JP2018157309A - Microphone array - Google Patents

Microphone array Download PDF

Info

Publication number
JP2018157309A
JP2018157309A JP2017051149A JP2017051149A JP2018157309A JP 2018157309 A JP2018157309 A JP 2018157309A JP 2017051149 A JP2017051149 A JP 2017051149A JP 2017051149 A JP2017051149 A JP 2017051149A JP 2018157309 A JP2018157309 A JP 2018157309A
Authority
JP
Japan
Prior art keywords
arrangement
microphone
microphone array
point
microphone elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017051149A
Other languages
Japanese (ja)
Other versions
JP6724830B2 (en
Inventor
昌賢 金子
Masayoshi Kaneko
昌賢 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2017051149A priority Critical patent/JP6724830B2/en
Publication of JP2018157309A publication Critical patent/JP2018157309A/en
Application granted granted Critical
Publication of JP6724830B2 publication Critical patent/JP6724830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a microphone array in which influence of spatial aliasing is low as compared with polyhedral derived arrangement and a degree of freedom of designing the number of microphone elements is enhanced.SOLUTION: A microphone array 1 is arranged at substantially equal intervals in an axial direction of a helical trajectory along a spiral orbit on a spherical surface, and, when projected onto a plane perpendicular to the axis of the helical trajectory, has a plurality of microphone elements arranged at an angular interval of substantially equal density around the axis.SELECTED DRAWING: Figure 2

Description

本発明はマイクロフォンアレイに関する。   The present invention relates to a microphone array.

立体音場を収音する方法として、マイクロフォン素子を球面状に配置した多チャンネルマイクロフォンを用いる方法が知られている(特許文献1及び2、並びに非特許文献1)。一般的には、録音された信号をマイクロフォンアレイの中心位置において音場を球面調和関数展開した係数にエンコードし、その係数を復元するような信号を、受聴者を取り囲むスピーカーアレイで再生することで立体音場の再現を行う高次アンビソニックス(High Order Ambisonics、HOA)が知られている。従来、HOAにおいて用いられるマイクロフォンアレイは、複数のマイクロフォン素子を正多面体(例えば、正12面体又は正20面体)、半正多面体(例えば、5方12面体又は切頂20面体)、又はいわゆるジオデシックドーム(正多面体又は半正多面体の面を細分化して頂点の数を増やしたもの)の頂点に配置したものが用いられる。なお以下ではこれらの配置を「多面体派生配置」という。   As a method for collecting a three-dimensional sound field, a method using a multi-channel microphone in which microphone elements are arranged in a spherical shape is known (Patent Documents 1 and 2, and Non-Patent Document 1). In general, a recorded signal is encoded at a center position of a microphone array into a coefficient obtained by expanding a sound field into a spherical harmonic function, and a signal that restores the coefficient is reproduced by a speaker array surrounding the listener. High Order Ambisonics (HOA) that reproduces a three-dimensional sound field is known. Conventionally, the microphone array used in the HOA includes a plurality of microphone elements in a regular polyhedron (for example, a regular dodecahedron or a regular icosahedron), a semi-regular polyhedron (for example, a five-sided dodecahedron or a truncated icosahedron), or a so-called geodesic dome. Those arranged at the vertices of the regular polyhedron or semi-polyhedron are obtained by subdividing the surface to increase the number of vertices. Hereinafter, these arrangements are referred to as “polyhedral-derived arrangements”.

特開2016−82414号公報Japanese Patent Laid-Open No. 2006-82414 米国特許第7587054号明細書US Pat. No. 7,874,054

坂本修一、「SENZI:球状マイクロホンアレイを用いた3次元音空間収音再生」、日本音響学会誌、一般社団法人日本音響学会、平成26年7月、第70巻、第7号、pp.379−384Shuichi Sakamoto, “SENZI: Three-dimensional sound space sound reproduction using a spherical microphone array”, Journal of the Acoustical Society of Japan, Acoustical Society of Japan, July 2014, Vol. 70, No. 7, pp. 379-384

多面体派生配置は、その対称性の高さから、マイクロフォンアレイに入射する音波の到来方向に依存して、高周波数領域において生じる空間エイリアシングの影響の現れ方が大きく変化する。具体的には、例えば、HOAを用いてエンコードされる信号の周波数特性は、強い音源方向依存性を持つ。また、多面体派生配置は、その設計原理から、配置されるマイクロフォン素子数に制限が生じる。すなわち、知られている正多面体ないし半正多面体、又はそれを分割していった配置しか使えず、マイクロフォン素子数の設計の自由度が低いという問題がある。   In the polyhedron-derived arrangement, the appearance of the effect of spatial aliasing in the high frequency region varies greatly depending on the direction of arrival of sound waves incident on the microphone array due to its high symmetry. Specifically, for example, the frequency characteristic of a signal encoded using HOA has strong sound source direction dependency. Further, the polyhedral-derived arrangement is limited in the number of microphone elements to be arranged due to its design principle. That is, there is a problem that only a known regular polyhedron or semi-regular polyhedron or an arrangement obtained by dividing the regular polyhedron can be used, and the degree of freedom in designing the number of microphone elements is low.

これに対し本発明は、多面体派生配置と比較して空間エイリアシングの影響が低く、かつ、マイクロフォン素子数の設計の自由度を高めたマイクロフォンアレイを提供する。   In contrast, the present invention provides a microphone array that is less affected by spatial aliasing than a polyhedral-derived arrangement and has a higher degree of freedom in designing the number of microphone elements.

本発明は、球面上の螺旋軌道に沿って、当該螺旋軌道の軸方向において略等間隔に配置され、かつ、当該螺旋軌道の軸に垂直な平面に投影したとき当該軸を中心に略等密度の角度間隔に配置された複数のマイクロフォン素子を有するマイクロフォンアレイを提供する。   The present invention is arranged at substantially equal intervals in the axial direction of the spiral trajectory along the spiral trajectory on the spherical surface, and when projected onto a plane perpendicular to the axis of the spiral trajectory, the density is approximately equal around the axis. A microphone array having a plurality of microphone elements arranged at angular intervals is provided.

前記複数のマイクロフォン素子は、フィボナッチ螺旋に従って配置されてもよい。   The plurality of microphone elements may be arranged according to a Fibonacci spiral.

本発明によれば、多面体派生配置と比較して空間エイリアシングの影響が低く、かつ、マイクロフォン素子数の設計の自由度を高めたマイクロフォンアレイを提供することができる。   According to the present invention, it is possible to provide a microphone array in which the influence of spatial aliasing is low as compared with the polyhedral-derived arrangement and the degree of freedom in designing the number of microphone elements is increased.

マイクロフォンアレイ1におけるマイクロフォン素子の配置を例示する図。FIG. 3 is a diagram illustrating the arrangement of microphone elements in the microphone array 1. マイクロフォンアレイ1におけるマイクロフォン素子の配置の別の例を示す図。The figure which shows another example of arrangement | positioning of the microphone element in the microphone array. 点P[0]及び点P[1]の位置関係を例示する図。The figure which illustrates the positional relationship of point P [0] and point P [1]. 点P[0]〜点P[7]の配置を例示する図。The figure which illustrates arrangement | positioning of point P [0]-point P [7]. 正12面体頂点配置を示す図。The figure which shows regular dodecahedron vertex arrangement | positioning. 正20面体頂点配置を示す図。The figure which shows regular icosahedron vertex arrangement | positioning. 5方12面体配置を示す図。The figure which shows 5-sided dodecahedron arrangement. 切頂20面体配置を示す図。The figure which shows truncation icosahedron arrangement. ジオデシックドーム配置を示す図。The figure which shows geodesic dome arrangement | positioning. 比較例に係るジオデシックドーム配置における音源の再現誤差特性を示す図。The figure which shows the reproduction error characteristic of the sound source in the geodesic dome arrangement | positioning which concerns on a comparative example. 一実施例に係るフィボナッチ螺旋配置における音源の再現誤差特性を示す図。The figure which shows the reproduction error characteristic of the sound source in the Fibonacci spiral arrangement | positioning which concerns on one Example. 別の実施形態に係るマイクロフォン素子の配置を例示する図。The figure which illustrates arrangement | positioning of the microphone element which concerns on another embodiment. 変位角δ[n]を例示する図。The figure which illustrates displacement angle delta [n]. 図12の例における音源の再現誤差特性を示す図。The figure which shows the reproduction error characteristic of the sound source in the example of FIG.

図1は、一実施形態に係るマイクロフォンアレイ1におけるマイクロフォン素子の配置を例示する図である。図2は、マイクロフォンアレイ1におけるマイクロフォン素子の配置の別の例を示す図である。これらの図において、マイクロフォン素子は球面S上の点で表されている。図1、2、5〜9、及び12において、マイクロフォン素子は球面Sの表面全体に渡って配置されている。これらの図においては、球面Sの前面及び背面に配置されているマイクロフォン素子を点の濃淡で区別している。図において前面のマイクロフォン素子とは、視点から直接見える位置のマイクロフォン素子であり、それ以外のマイクロフォン素子が背面のマイクロフォン素子である。相対的に濃い点は前面に配置されているマイクロフォン素子Pfを示し、薄い点は背面に配置されているマイクロフォン素子Pbを示している。以下においてはこれらを単に点Pという。図1は32個のマイクロフォン素子を配置する例を、図2は122個のマイクロフォン素子を配置する例を、それぞれ示している。これらの例において、複数のマイクロフォン素子は、フィボナッチ螺旋に沿って配置される。以下この配置を「フィボナッチ螺旋配置」という。球面S上に配置されたN個のマイクロフォン素子の位置を点P[n]と表す。nは、0≦n≦(N−1)を満たす自然数である。フィボナッチ螺旋配置によれば、点P[n]の座標は次式(1)により示される。Nの値、すなわちマイクロフォン素子数に特に制限はなく、自由にマイクロフォン素子数を設計することができる。なお式(1)においては球の中心をxyz座標系の原点O(図1においては略)とし、螺旋の軸方向をz方向としている。
FIG. 1 is a diagram illustrating the arrangement of microphone elements in a microphone array 1 according to an embodiment. FIG. 2 is a diagram illustrating another example of the arrangement of the microphone elements in the microphone array 1. In these drawings, the microphone element is represented by a point on the spherical surface S. 1, 2, 5-9, and 12, the microphone elements are arranged over the entire surface of the spherical surface S. In these drawings, the microphone elements arranged on the front surface and the back surface of the spherical surface S are distinguished by shading of dots. In the figure, the front microphone element is a microphone element at a position directly visible from the viewpoint, and the other microphone elements are rear microphone elements. A relatively dark point indicates the microphone element Pf disposed on the front surface, and a thin dot indicates the microphone element Pb disposed on the back surface. In the following, these are simply referred to as points P. FIG. 1 shows an example in which 32 microphone elements are arranged, and FIG. 2 shows an example in which 122 microphone elements are arranged. In these examples, the plurality of microphone elements are arranged along the Fibonacci spiral. Hereinafter, this arrangement is referred to as “Fibonacci spiral arrangement”. The position of the N microphone elements arranged on the spherical surface S is represented as a point P [n]. n is a natural number satisfying 0 ≦ n ≦ (N−1). According to the Fibonacci spiral arrangement, the coordinates of the point P [n] are expressed by the following equation (1). The value of N, that is, the number of microphone elements is not particularly limited, and the number of microphone elements can be designed freely. In equation (1), the center of the sphere is the origin O of the xyz coordinate system (not shown in FIG. 1), and the axial direction of the spiral is the z direction.

多面体派生配置と異なり、フィボナッチ螺旋配置は多面体を出発点としない配置である。そのため、マイクロフォン素子点群における対称性は多面体派生配置よりも低い。この対称性の低さにより、高周波数領域における空間エイリアシングの音源方向依存性は、多面体派生配置と比較して緩和される。また、フィボナッチ螺旋配置においてはマイクロフォン素子数を1個単位で増減でき、設計の自由度が高い。   Unlike the polyhedron-derived arrangement, the Fibonacci spiral arrangement is an arrangement that does not start from the polyhedron. Therefore, the symmetry in the microphone element point group is lower than that in the polyhedral derivative arrangement. Due to this low symmetry, the dependence of the spatial aliasing on the sound source direction in the high frequency region is relaxed compared to the polyhedral-derived arrangement. In the Fibonacci spiral arrangement, the number of microphone elements can be increased or decreased by one unit, and the degree of freedom in design is high.

ここで、フィボナッチ螺旋配置が、鉛直方向(z軸方向)及び水平方向(xy平面)において略等密度であり、かつ対称性が低い配置であることを説明する。点P[n]のz座標z[n]は、式(1)から、
であり、z軸上においてほぼ±1の範囲でN等分された配置である。このように、フィボナッチ螺旋配置は、z軸方向において略等密度であり、N個の点Pはz軸への正射影において重なることなく配置される。
Here, it will be described that the Fibonacci spiral arrangement is an arrangement having substantially equal density in the vertical direction (z-axis direction) and the horizontal direction (xy plane) and low symmetry. The z-coordinate z [n] of the point P [n] is obtained from the equation (1):
And is an N-divided arrangement in the range of approximately ± 1 on the z-axis. As described above, the Fibonacci spiral arrangement has substantially the same density in the z-axis direction, and the N points P are arranged without overlapping in the orthogonal projection onto the z-axis.

次に、点Pのxy平面への正射影を考える。式(1)から明らかなように極座標表示における半径r[n]は一定ではないが、ここでは説明を簡単にするため、半径r[n]が一定であると仮定して、点P[i]及び点P[j]の2点の位置関係を説明する(なおi≠jである)。   Next, consider an orthogonal projection of the point P onto the xy plane. As is clear from the equation (1), the radius r [n] in the polar coordinate display is not constant. However, in order to simplify the explanation, it is assumed that the radius r [n] is constant, and the point P [i ] And the point P [j] will be described below (where i ≠ j).

図3は、点P[0]及び点P[1]の位置関係を例示する図である。ここで、原点Oと点P[i]及び点P[j]の任意の2点のそれぞれとを結ぶ2つの線分のなす角Δθ(以下単に「点P[i]と点P[j]とのなす角」という)は次式(2)のとおりである。
Δθ[i,j]が2πの整数倍となると、点P[i]及び点P[j]はxy平面において同一の角度位置に配置されることとなるが、式(2)には無理数である(3−√5)の項が含まれているため、Δθ[i,j]が2πの整数倍となることはない。したがって、任意の2個のマイクロフォン素子がxy平面への正射影において同じ角度位置に重なることなく配置される。
FIG. 3 is a diagram illustrating the positional relationship between the points P [0] and P [1]. Here, an angle Δθ formed by two line segments connecting the origin O and any two of the points P [i] and P [j] (hereinafter simply referred to as “points P [i] and P [j]”). (Referred to as “the angle formed by”) is as shown in the following equation (2).
When Δθ [i, j] is an integral multiple of 2π, the point P [i] and the point P [j] are arranged at the same angular position in the xy plane. Since (3-√5) is included, Δθ [i, j] does not become an integral multiple of 2π. Therefore, any two microphone elements are arranged without overlapping at the same angular position in the orthogonal projection onto the xy plane.

また、隣り合う2点のなす角Δθ(ステップサイズ)は式(2)から、Δθ=(3−√5)πである。(3−√5)=0.763…であるから、Δθは(3/4)πよりも若干大きい。   Further, the angle Δθ (step size) formed by two adjacent points is Δθ = (3−√5) π from the equation (2). Since (3-√5) = 0.663 ..., Δθ is slightly larger than (3/4) π.

図4は、点P[0]〜点P[7]の配置を例示する図である。ステップサイズが(3/4)πと等しい場合、点Pは対角に近い方向から順次埋まっていき、最終的には円周を8等分する等密度配置となる。ただし、この場合、点P[8]以降は同じ角度位置に繰り返し配置されるので、対称性が高い配置となってしまう。フィボナッチ螺旋配置を用いれば、ステップサイズは(3/4)πよりも若干大きい無理数であるため、点P[8]以降が同じ角度位置に繰り返し配置されることはなく、略等密度であり、かつ対称性が低い配置であるという条件を満たしている。   FIG. 4 is a diagram illustrating the arrangement of the points P [0] to P [7]. When the step size is equal to (3/4) π, the points P are sequentially filled from the direction close to the diagonal, and finally, the circumference is equally divided into eight equal parts. However, in this case, since the points P [8] and after are repeatedly arranged at the same angular position, the arrangement is highly symmetric. If the Fibonacci spiral arrangement is used, the step size is an irrational number slightly larger than (3/4) π. Therefore, the points P [8] and after are not repeatedly arranged at the same angular position, and the density is substantially equal. In addition, the condition that the arrangement is low in symmetry is satisfied.

図5〜9は、多面体派生配置を例示する図である。図5は、正12面体頂点配置を示す。N=20である。図6は、正20面体頂点配置を示す。N=12である。図7は、5方12面体配置を示す。N=32である。図8は、切頂20面体配置(いわゆるサッカーボール型)を示す。N=60である。図9は、ジオデシックドーム配置を示す。N=122である。これらの配置においてはマイクロフォン素子数が決められており、またその対称性も高い。   5 to 9 are diagrams illustrating the polyhedral derivation arrangement. FIG. 5 shows a regular dodecahedron vertex arrangement. N = 20. FIG. 6 shows a regular icosahedron vertex arrangement. N = 12. FIG. 7 shows a five-sided dodecahedron arrangement. N = 32. FIG. 8 shows a truncated icosahedron arrangement (so-called soccer ball type). N = 60. FIG. 9 shows a geodesic dome arrangement. N = 122. In these arrangements, the number of microphone elements is determined, and the symmetry is high.

本願の発明者らは、本実施形態に係る実施例及び比較例について、マイクロフォンアレイの特性を評価した。評価は、HOAによる音場再現のシミュレーションを用いた。このシミュレーションにおいては、ある点音源から放射される音が、マイクロフォンアレイが無かった場合にその中心位置に作る音圧と、HOAで再現したマイクロフォンアレイの中心位置の音圧を計算した。両者の差から、振幅特性の差を得た。以下これを「再現誤差特性」という。マイクロフォンアレイとしては、半径10cmの剛体球バッフルのマイクロフォンアレイを用いた。シミュレーションにおいては、点音源をランダムな500方向に配置し、500点のデータについて平均と標準偏差を周波数ごとに計算した。   The inventors of the present application evaluated the characteristics of the microphone array for the examples and comparative examples according to the present embodiment. For the evaluation, a simulation of sound field reproduction by HOA was used. In this simulation, the sound pressure radiated from a certain point sound source was calculated at the center position when there was no microphone array, and the sound pressure at the center position of the microphone array reproduced by HOA was calculated. The difference in amplitude characteristics was obtained from the difference between the two. This is hereinafter referred to as “reproduction error characteristic”. As the microphone array, a microphone array of a hard sphere baffle having a radius of 10 cm was used. In the simulation, the point sound sources were arranged in random 500 directions, and the average and standard deviation of the 500 points of data were calculated for each frequency.

図10は、比較例に係るジオデシックドーム配置(図9)における音源の再現誤差特性を示す図である。図11は、一実施例に係るフィボナッチ螺旋配置(図2)における音源の再現誤差特性を示す図である。いずれもN=122の例を示している。図の縦軸は再現誤差特性を示す。再現誤差特性が0dBである場合、誤差なく音圧が再現されていることに相当する。図において0dB近辺の実線が平均再現誤差特性を示し、平均再現誤差特性の上下に塗りつぶされた領域の上端が、平均特性に各周波数での標準偏差を加算した曲線、下端が平均特性から各周波数での標準偏差を減算した曲線を示している。図10においては特定の周波数において標準偏差のピークが現れており、特定周波数において再現誤差の分散が大きいこと、すなわち空間エイリアシングの音源方向依存性が大きいことが示される。一方、図11においては図10と比較して標準偏差のピークが抑制されており、空間エイリアシングの音源方向依存性が低減されていることが分かる。   FIG. 10 is a diagram showing reproduction error characteristics of a sound source in a geodesic dome arrangement (FIG. 9) according to a comparative example. FIG. 11 is a diagram illustrating reproduction error characteristics of a sound source in the Fibonacci spiral arrangement (FIG. 2) according to an embodiment. In either case, N = 122 is shown. The vertical axis in the figure represents the reproduction error characteristic. When the reproduction error characteristic is 0 dB, this corresponds to the sound pressure being reproduced without error. In the figure, the solid line near 0 dB indicates the average reproduction error characteristic, the upper end of the area painted above and below the average reproduction error characteristic is a curve obtained by adding the standard deviation at each frequency to the average characteristic, and the lower end is the average characteristic to each frequency. The curve which subtracted the standard deviation in is shown. In FIG. 10, the peak of the standard deviation appears at a specific frequency, which indicates that the variance of the reproduction error is large at the specific frequency, that is, the spatial dependency of the spatial aliasing is large. On the other hand, in FIG. 11, the peak of the standard deviation is suppressed as compared with FIG. 10, and it can be seen that the dependence of the spatial aliasing on the sound source direction is reduced.

本発明に係るマイクロフォンアレイにおけるマイクロフォン素子の配置は、上述のフィボナッチ螺旋配置に厳密に従ったものに限定されるものではなく、種々の変形実施が可能である。   The arrangement of microphone elements in the microphone array according to the present invention is not limited to strictly following the Fibonacci spiral arrangement described above, and various modifications can be made.

図12は、別の実施形態に係るマイクロフォンアレイ1におけるマイクロフォン素子の配置を例示する図である。図12は、式(1)に示したフィボナッチ螺旋配置に従った理想的な位置に対してランダムな角度の変位(揺らぎ)として変位角δ[n]を与えた例(N=122)を示している。変位角δ[n]は、マイクロフォン素子の理想的な位置Pi[n]とマイクロフォンアレイ(球面S)の中心(原点O)とを結ぶ線分と、変位した後の(実際の)マイクロフォン素子の位置P[n]と原点Oとを結ぶ線分とのなす角度をいう。   FIG. 12 is a diagram illustrating the arrangement of microphone elements in a microphone array 1 according to another embodiment. FIG. 12 shows an example (N = 122) in which a displacement angle δ [n] is given as a random angular displacement (fluctuation) with respect to an ideal position according to the Fibonacci spiral arrangement shown in Equation (1). ing. The displacement angle δ [n] is a line segment connecting the ideal position Pi [n] of the microphone element and the center (origin O) of the microphone array (spherical surface S) and the (actual) microphone element after the displacement. An angle formed by a line segment connecting the position P [n] and the origin O.

図13は、変位角δ[n]を例示する図である。この例において、点P[n]に対して与えられる変位角δ[n]は、最大変位角を基準角αの2.5%とし、平均をゼロとする一様分布から求めた。基準角αは以下のように求められる。ある1つの点P[n](マイクロフォン素子)から見たときに最も近い位置にある他の点Pとの距離を、点P[n]における再隣接点間距離という。すべての点Pについて再隣接点間距離を求め、その最小値を与える2つの点の組み合わせ(距離が最も近いマイクロフォン素子の組み合わせ)を、点P[n]及び点P[m]とする。点P[n]と原点Oとを結ぶ線分と、点P[m]と原点Oとを結ぶ線分とのなす角が基準角αである。ここで、最大変位角を基準角αの2.5%としたのは以下の事情による。まず、点P[n]に対して許容される変位角δ[n]の最大値(許容変位角)を、最隣接点P[m]となす角(基準角α)の半分と考える。これ以上の変位を許すと、変位前の位置との関係が不明となるためである。この許容変位角(α/2)の5%を最大変位角とした。そうすると最大変位角δmaxは、
である。すなわち、最大変位角は最隣接する2つのマイクロフォン素子間角度の2.5%となる。なお、許容変位角の「5%」という値については、再現誤差に影響を与えない程度の誤差の一例である。また、ここでは決定した最大変位角で囲まれる球面S上の曲面(球の中心を頂点とする円錐と球が交わる球面上の領域)上の一様分布から変位点をサンプリングしたが、xy平面における角度や、z方向における位置に関しても同様の変位が許される。
FIG. 13 is a diagram illustrating the displacement angle δ [n]. In this example, the displacement angle δ [n] given to the point P [n] was obtained from a uniform distribution with the maximum displacement angle being 2.5% of the reference angle α and the average being zero. The reference angle α is obtained as follows. A distance from another point P closest to the point P [n] (microphone element) when viewed from one point P [n] is referred to as a distance between re-adjacent points at the point P [n]. The distance between re-adjacent points is obtained for all points P, and a combination of two points (a combination of microphone elements having the closest distance) that gives the minimum value is defined as a point P [n] and a point P [m]. An angle formed by a line segment connecting the point P [n] and the origin O and a line segment connecting the point P [m] and the origin O is the reference angle α. Here, the reason why the maximum displacement angle is set to 2.5% of the reference angle α is as follows. First, the maximum value (allowable displacement angle) of the displacement angle δ [n] allowed for the point P [n] is considered to be half of the angle (reference angle α) formed with the nearest neighbor point P [m]. This is because if the displacement more than this is allowed, the relationship with the position before the displacement becomes unclear. 5% of this allowable displacement angle (α / 2) was taken as the maximum displacement angle. Then, the maximum displacement angle δmax is
It is. That is, the maximum displacement angle is 2.5% of the angle between the two adjacent microphone elements. The value “5%” of the allowable displacement angle is an example of an error that does not affect the reproduction error. Further, here, the displacement points are sampled from the uniform distribution on the curved surface on the spherical surface S surrounded by the determined maximum displacement angle (the region on the spherical surface where the cone and the sphere with the center of the sphere as a vertex). The same displacement is allowed with respect to the angle at and the position in the z direction.

図14は、図12の例における音源の再現誤差特性を示す図である。シミュレーションは図11と同じ条件で行った。フィボナッチ螺旋に従った理想的な位置に対してランダムな角度の変位を与えても、図9に示した結果と同様に、標準偏差のピークが抑制されており、空間エイリアシングの音源方向依存性が低減されていることが分かる。   FIG. 14 is a diagram showing reproduction error characteristics of the sound source in the example of FIG. The simulation was performed under the same conditions as in FIG. Even if a random angular displacement is given to the ideal position according to the Fibonacci spiral, the peak of the standard deviation is suppressed as in the result shown in FIG. 9, and the sound source direction dependence of spatial aliasing is suppressed. It can be seen that it has been reduced.

本発明に係るマイクロフォンアレイにおけるマイクロフォン素子の配置は、フィボナッチ螺旋に基づくものに限定されない。複数のマイクロフォン素子は、球面上の螺旋軌道に沿って、その螺旋の軸方向において略等間隔に配置され、かつ、その螺旋の軸に垂直な平面に投影したときその軸を中心に略等密度の角度間隔を配置されたものであれば、フィボナッチ螺旋以外の螺旋軌道に基づく配置であってもよい。マイクロフォン素子数の設計の自由度を改善することだけを考えれば、xy平面に投影したときの隣り合う2点のなす角Δθ(ステップサイズ)は有理数であってもよい。ただし、対称性を抑制し、空間エイリアシングの音源方向依存性を低減するためには、Δθ(ステップサイズ)が無理数となる配置が好ましい。また、「螺旋軌道に沿って」配置されるとは、数学的に厳密に螺旋軌道上にマイクロフォン素子が配置されることだけを意味するものではなく、図12で例示したように螺旋軌道から所定の変位が与えられた位置にマイクロフォン素子が配置されることも含む。   The arrangement of the microphone elements in the microphone array according to the present invention is not limited to that based on the Fibonacci spiral. The plurality of microphone elements are arranged at substantially equal intervals in the axial direction of the spiral along the spiral trajectory on the spherical surface, and when projected onto a plane perpendicular to the axis of the spiral, the substantially equal density is centered on the axis. As long as these angular intervals are arranged, an arrangement based on a spiral trajectory other than the Fibonacci spiral may be used. Considering only improving the degree of freedom in designing the number of microphone elements, the angle Δθ (step size) formed by two adjacent points when projected onto the xy plane may be a rational number. However, an arrangement in which Δθ (step size) is an irrational number is preferable in order to suppress symmetry and reduce the sound source direction dependency of spatial aliasing. Further, “arranged along the spiral trajectory” does not mean that the microphone element is mathematically strictly arranged on the spiral trajectory, but is predetermined from the spiral trajectory as illustrated in FIG. It is also included that the microphone element is disposed at a position where the above displacement is given.

1…マイクロフォンアレイ 1 ... Microphone array

Claims (2)

球面上の螺旋軌道に沿って、当該螺旋軌道の軸方向において略等間隔に配置され、かつ、当該螺旋軌道の軸に垂直な平面に投影したとき当該軸を中心に略等密度の角度間隔に配置された複数のマイクロフォン素子
を有するマイクロフォンアレイ。
Along the spiral trajectory on the spherical surface, they are arranged at substantially equal intervals in the axial direction of the spiral trajectory, and are projected at a substantially equal density angular interval around the axis when projected onto a plane perpendicular to the axis of the spiral trajectory. A microphone array having a plurality of microphone elements arranged.
前記複数のマイクロフォン素子は、フィボナッチ螺旋に従って配置される
請求項1に記載のマイクロフォンアレイ。
The microphone array according to claim 1, wherein the plurality of microphone elements are arranged according to a Fibonacci spiral.
JP2017051149A 2017-03-16 2017-03-16 Microphone array Active JP6724830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017051149A JP6724830B2 (en) 2017-03-16 2017-03-16 Microphone array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017051149A JP6724830B2 (en) 2017-03-16 2017-03-16 Microphone array

Publications (2)

Publication Number Publication Date
JP2018157309A true JP2018157309A (en) 2018-10-04
JP6724830B2 JP6724830B2 (en) 2020-07-15

Family

ID=63717414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017051149A Active JP6724830B2 (en) 2017-03-16 2017-03-16 Microphone array

Country Status (1)

Country Link
JP (1) JP6724830B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105632A1 (en) * 2018-11-22 2020-05-28 日本電信電話株式会社 Sound pickup device
KR102154553B1 (en) 2019-09-18 2020-09-10 한국표준과학연구원 A spherical array of microphones for improved directivity and a method to encode sound field with the array
CN111969332A (en) * 2020-07-30 2020-11-20 西南电子技术研究所(中国电子科技集团公司第十研究所) Sparse array arrangement method for large-space wide-angle scanning millimeter wave phased array antenna
CN115038028A (en) * 2021-03-05 2022-09-09 华为技术有限公司 Virtual loudspeaker set determination method and device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070274534A1 (en) * 2006-05-15 2007-11-29 Roke Manor Research Limited Audio recording system
US20130101141A1 (en) * 2011-10-19 2013-04-25 Wave Sciences Corporation Directional audio array apparatus and system
JP2014165901A (en) * 2013-02-28 2014-09-08 Nippon Telegr & Teleph Corp <Ntt> Sound field sound collection and reproduction device, method, and program
US20150086039A1 (en) * 2011-10-19 2015-03-26 Wave Sciences LLC Wearable Directional Microphone Array Apparatus and System
US20160330545A1 (en) * 2015-05-05 2016-11-10 Wave Sciences LLC Portable computing device microphone array
JP2018151306A (en) * 2017-03-14 2018-09-27 大成建設株式会社 Sound source exploring device and microphone array

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070274534A1 (en) * 2006-05-15 2007-11-29 Roke Manor Research Limited Audio recording system
US20130101141A1 (en) * 2011-10-19 2013-04-25 Wave Sciences Corporation Directional audio array apparatus and system
US20150086039A1 (en) * 2011-10-19 2015-03-26 Wave Sciences LLC Wearable Directional Microphone Array Apparatus and System
JP2014165901A (en) * 2013-02-28 2014-09-08 Nippon Telegr & Teleph Corp <Ntt> Sound field sound collection and reproduction device, method, and program
US20160330545A1 (en) * 2015-05-05 2016-11-10 Wave Sciences LLC Portable computing device microphone array
JP2018151306A (en) * 2017-03-14 2018-09-27 大成建設株式会社 Sound source exploring device and microphone array

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105632A1 (en) * 2018-11-22 2020-05-28 日本電信電話株式会社 Sound pickup device
KR102154553B1 (en) 2019-09-18 2020-09-10 한국표준과학연구원 A spherical array of microphones for improved directivity and a method to encode sound field with the array
CN111969332A (en) * 2020-07-30 2020-11-20 西南电子技术研究所(中国电子科技集团公司第十研究所) Sparse array arrangement method for large-space wide-angle scanning millimeter wave phased array antenna
CN115038028A (en) * 2021-03-05 2022-09-09 华为技术有限公司 Virtual loudspeaker set determination method and device
WO2022184097A1 (en) * 2021-03-05 2022-09-09 华为技术有限公司 Virtual speaker set determination method and device
CN115038028B (en) * 2021-03-05 2023-07-28 华为技术有限公司 Virtual speaker set determining method and device

Also Published As

Publication number Publication date
JP6724830B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
JP6724830B2 (en) Microphone array
US11140505B2 (en) Audio processing apparatus and method, and program
JP6284955B2 (en) Mapping virtual speakers to physical speakers
US9641951B2 (en) System and method for fast binaural rendering of complex acoustic scenes
US20190069110A1 (en) Fast and memory efficient encoding of sound objects using spherical harmonic symmetries
JP7194271B2 (en) Near-field audio rendering
GB2542112A (en) Capturing sound
JP2023164970A (en) Information processing apparatus, method, and program
WO2017119320A1 (en) Audio processing device and method, and program
JP6834985B2 (en) Speech processing equipment and methods, and programs
CN108419174A (en) A kind of virtual auditory environment Small Enclosure realization method and system based on loudspeaker array
CN105120419B (en) Method and system for enhancing effect of multichannel system
EP3625975B1 (en) Incoherent idempotent ambisonics rendering
Sakamoto et al. A 3D sound-space recording system using spherical microphone array with 252ch microphones
CN110708647B (en) Spherical distribution guided data matching stereo field reconstruction method
JP7115477B2 (en) SIGNAL PROCESSING APPARATUS AND METHOD, AND PROGRAM
JP2017143406A (en) Binaural sound generation device, microphone array, binaural sound generation method, program
Sakamoto et al. Improvement of accuracy of three-dimensional sound space synthesized by real-time SENZI, a sound space information acquisition system using spherical array with numerous microphones
US11805377B2 (en) Measurement device and measurement system
CN104571492B (en) A kind of virtual reality sound renders the position distribution method on middle spherical source surface
Liangchen et al. Diamond discrete grid subdivision method for spherical surface with icosahedron
CN109348398B (en) Sound field reconstruction method, device, storage medium and device based on non-central point
US20220321998A1 (en) Speaker array, signal processing device, signal processing method, and signal processing program
JP2024509179A (en) Method and apparatus for obtaining HOA coefficient
US11871211B2 (en) Signal processing apparatus, signal processing method, and signal processing program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191018

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191018

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200608

R151 Written notification of patent or utility model registration

Ref document number: 6724830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151