JP2018157309A - Microphone array - Google Patents
Microphone array Download PDFInfo
- Publication number
- JP2018157309A JP2018157309A JP2017051149A JP2017051149A JP2018157309A JP 2018157309 A JP2018157309 A JP 2018157309A JP 2017051149 A JP2017051149 A JP 2017051149A JP 2017051149 A JP2017051149 A JP 2017051149A JP 2018157309 A JP2018157309 A JP 2018157309A
- Authority
- JP
- Japan
- Prior art keywords
- arrangement
- microphone
- microphone array
- point
- microphone elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
Abstract
Description
本発明はマイクロフォンアレイに関する。 The present invention relates to a microphone array.
立体音場を収音する方法として、マイクロフォン素子を球面状に配置した多チャンネルマイクロフォンを用いる方法が知られている(特許文献1及び2、並びに非特許文献1)。一般的には、録音された信号をマイクロフォンアレイの中心位置において音場を球面調和関数展開した係数にエンコードし、その係数を復元するような信号を、受聴者を取り囲むスピーカーアレイで再生することで立体音場の再現を行う高次アンビソニックス(High Order Ambisonics、HOA)が知られている。従来、HOAにおいて用いられるマイクロフォンアレイは、複数のマイクロフォン素子を正多面体(例えば、正12面体又は正20面体)、半正多面体(例えば、5方12面体又は切頂20面体)、又はいわゆるジオデシックドーム(正多面体又は半正多面体の面を細分化して頂点の数を増やしたもの)の頂点に配置したものが用いられる。なお以下ではこれらの配置を「多面体派生配置」という。 As a method for collecting a three-dimensional sound field, a method using a multi-channel microphone in which microphone elements are arranged in a spherical shape is known (Patent Documents 1 and 2, and Non-Patent Document 1). In general, a recorded signal is encoded at a center position of a microphone array into a coefficient obtained by expanding a sound field into a spherical harmonic function, and a signal that restores the coefficient is reproduced by a speaker array surrounding the listener. High Order Ambisonics (HOA) that reproduces a three-dimensional sound field is known. Conventionally, the microphone array used in the HOA includes a plurality of microphone elements in a regular polyhedron (for example, a regular dodecahedron or a regular icosahedron), a semi-regular polyhedron (for example, a five-sided dodecahedron or a truncated icosahedron), or a so-called geodesic dome. Those arranged at the vertices of the regular polyhedron or semi-polyhedron are obtained by subdividing the surface to increase the number of vertices. Hereinafter, these arrangements are referred to as “polyhedral-derived arrangements”.
多面体派生配置は、その対称性の高さから、マイクロフォンアレイに入射する音波の到来方向に依存して、高周波数領域において生じる空間エイリアシングの影響の現れ方が大きく変化する。具体的には、例えば、HOAを用いてエンコードされる信号の周波数特性は、強い音源方向依存性を持つ。また、多面体派生配置は、その設計原理から、配置されるマイクロフォン素子数に制限が生じる。すなわち、知られている正多面体ないし半正多面体、又はそれを分割していった配置しか使えず、マイクロフォン素子数の設計の自由度が低いという問題がある。 In the polyhedron-derived arrangement, the appearance of the effect of spatial aliasing in the high frequency region varies greatly depending on the direction of arrival of sound waves incident on the microphone array due to its high symmetry. Specifically, for example, the frequency characteristic of a signal encoded using HOA has strong sound source direction dependency. Further, the polyhedral-derived arrangement is limited in the number of microphone elements to be arranged due to its design principle. That is, there is a problem that only a known regular polyhedron or semi-regular polyhedron or an arrangement obtained by dividing the regular polyhedron can be used, and the degree of freedom in designing the number of microphone elements is low.
これに対し本発明は、多面体派生配置と比較して空間エイリアシングの影響が低く、かつ、マイクロフォン素子数の設計の自由度を高めたマイクロフォンアレイを提供する。 In contrast, the present invention provides a microphone array that is less affected by spatial aliasing than a polyhedral-derived arrangement and has a higher degree of freedom in designing the number of microphone elements.
本発明は、球面上の螺旋軌道に沿って、当該螺旋軌道の軸方向において略等間隔に配置され、かつ、当該螺旋軌道の軸に垂直な平面に投影したとき当該軸を中心に略等密度の角度間隔に配置された複数のマイクロフォン素子を有するマイクロフォンアレイを提供する。 The present invention is arranged at substantially equal intervals in the axial direction of the spiral trajectory along the spiral trajectory on the spherical surface, and when projected onto a plane perpendicular to the axis of the spiral trajectory, the density is approximately equal around the axis. A microphone array having a plurality of microphone elements arranged at angular intervals is provided.
前記複数のマイクロフォン素子は、フィボナッチ螺旋に従って配置されてもよい。 The plurality of microphone elements may be arranged according to a Fibonacci spiral.
本発明によれば、多面体派生配置と比較して空間エイリアシングの影響が低く、かつ、マイクロフォン素子数の設計の自由度を高めたマイクロフォンアレイを提供することができる。 According to the present invention, it is possible to provide a microphone array in which the influence of spatial aliasing is low as compared with the polyhedral-derived arrangement and the degree of freedom in designing the number of microphone elements is increased.
図1は、一実施形態に係るマイクロフォンアレイ1におけるマイクロフォン素子の配置を例示する図である。図2は、マイクロフォンアレイ1におけるマイクロフォン素子の配置の別の例を示す図である。これらの図において、マイクロフォン素子は球面S上の点で表されている。図1、2、5〜9、及び12において、マイクロフォン素子は球面Sの表面全体に渡って配置されている。これらの図においては、球面Sの前面及び背面に配置されているマイクロフォン素子を点の濃淡で区別している。図において前面のマイクロフォン素子とは、視点から直接見える位置のマイクロフォン素子であり、それ以外のマイクロフォン素子が背面のマイクロフォン素子である。相対的に濃い点は前面に配置されているマイクロフォン素子Pfを示し、薄い点は背面に配置されているマイクロフォン素子Pbを示している。以下においてはこれらを単に点Pという。図1は32個のマイクロフォン素子を配置する例を、図2は122個のマイクロフォン素子を配置する例を、それぞれ示している。これらの例において、複数のマイクロフォン素子は、フィボナッチ螺旋に沿って配置される。以下この配置を「フィボナッチ螺旋配置」という。球面S上に配置されたN個のマイクロフォン素子の位置を点P[n]と表す。nは、0≦n≦(N−1)を満たす自然数である。フィボナッチ螺旋配置によれば、点P[n]の座標は次式(1)により示される。Nの値、すなわちマイクロフォン素子数に特に制限はなく、自由にマイクロフォン素子数を設計することができる。なお式(1)においては球の中心をxyz座標系の原点O(図1においては略)とし、螺旋の軸方向をz方向としている。
多面体派生配置と異なり、フィボナッチ螺旋配置は多面体を出発点としない配置である。そのため、マイクロフォン素子点群における対称性は多面体派生配置よりも低い。この対称性の低さにより、高周波数領域における空間エイリアシングの音源方向依存性は、多面体派生配置と比較して緩和される。また、フィボナッチ螺旋配置においてはマイクロフォン素子数を1個単位で増減でき、設計の自由度が高い。 Unlike the polyhedron-derived arrangement, the Fibonacci spiral arrangement is an arrangement that does not start from the polyhedron. Therefore, the symmetry in the microphone element point group is lower than that in the polyhedral derivative arrangement. Due to this low symmetry, the dependence of the spatial aliasing on the sound source direction in the high frequency region is relaxed compared to the polyhedral-derived arrangement. In the Fibonacci spiral arrangement, the number of microphone elements can be increased or decreased by one unit, and the degree of freedom in design is high.
ここで、フィボナッチ螺旋配置が、鉛直方向(z軸方向)及び水平方向(xy平面)において略等密度であり、かつ対称性が低い配置であることを説明する。点P[n]のz座標z[n]は、式(1)から、
次に、点Pのxy平面への正射影を考える。式(1)から明らかなように極座標表示における半径r[n]は一定ではないが、ここでは説明を簡単にするため、半径r[n]が一定であると仮定して、点P[i]及び点P[j]の2点の位置関係を説明する(なおi≠jである)。 Next, consider an orthogonal projection of the point P onto the xy plane. As is clear from the equation (1), the radius r [n] in the polar coordinate display is not constant. However, in order to simplify the explanation, it is assumed that the radius r [n] is constant, and the point P [i ] And the point P [j] will be described below (where i ≠ j).
図3は、点P[0]及び点P[1]の位置関係を例示する図である。ここで、原点Oと点P[i]及び点P[j]の任意の2点のそれぞれとを結ぶ2つの線分のなす角Δθ(以下単に「点P[i]と点P[j]とのなす角」という)は次式(2)のとおりである。
また、隣り合う2点のなす角Δθ(ステップサイズ)は式(2)から、Δθ=(3−√5)πである。(3−√5)=0.763…であるから、Δθは(3/4)πよりも若干大きい。 Further, the angle Δθ (step size) formed by two adjacent points is Δθ = (3−√5) π from the equation (2). Since (3-√5) = 0.663 ..., Δθ is slightly larger than (3/4) π.
図4は、点P[0]〜点P[7]の配置を例示する図である。ステップサイズが(3/4)πと等しい場合、点Pは対角に近い方向から順次埋まっていき、最終的には円周を8等分する等密度配置となる。ただし、この場合、点P[8]以降は同じ角度位置に繰り返し配置されるので、対称性が高い配置となってしまう。フィボナッチ螺旋配置を用いれば、ステップサイズは(3/4)πよりも若干大きい無理数であるため、点P[8]以降が同じ角度位置に繰り返し配置されることはなく、略等密度であり、かつ対称性が低い配置であるという条件を満たしている。 FIG. 4 is a diagram illustrating the arrangement of the points P [0] to P [7]. When the step size is equal to (3/4) π, the points P are sequentially filled from the direction close to the diagonal, and finally, the circumference is equally divided into eight equal parts. However, in this case, since the points P [8] and after are repeatedly arranged at the same angular position, the arrangement is highly symmetric. If the Fibonacci spiral arrangement is used, the step size is an irrational number slightly larger than (3/4) π. Therefore, the points P [8] and after are not repeatedly arranged at the same angular position, and the density is substantially equal. In addition, the condition that the arrangement is low in symmetry is satisfied.
図5〜9は、多面体派生配置を例示する図である。図5は、正12面体頂点配置を示す。N=20である。図6は、正20面体頂点配置を示す。N=12である。図7は、5方12面体配置を示す。N=32である。図8は、切頂20面体配置(いわゆるサッカーボール型)を示す。N=60である。図9は、ジオデシックドーム配置を示す。N=122である。これらの配置においてはマイクロフォン素子数が決められており、またその対称性も高い。 5 to 9 are diagrams illustrating the polyhedral derivation arrangement. FIG. 5 shows a regular dodecahedron vertex arrangement. N = 20. FIG. 6 shows a regular icosahedron vertex arrangement. N = 12. FIG. 7 shows a five-sided dodecahedron arrangement. N = 32. FIG. 8 shows a truncated icosahedron arrangement (so-called soccer ball type). N = 60. FIG. 9 shows a geodesic dome arrangement. N = 122. In these arrangements, the number of microphone elements is determined, and the symmetry is high.
本願の発明者らは、本実施形態に係る実施例及び比較例について、マイクロフォンアレイの特性を評価した。評価は、HOAによる音場再現のシミュレーションを用いた。このシミュレーションにおいては、ある点音源から放射される音が、マイクロフォンアレイが無かった場合にその中心位置に作る音圧と、HOAで再現したマイクロフォンアレイの中心位置の音圧を計算した。両者の差から、振幅特性の差を得た。以下これを「再現誤差特性」という。マイクロフォンアレイとしては、半径10cmの剛体球バッフルのマイクロフォンアレイを用いた。シミュレーションにおいては、点音源をランダムな500方向に配置し、500点のデータについて平均と標準偏差を周波数ごとに計算した。 The inventors of the present application evaluated the characteristics of the microphone array for the examples and comparative examples according to the present embodiment. For the evaluation, a simulation of sound field reproduction by HOA was used. In this simulation, the sound pressure radiated from a certain point sound source was calculated at the center position when there was no microphone array, and the sound pressure at the center position of the microphone array reproduced by HOA was calculated. The difference in amplitude characteristics was obtained from the difference between the two. This is hereinafter referred to as “reproduction error characteristic”. As the microphone array, a microphone array of a hard sphere baffle having a radius of 10 cm was used. In the simulation, the point sound sources were arranged in random 500 directions, and the average and standard deviation of the 500 points of data were calculated for each frequency.
図10は、比較例に係るジオデシックドーム配置(図9)における音源の再現誤差特性を示す図である。図11は、一実施例に係るフィボナッチ螺旋配置(図2)における音源の再現誤差特性を示す図である。いずれもN=122の例を示している。図の縦軸は再現誤差特性を示す。再現誤差特性が0dBである場合、誤差なく音圧が再現されていることに相当する。図において0dB近辺の実線が平均再現誤差特性を示し、平均再現誤差特性の上下に塗りつぶされた領域の上端が、平均特性に各周波数での標準偏差を加算した曲線、下端が平均特性から各周波数での標準偏差を減算した曲線を示している。図10においては特定の周波数において標準偏差のピークが現れており、特定周波数において再現誤差の分散が大きいこと、すなわち空間エイリアシングの音源方向依存性が大きいことが示される。一方、図11においては図10と比較して標準偏差のピークが抑制されており、空間エイリアシングの音源方向依存性が低減されていることが分かる。 FIG. 10 is a diagram showing reproduction error characteristics of a sound source in a geodesic dome arrangement (FIG. 9) according to a comparative example. FIG. 11 is a diagram illustrating reproduction error characteristics of a sound source in the Fibonacci spiral arrangement (FIG. 2) according to an embodiment. In either case, N = 122 is shown. The vertical axis in the figure represents the reproduction error characteristic. When the reproduction error characteristic is 0 dB, this corresponds to the sound pressure being reproduced without error. In the figure, the solid line near 0 dB indicates the average reproduction error characteristic, the upper end of the area painted above and below the average reproduction error characteristic is a curve obtained by adding the standard deviation at each frequency to the average characteristic, and the lower end is the average characteristic to each frequency. The curve which subtracted the standard deviation in is shown. In FIG. 10, the peak of the standard deviation appears at a specific frequency, which indicates that the variance of the reproduction error is large at the specific frequency, that is, the spatial dependency of the spatial aliasing is large. On the other hand, in FIG. 11, the peak of the standard deviation is suppressed as compared with FIG. 10, and it can be seen that the dependence of the spatial aliasing on the sound source direction is reduced.
本発明に係るマイクロフォンアレイにおけるマイクロフォン素子の配置は、上述のフィボナッチ螺旋配置に厳密に従ったものに限定されるものではなく、種々の変形実施が可能である。 The arrangement of microphone elements in the microphone array according to the present invention is not limited to strictly following the Fibonacci spiral arrangement described above, and various modifications can be made.
図12は、別の実施形態に係るマイクロフォンアレイ1におけるマイクロフォン素子の配置を例示する図である。図12は、式(1)に示したフィボナッチ螺旋配置に従った理想的な位置に対してランダムな角度の変位(揺らぎ)として変位角δ[n]を与えた例(N=122)を示している。変位角δ[n]は、マイクロフォン素子の理想的な位置Pi[n]とマイクロフォンアレイ(球面S)の中心(原点O)とを結ぶ線分と、変位した後の(実際の)マイクロフォン素子の位置P[n]と原点Oとを結ぶ線分とのなす角度をいう。 FIG. 12 is a diagram illustrating the arrangement of microphone elements in a microphone array 1 according to another embodiment. FIG. 12 shows an example (N = 122) in which a displacement angle δ [n] is given as a random angular displacement (fluctuation) with respect to an ideal position according to the Fibonacci spiral arrangement shown in Equation (1). ing. The displacement angle δ [n] is a line segment connecting the ideal position Pi [n] of the microphone element and the center (origin O) of the microphone array (spherical surface S) and the (actual) microphone element after the displacement. An angle formed by a line segment connecting the position P [n] and the origin O.
図13は、変位角δ[n]を例示する図である。この例において、点P[n]に対して与えられる変位角δ[n]は、最大変位角を基準角αの2.5%とし、平均をゼロとする一様分布から求めた。基準角αは以下のように求められる。ある1つの点P[n](マイクロフォン素子)から見たときに最も近い位置にある他の点Pとの距離を、点P[n]における再隣接点間距離という。すべての点Pについて再隣接点間距離を求め、その最小値を与える2つの点の組み合わせ(距離が最も近いマイクロフォン素子の組み合わせ)を、点P[n]及び点P[m]とする。点P[n]と原点Oとを結ぶ線分と、点P[m]と原点Oとを結ぶ線分とのなす角が基準角αである。ここで、最大変位角を基準角αの2.5%としたのは以下の事情による。まず、点P[n]に対して許容される変位角δ[n]の最大値(許容変位角)を、最隣接点P[m]となす角(基準角α)の半分と考える。これ以上の変位を許すと、変位前の位置との関係が不明となるためである。この許容変位角(α/2)の5%を最大変位角とした。そうすると最大変位角δmaxは、
図14は、図12の例における音源の再現誤差特性を示す図である。シミュレーションは図11と同じ条件で行った。フィボナッチ螺旋に従った理想的な位置に対してランダムな角度の変位を与えても、図9に示した結果と同様に、標準偏差のピークが抑制されており、空間エイリアシングの音源方向依存性が低減されていることが分かる。 FIG. 14 is a diagram showing reproduction error characteristics of the sound source in the example of FIG. The simulation was performed under the same conditions as in FIG. Even if a random angular displacement is given to the ideal position according to the Fibonacci spiral, the peak of the standard deviation is suppressed as in the result shown in FIG. 9, and the sound source direction dependence of spatial aliasing is suppressed. It can be seen that it has been reduced.
本発明に係るマイクロフォンアレイにおけるマイクロフォン素子の配置は、フィボナッチ螺旋に基づくものに限定されない。複数のマイクロフォン素子は、球面上の螺旋軌道に沿って、その螺旋の軸方向において略等間隔に配置され、かつ、その螺旋の軸に垂直な平面に投影したときその軸を中心に略等密度の角度間隔を配置されたものであれば、フィボナッチ螺旋以外の螺旋軌道に基づく配置であってもよい。マイクロフォン素子数の設計の自由度を改善することだけを考えれば、xy平面に投影したときの隣り合う2点のなす角Δθ(ステップサイズ)は有理数であってもよい。ただし、対称性を抑制し、空間エイリアシングの音源方向依存性を低減するためには、Δθ(ステップサイズ)が無理数となる配置が好ましい。また、「螺旋軌道に沿って」配置されるとは、数学的に厳密に螺旋軌道上にマイクロフォン素子が配置されることだけを意味するものではなく、図12で例示したように螺旋軌道から所定の変位が与えられた位置にマイクロフォン素子が配置されることも含む。 The arrangement of the microphone elements in the microphone array according to the present invention is not limited to that based on the Fibonacci spiral. The plurality of microphone elements are arranged at substantially equal intervals in the axial direction of the spiral along the spiral trajectory on the spherical surface, and when projected onto a plane perpendicular to the axis of the spiral, the substantially equal density is centered on the axis. As long as these angular intervals are arranged, an arrangement based on a spiral trajectory other than the Fibonacci spiral may be used. Considering only improving the degree of freedom in designing the number of microphone elements, the angle Δθ (step size) formed by two adjacent points when projected onto the xy plane may be a rational number. However, an arrangement in which Δθ (step size) is an irrational number is preferable in order to suppress symmetry and reduce the sound source direction dependency of spatial aliasing. Further, “arranged along the spiral trajectory” does not mean that the microphone element is mathematically strictly arranged on the spiral trajectory, but is predetermined from the spiral trajectory as illustrated in FIG. It is also included that the microphone element is disposed at a position where the above displacement is given.
1…マイクロフォンアレイ 1 ... Microphone array
Claims (2)
を有するマイクロフォンアレイ。 Along the spiral trajectory on the spherical surface, they are arranged at substantially equal intervals in the axial direction of the spiral trajectory, and are projected at a substantially equal density angular interval around the axis when projected onto a plane perpendicular to the axis of the spiral trajectory. A microphone array having a plurality of microphone elements arranged.
請求項1に記載のマイクロフォンアレイ。 The microphone array according to claim 1, wherein the plurality of microphone elements are arranged according to a Fibonacci spiral.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017051149A JP6724830B2 (en) | 2017-03-16 | 2017-03-16 | Microphone array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017051149A JP6724830B2 (en) | 2017-03-16 | 2017-03-16 | Microphone array |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018157309A true JP2018157309A (en) | 2018-10-04 |
JP6724830B2 JP6724830B2 (en) | 2020-07-15 |
Family
ID=63717414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017051149A Active JP6724830B2 (en) | 2017-03-16 | 2017-03-16 | Microphone array |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6724830B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020105632A1 (en) * | 2018-11-22 | 2020-05-28 | 日本電信電話株式会社 | Sound pickup device |
KR102154553B1 (en) | 2019-09-18 | 2020-09-10 | 한국표준과학연구원 | A spherical array of microphones for improved directivity and a method to encode sound field with the array |
CN111969332A (en) * | 2020-07-30 | 2020-11-20 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Sparse array arrangement method for large-space wide-angle scanning millimeter wave phased array antenna |
CN115038028A (en) * | 2021-03-05 | 2022-09-09 | 华为技术有限公司 | Virtual loudspeaker set determination method and device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070274534A1 (en) * | 2006-05-15 | 2007-11-29 | Roke Manor Research Limited | Audio recording system |
US20130101141A1 (en) * | 2011-10-19 | 2013-04-25 | Wave Sciences Corporation | Directional audio array apparatus and system |
JP2014165901A (en) * | 2013-02-28 | 2014-09-08 | Nippon Telegr & Teleph Corp <Ntt> | Sound field sound collection and reproduction device, method, and program |
US20150086039A1 (en) * | 2011-10-19 | 2015-03-26 | Wave Sciences LLC | Wearable Directional Microphone Array Apparatus and System |
US20160330545A1 (en) * | 2015-05-05 | 2016-11-10 | Wave Sciences LLC | Portable computing device microphone array |
JP2018151306A (en) * | 2017-03-14 | 2018-09-27 | 大成建設株式会社 | Sound source exploring device and microphone array |
-
2017
- 2017-03-16 JP JP2017051149A patent/JP6724830B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070274534A1 (en) * | 2006-05-15 | 2007-11-29 | Roke Manor Research Limited | Audio recording system |
US20130101141A1 (en) * | 2011-10-19 | 2013-04-25 | Wave Sciences Corporation | Directional audio array apparatus and system |
US20150086039A1 (en) * | 2011-10-19 | 2015-03-26 | Wave Sciences LLC | Wearable Directional Microphone Array Apparatus and System |
JP2014165901A (en) * | 2013-02-28 | 2014-09-08 | Nippon Telegr & Teleph Corp <Ntt> | Sound field sound collection and reproduction device, method, and program |
US20160330545A1 (en) * | 2015-05-05 | 2016-11-10 | Wave Sciences LLC | Portable computing device microphone array |
JP2018151306A (en) * | 2017-03-14 | 2018-09-27 | 大成建設株式会社 | Sound source exploring device and microphone array |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020105632A1 (en) * | 2018-11-22 | 2020-05-28 | 日本電信電話株式会社 | Sound pickup device |
KR102154553B1 (en) | 2019-09-18 | 2020-09-10 | 한국표준과학연구원 | A spherical array of microphones for improved directivity and a method to encode sound field with the array |
CN111969332A (en) * | 2020-07-30 | 2020-11-20 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Sparse array arrangement method for large-space wide-angle scanning millimeter wave phased array antenna |
CN115038028A (en) * | 2021-03-05 | 2022-09-09 | 华为技术有限公司 | Virtual loudspeaker set determination method and device |
WO2022184097A1 (en) * | 2021-03-05 | 2022-09-09 | 华为技术有限公司 | Virtual speaker set determination method and device |
CN115038028B (en) * | 2021-03-05 | 2023-07-28 | 华为技术有限公司 | Virtual speaker set determining method and device |
Also Published As
Publication number | Publication date |
---|---|
JP6724830B2 (en) | 2020-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6724830B2 (en) | Microphone array | |
US11140505B2 (en) | Audio processing apparatus and method, and program | |
JP6284955B2 (en) | Mapping virtual speakers to physical speakers | |
US9641951B2 (en) | System and method for fast binaural rendering of complex acoustic scenes | |
US20190069110A1 (en) | Fast and memory efficient encoding of sound objects using spherical harmonic symmetries | |
JP7194271B2 (en) | Near-field audio rendering | |
GB2542112A (en) | Capturing sound | |
JP2023164970A (en) | Information processing apparatus, method, and program | |
WO2017119320A1 (en) | Audio processing device and method, and program | |
JP6834985B2 (en) | Speech processing equipment and methods, and programs | |
CN108419174A (en) | A kind of virtual auditory environment Small Enclosure realization method and system based on loudspeaker array | |
CN105120419B (en) | Method and system for enhancing effect of multichannel system | |
EP3625975B1 (en) | Incoherent idempotent ambisonics rendering | |
Sakamoto et al. | A 3D sound-space recording system using spherical microphone array with 252ch microphones | |
CN110708647B (en) | Spherical distribution guided data matching stereo field reconstruction method | |
JP7115477B2 (en) | SIGNAL PROCESSING APPARATUS AND METHOD, AND PROGRAM | |
JP2017143406A (en) | Binaural sound generation device, microphone array, binaural sound generation method, program | |
Sakamoto et al. | Improvement of accuracy of three-dimensional sound space synthesized by real-time SENZI, a sound space information acquisition system using spherical array with numerous microphones | |
US11805377B2 (en) | Measurement device and measurement system | |
CN104571492B (en) | A kind of virtual reality sound renders the position distribution method on middle spherical source surface | |
Liangchen et al. | Diamond discrete grid subdivision method for spherical surface with icosahedron | |
CN109348398B (en) | Sound field reconstruction method, device, storage medium and device based on non-central point | |
US20220321998A1 (en) | Speaker array, signal processing device, signal processing method, and signal processing program | |
JP2024509179A (en) | Method and apparatus for obtaining HOA coefficient | |
US11871211B2 (en) | Signal processing apparatus, signal processing method, and signal processing program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191018 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20191018 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20191021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200526 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200608 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6724830 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |