙げられる。
含フッ素重合体等を溶媒に溶解した塗布液を平板状の電極上に塗布し、ベーク等により乾燥して誘電体層を形成する。互いに電気的に接続された加電圧機構およびアース部を内蔵する収容体内に、電極と誘電体層を該誘電体層の吸着面が露出するように収容し、電極と加電圧機構を電気的に接続することで生体試料搬送装置を得る。
(Production method)
The manufacturing method of the biological sample transport apparatus of the present invention is not particularly limited, and examples thereof include the following methods.
A coating solution in which a fluorine-containing polymer or the like is dissolved in a solvent is applied on a flat electrode and dried by baking or the like to form a dielectric layer. An electrode and a dielectric layer are accommodated in a container having a built-in voltage application mechanism and a ground portion that are electrically connected to each other so that the adsorption surface of the dielectric layer is exposed, and the electrode and the voltage application mechanism are electrically connected. A biological sample transport apparatus is obtained by connection.

塗布液の塗布方法としては、特に限定されず、例えば、スピンコート法、ディップコート法、キャストコート法、スプレーコート法、ダイコート法、スキャンコート法、はけ塗り法、ポッティング法等が挙げられる。   The coating method for the coating solution is not particularly limited, and examples thereof include spin coating, dip coating, cast coating, spray coating, die coating, scan coating, brush coating, and potting.

[生体試料搬送方法]
本発明の生体試料搬送方法は、本発明の生体試料搬送装置を用いて生体試料を搬送する方法である。本発明の生体試料搬送方法は、下記の搬送工程と脱離工程を有する。
搬送工程:生体試料搬送装置を用い、加電圧機構によりアース部に対する電極の電位を0(V)よりも高いE(V)とし、導電性流体が付着した状態の生体試料を誘電体層の吸着面に吸着させて搬送する。
脱離工程:加電圧機構によりアース部に対する電極の電位をE(V)よりも低いE(V)とし、搬送した生体試料を吸着面から脱離させる。
[Biological sample transport method]
The biological sample transport method of the present invention is a method of transporting a biological sample using the biological sample transport device of the present invention. The biological sample transport method of the present invention includes the following transport process and desorption process.
Transport process: Using a biological sample transport device, the potential of the electrode with respect to the grounding portion is set to E 1 (V) higher than 0 (V) by the applied voltage mechanism, and the biological sample with the conductive fluid attached is placed on the dielectric layer Adsorbed to the adsorption surface and transported.
Desorption step: The potential of the electrode with respect to the ground portion is set to E 2 (V) lower than E 1 (V) by the applied voltage mechanism, and the transported biological sample is desorbed from the adsorption surface.

(搬送工程)
例えば、生体試料搬送装置において、加電圧機構によりアース部に対する電極の電位を0(V)よりも高いE(V)とし、誘電体層の吸着面を、導電性流体が付着した状態の生体試料に接触させる。アース部に対する電極の電位がE(V)とされていることで、誘電体層の吸着面の表面電位が正電位となって、該吸着面は正電荷を帯びる。細胞は通常負電荷を帯びているため、正電荷を帯びた吸着面に静電的な相互作用によって生体試料が吸着する。このように、誘電体層の吸着面に生体試料を吸着させた状態で、生体試料を目的の場所まで搬送する。
(Conveying process)
For example, in a biological sample transport device, the potential of the electrode with respect to the ground portion is set to E 1 (V) higher than 0 (V) by the applied voltage mechanism, and the living surface in which the conductive fluid is attached to the adsorption surface of the dielectric layer Contact the sample. Since the potential of the electrode with respect to the ground portion is E 1 (V), the surface potential of the attracting surface of the dielectric layer becomes a positive potential, and the attracting surface is positively charged. Since a cell is normally negatively charged, a biological sample is adsorbed by an electrostatic interaction on a positively charged adsorption surface. In this manner, the biological sample is transported to a target location in a state where the biological sample is adsorbed on the adsorption surface of the dielectric layer.

例えば、細胞培養によって得た生体試料110を図1に例示した生体試料搬送装置1を用いて搬送する場合、図2(A)の状態に先立ち、培養容器100内から培養液を除き、生体試料110に液体培地が付着した状態とする。次いで、図2(A)に示すように、生体試料搬送装置1において、加電圧機構18によりアース部16に対する電極14の電位を0(V)よりも高いE(V)とし、誘電体層12の吸着面12aを、液体培地が付着した状態の生体試料110に接触させる。図2(B)に示すように、誘電体層12の吸着面12aには静電的な相互作用によって生体試料110が吸着するため、その状態で生体試料110を目的の場所まで搬送する。 For example, when the biological sample 110 obtained by cell culture is transported using the biological sample transport apparatus 1 illustrated in FIG. 1, the culture solution is removed from the culture vessel 100 prior to the state of FIG. The liquid medium is attached to 110. Next, as shown in FIG. 2A, in the biological sample transport apparatus 1, the potential of the electrode 14 with respect to the ground portion 16 is set to E 1 (V) higher than 0 (V) by the applied voltage mechanism 18, and the dielectric layer The 12 adsorption surfaces 12a are brought into contact with the biological sample 110 with the liquid medium attached thereto. As shown in FIG. 2B, since the biological sample 110 is adsorbed to the adsorption surface 12a of the dielectric layer 12 by electrostatic interaction, the biological sample 110 is transported to a target location in that state.

培養工程におけるアース部に対する電極の電位E(V)としては、0(V)よりも高い範囲で、細胞の種類に応じて適宜決定できる。 The potential E 1 (V) of the electrode with respect to the ground part in the culturing step can be appropriately determined depending on the cell type within a range higher than 0 (V).

生体試料としては、特に限定されず、例えば、タンパク質、糖タンパク質、細胞等が挙げられる。
細胞としては、例えば、歯肉線維芽細胞、歯周靭帯細胞、表皮細胞、線維芽細胞、肝実質細胞、肝非実質細胞(内皮細胞、クッパー細胞、星細胞等)、骨芽細胞、上皮細胞、軟骨細胞、神経細胞、筋細胞、間葉系幹細胞、膵島細胞、マクロファージ、各種の腫瘍細胞や機能細胞等が挙げられる。細胞は、人工細胞であってもよい。
生体試料としては、細胞シートが好ましい。
The biological sample is not particularly limited, and examples thereof include proteins, glycoproteins, and cells.
Examples of cells include gingival fibroblasts, periodontal ligament cells, epidermal cells, fibroblasts, liver parenchymal cells, liver non-parenchymal cells (endothelial cells, Kupffer cells, stellate cells, etc.), osteoblasts, epithelial cells, Examples include chondrocytes, nerve cells, muscle cells, mesenchymal stem cells, islet cells, macrophages, various tumor cells and functional cells. The cell may be an artificial cell.
A cell sheet is preferred as the biological sample.

導電性流体としては、生体試料に悪影響を与えないものであればよく、細胞培養用の液体培地、リン酸緩衝液(D−PBS)、生理食塩水等が挙げられる。   The conductive fluid is not particularly limited as long as it does not adversely affect the biological sample, and examples thereof include a liquid medium for cell culture, phosphate buffer (D-PBS), and physiological saline.

(脱離工程)
搬送後、目的の場所において、加電圧機構によりアース部に対する電極の電位をE(V)よりも低いE(V)とし、生体試料を吸着面から脱離させる。例えば、誘電体層の吸着面に吸着させている生体試料を患者の患部に接触させた状態で、アース部に対する電極の電位をE(V)よりも低いE(V)とし、生体試料を吸着面から脱離させて患部に配置する。
(Desorption process)
After the transfer, the potential of the electrode with respect to the ground portion is set to E 2 (V) lower than E 1 (V) by the applied voltage mechanism at the target location, and the biological sample is desorbed from the adsorption surface. For example, in the state where the biological sample adsorbed on the adsorption surface of the dielectric layer is in contact with the affected part of the patient, the potential of the electrode with respect to the ground part is set to E 2 (V) lower than E 1 (V), and the biological sample Is detached from the suction surface and placed on the affected area.

図1に例示した生体試料搬送装置1を用いて生体試料110を搬送した場合は、例えば、図2(C)に示すように、誘電体層12の吸着面12aに吸着させている生体試料110を患者の患部200に接触させた状態で、アース部16に対する電極14の電位をE(V)よりも低いE(V)とする。そして、図2(D)に示すように、生体試料搬送装置1を患部200から遠ざけることで、生体試料110が誘電体層12の吸着面12aから脱離し、患部200に配置される。 When the biological sample 110 is transferred using the biological sample transfer apparatus 1 illustrated in FIG. 1, for example, as shown in FIG. 2C, the biological sample 110 adsorbed on the adsorption surface 12 a of the dielectric layer 12. Is in contact with the affected part 200 of the patient, and the potential of the electrode 14 with respect to the ground part 16 is set to E 2 (V) lower than E 1 (V). Then, as shown in FIG. 2D, the biological sample 110 is detached from the adsorption surface 12 a of the dielectric layer 12 by placing the biological sample transport apparatus 1 away from the affected part 200, and is placed on the affected part 200.

脱離工程では、加電圧機構により、アース部に対する電極の電位E(V)を負電位とすることが好ましい。これにより、誘電体層の吸着面の表面電位が負電位となって該吸着面が負電荷を帯びる。そのため、誘電体層の吸着面と生体試料との静電反発により、吸着面からの生体試料の脱離がより容易になる。この場合、アース部に対する電極の電位をE(V)は、0(V)よりも低い範囲で、細胞の種類に応じて適宜決定できる。 In the desorption process, it is preferable that the potential E 2 (V) of the electrode with respect to the ground portion is set to a negative potential by the applied voltage mechanism. As a result, the surface potential of the attracting surface of the dielectric layer becomes negative and the attracting surface is negatively charged. Therefore, the biological sample is more easily detached from the adsorption surface due to electrostatic repulsion between the adsorption surface of the dielectric layer and the biological sample. In this case, the potential of the electrode with respect to the ground portion can be appropriately determined according to the cell type within a range where E 2 (V) is lower than 0 (V).

なお、脱離工程では、アースが可能な場所に生体試料を配置する場合には、当該場所に生体試料を配置した後に加電圧機構による電圧の印加をOFFとし、アース部に対する電極の電位E(V)を0(V)としてもよい。これにより、アースが可能な場所に接触された生体試料を介して誘電体層および電極がアースされ、吸着面と生体試料との静電的な相互作用がなくなることで、生体試料が吸着面から脱離する。
例えば、誘電体層の吸着面に吸着した状態で搬送した生体試料を患者の患部に接触させた状態で、加電圧機構による電圧の印加をOFFとするだけでも、生体試料が吸着面から脱離して患部に配置される。
In the desorption process, when the biological sample is placed in a place where grounding is possible, the application of the voltage by the applied voltage mechanism is turned off after the biological sample is placed in the place, and the potential E 2 of the electrode with respect to the ground portion. (V) may be set to 0 (V). As a result, the dielectric layer and the electrode are grounded via the biological sample that is in contact with a place where grounding is possible, and the electrostatic interaction between the adsorption surface and the biological sample is eliminated. Detach.
For example, the biological sample is detached from the adsorption surface even if the voltage applied by the applied voltage mechanism is simply turned off while the biological sample conveyed while adsorbed on the adsorption surface of the dielectric layer is in contact with the affected part of the patient. Placed on the affected area.

以上説明したように、本発明では、誘電体層の吸着面の表面電位を調節し、該吸着面の表面性状を変化させて細胞の接着性を変化させることにより、誘電体層の吸着面への細胞の脱着を制御できる。そのため、熱や光や振動等の刺激を与えずに低負荷で生体試料を搬送することができるうえ、不織布等を用いる場合に比べて生体試料を容易に吸着面から脱離させることができる。このように、本発明では、生体試料が有する本来の機能が損なわれることを抑制しつつ、該生体試料を搬送して目的の場所に配置することができる。
本発明の用途としては、細胞本来の機能を損なわずに生体試料を搬送して目的の場所に配置できることから、特に細胞シートを搬送して患者の患部に配置する用途が、該細胞シートが患部で生体組織に効率良く生着できる点で有効である。
As described above, in the present invention, the surface potential of the adsorption surface of the dielectric layer is adjusted, and the surface properties of the adsorption surface are changed to change the adhesiveness of the cells. Can control cell detachment. Therefore, the biological sample can be transported with a low load without applying a stimulus such as heat, light or vibration, and the biological sample can be easily detached from the adsorption surface as compared with the case of using a nonwoven fabric or the like. As described above, in the present invention, the biological sample can be transported and placed at a target location while suppressing the loss of the original function of the biological sample.
As an application of the present invention, a biological sample can be transported and placed at a target location without impairing the original function of the cell. It is effective in that it can be engrafted in a living tissue efficiently.

以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。
[例1]
(塗布液の調製)
CYTOP(登録商標、旭硝子社製)を用い、その濃度が0.9質量%となるようにCT−solv100E(旭硝子社製)に溶解させ、塗布液を調製した。
(評価用デバイスの作製)
ガラス基板上に、電極として厚み150nm、シート抵抗値10Ω/cmのITOを成膜した。さらに電極上に、スピンコートにより前記塗布液を塗布し、厚み0.5μmの誘電体層を形成した。スピンコートにおいては、ガラス基板を500rpmで10秒スピンさせた後に、1000rpmで20秒スピンさせた。
次いで、底面部に直径35mmの貫通穴が形成されたポリスチレンシャーレを、前記誘電体層上に接着剤を用いて接着し、内底面が誘電体層で形成された凹部を備える評価用デバイスを作製した。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by the following description.
[Example 1]
(Preparation of coating solution)
Using CYTOP (registered trademark, manufactured by Asahi Glass Co., Ltd.), a coating solution was prepared by dissolving in CT-solv100E (manufactured by Asahi Glass Co., Ltd.) so that the concentration thereof was 0.9% by mass.
(Production of evaluation device)
An ITO film having a thickness of 150 nm and a sheet resistance value of 10 Ω / cm 2 was formed as an electrode on a glass substrate. Further, the coating solution was applied onto the electrode by spin coating to form a dielectric layer having a thickness of 0.5 μm. In spin coating, the glass substrate was spun at 500 rpm for 10 seconds and then spun at 1000 rpm for 20 seconds.
Next, a polystyrene petri dish having a through hole having a diameter of 35 mm formed on the bottom surface portion is adhered to the dielectric layer using an adhesive, and an evaluation device including a recess having an inner bottom surface formed of the dielectric layer is manufactured. did.

[タンパク質接着性試験]
以下の測定は、Advances in Polymer Science 57 Polymers in Medicine.(洋書)とSurface modification of polymers for medical applications. Biomaterials 1994. Vol.15 No.10 725-736を参考にして行った。
(1)発色液、タンパク質溶液の準備
発色液として、ペルオキシダーゼ発色液(3,3’,5,5’−テトラメチルベンジジン(TMBZ)、KPL社製)の50mLと、TMB Peroxidase Substrate(KPL社製)の50mLとを混合したものを使用した。
タンパク質溶液として、タンパク質(POD−goat anti mouse IgG、Biorad社)をリン酸緩衝溶液(D−PBS、Sigma社製)で16,000倍に希釈したものを使用した。
(2)タンパク質吸着
評価用デバイスの凹部内にタンパク質溶液の3mLを分注し、対向電極を配置して評価用デバイスに3Vの電圧を印加し、評価用デバイスの電極電位を3Vとして、室温で1時間放置してタンパク質を吸着させた。また、これとは別に、評価用デバイスの電極電位を−3Vとする以外は同様の操作を行った。また、評価用デバイスに電圧を印加せず、評価用デバイスの電極電位を0Vとしたものについても、上記と同様に室温で1時間放置した。これらにおいては、評価用デバイスの凹部の内底面の表面電位は、電極電位と同等であると見なせる。
ブランクとして、タンパク質溶液を96ウェルマイクロプレートにおける3ウェルに、1ウェル毎に2μL分注した。
(3)ウェル洗浄
タンパク質を吸着させた評価用デバイスの凹部を、界面活性剤(Tween20、和光純薬社製)を0.05質量%含ませたリン酸緩衝溶液(D−PBS、Sigma社製)の4mLで4回洗浄した(16mL使用)。
(4)発色液分注
洗浄を終えた評価用デバイスの凹部に、発色液の3mLを分注し、7分間発色反応を行った。2N硫酸の1.5mLを加えることで発色反応を停止させた。
ブランクについては、96ウェルマイクロプレートの3ウェルに、1ウェル毎に発色液の100μLを分注して7分間発色反応を行った後、1ウェル毎に2N硫酸の50μLを加えることで発色反応を停止させた。
(5)吸光度測定準備
評価用デバイスの凹部から150μLの液を取り、96ウェルマイクロプレートに移した。
(6)吸光度測定およびタンパク質吸着率Q
吸光度は、MTP−810Lab(コロナ電気社製)により450nmの吸光度を測定した。ブランクの吸光度の平均値(N=3)をAとした。凹部の内底面の表面電位(評価用デバイスの電極電位)を3V、−3V、0Vとしたもののそれぞれについて、評価用デバイスから96ウェルマイクロプレートに移動させた液の吸光度をAとした。
タンパク質吸着率Qを下式により求めた。
Q=A/{A×(100/ブランクのタンパク質溶液の分注量)}×100
=A/{A×(100/2μL)}×100 [%]
結果を図3に示す。
[Protein adhesion test]
The following measurements were made with reference to Advances in Polymer Science 57 Polymers in Medicine. (Western book) and Surface modification of polymers for medical applications. Biomaterials 1994. Vol.15 No.10 725-736.
(1) Preparation of color developing solution and protein solution As a color developing solution, 50 mL of peroxidase coloring solution (3,3 ′, 5,5′-tetramethylbenzidine (TMBZ), manufactured by KPL) and TMB Peroxidase Substrate (manufactured by KPL) ) Was mixed with 50 mL.
As a protein solution, a protein (POD-goat anti mouse IgG, Biorad) diluted 16,000 times with a phosphate buffer solution (D-PBS, Sigma) was used.
(2) Protein adsorption 3 mL of the protein solution is dispensed into the recess of the evaluation device, the counter electrode is arranged, a voltage of 3 V is applied to the evaluation device, and the electrode potential of the evaluation device is set to 3 V at room temperature. The protein was adsorbed by standing for 1 hour. Separately from this, the same operation was performed except that the electrode potential of the evaluation device was set to -3V. In addition, a voltage was not applied to the evaluation device and the electrode potential of the evaluation device was set to 0 V, and the device was left at room temperature for 1 hour in the same manner as described above. In these, it can be considered that the surface potential of the inner bottom surface of the recess of the evaluation device is equivalent to the electrode potential.
As a blank, 2 μL of the protein solution was dispensed into 3 wells in a 96-well microplate per well.
(3) Well Washing Phosphate buffer solution (D-PBS, manufactured by Sigma) containing 0.05% by mass of a surfactant (Tween 20, manufactured by Wako Pure Chemical Industries, Ltd.) in the recess of the evaluation device on which the protein is adsorbed ) 4 times (using 16 mL).
(4) Coloring solution dispensing 3 mL of the coloring solution was dispensed into the recesses of the evaluation device that had been washed, and a coloring reaction was performed for 7 minutes. The color reaction was stopped by adding 1.5 mL of 2N sulfuric acid.
For the blank, 100 μL of the coloring solution was dispensed into 3 wells of a 96-well microplate for 7 minutes, and then the coloring reaction was performed by adding 50 μL of 2N sulfuric acid to each well. Stopped.
(5) Preparation for absorbance measurement 150 μL of the liquid was taken from the recess of the evaluation device and transferred to a 96-well microplate.
(6) Absorbance measurement and protein adsorption rate Q
Absorbance was measured at 450 nm using MTP-810Lab (Corona Electric Co., Ltd.). Mean absorbance of blank (N = 3) was A 0. The inner bottom surface of the surface potential of the recess (electrode potential of the evaluation device) 3V, -3 V, for each of those and 0V, the absorbance of the liquid is moved from the evaluation device to a 96-well microplate was A 1.
The protein adsorption rate Q was determined by the following equation.
Q = A 1 / {A 0 × (100 / amount of dispensed blank protein solution)} × 100
= A 1 / {A 0 × (100/2 μL)} × 100 [%]
The results are shown in FIG.

図3に示すように、例1の評価用デバイスにおいては、凹部の内底面の表面電位(評価用デバイスの電極電位)が−3V、0V、3Vの順でタンパク質吸着率Qが高くなった。この結果は、誘電体層の吸着面の表面電位を制御することにより、該吸着面への生体試料の吸着性を制御できることを示すものである。   As shown in FIG. 3, in the evaluation device of Example 1, the protein adsorption rate Q increased in the order of the surface potential of the inner bottom surface of the recess (electrode potential of the evaluation device) of −3V, 0V, and 3V. This result shows that the adsorptivity of the biological sample to the adsorption surface can be controlled by controlling the surface potential of the adsorption surface of the dielectric layer.

[タンパク質脱着試験]
(1)タンパク質吸着
評価用デバイスの凹部に、前記タンパク質溶液の3mLを分注し、対向電極を配置して評価用デバイスに3Vの電圧を印加し、凹部の内底面の表面電位(評価用デバイスの電極電位)を3Vとして、室温で1時間放置してタンパク質を吸着させた。
ブランクとして、前記タンパク質溶液を96ウェルマイクロプレートにおける3ウェルに、1ウェル毎に2μL分注した。
(2)タンパク質脱着
タンパク質を吸着させた評価用デバイスに−3Vの電圧を印加し、凹部の内底面の表面電位(評価用デバイスの電極電位)を−3Vとして、室温で1分間静置した。次いで、界面活性剤(Tween20、和光純薬社製)を0.05質量%含ませたリン酸緩衝溶液(D−PBS、Sigma社製)の4mLで凹部を4回洗浄した。
また、凹部の内底面の表面電位を−3Vとした状態での静置時間を0分間、5分間、10分間としたものについても、同様にして行った。なお、前記静置時間が0分間であるとは、凹部の内底面の表面電位(評価用デバイスの電極電位)を0Vとして洗浄を行ったことを意味する。
(3)発色液分注、吸光度測定準備、吸光度測定およびタンパク質吸着率Q
前記[タンパク質接着性試験]の(4)〜(6)と同様にして、静置時間を0分間、1分間、5分間、10分間としたもののそれぞれについて、タンパク質吸着率Qを測定した。
結果を図4に示す。
[Protein desorption test]
(1) Protein adsorption 3 mL of the protein solution is dispensed into the concave portion of the evaluation device, a counter electrode is placed, a voltage of 3 V is applied to the evaluation device, and the surface potential of the inner bottom surface of the concave portion (device for evaluation) The electrode potential was set at 3 V and allowed to stand at room temperature for 1 hour to adsorb proteins.
As a blank, 2 μL of the protein solution was dispensed per well into 3 wells in a 96-well microplate.
(2) Protein Desorption A voltage of −3 V was applied to the evaluation device on which the protein was adsorbed, and the surface potential of the inner bottom surface of the recess (the electrode potential of the evaluation device) was set to −3 V, and left at room temperature for 1 minute. Next, the recess was washed four times with 4 mL of a phosphate buffer solution (D-PBS, manufactured by Sigma) containing 0.05% by mass of a surfactant (Tween 20, manufactured by Wako Pure Chemical Industries, Ltd.).
Moreover, it carried out similarly about what set the standing time in the state which set the surface potential of the inner bottom face of a recessed part to -3V as 0 minute, 5 minutes, and 10 minutes. Note that the standing time of 0 minutes means that cleaning was performed with the surface potential of the inner bottom surface of the recess (electrode potential of the evaluation device) set to 0V.
(3) Coloring solution dispensing, absorbance measurement preparation, absorbance measurement, and protein adsorption rate Q
In the same manner as in (4) to (6) of [Protein Adhesion Test], the protein adsorption rate Q was measured for each of the standing times of 0 minutes, 1 minute, 5 minutes, and 10 minutes.
The results are shown in FIG.

図4に示すように、例1の評価用デバイスにおいては、タンパク質を吸着させた後、凹部の内底面の表面電位(評価用デバイスの電極電位)を−3Vとする静置時間を10分間としたとき、静置時間が0分間の場合に比べてタンパク質吸着率Qが有意に低くなった。この結果は、誘電体層の吸着面の表面電位を制御することにより、吸着面に生体試料を吸着させて搬送した後に、目的の場所で生体試料を脱離させることが可能であることを示すものである。   As shown in FIG. 4, in the evaluation device of Example 1, after allowing the protein to be adsorbed, the standing time with the surface potential of the inner bottom surface of the recess (electrode potential of the evaluation device) being −3 V was 10 minutes. As a result, the protein adsorption rate Q was significantly lower than when the standing time was 0 minutes. This result shows that by controlling the surface potential of the adsorption surface of the dielectric layer, it is possible to desorb the biological sample at the target location after adsorbing and transporting the biological sample to the adsorption surface. Is.

1 生体試料搬送装置
10 収容体
12 誘電体層
12a 吸着面
14 電極
16 アース部
18 加電圧機構
20 吸着部
22 把持部
DESCRIPTION OF SYMBOLS 1 Biological sample conveyance apparatus 10 Container 12 Dielectric layer 12a Adsorption surface 14 Electrode 16 Grounding part 18 Applied voltage mechanism 20 Adsorption part 22 Gripping part

Claims (2)

生体試料を吸着する吸着面を有する誘電体層と、前記誘電体層の前記吸着面と反対側に設けられた電極と、前記誘電体層と離間して設けられたアース部と、前記電極と前記アース部との間に電圧を印加する加電圧機構と、を備え、
前記吸着面の表面電位が、前記電極と前記アース部との間に電圧が印加されることにより変化するようになっている、生体試料搬送装置。
A dielectric layer having an adsorption surface for adsorbing a biological sample, an electrode provided on the opposite side of the dielectric layer from the adsorption surface, a ground portion provided apart from the dielectric layer, and the electrode A voltage applying mechanism for applying a voltage between the ground part, and
The biological sample transport apparatus, wherein the surface potential of the adsorption surface is changed by applying a voltage between the electrode and the ground part.
請求項1に記載された生体試料搬送装置を用いた生体試料搬送方法であって、
前記加電圧機構により前記アース部に対する前記電極の電位を0(V)よりも高いE(V)とし、導電性流体が付着した状態の生体試料を前記吸着面に吸着させて搬送する搬送工程と、
前記加電圧機構により前記アース部に対する前記電極の電位をE(V)よりも低いE(V)とし、搬送した前記生体試料を前記吸着面から脱離させる脱離工程と、を有する、生体試料搬送方法。
A biological sample transport method using the biological sample transport device according to claim 1,
A transporting step of transporting the biological sample having a conductive fluid attached thereto by adsorbing to the adsorption surface by setting the potential of the electrode with respect to the ground portion to E 1 (V) higher than 0 (V) by the applied voltage mechanism. When,
A desorption step of setting the potential of the electrode with respect to the ground portion to E 2 (V) lower than E 1 (V) by the applied voltage mechanism, and desorbing the transported biological sample from the adsorption surface. Biological sample transport method.
JP2015165533A 2015-08-25 2015-08-25 Biological sample conveying device and biological sample conveyance method Pending JP2018157757A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015165533A JP2018157757A (en) 2015-08-25 2015-08-25 Biological sample conveying device and biological sample conveyance method
PCT/JP2016/074400 WO2017033896A1 (en) 2015-08-25 2016-08-22 Biological sample conveyance device and biological sample conveyance method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015165533A JP2018157757A (en) 2015-08-25 2015-08-25 Biological sample conveying device and biological sample conveyance method

Publications (1)

Publication Number Publication Date
JP2018157757A true JP2018157757A (en) 2018-10-11

Family

ID=58100093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015165533A Pending JP2018157757A (en) 2015-08-25 2015-08-25 Biological sample conveying device and biological sample conveyance method

Country Status (2)

Country Link
JP (1) JP2018157757A (en)
WO (1) WO2017033896A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494535B2 (en) * 1996-07-29 2004-02-09 エイブル株式会社 Cell detaching device and detaching method
JP4496962B2 (en) * 2005-01-05 2010-07-07 株式会社島津製作所 Microwell plate
JP5515094B2 (en) * 2009-10-30 2014-06-11 独立行政法人海洋研究開発機構 Method for preparing proliferative animal cells
JP5847446B2 (en) * 2011-06-10 2016-01-20 株式会社日立製作所 Cell culture vessel and culture apparatus using the same
JP6300528B2 (en) * 2014-01-06 2018-03-28 大日本印刷株式会社 Cell sheet laminate manufacturing method and apparatus

Also Published As

Publication number Publication date
WO2017033896A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
Li et al. Self-propelled nanomotors autonomously seek and repair cracks
Kim et al. Highly conformable, transparent electrodes for epidermal electronics
Uguz et al. Autoclave sterilization of PEDOT: PSS electrophysiology devices
Scarpa et al. Biocompatibility studies of functionalized regioregular poly (3‐hexylthiophene) layers for sensing applications
Vogel et al. Capillarity-based switchable adhesion
Hu et al. Surface modification of poly (dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting
Peng et al. Whole genome expression analysis reveals differential effects of TiO2 nanotubes on vascular cells
O'shaughnessy et al. Stable biopassive insulation synthesized by initiated chemical vapor deposition of poly (1, 3, 5-trivinyltrimethylcyclotrisiloxane)
Guo et al. Switchable wettability on cooperative dual-responsive poly-L-lysine surface
Perry et al. Sliding droplets on superomniphobic zinc oxide nanostructures
WO2017033898A1 (en) Cell culture device and biological sample production method
Poxson et al. Capillary-fiber based electrophoretic delivery device
Pakazad et al. A novel stretchable micro-electrode array (SMEA) design for directional stretching of cells
US20120264186A1 (en) Method for preparing animal cells capable of proliferation
WO2013179514A1 (en) Glass container and method for manufacturing same
Lu et al. Drying enhanced adhesion of polythiophene nanotubule arrays on smooth surfaces
Singh et al. Synergistic voltaglue adhesive mechanisms with alternating electric fields
Chen et al. Bioinspired photodetachable dry self-cleaning surface
WO2017033896A1 (en) Biological sample conveyance device and biological sample conveyance method
Shi et al. Switchable adhesion on curved surfaces mimicking the coordination of radial-oriented spatular tips and motion of gecko toes
Wang et al. Microfluidic cell electroporation using a mechanical valve
JP2008259445A (en) Cell-separating device
Santra et al. Nanolocalized Single-Cell-Membrane Nanoelectroporation: For higher efficiency with high cell viability
JP4910716B2 (en) Cell fusion device and cell fusion method using the same
JP3494535B2 (en) Cell detaching device and detaching method