JP2018157018A - Thermoelectric conversion material - Google Patents

Thermoelectric conversion material Download PDF

Info

Publication number
JP2018157018A
JP2018157018A JP2017051258A JP2017051258A JP2018157018A JP 2018157018 A JP2018157018 A JP 2018157018A JP 2017051258 A JP2017051258 A JP 2017051258A JP 2017051258 A JP2017051258 A JP 2017051258A JP 2018157018 A JP2018157018 A JP 2018157018A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
phase
temperature
graph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017051258A
Other languages
Japanese (ja)
Inventor
雅重 小野田
Masashige Onoda
雅重 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tsukuba NUC
Original Assignee
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tsukuba NUC filed Critical University of Tsukuba NUC
Priority to JP2017051258A priority Critical patent/JP2018157018A/en
Publication of JP2018157018A publication Critical patent/JP2018157018A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion material that can be used at high temperature.SOLUTION: There is provided a thermoelectric conversion material (8) composed of vanadium oxide in which an anisotropic displacement factor of an atom A has an anharmonic type β' phase crystal structure, which is represented by the chemical formula AVOwhen A is at least one of Cu and Li, and x is 0.24≤x<0.66.SELECTED DRAWING: Figure 1

Description

本発明は,熱エネルギーと電気エネルギーとを変換する熱電変換材料に関する。   The present invention relates to a thermoelectric conversion material that converts thermal energy and electrical energy.

水力,風力,太陽光などの再生可能エネルギーは,枯渇,温室効果ガス排出,放射性廃棄物などの問題とは無縁の一次エネルギー源であり,これらのエネルギーによって成り立つ社会の構築は,人類の最重要課題の一つといえる。このエネルギーは地域的,時間的変動などの問題を含むため,その安定利用にあたっては,エネルギー貯蔵デバイスである2次電池の高性能化および再生可能エネルギー源の一つとして期待される熱電変換材料の高性能化が必要不可欠である。
既に実用化されている熱電変換材料として,ビスマス系化合物がある。しかしながら,これらの化合物は人体に有害であり,高温(400 K〜500 K以上)において不安定になる問題がある。
ビスマス系とは異なる熱電変換材料に関して,下記の特許文献1に記載の技術が従来公知である。
Renewable energies such as hydropower, wind power, and solar power are primary energy sources unrelated to problems such as depletion, greenhouse gas emissions, and radioactive waste. This is one of the challenges. Since this energy includes problems such as regional and temporal fluctuations, in order to use it stably, the performance of secondary batteries, which are energy storage devices, and the thermoelectric conversion materials expected as one of renewable energy sources are expected. High performance is essential.
Bismuth-based compounds are already in use as thermoelectric conversion materials. However, these compounds are harmful to the human body and have the problem of becoming unstable at high temperatures (400 K to 500 K or more).
Regarding the thermoelectric conversion material different from the bismuth type, the technology described in Patent Document 1 below is conventionally known.

また,特許文献1(特開2008−53542号公報)には,一般式β-AxV2O5(AはLi,Na,Ag,Cuのいずれかであり,xは0.2 ≦ x ≦ 0.45)で表される熱電変換材料が記載されている。なお,特許文献1には,x = 0.33の熱電変換材料のみについて,実験データが記載されている。 Patent Document 1 (Japanese Patent Laid-Open No. 2008-53542) discloses a general formula β-A x V 2 O 5 (A is any one of Li, Na, Ag, and Cu, and x is 0.2 ≦ x ≦ 0.45). ) Is described. Note that Patent Document 1 describes experimental data for only the thermoelectric conversion material of x = 0.33.

特開2008−53542号公報(「0006」,「0009」,「0019」)JP 2008-53542 A (“0006”, “0009”, “0019”)

(従来技術の問題点)
特許文献1に記載の構成では,AがLi,Na,Ag,Cuのいずれかで,xが0.2 ≦ x ≦ 0.45の熱電変換材料が記載されているが,解析上,各原子のイオン半径の関係等から,NaとAgは,xが0.33のみしか存在しない(成立しない)ことが確認された。同様に,Liでは,β相のものは,xが0.22〜0.38の範囲しか存在しない。
なお,特許文献1に記載の結晶は,結晶構造としては,特許文献1の明細書段落番号「0009」に記載されているように,VO6八面体とVO5ピラミッドが稜および点共有により特徴的なV2O5骨格を形成し,そのトンネル内の1種の席をAイオン(Li,Na,Ag,Cu)が占める。そして,Aイオンが単斜晶フラクショナル座標(0.00±0.05, 0, 0.40±0.05)に位置し,調和振動型(楕円型)の熱振動を行うものがβ相とされる。すなわち,β相のバナジウムブロンズは,Aイオンの異方性変位因子が調和型である。
しかしながら,Cuについてはこの数値範囲についてはβ相のものは存在しないことが確認された。すなわち,解析が間違っていたものと考察される。
(Problems of conventional technology)
In the configuration described in Patent Document 1, a thermoelectric conversion material in which A is any of Li, Na, Ag, and Cu and x is 0.2 ≦ x ≦ 0.45 is described. From the relationship, it was confirmed that Na and Ag had only x of 0.33 (does not hold). Similarly, in the β phase, Li exists only in the range of x from 0.22 to 0.38.
The crystal described in Patent Document 1 is characterized by the fact that the VO 6 octahedron and the VO 5 pyramid have a ridge and point sharing as described in the paragraph number “0009” of the specification of Patent Document 1. A typical V 2 O 5 skeleton is formed, and A ion (Li, Na, Ag, Cu) occupies one kind of seat in the tunnel. The A phase is located in monoclinic fractional coordinates (0.00 ± 0.05, 0, 0.40 ± 0.05) and performs harmonic vibration (elliptical) thermal vibration as the β phase. In other words, β-phase vanadium bronze has a harmonic anisotropic displacement factor of A ions.
However, it was confirmed that there was no β phase in this numerical range for Cu. In other words, it is considered that the analysis was wrong.

本願は,高温でも使用可能な熱電変換材料を提供することを技術的課題とする。   This application makes it a technical subject to provide the thermoelectric conversion material which can be used also at high temperature.

前記技術的課題を解決するために,請求項1に記載の発明の熱電変換材料は,
AをCuおよびLiの少なくとも一方とし,xを0.24 ≦ x < 0.66とした場合に,化学式AxV2O5で表され,原子Aの異方性変位因子が非調和型であるβ'相の結晶構造を有するバナジウム酸化物で構成されたことを特徴とする。
In order to solve the technical problem, the thermoelectric conversion material according to claim 1 is:
When A is at least one of Cu and Li and x is 0.24 ≦ x <0.66, the β ′ phase is expressed by the chemical formula A x V 2 O 5 and the anisotropic displacement factor of atom A is anharmonic. It is characterized by comprising a vanadium oxide having the following crystal structure.

請求項2に記載の発明は,請求項1に記載の熱電変換材料において,
AがCuであり,且つ,xが0.38±0.04であることを特徴とする。
The invention according to claim 2 is the thermoelectric conversion material according to claim 1,
A is Cu, and x is 0.38 ± 0.04.

請求項3に記載の発明は,請求項1に記載の熱電変換材料において,
AがLiであり,且つ,xが0.44 ≦ x ≦ 0.49であることを特徴とする。
The invention according to claim 3 is the thermoelectric conversion material according to claim 1,
A is Li and x is 0.44 ≦ x ≦ 0.49.

請求項4に記載の発明は,請求項1に記載の熱電変換材料において,
xが0.24 ≦ x ≦ 0.65,yが0 < y < 0.65,化学式Cux-yLiyV2O5で表される固溶系のバナジウム酸化物で構成されたことを特徴とする。
The invention according to claim 4 is the thermoelectric conversion material according to claim 1,
It is characterized in that x is 0.24 ≦ x ≦ 0.65, y is 0 <y <0.65, and is composed of a solid solution vanadium oxide represented by the chemical formula Cu xy Li y V 2 O 5 .

請求項1〜4に記載の発明によれば,高温でも使用可能な熱電変換材料を提供することができる。   According to the first to fourth aspects of the invention, a thermoelectric conversion material that can be used even at high temperatures can be provided.

図1は本発明の実施例1の熱電変換素子の説明図である。FIG. 1 is an explanatory diagram of a thermoelectric conversion element according to Example 1 of the present invention. 図2は従来の調和型異方性変位因子を持つベータバナジウムブロンズの説明図であり,図2Aは結晶格子のac面の説明図,図2Bは熱振動の説明図,図2Cは電子密度の説明図である。Fig. 2 is an explanatory diagram of a conventional beta vanadium bronze with a harmonic anisotropic displacement factor, Fig. 2A is an explanatory diagram of the ac surface of the crystal lattice, Fig. 2B is an explanatory diagram of thermal vibration, and Fig. 2C is an electron density It is explanatory drawing. 図3は実施例1の熱電変換材料の説明図であり,図3Aは調和型の熱振動で説明しようとした場合の結晶格子のac面の説明図,図3Bは調和型の熱振動で説明しようとした場合の電子密度の分布の説明図,図3Cは異方性変位因子を非調和型で説明した場合の結晶格子のac面の説明図,図3Dはβ'-Cu0.40V2O5のCuO5ユニットにおけるCuイオンの非調和型異方性変位の様子を示す図である。3 is an explanatory diagram of the thermoelectric conversion material of Example 1, FIG. 3A is an explanatory diagram of the ac plane of the crystal lattice when trying to explain by harmonic thermal vibration, and FIG. 3B is explained by harmonic thermal vibration Fig. 3C is an explanatory diagram of the ac plane of the crystal lattice when the anisotropic displacement factor is explained in an anharmonic form, and Fig. 3D is β'-Cu 0.40 V 2 O. in 5 of CuO 5 units is a diagram showing a state of a non-conscious anisotropic displacement of Cu ions. 図4はβ相およびβ'相におけるA席の環境の相違の説明図であり,図4Aはβ-,β'-AxV2O5のV-O骨格構造の説明図,図4BはTトンネルにあるAの配位様式のβ相とβ'相での違いの説明図である。Fig. 4 is an explanatory diagram of the difference in the environment of the A seat between the β phase and β 'phase, Fig. 4A is an explanatory diagram of the VO skeleton structure of β-, β'-A x V 2 O 5 , and Fig. 4B is a T tunnel. It is explanatory drawing of the difference in (beta) phase and (beta) 'phase of the coordination mode of A in FIG. 図5はβ'-CuxV2O5系の格子定数の組成依存性を示すグラフであり,横軸にxを取り,縦軸に,a軸,b軸,c軸の格子の長さ,単位格子の稜間の角度β,体積Vを取ったものである。Fig. 5 is a graph showing the composition dependence of the lattice constant of the β'-Cu x V 2 O 5 system. The horizontal axis is x, and the vertical axis is the a-axis, b-axis, and c-axis lattice length. , The angle β between the edges of the unit cell, and the volume V. 図6はβ'-Cu0.50V2O5の単斜晶ac面に投影された結晶構造の説明図である。FIG. 6 is an explanatory diagram of the crystal structure projected on the monoclinic ac plane of β′-Cu 0.50 V 2 O 5 . 図7はβ'相で1種のCu席を持つとした場合のフラクショナル座標系xz面内の種々のy値における差フーリエ合成マップであり,図7Aは1種のCuイオンが調和型熱振動を持つとした場合の差フーリエ合成マップ,図7Bは非調和型熱振動を持つ場合の差フーリエ合成マップである。Fig. 7 is a difference Fourier composite map for various y values in the xz plane of the fractional coordinate system when it has one kind of Cu site in the β 'phase, and Fig. 7A shows harmonic thermal oscillation of one kind of Cu ion. FIG. 7B is a difference Fourier composite map in the case of having anharmonic thermal vibration. 図8はβ'-Cu0.50V2O5の異方性変位因子の組成依存性のグラフであり,横軸に組成xを取り,縦軸にCu ADP(Cuの異方性変位因子)をとったグラフである。Fig. 8 is a graph of the composition dependence of the anisotropic displacement factor of β'-Cu 0.50 V 2 O 5 , where the horizontal axis is the composition x and the vertical axis is Cu ADP (Cu anisotropic displacement factor). It is a graph taken. 図9はβ'-CuxV2O5(0.24 ≦ x ≦ 0.38)の単斜晶b軸方向の電気抵抗率の温度依存性の説明図であり,図9Aは低温域における温度の逆数に対するグラフ,図9Bは高温域のグラフである。Fig. 9 is an explanatory diagram of the temperature dependence of the electrical resistivity of β'-Cu x V 2 O 5 (0.24 ≤ x ≤ 0.38) in the monoclinic b-axis direction. Fig. 9A shows the reciprocal of the temperature in the low temperature range. The graph, FIG. 9B, is a graph in the high temperature region. 図10はβ'-CuxV2O5(0.40 ≦ x ≦ 0.60)の単斜晶b軸方向の電気抵抗率の温度依存性の説明図であり,図10Aは温度に対するグラフ,図10Bは温度の逆数に対するグラフである。Fig. 10 is an explanatory diagram of the temperature dependence of the electrical resistivity of β'-Cu x V 2 O 5 (0.40 ≤ x ≤ 0.60) in the monoclinic b-axis direction. Fig. 10A is a graph for temperature, and Fig. 10B is It is a graph with respect to the reciprocal of temperature. 図11はβ'-CuxV2O5の単斜晶b軸方向の熱電能の温度依存性の説明図であり,図11Aは0.24 ≦ x ≦ 0.38のグラフ,図11Bは0.40 ≦ x ≦0.60のグラフである。Figure 11 is an explanatory diagram of the temperature dependence of the thermoelectric power of β'-Cu x V 2 O 5 in the monoclinic b-axis direction. Figure 11A is a graph of 0.24 ≤ x ≤ 0.38, and Figure 11B is 0.40 ≤ x ≤ It is a graph of 0.60. 図12はβ'-CuxV2O5の輸送特性パラメータの組成依存性のグラフであり,横軸にxを取り,縦軸に最近接間ホッピングエネルギーEh,高温極限の電気抵抗率ρh0,2次元的変長ホッピングエネルギーTo,化学ポテンシャル上における状態密度対数のエネルギー微分値S0を取ったグラフである。Fig. 12 is a graph of the composition dependence of the transport characteristic parameter of β'-Cu x V 2 O 5 , where the horizontal axis is x, the vertical axis is the closest hopping energy E h , and the electrical resistivity ρ at the high temperature limit h0, 2-dimensional variable-length hopping energy T o, is a graph taking the energy differential value S 0 state density log on the chemical potential. 図13はβ'-CuxV2O5の熱電変換材料の磁気的性質の説明図であり,図13Aは帯磁率の温度依存性のグラフ,図13Bは帯磁率の逆数の温度依存性のグラフである。Fig. 13 is an explanatory diagram of the magnetic properties of β'-Cu x V 2 O 5 thermoelectric conversion material, Fig. 13A is a graph of the temperature dependence of the magnetic susceptibility, and Fig. 13B is the temperature dependence of the reciprocal of the magnetic susceptibility. It is a graph. 図14はβ'-CuxV2O5の熱電変換材料の室温における熱電変換の性能の説明図であり,図14Aは熱電性能因子Pのグラフ,図14Bは熱伝導度κのグラフ,図14Cは無次元性能指数ZTのグラフである。Fig. 14 is an explanatory diagram of the performance of β'-Cu x V 2 O 5 thermoelectric conversion material at room temperature, Fig. 14A is a graph of thermoelectric performance factor P, Fig. 14B is a graph of thermal conductivity κ, 14C is a graph of the dimensionless figure of merit ZT.

次に図面を参照しながら,本発明の実施の形態の具体例である実施例を説明するが,本発明は以下の実施例に限定されるものではない。
なお,以下の図面を使用した説明において,理解の容易のために説明に必要な部材以外の図示は適宜省略されている。
Next, examples which are specific examples of embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following examples.
In the following description using the drawings, illustrations other than members necessary for the description are omitted as appropriate for easy understanding.

図1は本発明の実施例1の熱電変換素子の説明図である。
図1において,本発明の実施例1の熱電変換材料を使用した熱電変換素子1は,第1の電極の一例としての高温電極2と,第2の電極の一例としての低温電極3とを有する。高温電極2は,高温の熱源4に接触している。また,低温電極3は,低温の熱源6に接触している。低温電極3は,p側電極3aと,n側電極3bとを有する。
p側電極3aと高温電極2との間には,p型熱電変換部材7が支持されている。p型熱電変換部材7は,電荷を運ぶキャリアが正の電荷を持った正孔(ホール)である従来公知の任意のp型の熱電変換材料で構成可能である。p型の熱電変換材料としては,一例として,NaxCoO2系やBi-Te系の熱電変換材料を使用可能である。
FIG. 1 is an explanatory diagram of a thermoelectric conversion element according to Example 1 of the present invention.
In FIG. 1, a thermoelectric conversion element 1 using the thermoelectric conversion material of Example 1 of the present invention has a high temperature electrode 2 as an example of a first electrode and a low temperature electrode 3 as an example of a second electrode. . The high temperature electrode 2 is in contact with the high temperature heat source 4. The low temperature electrode 3 is in contact with a low temperature heat source 6. The low temperature electrode 3 includes a p-side electrode 3a and an n-side electrode 3b.
A p-type thermoelectric conversion member 7 is supported between the p-side electrode 3a and the high temperature electrode 2. The p-type thermoelectric conversion member 7 can be composed of any conventionally known p-type thermoelectric conversion material in which the carriers that carry charges are positively charged holes. As an example of the p-type thermoelectric conversion material, a Na x CoO 2 -based or Bi-Te-based thermoelectric conversion material can be used.

n側電極3bと高温電極2との間には,n型熱電変換部材8が支持されている。n型熱電変換部材8は,電荷を運ぶキャリアが電子であるn型の熱電変換材料で構成可能である。実施例1のn型の熱電変換材料は,xを0.24 ≦ x < 0.66とした場合に,化学式CuxV2O5で表され,Cuの異方性変位因子が非調和型であるβ'相の結晶構造を有するバナジウム酸化物で構成されている。
また,p側電極3aとn側電極3bとの間には,導線9を介して,被給電部材11が接続されている。
An n-type thermoelectric conversion member 8 is supported between the n-side electrode 3b and the high temperature electrode 2. The n-type thermoelectric conversion member 8 can be composed of an n-type thermoelectric conversion material in which carriers that carry charges are electrons. The n-type thermoelectric conversion material of Example 1 is represented by the chemical formula Cu x V 2 O 5 where x is 0.24 ≦ x <0.66, and the anisotropic displacement factor of Cu is anharmonic type β ′ It is composed of vanadium oxide having a phase crystal structure.
In addition, a power-supplied member 11 is connected between the p-side electrode 3a and the n-side electrode 3b via a conducting wire 9.

(n型の熱電変換材料の合成)
実施例1のn型熱電変換材料は,以下の化学反応式(1)に従って作成可能である。
まず,予めV2O5(株式会社高純度化学研究所製,純度99.99%)をH2,N2雰囲気中にて,750℃で24時間熱処理することで,V2O3を作成した。
そして,V2O3とCuO(株式会社レアメタリック製,純度99.99%)とを石英管内に真空封入して,680℃〜750℃,24時間〜48時間の熱処理を行うことで作成した。
xCuO + (x/2)V2O3 + (1 - x/2)V2O5→ CuxV2O5 …式(1)
なお,xの範囲(0.24 ≦ x < 0.66)は,Cu,O,Vの各イオンのイオン半径等の解析から取りうる値の範囲である。
(Synthesis of n-type thermoelectric conversion materials)
The n-type thermoelectric conversion material of Example 1 can be prepared according to the following chemical reaction formula (1).
First, V 2 O 3 was prepared by heat-treating V 2 O 5 (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%) in an H 2 and N 2 atmosphere at 750 ° C. for 24 hours.
Then, V 2 O 3 and CuO (made by Rare Metallic Co., Ltd., purity 99.99%) were vacuum sealed in a quartz tube and heat-treated at 680 ° C. to 750 ° C. for 24 hours to 48 hours.
xCuO + (x / 2) V 2 O 3 + (1-x / 2) V 2 O 5 → Cu x V 2 O 5 (1)
Note that the range of x (0.24 ≦ x <0.66) is a range of values that can be taken from the analysis of ion radii of Cu, O, and V ions.

(実施例1の作用)
前記構成を備えた実施例1の熱電変換素子1では,各熱電変換部材7,8の両端の温度差により,ゼーベック効果で両端に電位差が発生する。したがって,熱電変換素子1に電流iが流れる。
ここで,熱電変換の性能を示す熱電性能因子Pは,電気抵抗率ρ,熱電能Sを用いて,P = S2/ρと表される。また,熱伝導度κを用いて,熱電性能指数Zは,Z = P/κと表される。さらに,無次元性能指数は,熱電性能指数Zと絶対温度Tとの積で与えられ,ZT > 1が実用化の目安とされる。したがって,無次元性能指数ZTを大きな値にするには,熱電能Sが大きく,電気抵抗率ρおよび熱伝導度κが小さな熱電変換材料が好ましい。
(Operation of Example 1)
In the thermoelectric conversion element 1 of Example 1 having the above-described configuration, a potential difference is generated at both ends due to the Seebeck effect due to the temperature difference between both ends of the thermoelectric conversion members 7 and 8. Therefore, the current i flows through the thermoelectric conversion element 1.
Here, the thermoelectric performance factor P indicating the performance of thermoelectric conversion is expressed as P = S 2 / ρ using the electrical resistivity ρ and the thermoelectric power S. In addition, using the thermal conductivity κ, the thermoelectric figure of merit Z is expressed as Z = P / κ. In addition, the dimensionless figure of merit is given by the product of the thermoelectric figure of merit Z and the absolute temperature T, and ZT> 1 is a guideline for practical use. Therefore, in order to increase the dimensionless figure of merit ZT, a thermoelectric conversion material having a large thermoelectric power S, a small electrical resistivity ρ, and a small thermal conductivity κ is preferable.

図2は従来の調和型のベータバナジウムブロンズの説明図であり,図2Aは結晶格子のac面の説明図,図2Bは熱振動の説明図,図2Cは電子密度の説明図である。
特許文献1に記載の熱電変換材料では,熱電性能因子Pが比較的大きな材料が示されている。しかしながら,異方性変位因子が調和型のベータバナジウムブロンズでは,図2Aに示すように,トンネル内にあるA席が規則正しい。したがって,図2Bに示すように,Aイオンの熱振動(格子振動,フォノン)は大きくなく,フォノンの散乱は起こりにくい。よって,フォノン散乱の影響が大きな熱伝導度κは値が大きくなることが予想される。よって,特許文献1に記載の調和型のベータバナジウムブロンズは,熱電性能指数Zや無次元性能指数ZTが小さな値となり,熱電変換材料としては十分な性能を有しないものと予想される。
FIG. 2 is an explanatory diagram of a conventional harmonic beta vanadium bronze, FIG. 2A is an explanatory diagram of the ac plane of the crystal lattice, FIG. 2B is an explanatory diagram of thermal vibration, and FIG. 2C is an explanatory diagram of electron density.
In the thermoelectric conversion material described in Patent Document 1, a material having a relatively large thermoelectric performance factor P is shown. However, in beta vanadium bronze with a harmonious anisotropic displacement factor, seat A in the tunnel is regular, as shown in Fig. 2A. Therefore, as shown in Fig. 2B, the thermal vibration (lattice vibration, phonon) of the A ion is not large, and phonon scattering hardly occurs. Therefore, it is expected that the value of thermal conductivity κ, which is greatly affected by phonon scattering, will increase. Therefore, the harmonic beta vanadium bronze described in Patent Document 1 has a small thermoelectric figure of merit Z and dimensionless figure of merit ZT, and is not expected to have sufficient performance as a thermoelectric conversion material.

図3は実施例1の熱電変換材料の説明図であり,図3Aは調和型の熱振動で説明しようとした場合の結晶格子のac面の説明図,図3Bは調和型の熱振動で説明しようとした場合の電子密度の分布の説明図,図3Cは異方性変位因子を非調和型で説明した場合の結晶格子のac面の説明図,図3Dはβ'-Cu0.40V2O5のCuO5ユニットにおけるCuイオンの非調和型異方性変位の様子を示す図である。
これに対して,実施例1のCuxV2O5では,X線回折等での解析の結果,調和型では説明できない。すなわち,調和型の熱振動で説明をしようとすると,図3A,図3Bに示すように,Cu原子が,2箇所(Cu1席,Cu2席)存在する形となる。なお,2種のCu席の場合(β'相の場合)でも,いずれの席もβ相の席とは位置(座標)や配位が異なる(後述する図4参照)。したがって,β'相は,Cuの異方性変位因子を調和型と仮定する場合,結晶学的に異なる2種類のCu席を持つ結晶構造と定義することも可能である。
3 is an explanatory diagram of the thermoelectric conversion material of Example 1, FIG. 3A is an explanatory diagram of the ac plane of the crystal lattice when trying to explain by harmonic thermal vibration, and FIG. 3B is explained by harmonic thermal vibration Fig. 3C is an explanatory diagram of the ac plane of the crystal lattice when the anisotropic displacement factor is explained in an anharmonic form, and Fig. 3D is β'-Cu 0.40 V 2 O. in 5 of CuO 5 units is a diagram showing a state of a non-conscious anisotropic displacement of Cu ions.
On the other hand, Cu x V 2 O 5 of Example 1 cannot be explained by the harmonic type as a result of analysis by X-ray diffraction or the like. In other words, when trying to explain with harmonic thermal vibration, there are two Cu atoms (Cu1 seat, Cu2 seat) as shown in Fig. 3A and Fig. 3B. In addition, in the case of two types of Cu seats (in the case of β ′ phase), the position (coordinates) and the configuration of each seat are different from those in the β-phase seat (see FIG. 4 described later). Therefore, the β 'phase can be defined as a crystal structure with two different crystallographic Cu sites, assuming that the anisotropic displacement factor of Cu is harmonic.

本発明者の研究(実験および構造解析)の結果,調和型(楕円型)の熱振動とは異なり,図3C,図3Dに示すように,楕円型の調和型とは形が異なる非調和型(略三角形状,おむすび型)の熱振動の概念を導入することで説明できることがわかった。この非調和型の考え方の導入によりCu2席のイオンが不要になった。したがって,実施例1のCuxV2O5で構成された熱電変換材料は,従来の調和型のベータバナジウムブロンズとは異なり,非調和型の異方性変位因子を有する。なお,本願明細書および特許請求の範囲において,この非調和型の異方性変位因子を有するものを「β'相」と表現し,β'相のCuxV2O5を,「β'-CuxV2O5」と記載する。そして,非調和型の異方性因子を有する場合,調和型(β相)に比べて,電子の密度が広がる,すなわち,長波長のフォノン散乱が大きくなる。よって,熱伝導度κだけが抑制されることになり,特許文献1に記載の熱電変換材料に比べて,β'-CuxV2O5では,熱電性能指数Zや無次元性能指数ZTが大きくなる。よって,実施例1のβ'-CuxV2O5は,従来の熱電変換材料に比べて,熱電変換性能が向上する。
なお,実施例1のβ'-CuxV2O5で構成された熱電変換材料は,酸化物系の材料で構成されている。したがって,ビスマス系の熱電変換素子に比べて,高温,大気中でも安定である。したがって,高温でも十分な熱電変換性能を有する。
As a result of the inventor's research (experiment and structural analysis), as shown in Fig. 3C and Fig. 3D, unlike the harmonic type (elliptical type) thermal vibration, the shape is different from the elliptical type harmonic type. It was found that this can be explained by introducing the concept of thermal vibration (substantially triangular, rice ball type). The introduction of this anharmonic concept eliminates the need for Cu2 seat ions. Therefore, the thermoelectric conversion material composed of Cu x V 2 O 5 of Example 1 has an anharmonic anisotropic displacement factor, unlike the conventional harmonic beta vanadium bronze. In the present specification and claims, this anharmonic anisotropic displacement factor is expressed as “β ′ phase”, and β ′ phase Cu x V 2 O 5 is expressed as “β ′ phase”. -Cu x V 2 O 5 ". And when it has an anharmonic type anisotropy factor, compared with a harmonic type (beta phase), the density of an electron spreads, ie, long wavelength phonon scattering becomes large. Therefore, only the thermal conductivity κ is suppressed. Compared to the thermoelectric conversion material described in Patent Document 1, β′-Cu x V 2 O 5 has a thermoelectric figure of merit Z and dimensionless figure of merit ZT. growing. Therefore, the β′-Cu x V 2 O 5 of Example 1 has improved thermoelectric conversion performance as compared with the conventional thermoelectric conversion material.
Note that the thermoelectric conversion material composed of β′-Cu x V 2 O 5 of Example 1 is composed of an oxide-based material. Therefore, it is more stable at high temperatures and in the atmosphere than bismuth-based thermoelectric conversion elements. Therefore, it has sufficient thermoelectric conversion performance even at high temperatures.

(β相とβ'相との違いの説明)
図4はβ相およびβ'相におけるA席の環境の相違の説明図であり,図4Aはβ-,β'-AxV2O5のV-O骨格構造の説明図,図4BはTトンネルにあるAの配位様式のβ相とβ'相での違いの説明図である。
以下に,本発明者の研究の結果によるβ相とβ'相との違いを説明する。
図4において,ベータバナジウムブロンズ(β-AxV2O5)では,Aイオンとして,NaイオンやLiイオンが存在可能である。なお,Liの場合は,0.22 ≦ x ≦ 0.38である。この時,図4Bのβのイオンで示されるように,β相のA(Na,Li)イオンの周囲には,7つのOイオンが配位する形(7配位)となる。
(Explanation of difference between β phase and β 'phase)
Fig. 4 is an explanatory diagram of the difference in the environment of the A seat between the β phase and β 'phase, Fig. 4A is an explanatory diagram of the VO skeleton structure of β-, β'-A x V 2 O 5 , and Fig. 4B is a T tunnel. It is explanatory drawing of the difference in (beta) phase and (beta) 'phase of the coordination mode of A in FIG.
Below, the difference between the β phase and the β ′ phase as a result of the inventor's research will be described.
In FIG. 4, in beta vanadium bronze (β-A x V 2 O 5 ), Na ions and Li ions can exist as A ions. In the case of Li, 0.22 ≤ x ≤ 0.38. At this time, as shown by the β ion in FIG. 4B, seven O ions are coordinated around the A (Na, Li) ion in the β phase (seven coordination).

一方,β'相では,Tトンネルを占有可能なAイオンとして,CuイオンやLiイオン(0.44 ≦ x ≦ 0.49),および,CuとLiの固溶系(β'-Cux-yLiyV2O5)が存在する。この時,図4Bのβ'のイオンで示されるように,Aイオンの周囲には,2つのOが直線状に並び且つ合計で5つのOイオンが配位する形(直線2配位(5配位))となる。
なお,図4Bにおいて,ベータバナジウムブロンズ(β相)の場合は,β'の位置にイオンは存在せず,β'相のバナジウム酸化物の場合は,βのイオンが存在しない。
On the other hand, in the β 'phase, Cu ions, Li ions (0.44 ≤ x ≤ 0.49), and solid solutions of Cu and Li (β'-Cu xy Li y V 2 O 5 ) are A ions that can occupy the T tunnel. ) Exists. At this time, as shown by the β ′ ion in FIG. 4B, around the A ion, two Os are arranged in a straight line and a total of five O ions are coordinated (straight two coordination (5 Coordination)).
In FIG. 4B, in the case of beta vanadium bronze (β phase), there is no ion at the position of β ′, and in the case of β ′ phase vanadium oxide, there is no β ion.

β,β'相のAイオン席の単斜晶フラクショナル座標を以下に示す。
β相のAイオン席: (0.00±0.05, 0, 0.40±0.05) … a
(0.00±0.05, 0, 0.60±0.05) … b
(0.5 ±0.05, 0.5, 0.40±0.05) … c
(0.5 ±0.05, 0.5, 0.60±0.05) … d
β'相のAイオン席(1種の場合): (0.47±0.02, 0, 0.64±0.02) … a'
(0.53±0.02, 0, 0.36±0.02) … b'
(0.97±0.02, 0.5, 0.64±0.02) … c'
(0.03±0.02, 0.5, 0.36±0.02) … d'
β相とβ'相においてac面で類似の座標をとるのは,「aとd'」,「bとc'」,「cとb'」,「dとa'」だが,それらはy位置が「1/2」だけ異なる。すなわち,β相とβ'相では明らかにAイオン席が異なる。このことを図示したのが図4である。したがって,図4に示すように,β相のバナジウムブロンズと,β'相のバナジウムブロンズ(バナジウム酸化物)とは構成が異なる。
The monoclinic fractional coordinates of the A ion sites in the β and β ′ phases are shown below.
β-phase A ion seat: (0.00 ± 0.05, 0, 0.40 ± 0.05)… a
(0.00 ± 0.05, 0, 0.60 ± 0.05)… b
(0.5 ± 0.05, 0.5, 0.40 ± 0.05)… c
(0.5 ± 0.05, 0.5, 0.60 ± 0.05)… d
β 'phase A ion seat (1 type): (0.47 ± 0.02, 0, 0.64 ± 0.02)… a'
(0.53 ± 0.02, 0, 0.36 ± 0.02)… b '
(0.97 ± 0.02, 0.5, 0.64 ± 0.02)… c '
(0.03 ± 0.02, 0.5, 0.36 ± 0.02)… d '
The β-phase and β'-phase have similar coordinates on the ac plane: "a and d '", "b and c'", "c and b '", and "d and a'", but they are y The position is different by “1/2”. That is, the A ion site is clearly different between the β phase and β ′ phase. This is illustrated in FIG. Therefore, as shown in FIG. 4, the configuration of the β-phase vanadium bronze is different from that of the β′-phase vanadium bronze (vanadium oxide).

特に,図4に示すように,β'相のA席を1種としても,その原子位置は,β相の位置と明確に異なる。すなわち,単斜晶b軸方向に±b/2のシフト差がある。なお,ac面への投影図だけを見ていると,その違いは不明瞭である。   In particular, as shown in Fig. 4, even if one kind of β 'phase A seat is used, the atomic position is clearly different from the position of the β phase. That is, there is a shift difference of ± b / 2 in the monoclinic b-axis direction. Note that the difference is not clear if only the projection on the ac plane is viewed.

また,前述のように,β相の場合は,Aイオンが単斜晶フラクショナル座標(0.00±0.05, 0, 0.40±0.05)に位置する。これに対して,β'相では,以下の(i)または(ii)を満たす。
(i)1種のMイオンの単斜晶フラクショナル座標が(0.47±0.02, 0, 0.64±0.02)であり,非調和型の熱振動を持つ。
(ii)2種のAイオンの座標が(0.47±0.02, 0, 0.64±0.02)および(0.47±0.02, 0.08±0.02, 0.64±0.02)であり,それぞれ調和型の熱振動を持つ。
As described above, in the β phase, the A ion is located at monoclinic fractional coordinates (0.00 ± 0.05, 0, 0.40 ± 0.05). On the other hand, in the β ′ phase, the following (i) or (ii) is satisfied.
(i) The monoclinic fractional coordinate of one type of M ion is (0.47 ± 0.02, 0, 0.64 ± 0.02) and has anharmonic thermal vibration.
(ii) The coordinates of the two types of A ions are (0.47 ± 0.02, 0, 0.64 ± 0.02) and (0.47 ± 0.02, 0.08 ± 0.02, 0.64 ± 0.02), each with harmonic thermal vibration.

次に,実施例1のβ'-CuxV2O5で構成された熱電変換材料の特性の説明を行う。
(格子定数)
図5はβ'-CuxV2O5系の格子定数の組成依存性を示すグラフであり,横軸にxを取り,縦軸に,a軸,b軸,c軸の格子の長さ,単位格子の稜間の角度β,体積Vを取ったものである。
まず,実施例1のβ'-CuxV2O5の多結晶試料に対して,X線粉末回折(Rigaku Ultima+),単結晶試料に対してX線4軸回折を行い(Nonius CAD4),空間群C2/mである単斜晶格子定数を決定した。結果を図5に示す。
なお,図5において,×印は本発明者とは別の研究グループによるデータである。また,図5において,点線は,本発明者の研究における単結晶データに対するべガード則に基づくフィットを表す。
Next, characteristics of the thermoelectric conversion material composed of β′-Cu x V 2 O 5 of Example 1 will be described.
(Lattice constant)
Fig. 5 is a graph showing the composition dependence of the lattice constant of the β'-Cu x V 2 O 5 system. The horizontal axis is x, and the vertical axis is the a-axis, b-axis, and c-axis lattice length. , The angle β between the edges of the unit cell, and the volume V.
First, X-ray powder diffraction (Rigaku Ultima +) was performed on the polycrystalline sample of β′-Cu x V 2 O 5 in Example 1, and X-ray 4-axis diffraction was performed on the single crystal sample (Nonius CAD4). The monoclinic lattice constant with space group C2 / m was determined. The results are shown in FIG.
In FIG. 5, the crosses indicate data from a research group different from the inventor. In FIG. 5, the dotted line represents a fit based on Vegard's law for single crystal data in the present inventors' research.

(結晶構造)
図6はβ'-Cu0.50V2O5の単斜晶ac面に投影された結晶構造の説明図である。
CrystalStructure crystallographic software package(Rigaku製)およびJana Crystallographic Computing System(V. Petricek, M. Dusek, and L. Palatinus, Jana2000: The Crystallographic Computing System (Institute of Physics, Prague, 2000))を用いて,Cu0.24V2O5,Cu0.40V2O5,Cu0.50V2O5,Cu0.60V2O5の297 Kにおける原子座標,等価等方性温度因子 Beq (Å2),異方的変位因子Uijならびに非調和型異方性変位因子Cjkl,Djklmを決定した。各結晶の組成は仕込み濃度と一致した。一例としてCu0.50V2O5の結晶構造を図6に示す。
(Crystal structure)
FIG. 6 is an explanatory diagram of the crystal structure projected on the monoclinic ac plane of β′-Cu 0.50 V 2 O 5 .
CrystalStructure crystallographic software package (manufactured by Rigaku) and Jana Crystallographic Computing System (V Petricek, M. Dusek, and L. Palatinus, Jana2000:. The Crystallographic Computing System (Institute of Physics, Prague, 2000)) using, Cu 0.24 V Atomic coordinates of 2 O 5 , Cu 0.40 V 2 O 5 , Cu 0.50 V 2 O 5 , Cu 0.60 V 2 O 5 at 297 K, equivalent isotropic temperature factor B eq2 ), anisotropic displacement factor U ij and anharmonic anisotropic displacement factors C jkl and D jklm were determined. The composition of each crystal coincided with the charged concentration. As an example, the crystal structure of Cu 0.50 V 2 O 5 is shown in FIG.

図6に示すように,β'-CuxV2O5の結晶では,V1,V2席は歪んだ8面体配位,V3席はピラミッド配位をとる。なお,図6に示す結晶構造図は前述のように調和型で考えた場合の参考図であり,実際には「Cu1席のみ」が存在する。但し,Cu1席の異方性変位因子は「非調和型」で,この点がβ相とは異なる。すなわち,Cjkl,Djklm効果を取り入れない場合,図6に示すように,Cu1およびCu2席が部分的に占有されていること,またCu1−Cu2,Cu2−Cu2の最近接席間においてイオンが同時に占有されないことがわかり,イオンの乱雑性が大きいことが示唆される。一方,Cjkl,Djklmの効果を取り入れた場合はCu1席のみを考えればよい。また本構造に基づき,全イオンの有効価数を決定した。
結晶学的に異なる3種のV席の有効価数は,Cu濃度の増加とともに,一様に減少することが明らかになった。このことから本系の電子状態は2次元的と示唆される。また,Cu席の有効価数は組成に依存せず1価であった。
As shown in Fig. 6, in the β'-Cu x V 2 O 5 crystal, the V1 and V2 seats have a distorted octahedral configuration, and the V3 seat has a pyramid configuration. Note that the crystal structure diagram shown in FIG. 6 is a reference diagram when considering the harmonic type as described above, and there is actually only “Cu1 seat”. However, the anisotropic displacement factor of the Cu1 seat is “non-harmonic”, which is different from the β phase. That is, when the C jkl and D jklm effects are not taken in, as shown in Fig. 6, the Cu1 and Cu2 seats are partially occupied, and ions are present between the closest seats of Cu1-Cu2 and Cu2-Cu2. It can be seen that they are not occupied at the same time, suggesting that the randomness of ions is large. On the other hand, if the effects of C jkl and D jklm are incorporated, only the Cu1 seat needs to be considered. Based on this structure, the effective valence of all ions was determined.
It became clear that the effective valence of three V-seats that are crystallographically different decreases uniformly with increasing Cu concentration. This suggests that the electronic state of this system is two-dimensional. The effective valence of Cu seats was monovalent regardless of the composition.

図7はβ'相で1種のCu席を持つとした場合のフラクショナル座標系xz面内の種々のy値における差フーリエ合成マップであり,図7Aは1種のCuイオンが調和型熱振動を持つ場合の差フーリエ合成マップ,図7Bは非調和型熱振動を持つ場合の差フーリエ合成マップである。
図7では,正の電子残差を等高線で示している。図7はいずれもβ'相の結晶構造に基づいた解析である。β相の結晶構造を基本にとると(A席のy座標が1/2異なると),電子残差が非常に大きくなり(結晶構造が解けていない状況となり),解析は失敗した。図7A,図7Bともに単斜晶フラクショナル座標が(0.47±0.02, 0, 0.64±0.02)である1種のCu席を考えている。Cuイオンが調和型熱振動を持つとした場合,図7Aの差フーリエ合成マップを与えるのに対して,非調和型熱振動を持つとした場合は,図7Bの結果を与える。調和型熱振動に限定する場合は,2種のCu席が必要である。図7Aにおいて,調和型異方性変位因子を持つ1種類のCu席を含むβ相結晶構造では,Cu1席(×印)のy = 0およびy = 0.125,0.188において,有限の電子密度が存在する。これに対して,図7Bに示すように,非調和型異方性変位因子を持つ,あるいは2種類のCu席を含むβ'相では電子残差がほとんどなく,結晶構造が正しく決定されていることがわかる。
Fig. 7 is a difference Fourier composite map for various y values in the xz plane of the fractional coordinate system when the β 'phase has one type of Cu seat, and Fig. 7A shows harmonic thermal oscillation of one type of Cu ion. FIG. 7B is a difference Fourier composite map in the case of having anharmonic thermal vibration.
In FIG. 7, positive electron residuals are indicated by contour lines. FIG. 7 is an analysis based on the crystal structure of the β ′ phase. Based on the β-phase crystal structure (if the y-coordinate of A-seat is different by 1/2), the electron residual becomes very large (the crystal structure is not solved) and the analysis fails. 7A and 7B consider a kind of Cu seat with monoclinic fractional coordinates (0.47 ± 0.02, 0, 0.64 ± 0.02). If the Cu ion has harmonic thermal vibration, the difference Fourier composite map of Fig. 7A is given, whereas if it has anharmonic thermal oscillation, the result of Fig. 7B is given. When limited to harmonic thermal vibration, two types of Cu seats are required. In Fig. 7A, in the β-phase crystal structure including one kind of Cu site with a harmonic anisotropic displacement factor, a finite electron density exists at y = 0, y = 0.125, and 0.188 at the Cu1 site (×). To do. In contrast, as shown in Fig. 7B, the β 'phase with an anharmonic anisotropic displacement factor or two kinds of Cu sites has almost no electron residual, and the crystal structure is correctly determined. I understand that.

図8はβ'-Cu0.50V2O5の異方性変位因子の組成依存性のグラフであり,横軸に組成xを取り,縦軸にCu ADP(異方性変位因子)をとったグラフである。
なお,図8において,Uijは調和振動項の平均2乗変位(i,jなどは逆格子ベクトル方向を意味し,U22は逆格子ベクトルb*方向の成分に対応)であり,Cjkl,Djklmは3次および4次の非調和項のテンソル係数(便宜上103倍)に対応する。図8には,それらのパラメーターの中で長波長フォノン散乱に特に有効と考えられる成分を示す。
図8によれば,非調和振動型温度因子(異方性変位因子)はCu低濃度側で顕著であり,β'-CuxV2O5系ではCu低濃度側ほど熱伝導度が減少することが予想される。したがって,図8から,Cu高濃度側ではCuの非調和振動が抑制され,熱伝導度が高くなることが期待できる。
Figure 8 is a graph of the composition dependence of the anisotropic displacement factor of β'-Cu 0.50 V 2 O 5 , where the horizontal axis represents the composition x and the vertical axis represents Cu ADP (anisotropic displacement factor). It is a graph.
In FIG. 8, U ij is the mean square displacement of the harmonic vibration term (i, j, etc. mean the reciprocal lattice vector direction, U 22 corresponds to the component in the reciprocal lattice vector b * direction), and C jkl , D jklm corresponds to the third and fourth order anharmonic term tensor coefficients (10 3 times for convenience). Figure 8 shows the components that are considered to be particularly effective for long-wavelength phonon scattering among these parameters.
According to Fig. 8, the anharmonic oscillation type temperature factor (anisotropic displacement factor) is conspicuous on the low Cu concentration side, and in the β'-Cu x V 2 O 5 system, the thermal conductivity decreases on the low Cu concentration side. Is expected to. Therefore, it can be expected from FIG. 8 that Cu anharmonic vibration is suppressed and the thermal conductivity is increased on the high Cu concentration side.

(電子物性)
(輸送現象)
(電気抵抗率)
図9はβ'-CuxV2O5(0.24 ≦ x ≦ 0.38)の単斜晶b軸方向の電気抵抗率の温度依存性の説明図であり,図9Aは低温域における温度の逆数に対するグラフ,図9Bは高温域のグラフである。
図10はβ'-CuxV2O5(0.40 ≦ x ≦ 0.60)の単斜晶b軸方向の電気抵抗率の温度依存性の説明図であり,図10Aは温度に対するグラフ,図10Bは温度の逆数に対するグラフである。
図9において,実線は最近接間ホッピングモデル,点線は変長ホッピングモデル,破線は両モデルの並列機構に基づく計算値を示す。さらに,図10において,実線は,x= 0.60を除きホッピングモデル,x = 0.60は相関金属モデル,点線は変長ホッピングモデル,破線は両モデルの並列機構に基づく計算値を示す。
なお,最近接間ホッピングモデルや相関金属モデル,変長ホッピングモデル,両モデルの並列機構,については,例えば,「Masashige Onoda and Asato Tamura, Superlattice structures, electronic properties and spin dynamics of the partially Cu-extracted phase for the composite crystal system CuxV4O11, Journal of the Physical Society of Japan 86, 024801 (2017) [11pp].」に記載されているため,詳細な説明は省略する。
(Electronic properties)
(Transport phenomenon)
(Electric resistivity)
Fig. 9 is an explanatory diagram of the temperature dependence of the electrical resistivity of β'-Cu x V 2 O 5 (0.24 ≤ x ≤ 0.38) in the monoclinic b-axis direction. Fig. 9A shows the reciprocal of the temperature in the low temperature range. The graph, FIG. 9B, is a graph in the high temperature region.
Fig. 10 is an explanatory diagram of the temperature dependence of the electrical resistivity of β'-Cu x V 2 O 5 (0.40 ≤ x ≤ 0.60) in the monoclinic b-axis direction. Fig. 10A is a graph for temperature, and Fig. 10B is It is a graph with respect to the reciprocal of temperature.
In FIG. 9, the solid line is the closest hopping model, the dotted line is the variable hopping model, and the broken line is the calculated value based on the parallel mechanism of both models. Further, in FIG. 10, the solid line represents the hopping model except for x = 0.60, x = 0.60 represents the correlation metal model, the dotted line represents the variable hopping model, and the broken line represents the calculated value based on the parallel mechanism of both models.
For the nearest neighbor hopping model, correlated metal model, variable hopping model, and parallel mechanism of both models, see, for example, “Masashige Onoda and Asato Tamura, Superlattice structures, electronic properties and spin dynamics of the partially Cu-extracted phase”. for the composite crystal system Cu x V 4 O 11 , Journal of the Physical Society of Japan 86, 024801 (2017) [11pp].

単斜晶b軸方向の電気抵抗率ρおよび熱電能Sを,それぞれ直流4端子法,直流法により,4 K ≦ T ≦ 300 Kの温度範囲で測定した。電気抵抗率ρの測定における降温・昇温過程の温度変化率は,それぞれ,0.5 K min-1,0.25 K min-1,熱電能Sの測定においては,0.5 K min-1,0.1 K min-1,であった。
電気抵抗率ρの温度依存性を図9,図10に示す。x = 0.30,0.40は,温度の減少に伴い電気抵抗率ρが増加する半導体的な振る舞いを示した。組成に応じて220 K付近でCuイオンの秩序化に起因するであろう温度履歴を伴う温度依存性の大きな変化が見られた。ただし,この温度履歴は,温度昇温率を十分に抑制した(0.1 K min-1)後述の熱電能Sにおいては顕著でなかった。一方,x = 0.50は200 K以上で金属的であるのに対して,低温では非金属的な振る舞いをした。x = 0.60は全温度領域で相関金属的な振る舞いを示した。
The electrical resistivity ρ and thermoelectric power S in the monoclinic b-axis direction were measured in the temperature range of 4 K ≤ T ≤ 300 K by the DC 4-terminal method and DC method, respectively. The temperature change rates during the temperature drop and temperature rise processes in the measurement of electrical resistivity ρ are 0.5 K min −1 and 0.25 K min −1 , respectively, and in the measurement of thermoelectric power S, 0.5 K min −1 and 0.1 K min − 1
Figures 9 and 10 show the temperature dependence of the electrical resistivity ρ. x = 0.30 and 0.40 showed semiconducting behavior in which the electrical resistivity ρ increased with decreasing temperature. Depending on the composition, there was a large change in temperature dependence with temperature history around 220 K, which may be attributed to Cu ion ordering. However, this temperature history was not significant in the thermoelectric power S described later, in which the temperature heating rate was sufficiently suppressed (0.1 K min -1 ). On the other hand, x = 0.50 is metallic at 200 K and above, while it behaved non-metallicly at low temperatures. x = 0.60 showed correlated metallic behavior in the whole temperature range.

(熱電能)
図11はβ'-CuxV2O5の単斜晶b軸方向の熱電能の温度依存性の説明図であり,図11Aは0.24 ≦ x ≦ 0.38のグラフ,図11Bは0.40 ≦ x ≦0.60のグラフである。
なお,図11は,横軸に温度Tを取り,縦軸に熱電能S [μV K-1]をとったグラフである。また,図11において,実線は相関電子モデル,破線はホッピングおよび変長ホッピングモデルの並列機構に基づく計算値を示す。
図11は単斜晶b軸方向の熱電能Sの温度依存性である。図11において,すべての濃度で熱電能Sは負の値を示し,キャリアは電子的である(すなわち,n型)。x ≦ 0.40では,室温付近における温度依存性が小さく,電気抵抗率ρに異常が生じた温度以下で温度依存性が大きくなった。一方,x = 0.50,0.60の熱電能Sの大きさは相対的に小さく,金属的状態が示唆される。電気抵抗率の温度依存性が大きく変化した温度において熱電能にも変化が見られた。以上の結果から輸送機構として,次のモデルが妥当であることが明らかになった。
(Thermoelectricity)
Figure 11 is an explanatory diagram of the temperature dependence of the thermoelectric power of β'-Cu x V 2 O 5 in the monoclinic b-axis direction. Figure 11A is a graph of 0.24 ≤ x ≤ 0.38, and Figure 11B is 0.40 ≤ x ≤ It is a graph of 0.60.
FIG. 11 is a graph in which the horizontal axis represents temperature T and the vertical axis represents thermoelectric power S [μV K −1 ]. In FIG. 11, the solid line indicates the calculated value based on the correlated electron model, and the broken line indicates the calculated value based on the parallel mechanism of the hopping and variable hopping models.
FIG. 11 shows the temperature dependence of the thermoelectric power S in the monoclinic b-axis direction. In FIG. 11, thermoelectric power S shows a negative value at all concentrations, and carriers are electronic (ie, n-type). When x ≤ 0.40, the temperature dependence near room temperature was small, and the temperature dependence became large below the temperature at which the electrical resistivity ρ was abnormal. On the other hand, the magnitude of thermoelectric power S at x = 0.50 and 0.60 is relatively small, suggesting a metallic state. There was also a change in thermoelectric power at temperatures where the temperature dependence of electrical resistivity changed significantly. From the above results, it became clear that the following model is appropriate as a transport mechanism.

(a) 0.24 ≦ x ≦ 0.45の電気抵抗率ρ
・高温領域:最近接間ホッピング伝導機構
ここで,Ehは最近接間ホッピングエネルギー,kBはボルツマン係数を表す。
・低温領域:2次元変長ホッピング伝導ρvと最近接間ホッピング伝導ρhの並列機構
ここで,Toは2次元的変長ホッピングエネルギーを表す。
(a) Electrical resistivity ρ of 0.24 ≤ x ≤ 0.45
・ High temperature region: nearest neighbor hopping conduction mechanism
Where E h is the nearest neighbor hopping energy and k B is the Boltzmann coefficient.
And low temperature regions: two-dimensional variable-length hopping conduction [rho v and parallel mechanism closest among hopping conduction [rho h
Here, T o represents a two-dimensional variable-length hopping energy.

(b) x= 0.60の電気抵抗率ρ(T ≦ 250 K)
相関電子モデル
ここで,ρ0は残留抵抗率を表す。また,AはT2の係数である。
(b) Electric resistivity ρ (T ≤ 250 K) at x = 0.60
Correlated electron model
Here, ρ 0 represents the residual resistivity. Also, A is the coefficient of T 2.


(c) 0.24 ≦ x ≦ 0.45の熱電能S
・高温領域:最近接間ホッピング伝導機構
ここで,eは電荷,N(E)は電子の状態密度,μは化学ポテンシャルを表す。
・低温領域:2次元変長ホッピング熱電能Svと最近接間ホッピング熱電能Shの電気伝導度重み機構

(c) Thermopower S with 0.24 ≤ x ≤ 0.45
・ High temperature region: nearest neighbor hopping conduction mechanism
Here, e is an electric charge, N (E) is an electron density of states, and μ is a chemical potential.
And low temperature regions: two-dimensional variable-length hopping Netsuden'no S v and the nearest inter hopping Netsuden'no S h of electrical conductivity weighting mechanism

(d) x= 0.60の熱電能S
有効質量の増大を伴った相関電子モデル
ここで,EFはフェルミエネルギーを表す。
(d) Thermoelectric power S with x = 0.60
Correlated electron model with increasing effective mass
Here, E F represents Fermi energy.

図12はβ'-CuxV2O5の輸送特性パラメータの組成依存性のグラフであり,横軸にxを取り,縦軸に最近接間ホッピングエネルギーEh,高温極限の電気抵抗率ρh0,2次元的変長ホッピングエネルギーTo,化学ポテンシャル上における状態密度対数のエネルギー微分値S0を取ったグラフである。
上記の(a)〜(d)における各パラメータと組成xとの関係とを図12に示す。
なお,図12の熱電能S0のグラフにおいて,点線と破線は,3次元の自由電子状態密度を仮定し,キャリアーの有効質量比を,それぞれ18(高温),8(低温)にした時の計算値である。
図12において,高温極限の電気抵抗率ρh0の組成依存性から,室温以上の温度領域を考えると,x = 0.4付近の熱電性能指数が最も良いことが示唆される。
Fig. 12 is a graph of the composition dependence of the transport characteristic parameter of β'-Cu x V 2 O 5 , where the horizontal axis is x, the vertical axis is the closest hopping energy E h , and the electrical resistivity ρ at the high temperature limit h0, 2-dimensional variable-length hopping energy T o, is a graph taking the energy differential value S 0 state density log on the chemical potential.
FIG. 12 shows the relationship between each parameter in the above (a) to (d) and the composition x.
In the graph of thermoelectric power S 0 in Fig. 12, the dotted line and the broken line assume three-dimensional free electron density of states, and the effective mass ratio of carriers is 18 (high temperature) and 8 (low temperature), respectively. It is a calculated value.
In Fig. 12, the composition dependence of the electrical resistivity ρ h0 in the high temperature limit suggests that the thermoelectric figure of merit near x = 0.4 is the best when considering the temperature region above room temperature.

(磁気的性質)
図13はβ'-CuxV2O5の熱電変換材料の磁気的性質の説明図であり,図13Aは帯磁率の温度依存性のグラフ,図13Bは帯磁率の逆数の温度依存性のグラフである。
図13において,実線は遍歴電子(結晶中を動き回る電子)と少数の孤立スピンモデル(スピン間の相互作用が極めて小さい孤立したイオンのスピン),点線はキュリーワイス則に基づく計算値を示す。
SQUID(Quantum Design MPMS)を用いて測定したβ'-CuxV2O5の帯磁率の温度依存性を図13に示す。図13において,Cu濃度の増加とともに,キュリーワイス型の帯磁率が大きく抑制される。輸送現象で見られた異常は顕著ではないが,x = 0.40において200 K付近でコブが生じた。
x = 0.24,0.35の結果は,Cu+イオンから移行したVイオン上のd電子が局在していると考えれば理解できるのに対して,x = 0.60ではd電子が遍歴的であることを示す。
(Magnetic properties)
Fig. 13 is an explanatory diagram of the magnetic properties of β'-Cu x V 2 O 5 thermoelectric conversion material, Fig. 13A is a graph of the temperature dependence of the magnetic susceptibility, and Fig. 13B is the temperature dependence of the reciprocal of the magnetic susceptibility. It is a graph.
In FIG. 13, the solid line shows itinerant electrons (electrons moving around in the crystal) and a small number of isolated spin models (spins of isolated ions with very little interaction between spins), and the dotted line shows calculated values based on the Curie-Weiss law.
FIG. 13 shows the temperature dependence of the magnetic susceptibility of β′-Cu x V 2 O 5 measured using SQUID (Quantum Design MPMS). In FIG. 13, as the Cu concentration increases, the Curie-Weiss magnetic susceptibility is greatly suppressed. The abnormalities observed in the transport phenomenon are not significant, but bumps occurred around 200 K at x = 0.40.
The results for x = 0.24 and 0.35 can be understood by assuming that the d electrons on the V ions migrated from the Cu + ions are localized, whereas at x = 0.60, the d electrons are itinerant. Show.

(a) x= 0.24,0.35の帯磁率
キュリーワイス則
ここで,Cはキュリー定数,Twはワイス温度,χorbは軌道帯磁率,χdiaは反磁性帯磁率を表す。
(a) Magnetic susceptibility x = 0.24, 0.35 Curie-Weiss law
Where C is the Curie constant, T w is the Weiss temperature, χ orb is the orbital susceptibility, and χ dia is the diamagnetic susceptibility.

(b) x= 0.60の帯磁率
遍歴電子と少数の孤立スピンモデル
ここで,右辺第1項,2項はパウリ的帯磁率における一定値と温度依存項,CiとTwiは不純物スピンあるいは格子欠陥に由来するキュリー定数とワイス温度を表す。
(b) Magnetic susceptibility of x = 0.60 Itinerant electrons and few isolated spin models
Here, the first and second terms on the right-hand side are constant values and temperature-dependent terms in the Pauli susceptibility, and C i and T wi are the Curie constant and Weiss temperature derived from impurity spin or lattice defects.

(電子スピン共鳴)
Xバンド電子スピン共鳴(JEOL TE200)を行った結果,磁気的イオンはV4+のみであり,Cu2+イオンは存在しないことを確認した。
(Electron spin resonance)
As a result of X-band electron spin resonance (JEOL TE200), it was confirmed that the magnetic ions were only V 4+ and no Cu 2+ ions.

(無次元性能指数)
図14はβ'-CuxV2O5の熱電変換材料の室温における熱電変換の性能の説明図であり,図14Aは熱電性能因子Pのグラフ,図14Bは熱伝導度κのグラフ,図14Cは無次元性能指数ZTのグラフである。
前述の電気抵抗率ρと熱電能Sのデータに基づく室温における熱電性能因子P,定常法により300 Kで測定した熱伝導度κ,ならびにそれらのデータから導かれる無次元性能指数ZTを,それぞれ図14A−図14Cに示す。β'-CuxV2O5系ではx = 0.40付近で無次元性能指数ZT(≒ 1×10-2)が最も高い。特に,図14Aの近似線から,0.38±0.04の範囲において,熱電性能因子Pが10-6を超え,特に好適である。
(Dimensionless figure of merit)
Fig. 14 is an explanatory diagram of the performance of β'-Cu x V 2 O 5 thermoelectric conversion material at room temperature, Fig. 14A is a graph of thermoelectric performance factor P, Fig. 14B is a graph of thermal conductivity κ, 14C is a graph of the dimensionless figure of merit ZT.
The figure shows the thermoelectric performance factor P at room temperature based on the data on the electrical resistivity ρ and thermoelectric power S, the thermal conductivity κ measured at 300 K by the steady-state method, and the dimensionless figure of merit ZT derived from these data. 14A—shown in FIG. 14C. In the β′-Cu x V 2 O 5 system, the dimensionless figure of merit ZT (≈ 1 × 10 −2 ) is the highest around x = 0.40. In particular, the thermoelectric performance factor P exceeds 10 −6 in the range of 0.38 ± 0.04 from the approximate line in FIG. 14A, which is particularly suitable.

一方,熱電変換酸化物材料として実用化が検討されているNa0.5CoO2の室温における電気抵抗率,熱電能,熱伝導度は,現在それぞれρ ≒ 3×10-3 Ω cm,S ≒ 80 μV K-1,κ = 5 W m-1 K-1程度とされ,それらから熱電性能因子と変換効率はP ≒ 2×10-6 W cm-1 K-2,ZT ≒ 1×10-2となる 。したがって,β'-CuxV2O5の熱電性能因子P,無次元性能指数ZTと同程度である。 On the other hand, the electrical resistivity, thermoelectric power, and thermal conductivity at room temperature of Na 0.5 CoO 2 that is being put into practical use as a thermoelectric conversion oxide material are currently ρ ≒ 3 × 10 -3 Ω cm and S ≒ 80 μV, respectively. K -1 , κ = 5 W m -1 K -1 and the thermoelectric performance factor and conversion efficiency are P ≒ 2 × 10 -6 W cm -1 K -2 , ZT ≒ 1 × 10 -2 Become . Therefore, it is similar to the thermoelectric performance factor P and dimensionless figure of merit ZT of β'-Cu x V 2 O 5 .

(変更例)
以上,本発明の実施例を詳述したが,本発明は,前記実施例に限定されるものではなく,特許請求の範囲に記載された本発明の要旨の範囲内で,種々の変更を行うことが可能である。本発明の変更例(H01)を下記に例示する。
(H01)前記実施例において,熱電変換素子1として,熱エネルギーを電気エネルギーに変換して使用する構成を例示したが,これに限定されない。p型の熱電変換材料とn型の熱電変換材料を接合し,電流を流すことで熱の移動が発生するペルティエ効果を利用したペルティエ素子にも適用可能である。
(Example of change)
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications are made within the scope of the gist of the present invention described in the claims. It is possible. A modified example (H01) of the present invention is exemplified below.
(H01) In the above-described embodiment, the thermoelectric conversion element 1 is exemplified by a configuration in which heat energy is converted into electric energy, but is not limited thereto. It can also be applied to Peltier elements that use the Peltier effect, in which heat transfer occurs when a p-type thermoelectric conversion material and an n-type thermoelectric conversion material are joined and current flows.

前述の本発明の熱電変換材料は,例えば,工場や発電所,入浴施設,あるいは車のエンジン等の廃熱や地熱を利用した発電に適用可能である。
また,ペルティエ素子として,電子回路や電子素子の冷却にも利用可能である。
The thermoelectric conversion material of the present invention described above can be applied to power generation using waste heat or geothermal heat from, for example, factories, power plants, bathing facilities, or car engines.
In addition, it can be used as a Peltier element for cooling electronic circuits and electronic elements.

8…熱電変換材料。 8 ... Thermoelectric conversion material.

Claims (4)

AをCuおよびLiの少なくとも一方とし,xを0.24 ≦ x < 0.66とした場合に,化学式AxV2O5で表され,原子Aの異方性変位因子が非調和型であるβ'相の結晶構造を有するバナジウム酸化物で構成されたことを特徴とする熱電変換材料。 When A is at least one of Cu and Li and x is 0.24 ≦ x <0.66, the β ′ phase is expressed by the chemical formula A x V 2 O 5 and the anisotropic displacement factor of atom A is anharmonic. A thermoelectric conversion material comprising a vanadium oxide having the following crystal structure: AがCuであり,且つ,xが0.38±0.04であることを特徴とする請求項1に記載の熱電変換材料。   The thermoelectric conversion material according to claim 1, wherein A is Cu and x is 0.38 ± 0.04. AがLiであり,且つ,xが0.44 ≦ x ≦ 0.49であることを特徴とする請求項1に記載の熱電変換材料。   The thermoelectric conversion material according to claim 1, wherein A is Li and x is 0.44 ≦ x ≦ 0.49. xが0.24 ≦ x ≦ 0.65,yが0 < y < 0.65,化学式Cux-yLiyV2O5で表される固溶系のバナジウム酸化物で構成されたことを特徴とする請求項1に記載の熱電変換材料。 2. The composition according to claim 1, wherein x is 0.24 ≦ x ≦ 0.65, y is 0 <y <0.65, and is composed of a solid solution type vanadium oxide represented by the chemical formula Cu xy Li y V 2 O 5 . Thermoelectric conversion material.
JP2017051258A 2017-03-16 2017-03-16 Thermoelectric conversion material Pending JP2018157018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017051258A JP2018157018A (en) 2017-03-16 2017-03-16 Thermoelectric conversion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017051258A JP2018157018A (en) 2017-03-16 2017-03-16 Thermoelectric conversion material

Publications (1)

Publication Number Publication Date
JP2018157018A true JP2018157018A (en) 2018-10-04

Family

ID=63715741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017051258A Pending JP2018157018A (en) 2017-03-16 2017-03-16 Thermoelectric conversion material

Country Status (1)

Country Link
JP (1) JP2018157018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003689A1 (en) * 2018-06-29 2020-01-02 国立研究開発法人産業技術総合研究所 Phononic material and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256342A (en) * 1998-03-13 1999-09-21 Agency Of Ind Science & Technol Production of metal oxide thin film
JP2003246626A (en) * 2002-02-22 2003-09-02 National Institute Of Advanced Industrial & Technology Method of producing metal oxide particulate-dispersed glass
JP2008053542A (en) * 2006-08-25 2008-03-06 Fdk Corp Thermoelectric conversion material
JP2012134409A (en) * 2010-12-24 2012-07-12 Hitachi Ltd Thermoelectric conversion material
JP2014135220A (en) * 2013-01-11 2014-07-24 Univ Of Tsukuba Positive electrode active material and secondary battery
JP2016529699A (en) * 2013-07-03 2016-09-23 ボード オブ トラスティーズ オブ ミシガン ステート ユニバーシティ Thermoelectric materials based on tetrahedral copper ore structure for thermoelectric elements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256342A (en) * 1998-03-13 1999-09-21 Agency Of Ind Science & Technol Production of metal oxide thin film
JP2003246626A (en) * 2002-02-22 2003-09-02 National Institute Of Advanced Industrial & Technology Method of producing metal oxide particulate-dispersed glass
JP2008053542A (en) * 2006-08-25 2008-03-06 Fdk Corp Thermoelectric conversion material
JP2012134409A (en) * 2010-12-24 2012-07-12 Hitachi Ltd Thermoelectric conversion material
JP2014135220A (en) * 2013-01-11 2014-07-24 Univ Of Tsukuba Positive electrode active material and secondary battery
JP2016529699A (en) * 2013-07-03 2016-09-23 ボード オブ トラスティーズ オブ ミシガン ステート ユニバーシティ Thermoelectric materials based on tetrahedral copper ore structure for thermoelectric elements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
佐藤拓磨,外1名: "ジグザグ鎖−梯子系β'-CuxV2O5の磁性と伝導", 日本物理学会講演概要集, vol. 2016年秋季大会, JPN6021036419, 2016, JP, pages 763, ISSN: 0004596745 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003689A1 (en) * 2018-06-29 2020-01-02 国立研究開発法人産業技術総合研究所 Phononic material and method for producing same
JPWO2020003689A1 (en) * 2018-06-29 2021-04-22 国立研究開発法人産業技術総合研究所 Phonic materials and their manufacturing methods
JP7145529B2 (en) 2018-06-29 2022-10-03 国立研究開発法人産業技術総合研究所 Phononic material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Berri Half-metallic and thermoelectric properties of Sr2EuReO6
Lee et al. Organic–inorganic hybrid perovskites ABI 3 (A= CH 3 NH 3, NH 2 CHNH 2; B= Sn, Pb) as potential thermoelectric materials: a density functional evaluation
US10177295B2 (en) P-type high-performance thermoelectric material with reversible phase change, and preparation method therefor
Yang et al. Low lattice thermal conductivity and excellent thermoelectric behavior in Li3Sb and Li3Bi
Kim et al. Possible Rashba band splitting and thermoelectric properties in CuI-doped Bi2Te2. 7Se0. 3 bulk crystals
Shinozaki et al. Thermoelectric Properties of the As/P-Based Zintl Compounds EuIn2As2–x P x (x= 0–2) and SrSn2As2
Khan et al. Toward controlled thermoelectric properties of Pb and Sb co-doped nanostructured Thallium Telluride for energy applications
Zhang et al. Preparation and improved electrical performance of the Pr-doped CaMnO3− δ thermoelectric compound
He et al. Boosting thermoelectric performance of BiCuSeO by improving carrier mobility through light element doping and introducing nanostructures
Yan et al. Theoretical Understanding of thermoelectric energy conversion efficiency in Lead-Free halide double perovskites showing intrinsic defect tolerance
Mili et al. The study of structural, electronic and thermoelectric properties of Ca 1− x Yb x Zn 2 Sb 2 (x= 0, 0.25, 0.5, 0.75, 1) Zintl compounds
Tufail et al. Effect of Pb doping on electronic and thermoelectric properties of thallium antimony telluride (Tl8. 33Sb1. 67− xPbxTe6) nano-compound: a combined experimental and theoretical investigations
Nadeem et al. Exploring the physical properties of Cu2WSe4 for optoelectronic and thermoelectric applications: a DFT study
Wei et al. Theoretical study of the thermoelectric properties of SiGe nanotubes
Choi et al. Enhancement of thermoelectric properties of CoSb3 skutterudite by addition of Ga and In
KR102259535B1 (en) Thermoelectric materials with improved thermal conductivity and thermoelectric merit figure
Hao et al. High-temperature thermoelectric properties of Cu-substituted Bi2Ba2Co2-xCuxOy oxides
Wang et al. Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Chang et al. Enhanced thermoelectric performance of BiCuTeO by excess Bi additions
Yan et al. High thermoelectric properties in full-Heusler X2YZ alloys (X= Ca, Sr, and Ba; Y= Au and Hg; Z= Sn, Pb, As, Sb, and Bi)
JP2018157018A (en) Thermoelectric conversion material
Sifi et al. Comparison between the thermoelectric properties of new materials: The alloy of iron, vanadium, tungsten, and aluminum (Fe2V0. 8W0. 2Al) against an oxide such as NaCO2O4
Lin et al. Exceptional thermoelectric performance of a “star-like” SnSe nanotube with ultra-low thermal conductivity and a high power factor
Wang et al. First-principles calculation study of Mg2XH6 (X= Fe, Ru) on thermoelectric properties
Ullah et al. Effects of Al and B co-doping on the thermoelectric properties of ZnO ceramics sintered in an argon atmosphere

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220412