JP2018155434A - Cell type ice-making machine - Google Patents

Cell type ice-making machine Download PDF

Info

Publication number
JP2018155434A
JP2018155434A JP2017051274A JP2017051274A JP2018155434A JP 2018155434 A JP2018155434 A JP 2018155434A JP 2017051274 A JP2017051274 A JP 2017051274A JP 2017051274 A JP2017051274 A JP 2017051274A JP 2018155434 A JP2018155434 A JP 2018155434A
Authority
JP
Japan
Prior art keywords
ice making
water
wall
ice
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017051274A
Other languages
Japanese (ja)
Other versions
JP6827859B2 (en
Inventor
小川 洋一
Yoichi Ogawa
洋一 小川
洸嗣 松浦
Koji Matsuura
洸嗣 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukushima Galilei Co Ltd
Original Assignee
Fukushima Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukushima Industries Corp filed Critical Fukushima Industries Corp
Priority to JP2017051274A priority Critical patent/JP6827859B2/en
Publication of JP2018155434A publication Critical patent/JP2018155434A/en
Application granted granted Critical
Publication of JP6827859B2 publication Critical patent/JP6827859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cell type ice-making machine which can make ices while discharging part of ice-making water in a feed water tank, and eliminate if necessary, accumulation of impurities by automatically discharging ice-making water in the feed water tank.SOLUTION: In a cell type ice-making machine, whenever a feed water tank 13 is operated by switching from an ice-making position to an ice-releasing position by a tray operation mechanism, part of ice-making water stored in a tank chamber 32 is discharged from a drain guide 39 on an external surface of the feed water tank 13. A gutter body part 41 of the drain guide 39 and the tank chamber 32 are communicated via an exhaust port 40 formed in a peripheral wall 29 of the feed water tank 13, dividing both of them. An inclined lower end of the exhaust port 40 in a state that the feed water tank 13 is switched to the ice-releasing position is positioned in an inclined lower end of a bottom wall 27 of the feed water tank 13. The feed water tank 13 is continuously switched between the ice-releasing position and the ice-making position in an ice-making stop state so as to discharge entire ice-making water in the tank chamber 32 from the drain guide 39.SELECTED DRAWING: Figure 1

Description

本発明は、一群のセルに向かって製氷水を噴出しながら氷を生成するセル型製氷機に関し、なかでも給水タンクの排水構造の改良に関する。   The present invention relates to a cell-type ice making machine that generates ice while jetting ice-making water toward a group of cells, and more particularly to an improvement in the drainage structure of a water supply tank.

給水タンクの排水構造に関して、本出願人は特許文献1の製氷機を先に提案している。そこでは、水タンクを四角皿状の容器として構成し、周壁のひとつに残留水を排出する排水口を開口し、その外面に排水樋を設けている。離氷時には、水タンクが給水トレーとともに下り傾斜されて、水タンク内の余剰製氷水と、給水トレーの上面を洗い流す洗浄水の全てが排水樋から排出される。排水樋の底壁は、水タンクが下り傾斜した状態において、樋端に向かって僅かに下り傾斜している。   Regarding the drainage structure of the water supply tank, the present applicant has previously proposed the ice making machine of Patent Document 1. There, the water tank is configured as a square dish-like container, a drain outlet for discharging residual water is opened in one of the peripheral walls, and a drainage basin is provided on the outer surface. At the time of deicing, the water tank is inclined downward together with the water supply tray, and all of the surplus ice-making water in the water tank and the washing water that washes the upper surface of the water supply tray are discharged from the drainage basin. The bottom wall of the drainage basin is slightly inclined downward toward the heel end when the water tank is inclined downward.

上記の排水構造によれば、余剰製氷水と洗浄水の全てを離氷工程ごとに排出するので、常に新規な製氷水を使用して透明度の高い氷を製氷できる。反面、水の消費量が多くなるうえ、製氷工程では常温の製氷水によって製氷を開始するので電力消費量が増加する。こうした問題を解消するために、特許文献2の製氷機では、製氷水タンク(給水タンク)の内部を仕切り部で第1貯留部と第2貯留部に区分して、両貯留部を製氷水タンクの最深部に位置する連通部で連通させている。また、連通部から離れた第1貯留部の端部寄りに放出口を形成し、その開口端にエルボ状の放出管を接続している。離氷工程における製氷水タンクは、製氷部に対して水皿と共に下り傾斜する開放姿勢に切換えられて、第1貯留部に収容された製氷水の一部を放出管から排出する。なお、放出管は、その姿勢を一部排出位置と全排出位置に変更できる状態で放出口に接続されている。   According to the above drainage structure, since all of the surplus ice-making water and the washing water are discharged every ice-breaking step, it is possible to make ice with high transparency using always new ice-making water. On the other hand, the amount of water consumption increases, and in the ice making process, ice making is started with room temperature ice making water, which increases power consumption. In order to solve such a problem, in the ice making machine of Patent Document 2, the inside of the ice making water tank (water supply tank) is divided into a first storing part and a second storing part by a partition part, and both storing parts are ice making water tanks. It is made to communicate with the communication part located in the deepest part. In addition, a discharge port is formed near the end of the first storage part away from the communication part, and an elbow-shaped discharge pipe is connected to the opening end. The ice making water tank in the deicing step is switched to an open posture in which the ice making part is inclined downward along with the water tray with respect to the ice making part, and a part of the ice making water stored in the first storage part is discharged from the discharge pipe. The discharge pipe is connected to the discharge port in a state where the posture can be changed between a partial discharge position and a full discharge position.

特開2006−17400号公報(段落0032、図1)JP 2006-17400 A (paragraph 0032, FIG. 1) 特許第5275920号公報(段落0023、図3、図5)Japanese Patent No. 5275920 (paragraph 0023, FIG. 3, FIG. 5)

特許文献2の製氷機によれば、離氷工程において製氷水タンクが開放姿勢に切換えられるごとに、第1貯留部側に収容されている製氷水の一部を排水して、次の製氷工程において新規な製氷水を補充できる。このように、製氷水の一部を排水する排水構造によれば、排水した量に見合う新規な製氷水を補充できる。しかし、離氷時にはマグネシウムやカルシウムなどの不純物を含む製氷水のみが排水されるわけではなく、しかも製氷水タンクが開放姿勢に切換えられた状態においては、第1貯留部に相当量の製氷水が残っている。そのため、次の製氷工程において第1貯留と第2貯留部に収容された製氷水が再利用されることになり、新たに補充される製氷水と不純物を含む製氷水を確実に入れ換えることが困難で、不純物が徐々に蓄積するのを避けられない。上記のような不純物の蓄積を避けるには、一定時間おきに製氷水タンク内の製氷水の全てを排水するとよい。しかし、そのためには製氷機を管理する作業者が、放出管を全排出位置に切換え操作して、製氷水タンク内の製氷水の全てを排水したうえで、再び放出管を一部排出位置に切換え操作する必要があり、一連の作業に余分な手間が掛かる。   According to the ice making machine of Patent Document 2, every time the ice making water tank is switched to the open posture in the ice removing process, a part of the ice making water accommodated in the first storage section is drained, and the next ice making process is performed. New ice making water can be replenished. Thus, according to the drainage structure which drains a part of ice making water, the new ice making water corresponding to the amount of drained water can be replenished. However, not only ice making water containing impurities such as magnesium and calcium is drained at the time of deicing, and when the ice making water tank is switched to the open position, a considerable amount of ice making water is stored in the first reservoir. Remaining. Therefore, the ice making water accommodated in the first storage and the second storage part is reused in the next ice making process, and it is difficult to reliably replace newly made ice making water and ice making water containing impurities. Therefore, it is inevitable that impurities accumulate gradually. In order to avoid the accumulation of impurities as described above, it is preferable to drain all ice-making water in the ice-making water tank at regular intervals. However, for this purpose, the operator who manages the ice making machine switches the discharge pipe to the full discharge position, drains all the ice making water in the ice making water tank, and then sets the discharge pipe to the partial discharge position again. It is necessary to perform the switching operation, and extra time is required for a series of operations.

本発明の目的は、給水タンク内の製氷水を一部排出して水の消費量および電力消費量を抑止しながら氷を生成でき、しかも必要時には給水タンク内の全ての製氷水を自動的に排水して不純物の蓄積を解消し、透明な氷を生成できるようにしたセル型製氷機を提供することにある。   It is an object of the present invention to generate ice while partly discharging ice-making water in a water supply tank to suppress water consumption and power consumption, and automatically, when necessary, all ice-making water in a water supply tank. It is an object of the present invention to provide a cell-type ice making machine that can drain water to eliminate accumulation of impurities and generate transparent ice.

本発明に係るセル型製氷機は、製氷室1の内部に製氷ケース10と、同ケース10のセル11に向かって製氷水を噴出供給する給水トレー12と、給水トレー12とともに上下揺動可能に支持されて、トレー操作機構で製氷位置と離氷位置に切換え操作される給水タンク13を備えている。また、給水タンク13がトレー操作機構で製氷位置から離氷位置に切換え操作されるごとに、タンク室32内に収容した製氷水の一部を、給水タンク13の外面に設けた樋状の排水ガイド39から排出される。排水ガイド39の樋体部41とタンク室32とは、両者を区分する給水タンク13の周壁29に形成した排出口40を介して連通されている。給水タンク13が離氷位置に切換えられた状態における排出口40の傾斜下端は、給水タンク13の底壁27の傾斜下端に位置している(図4参照)。そして、製氷停止状態において、給水タンク13を連続して離氷位置と製氷位置に切換えることにより、タンク室32内の製氷水の全てを排水ガイド39から排出できることを特徴とする。   The cell type ice making machine according to the present invention is capable of swinging up and down together with an ice making case 10 inside the ice making chamber 1, a water supply tray 12 for supplying ice making water to the cells 11 of the case 10, and a water supply tray 12. A water supply tank 13 that is supported and switched between an ice making position and an ice removing position by a tray operation mechanism is provided. Further, every time the water supply tank 13 is switched from the ice making position to the ice removing position by the tray operation mechanism, a part of the ice making water stored in the tank chamber 32 is drained in a bowl shape provided on the outer surface of the water supply tank 13. It is discharged from the guide 39. The housing part 41 and the tank chamber 32 of the drainage guide 39 are communicated with each other through a discharge port 40 formed in the peripheral wall 29 of the water supply tank 13 that separates the two. The inclined lower end of the discharge port 40 in a state where the water supply tank 13 is switched to the deicing position is located at the inclined lower end of the bottom wall 27 of the water supply tank 13 (see FIG. 4). In the ice making stop state, all the ice making water in the tank chamber 32 can be discharged from the drain guide 39 by continuously switching the water supply tank 13 to the ice removing position and the ice making position.

排水ガイド39は樋体部41と、排出口40の近傍の一方の樋端部を塞ぐ樋端壁43と、排出口40から離れた他方の樋端部に設けられる排水堰47を備えている。給水タンク13が離氷位置に切換えられた状態においては、製氷水の一部がタンク室32から排出口40を介して樋体部41に流入して、排水堰47と樋端壁43の間の樋体部41に貯留される。給水タンク13が製氷位置に切換えられた状態において、樋端壁43と排水堰47の間に貯留された廃棄水が排出される。   The drainage guide 39 includes a housing part 41, a collar end wall 43 that closes one collar end in the vicinity of the discharge port 40, and a drainage weir 47 provided at the other collar end remote from the discharge port 40. In a state where the water supply tank 13 is switched to the deicing position, a part of the ice making water flows from the tank chamber 32 through the discharge port 40 into the housing part 41, and between the drainage weir 47 and the end wall 43. It is stored in the housing part 41. In the state where the water supply tank 13 is switched to the ice making position, the waste water stored between the end wall 43 and the drainage weir 47 is discharged.

給水タンク13が製氷位置に切換えられた状態における樋体部41の底壁42が、樋端壁43から排水堰47へ向かって下り傾斜されている。   The bottom wall 42 of the housing part 41 in a state where the water supply tank 13 is switched to the ice making position is inclined downward from the saddle end wall 43 toward the drainage weir 47.

給水タンク13が離氷位置に切換えられた状態において、タンク室32内の製氷水を受止める右周壁31が給水タンク13の傾斜下端に配置されている。給水タンク13が製氷位置に切換えられた状態における排出口40は、タンク室32内の製氷水の貯留限界を規定する水平の下周縁50と、右周壁31に向かって上り傾斜する上周縁52を含んで鰐口状に形成されている。給水タンク13が離氷位置から製氷位置に切換わる状態では、樋体部41に貯留された廃棄水と、タンク室32から排出口40を経て排水ガイド39へ流入する一部の製氷水が、排水堰47から流下排出される。   In the state where the water supply tank 13 is switched to the deicing position, the right peripheral wall 31 that receives the ice-making water in the tank chamber 32 is disposed at the lower inclined end of the water supply tank 13. The discharge port 40 in a state where the water supply tank 13 is switched to the ice making position has a horizontal lower peripheral edge 50 that defines the storage limit of the ice making water in the tank chamber 32 and an upper peripheral edge 52 that is inclined upward toward the right peripheral wall 31. It is formed in the shape of a shed. In the state where the water supply tank 13 is switched from the deicing position to the ice making position, the waste water stored in the housing part 41 and a part of the ice making water flowing from the tank chamber 32 through the discharge port 40 to the drain guide 39 are It flows down from the drainage weir 47.

給水タンク13が離氷位置に切換えられた状態において、排水堰47で規定される廃棄水の水位を基準にして、排出口40の上周縁52が前記廃棄水の水位より僅かに上側に位置している。   In the state where the water supply tank 13 is switched to the deicing position, the upper peripheral edge 52 of the discharge port 40 is positioned slightly above the water level of the waste water on the basis of the level of the waste water defined by the drainage weir 47. ing.

図5に示すように排水ガイド39は、タンク室32と樋体部41を区分する周壁29に沿って、右周壁31側の端部から左周壁30側の端部にわたって左右横長に形成されている。左周壁30の近傍の樋体部41の底壁42に排水堰47が形成され、排水堰47に連続して廃棄水を流下案内する流下口46が開口され、樋体部41の左周壁30側の端部に、排水堰47へ向かって流動する廃棄水を受止める水受壁44が形成されている。給水タンク13が離氷位置に切換えられた状態において、排水堰47と樋端壁43の間の逆台形状の樋内空間に廃棄水が貯留される。   As shown in FIG. 5, the drainage guide 39 is formed horizontally long from the end on the right peripheral wall 31 side to the end on the left peripheral wall 30 side along the peripheral wall 29 that separates the tank chamber 32 and the housing part 41. Yes. A drainage weir 47 is formed in the bottom wall 42 of the housing part 41 in the vicinity of the left peripheral wall 30, and a flow-down port 46 that guides the wastewater to flow down continuously from the drainage weir 47 is opened, and the left peripheral wall 30 of the housing part 41. A water receiving wall 44 for receiving waste water flowing toward the drainage weir 47 is formed at the end on the side. In a state where the water supply tank 13 is switched to the de-icing position, waste water is stored in the inverted trapezoidal inner space between the drainage weir 47 and the end wall 43.

樋体部41の底壁42は、排出口40の下周縁50と右周壁31の交差部から排水堰47の側へ向かって下り傾斜する第1樋壁42aと、第1樋壁42aの傾斜下端から排水堰47に向かって屈曲する第2樋壁42bで形成されている。タンク室32の第1底壁27aと樋体部41の第1樋壁42aは後周壁29を間にして面一に形成されている。   The bottom wall 42 of the housing part 41 includes a first wall 42a that slopes downward from the intersection of the lower peripheral edge 50 of the discharge port 40 and the right peripheral wall 31 toward the drainage weir 47, and an inclination of the first wall 42a. It is formed by a second wall 42 b that is bent from the lower end toward the drainage weir 47. The first bottom wall 27a of the tank chamber 32 and the first wall 42a of the housing part 41 are formed flush with the rear peripheral wall 29 therebetween.

図7に示すように排水ガイド39は、タンク室32と樋体部41を区分する周壁29に沿って、右周壁31側の端部から左右中途部にわたって形成されている。排水ガイド39は、上向きに開口する樋体部41と、排出口40の近傍の一方の樋端部を塞ぐ樋端壁43と、樋端壁43から最も離れた樋体部41の底壁に形成される排水堰47を備えている。給水タンク13が離氷位置に切換えられた状態における樋体部41の底壁42は、排水堰47から樋端壁43の下端に向かって下り傾斜されていて、排水堰47と樋端壁43の間の三角形状の樋内空間に廃棄水を貯留できる。   As shown in FIG. 7, the drainage guide 39 is formed from the end on the right peripheral wall 31 side to the left and right halfway along the peripheral wall 29 that separates the tank chamber 32 and the casing portion 41. The drainage guide 39 is formed on the housing 41 that opens upward, the housing end wall 43 that closes one housing end near the discharge port 40, and the bottom wall of the housing 41 that is farthest from the housing end wall 43. A drainage weir 47 is provided. The bottom wall 42 of the housing 41 in a state where the water supply tank 13 is switched to the deicing position is inclined downward from the drainage weir 47 toward the lower end of the dredge wall 43, and between the drainage weir 47 and the dredge wall 43. Waste water can be stored in the triangular interior space.

本発明に係るセル型製氷機においては、製氷状態においては、給水トレー12および給水タンク13を製氷位置と離氷位置に交互に切換えて氷を生成しながら、給水タンク13内の製氷水の一部を排水ガイド39から排水し、さらに新規な製氷水を補充して製氷水の一部を入れ換えるようにした。このように、製氷水の一部を排水しながら製氷を行うと、タンク室32の内部に残った製氷水を、次回の製氷過程で製氷水として再利用する分だけ、水の消費量および電力消費量を抑止しながら氷を生成できる。また、給水タンク13が離氷位置に切換えられた状態における排出口40の傾斜下端が、給水タンク13の底壁27の傾斜下端に位置しているため、製氷停止状態において、給水タンク13を連続して離氷位置と製氷位置に切換えることにより、タンク室32内の製氷水の水位を徐々に小さくしながら、給水タンク13内の製氷水の全てを排水ガイド39から排出して不純物の蓄積を解消できる。しかも、製氷水の全てを排出する一連の作業は、例えばトレー操作機構の作動状態を制御する制御装置に、全排水作業を行うのに必要なプログラムを格納しておくだけで自動的に行うことができるので、製氷水の全てを排出する作業に要する手間を省いて省力化できる。また、給水タンク13内の製氷水の全てを排出した後は、再び通常の運転モードに戻すことにより、不純物がほとんど含まれていない製氷水で透明な氷を生成できる。   In the cell type ice making machine according to the present invention, in the ice making state, the water supply tray 12 and the water supply tank 13 are alternately switched between the ice making position and the ice removing position to generate ice, while the ice making water in the water supply tank 13 is generated. The part was drained from the drainage guide 39 and further supplemented with new ice making water to replace a part of the ice making water. As described above, when ice making is performed while draining a part of the ice making water, the amount of water consumed and the electric power are consumed by the amount of ice making water remaining in the tank chamber 32 being reused as ice making water in the next ice making process. Ice can be produced while reducing consumption. In addition, since the lower inclined end of the discharge port 40 is located at the lower inclined end of the bottom wall 27 of the water supply tank 13 when the water supply tank 13 is switched to the deicing position, the water supply tank 13 is continuously connected in the ice making stop state. By switching between the ice-off position and the ice-making position, all the ice-making water in the water supply tank 13 is discharged from the drain guide 39 while accumulating impurities by gradually reducing the water level in the tank chamber 32. Can be resolved. Moreover, a series of operations for discharging all ice-making water is automatically performed by storing a program necessary for performing all drainage operations in a control device that controls the operating state of the tray operation mechanism, for example. Therefore, it is possible to save labor by eliminating the work required to discharge all the ice making water. Further, after all the ice making water in the water supply tank 13 has been discharged, the ice can be made transparent with ice making water containing almost no impurities by returning to the normal operation mode again.

樋体部41と、一方の樋端部を塞ぐ樋端壁43と、他方の樋端部に設けられる排水堰47を備えるようにした排水ガイド39によれば、給水タンク13が離氷位置に切換えられた状態において、タンク室32内の製氷水の一部を排水堰47と樋端壁43の間の樋体部41に貯留できる。このように、給水タンク13の外に排水ガイド39を設けて、その樋体部41に廃棄水を貯留すると、給水タンク13が製氷位置に切換えられる状態において、樋体部41に貯留された廃棄水の全てを流下でき、廃棄水がタンク室32側へ逆流するのを防止できる。また、製氷開始前に満水水位になるまで新たな製氷水を補充することにより、廃棄水と新たに補充される製氷水を確実に入れ換えることができ、従って不純物が蓄積するのを効果的に抑止できる。   The water supply tank 13 is switched to the deicing position according to the drainage guide 39 provided with the casing 41, the end wall 43 that closes one end and the drainage weir 47 provided at the other end. In the state, a part of the ice making water in the tank chamber 32 can be stored in the casing 41 between the drainage weir 47 and the end wall 43. Thus, if the drainage guide 39 is provided outside the water supply tank 13 and the waste water is stored in the housing part 41, the waste stored in the housing part 41 in a state where the water supply tank 13 is switched to the ice making position. All of the water can flow down and waste water can be prevented from flowing back to the tank chamber 32 side. In addition, by replenishing new ice-making water until the water level is full before the start of ice-making, waste water and newly-added ice-making water can be reliably replaced, thus effectively preventing the accumulation of impurities. it can.

樋体部41の底壁42が、樋端壁43から排水堰47へ向かって下り傾斜されていると、給水タンク13が製氷位置に切換えられた状態において、樋体部41に貯留された廃棄水の全てを速やかに流下排出できる。従って、製氷時のサイクルタイムを短縮できるのはもちろん、製氷停止状態において、給水タンク13を連続して離氷位置と製氷位置に切換えて、タンク室32内の製氷水の全てを排出するのに要する時間を短縮できるので、1日当たりの製氷能力を向上できる。   When the bottom wall 42 of the housing 41 is inclined downward from the housing end wall 43 toward the drainage weir 47, the waste water stored in the housing 41 in a state where the water supply tank 13 is switched to the ice making position. All of these can be discharged quickly. Therefore, not only can the cycle time during ice making be shortened, but also in the ice making stop state, the water supply tank 13 is continuously switched to the ice removing position and the ice making position to discharge all the ice making water in the tank chamber 32. Since the time required can be shortened, the ice making capacity per day can be improved.

排出口40が水平の下周縁50と、上り傾斜する上周縁52を含んで鰐口状に形成してあると、給水タンク13が製氷位置に切換えられた状態において、タンク室32内に余分な補充された製氷水を下周縁50からオーバーフローさせて、それ以上製氷水が貯留されるのを防止できる。このように、下周縁50はタンク室32内の製氷水の貯留限界を規定する堰として機能しており、余分な製氷水がタンク室32内に貯留されるのを防止できる。また、給水タンク13が離氷位置に切換えられた状態において、タンク室32内の製氷水を支障なく樋体部41へ流動させるために、排出口40の上周縁52を上り傾斜させている。従って、タンク室32内の製氷水の一部を樋体部41へ排出する際の製氷水の流動を短時間で円滑に行える。さらに、給水タンク13が離氷位置から製氷位置に切換わる状態では、樋体部41に貯留された廃棄水と、タンク室32から排水ガイド39へ流入する一部の製氷水を排水堰47から流下排出できるので、廃棄水と新たに補充される製氷水をさらに確実に入れ換えることができる。   If the discharge port 40 is formed in the shape of a throat including a horizontal lower peripheral edge 50 and an upwardly inclined upper peripheral edge 52, an extra replenishment is made in the tank chamber 32 when the water supply tank 13 is switched to the ice making position. It is possible to prevent the ice making water from being stored any more by overflowing the ice making water from the lower peripheral edge 50. As described above, the lower peripheral edge 50 functions as a weir that defines the storage limit of the ice making water in the tank chamber 32, and can prevent excess ice making water from being stored in the tank chamber 32. Further, in the state where the water supply tank 13 is switched to the deicing position, the upper peripheral edge 52 of the discharge port 40 is inclined upward so that the ice making water in the tank chamber 32 flows to the housing part 41 without any trouble. Therefore, the flow of the ice making water when discharging a part of the ice making water in the tank chamber 32 to the housing part 41 can be smoothly performed in a short time. Furthermore, in the state where the water supply tank 13 is switched from the ice release position to the ice making position, the waste water stored in the housing part 41 and a part of the ice making water flowing from the tank chamber 32 to the drain guide 39 are discharged from the drainage weir 47. Since it can be discharged down, waste water and newly replenished ice-making water can be more reliably replaced.

排出口40の上周縁52が、排水堰47で規定される廃棄水の水位より僅かに上側に位置していると、給水タンク13が離氷位置に切換えられた状態において、製氷水が排出口40の上周縁52で堰き止められて流動しにくくなるのをさらに確実に防止できる。従って、タンク室32内の製氷水の一部を樋体部41へ排出する際の製氷水の流動をさらに円滑に行える。   If the upper peripheral edge 52 of the discharge port 40 is located slightly above the level of waste water defined by the drainage weir 47, the ice-making water is discharged into the discharge port in a state where the water supply tank 13 is switched to the deicing position. It is possible to more reliably prevent the fluid from being blocked by the upper peripheral edge 52 of the 40 and becoming difficult to flow. Therefore, the flow of the ice making water when discharging a part of the ice making water in the tank chamber 32 to the housing part 41 can be performed more smoothly.

排水ガイド39を周壁29に沿って、右周壁31側の端部から左周壁30側の端部にわたって左右横長に形成するようにした。また、左周壁30の近傍の底壁42に排水堰47と流下口46を形成し、樋体部41の左周壁30側の端部に水受壁44を形成するようにした。こうした排水ガイド39によれば、排水堰47と樋端壁43の間の逆台形状の樋内空間により大量の廃棄水を貯留できるので、廃棄水と新たに補充される製氷水の入れ換え量を大きくして、不純物が蓄積するのをさらに効果的に抑止できる。また、給水タンク13が製氷位置に切換えられて、樋体部41に貯留された廃棄水が排水堰47を乗越えて勢いよく流動するとき、流動する廃棄水を水受壁44で受止めて流下口46から整然と排出でき、廃棄水が排水ガイド39の外へ飛散するのを防止できる。   The drainage guide 39 is formed to be horizontally long along the peripheral wall 29 from the end on the right peripheral wall 31 side to the end on the left peripheral wall 30 side. Further, the drainage weir 47 and the flow-down port 46 are formed in the bottom wall 42 in the vicinity of the left peripheral wall 30, and the water receiving wall 44 is formed at the end of the housing part 41 on the left peripheral wall 30 side. According to such a drainage guide 39, a large amount of waste water can be stored in the inverted trapezoidal space between the drainage weir 47 and the saddle end wall 43, so that the amount of replacement of the waste water and newly replenished ice-making water can be increased. Thus, the accumulation of impurities can be more effectively suppressed. Further, when the water supply tank 13 is switched to the ice making position and the waste water stored in the housing part 41 moves over the drainage weir 47 and flows vigorously, the flowing waste water is received by the water receiving wall 44 and flows down. The water can be discharged in an orderly manner from the opening 46, and the waste water can be prevented from scattering out of the drain guide 39.

樋体部41の底壁42を、排水堰47の側へ向かって下り傾斜する第1樋壁42aと、第1樋壁42aの傾斜下端から排水堰47に向かって屈曲する第2樋壁42bで形成した。そのうえで、タンク室32の第1底壁27aと樋体部41の第1樋壁42aが、後周壁29を間にして面一に形成するようにした。こうした排水構造によれば、給水タンク13が下降限界位置まで揺動した状態において、第1底壁27aと第1樋壁42aが、後周壁29を間にして面一になっているので、第1樋壁42aが第1底壁27aよりも下方へ突出することがない。従って、給水タンク13と排水パン14の対向間隔を可能な限り小さくして、製氷室1内において製氷ユニット3が占める空間量を小さくできる。   A first wall 42a that inclines downward toward the drainage weir 47 side and a second wall 42b that bends toward the drainage weir 47 from the inclined lower end of the first wall 42a. Formed with. In addition, the first bottom wall 27a of the tank chamber 32 and the first wall 42a of the housing part 41 are formed flush with the rear peripheral wall 29 therebetween. According to such a drainage structure, the first bottom wall 27a and the first wall 42a are flush with the rear peripheral wall 29 in the state where the water supply tank 13 is swung to the lower limit position. The first rib wall 42a does not protrude below the first bottom wall 27a. Therefore, the space between the ice tank 3 and the drain pan 14 can be made as small as possible to reduce the amount of space occupied by the ice making unit 3 in the ice making chamber 1.

排水ガイド39が、周壁29に沿って右周壁31側の端部から左右中途部にわたって形成してある給水タンク13によれば、給水タンク13が離氷位置に切換えられた状態において、排水堰47と樋端壁43の間の三角形状の樋内空間に廃棄水を貯留できる。この場合の廃棄水の貯留水量は、逆台形状の樋内空間に廃棄水を貯留する場合に比べて少ない。しかし、逆台形状の樋内空間に廃棄水を貯留する給水タンク13と同様に、樋体部41に貯留された廃棄水の全てを流下でき、廃棄水がタンク室32側へ逆流するのを防止できる。また、製氷開始前に満水水位になるまで新たな製氷水を補充することにより、廃棄水と新たに補充される製氷水を確実に入れ換えて、不純物が蓄積するのを抑止できる。さらに、製氷停止状態において、給水タンク13を連続して離氷位置と製氷位置に切換えることにより、タンク室32内の製氷水の水位を徐々に小さくしながら、給水タンク13内の製氷水の全てを排水ガイド39から排出して不純物の蓄積を解消できる。   According to the water supply tank 13 in which the drainage guide 39 is formed along the peripheral wall 29 from the end on the right peripheral wall 31 side to the left and right midway part, the drainage weir 47 is in a state where the water supply tank 13 is switched to the deicing position. The waste water can be stored in a triangular inner space between the end wall 43 and the end wall 43. The amount of stored wastewater in this case is small compared to the case where wastewater is stored in the inverted trapezoidal inner space. However, similar to the water supply tank 13 that stores waste water in the inverted trapezoidal interior space, all of the waste water stored in the housing part 41 can flow down, and the waste water flows back to the tank chamber 32 side. Can be prevented. In addition, by replenishing new ice-making water until the full water level is reached before the start of ice making, it is possible to reliably replace the waste water and the newly replenished ice-making water, thereby preventing impurities from accumulating. Further, in the ice making stop state, by continuously switching the water supply tank 13 between the ice removing position and the ice making position, all the ice making water in the water supply tank 13 is gradually reduced while gradually reducing the water level of the ice making water in the tank chamber 32. Can be discharged from the drain guide 39 to eliminate the accumulation of impurities.

本発明の実施例1に係るセル型製氷機を構成する給水タンクの斜視図である。It is a perspective view of the water supply tank which comprises the cell type ice making machine which concerns on Example 1 of this invention. 実施例1に係るセル型製氷機の概略構造を示す縦断正面図である。1 is a longitudinal sectional front view showing a schematic structure of a cell type ice making machine according to Embodiment 1. FIG. 製氷ユニットの縦断正面図である。It is a vertical front view of an ice making unit. 離氷位置における給水タンクおよび排水ガイドの縦断面図である。It is a longitudinal cross-sectional view of the water supply tank and drainage guide in an ice removal position. 製氷位置における給水タンクおよび排水ガイドの縦断面図である。It is a longitudinal cross-sectional view of the water supply tank and drainage guide in an ice making position. 給水タンクの平面図、および端面図である。It is the top view and end view of a water supply tank. 本発明の実施例2に係るセル型製氷機を構成する給水タンクの縦断面図である。It is a longitudinal cross-sectional view of the water supply tank which comprises the cell type ice making machine which concerns on Example 2 of this invention.

(実施例1) 図1ないし図6に、本発明に係るセル型製氷機の実施例1を示す。本実施例における前後、左右、上下とは、図1、図2、および図6に示す交差矢印と、各矢印の近傍に表記した前後、左右、上下の表示に従う。図2に示すようにセル型製氷機は、断熱箱として構成される上側の製氷室1と、製氷室1の下側に区画される機械室2を備えており、製氷室1内の上部に製氷ユニット3が配置されている。機械室2の内部には、圧縮機4、凝縮器5、および送風ファン6などの冷却ユニットが配置されており、凝縮器5で冷却された冷媒液を製氷ユニット3に送給して製氷を行う。図示していないが、製氷室1の前面には生成された氷を取出すための取出口が開口されており、この取出口は前後に揺動開閉するドアで開閉できる。 Example 1 FIGS. 1 to 6 show Example 1 of a cell type ice making machine according to the present invention. In the present embodiment, front and rear, left and right, and up and down follow the cross arrows shown in FIGS. 1, 2, and 6, and the front, back, left, right, and top displays shown near each arrow. As shown in FIG. 2, the cell-type ice making machine includes an upper ice making chamber 1 configured as a heat insulating box and a machine room 2 defined on the lower side of the ice making chamber 1. An ice making unit 3 is arranged. Inside the machine room 2, cooling units such as a compressor 4, a condenser 5, and a blower fan 6 are arranged. The refrigerant liquid cooled by the condenser 5 is supplied to the ice making unit 3 to produce ice. Do. Although not shown, an outlet for taking out the generated ice is opened in front of the ice making chamber 1, and this outlet can be opened and closed by a door that swings back and forth.

(製氷ユニット)
図3において製氷ユニット3は、製氷室1の天井に固定したユニットベース9と、同ベース9の下面に固定した製氷ケース10と、製氷ケース10に設けた一群のセル11に製氷水を噴出供給する給水トレー12と、給水トレー12の下面に設けた給水タンク13などで構成されている。給水タンク13の下方には、後述する廃棄水や洗浄水を製氷室1の外へ排水する排水パン14が配置されている。給水タンク13は給水トレー12の下面に固定されており、これら両者の左側面に固定したトレーブラケット15をユニットベース9に設けた支軸16で支持することにより、給水トレー12および給水タンク13が支軸16を中心にして上下揺動可能に支持されている。給水トレー12の揺動基端寄りの上方には、バルブ(電磁弁)17で開閉されて、常温の水を給水タンク13に補充する給水管18が配置されている。符号19は製氷ケース10の上面に設けた冷媒通路である。給水トレー12と給水タンク13を製氷位置と離氷位置の間で切換え操作するために、ユニットベース9の側端寄りにトレー操作機構が設けられている。
(Ice making unit)
In FIG. 3, the ice making unit 3 jets ice making water to a unit base 9 fixed to the ceiling of the ice making chamber 1, an ice making case 10 fixed to the lower surface of the base 9, and a group of cells 11 provided in the ice making case 10. The water supply tray 12 is configured to include a water supply tank 13 provided on the lower surface of the water supply tray 12. Below the water supply tank 13, a drain pan 14 for draining waste water and washing water, which will be described later, out of the ice making chamber 1 is disposed. The water supply tank 13 is fixed to the lower surface of the water supply tray 12, and the water supply tray 12 and the water supply tank 13 are supported by supporting the tray bracket 15 fixed to the left side of both of them with a support shaft 16 provided on the unit base 9. The support shaft 16 is supported so as to be swingable up and down. A water supply pipe 18 that is opened and closed by a valve (solenoid valve) 17 to replenish normal temperature water to the water supply tank 13 is disposed above the swing base end of the water supply tray 12. Reference numeral 19 denotes a refrigerant passage provided on the upper surface of the ice making case 10. A tray operating mechanism is provided near the side end of the unit base 9 in order to switch the water supply tray 12 and the water supply tank 13 between the ice making position and the ice removing position.

図2に示すようにトレー操作機構は、正逆転可能なモーター20と、モーター20で往復傾動操作される前後一対の駆動アーム21と、駆動アーム21と給水トレー12の間に掛止される引張りコイルばね22などで構成される。製氷工程においては、トレー12および給水タンク13が、離氷位置(図4の状態)から製氷位置(図5の状態)に揺動操作されて、給水トレー12が製氷ケース10と小さな隙間を介して正対している。また、給水トレー12および給水タンク13が製氷位置から離氷位置へ揺動操作された状態では、給水トレー12が下り傾斜して、給水タンク13内の製氷水の一部を排水する。   As shown in FIG. 2, the tray operation mechanism includes a motor 20 that can be rotated forward and backward, a pair of front and rear drive arms 21 that are reciprocally tilted by the motor 20, and a tension that is hooked between the drive arm 21 and the water supply tray 12. The coil spring 22 is used. In the ice making process, the tray 12 and the water supply tank 13 are swung from the deicing position (state shown in FIG. 4) to the ice making position (state shown in FIG. 5), so that the water supply tray 12 and the ice making case 10 pass through a small gap. Are facing each other. Further, in a state where the water supply tray 12 and the water supply tank 13 are swung from the ice making position to the ice removing position, the water supply tray 12 is inclined downward to drain part of the ice making water in the water supply tank 13.

図2において、符号23は給水タンク13に設けたポンプユニットである。図3に示すように、給水トレー12には、ポンプユニット23で加圧送給された製氷水を各セル11に向かって上向きに噴出するノズル24が設けられている。以上のような製氷ユニット3は、製氷工程と離氷工程を交互に行って直方体状の氷を生成でき、生成された氷は製氷室1に貯留される。   In FIG. 2, reference numeral 23 denotes a pump unit provided in the water supply tank 13. As shown in FIG. 3, the water supply tray 12 is provided with a nozzle 24 that ejects the ice making water pressurized and fed by the pump unit 23 upward toward each cell 11. The ice making unit 3 as described above can generate cuboid ice by alternately performing the ice making process and the ice removing process, and the generated ice is stored in the ice making chamber 1.

(給水タンクの構造)
図1および図6において、給水タンク13は、平面視において前後に長い長方形状の底壁27と、底壁27の周縁に立設される前後周壁(周壁)28・29および左右周壁(周壁)30・31で、上向きに開口するタンク室32を形成している。給水タンク13が離氷位置へ下降揺動された状態において、各周壁28〜31のうちの右周壁31が給水タンク13の傾斜下端に配置されて、製氷水や洗浄水を受止める。底壁27の右周壁31側の端部には、三角形状の導水壁33が形成されており、左周壁30の内面側にはポンプユニット23用の収容凹部34が形成されている。また、前周壁28の外面にはフロートスイッチ35用のフロート室36が形成されている。図4および図5に示すように、タンク室32の底壁27は、タンク室32の最深部へ向かって互いに逆向きに傾斜する第1底壁27aと第2底壁27bで谷状に形成されており、最深部に臨んでポンプユニット23の吸込み口が設けられている。
(Water tank structure)
1 and 6, the water supply tank 13 includes a rectangular bottom wall 27 that is long in the front-rear direction, front and rear peripheral walls (peripheral walls) 28 and 29 erected on the periphery of the bottom wall 27, and left and right peripheral walls (peripheral walls). 30 and 31 form a tank chamber 32 that opens upward. In a state where the water supply tank 13 is swung down to the deicing position, the right peripheral wall 31 of the peripheral walls 28 to 31 is disposed at the inclined lower end of the water supply tank 13 to receive ice making water and washing water. A triangular water guide wall 33 is formed at the end of the bottom wall 27 on the right peripheral wall 31 side, and an accommodation recess 34 for the pump unit 23 is formed on the inner surface side of the left peripheral wall 30. A float chamber 36 for the float switch 35 is formed on the outer surface of the front peripheral wall 28. As shown in FIGS. 4 and 5, the bottom wall 27 of the tank chamber 32 is formed in a valley shape by the first bottom wall 27 a and the second bottom wall 27 b that are inclined in opposite directions toward the deepest part of the tank chamber 32. The suction port of the pump unit 23 is provided facing the deepest part.

(排水構造)
給水タンク13内に貯留された製氷水の一部を、離氷工程ごとに排出するために、後周壁29の外面に廃棄水を貯留する排水ガイド39が設けられ、排水ガイド39とタンク室32とが、後周壁29に形成した排出口40を介して連通されている。排水ガイド39は、後周壁29の外面に沿う状態で、右周壁31側の端部から左周壁30側の端部にわたって左右横長に形成される樋体部41を備えている。樋体部41は、後周壁29から後向きに張り出される底壁42、底壁42の右周壁31側の樋端部を塞ぐ樋端壁43、左周壁30側の樋端部を塞ぐ水受壁44、底壁42、樋端壁43、水受壁44の後縁を塞ぐ後樋壁45、及び後周壁29を備え、上向きに開口する樋状に形成されている。
(Drainage structure)
In order to discharge a part of the ice making water stored in the water supply tank 13 for each ice removing process, a drainage guide 39 for storing wastewater is provided on the outer surface of the rear peripheral wall 29, and the drainage guide 39 and the tank chamber 32 are provided. Are communicated through a discharge port 40 formed in the rear peripheral wall 29. The drainage guide 39 includes a casing portion 41 that is formed in a horizontally long manner from the end on the right peripheral wall 31 side to the end on the left peripheral wall 30 side in a state along the outer surface of the rear peripheral wall 29. The casing 41 includes a bottom wall 42 projecting rearward from the rear peripheral wall 29, a flange end wall 43 that closes the flange end on the right peripheral wall 31 side of the bottom wall 42, a water receiving wall 44 that closes the flange end on the left peripheral wall 30 side, The bottom wall 42, the collar wall 43, the rear collar wall 45 that closes the rear edge of the water receiving wall 44, and the rear peripheral wall 29 are formed in a bowl shape that opens upward.

水受壁44の近傍の樋体部41の底壁には、樋体部41に貯留された廃棄水を排水パン14へ向かって流下案内する流下口46が開口され、流下口46の開口縁と樋体部41の底壁42との境界部分に排水堰47が設けられている。樋体部41とタンク室32は、先に説明した排出口40で常に連通されている。樋体部41の底壁42は、排出口40の側から排水堰47の側へ向かって下り傾斜する第1樋壁42aと、第1樋壁42aの傾斜下端から排水堰47に向かって屈曲する第2樋壁42bで形成されている。給水タンク13が製氷位置に切換えられた状態における樋体部41の底壁42の全体は、樋端壁43の側から排水堰47へ向かって下り傾斜されている。   On the bottom wall of the housing part 41 in the vicinity of the water receiving wall 44, a flow down port 46 is provided for guiding the waste water stored in the housing part 41 to flow down toward the drain pan 14. A drainage weir 47 is provided at a boundary portion between the housing portion 41 and the bottom wall 42 of the housing portion 41. The housing part 41 and the tank chamber 32 are always in communication with the discharge port 40 described above. The bottom wall 42 of the housing part 41 is bent toward the drainage weir 47 from the inclined bottom end of the first saddle wall 42a and the first saddle wall 42a inclined downward from the discharge port 40 side toward the drainage weir 47 side. The second wall 42b is formed. The entire bottom wall 42 of the housing part 41 in a state where the water supply tank 13 is switched to the ice making position is inclined downward from the side of the dredging end wall 43 toward the drainage weir 47.

図5において排出口40は、第1底壁27aの傾斜上端に連続する下周縁50と、下周縁50の左側端に連続する縦周縁51と、縦周縁51に連続して下周縁50から離れる向きに上り傾斜する上周縁52で鰐口状に形成されている。タンク室32に貯留される製氷水の満水水位は、フロートスイッチ35によって規定されるが、同スイッチ35がオン状態になってバルブ17が閉止されたのちも余分な製氷水が補充された場合には、下周縁50からオーバーフローさせて、それ以上製氷水が貯留されるのを防止している。つまり、下周縁50はタンク室32内の製氷水の貯留限界を規定するために、先に説明した製氷水の満水水位より僅かに上側に位置されている。また、排出口40の上周縁52を、排水堰47で規定される廃棄水の水位より僅かに上側に位置させて、給水タンク13が離氷位置に切換えられた状態において、製氷水が排出口40の上周縁52で堰き止められて流動しにくくなるのを確実に防止できるようにしている。これに伴い、タンク室32内の製氷水の一部を樋体部41へ排出する際の製氷水の流動をさらに円滑に行える。後述する全排水工程において、タンク室32内の製氷水を全て排水するために、給水タンク13が離氷位置に切換えられた状態における排出口40の下周縁50の傾斜下端は、給水タンク13の底壁27の傾斜下端に位置している。   In FIG. 5, the discharge port 40 is separated from the lower peripheral edge 50 continuously with the lower peripheral edge 50, continuous with the lower peripheral edge 50, continuous with the left edge of the lower peripheral edge 50, and with the vertical peripheral edge 51. It is formed in the shape of a mouth with an upper peripheral edge 52 that is inclined upward. The full water level of the ice making water stored in the tank chamber 32 is defined by the float switch 35, but when the switch 35 is turned on and the valve 17 is closed, the extra ice making water is replenished. Prevents overflow of the ice making water from overflowing from the lower peripheral edge 50. That is, the lower peripheral edge 50 is positioned slightly above the full water level of the ice making water described above in order to define the storage limit of the ice making water in the tank chamber 32. In addition, in the state where the upper peripheral edge 52 of the discharge port 40 is positioned slightly above the level of waste water defined by the drainage weir 47 and the water supply tank 13 is switched to the deicing position, the ice making water is discharged from the discharge port. Thus, it is possible to reliably prevent the fluid from being blocked by the upper peripheral edge 52 of the 40 and becoming difficult to flow. Accordingly, the flow of the ice making water when discharging a part of the ice making water in the tank chamber 32 to the housing part 41 can be performed more smoothly. In the all drainage process described later, in order to drain all ice-making water in the tank chamber 32, the inclined lower end of the lower peripheral edge 50 of the discharge port 40 in a state where the water supply tank 13 is switched to the deicing position is It is located at the inclined lower end of the bottom wall 27.

(製氷工程と離氷工程)
次に製氷工程と離氷工程について説明する。製氷状態においては、給水トレー12および給水タンク13を製氷位置と離氷位置に交互に切換えて氷を生成しながら、給水タンク13内の製氷水の一部を排水ガイド39から排水し、さらに新規な製氷水を補充して製氷水の一部を入れ換える。
(Ice making process and de-icing process)
Next, the ice making process and the ice removing process will be described. In the ice making state, a part of the ice making water in the water supply tank 13 is drained from the drain guide 39 while the water supply tray 12 and the water supply tank 13 are alternately switched to the ice making position and the ice releasing position to generate ice. Add some ice making water and replace a part of the ice making water.

製氷工程においてトレー12および給水タンク13が、離氷位置から製氷位置に揺動操作された状態では、図3に示すように給水トレー12が製氷ケース10と小さな隙間を介して正対している。このときの給水タンク13内の製氷水の水位は、満水水位より下側にあるため、フロートスイッチ35がオフ状態に切換ってバルブ17が開放状態に切換り、給水管18から新規な製氷水(水道水)を供給する。給水タンク13内の製氷水の水位が満水水位に達したら、フロートスイッチ35がオン状態に切換ってバルブ17を閉止状態に切換える。以後、製氷ケース10の上面に設けられた冷媒通路19に冷媒液を送給して製氷ケース10を氷点以下まで冷却しながら、ポンプユニット23で加圧送給された製氷水を給水トレー12から各セル11に向かって噴出させて、各セル11内に氷を成長させる。   When the tray 12 and the water supply tank 13 are swung from the ice release position to the ice making position in the ice making process, the water supply tray 12 faces the ice making case 10 through a small gap as shown in FIG. Since the ice making water level in the water supply tank 13 at this time is below the full water level, the float switch 35 is switched off and the valve 17 is switched to the open state. Supply (tap water). When the ice making water level in the water supply tank 13 reaches the full water level, the float switch 35 is switched on and the valve 17 is switched to the closed state. Thereafter, the ice making water supplied under pressure by the pump unit 23 is supplied from the water supply tray 12 while supplying the refrigerant liquid to the refrigerant passage 19 provided on the upper surface of the ice making case 10 to cool the ice making case 10 to below the freezing point. Ice is spouted toward the cell 11 to grow ice in each cell 11.

すべてのセル11内に氷が充満して製氷工程が終了したら、冷媒の送給とポンプユニット23による製氷水の送給を停止して離氷工程に移行する。離氷工程では、冷媒通路19にホットガスを送給して製氷ケース10を加熱し、セル11の周壁と氷の界面を融解させて角氷の分離を促進する。ホットガスの送給開始から所定の時間が経過したら、ホットガスの送給を停止し、トレー操作機構のモーター20を起動して、給水トレー12および給水タンク13を製氷位置から離氷位置に揺動操作する。同時にバルブ17を開放状態に切換えて、給水管18から洗浄水を給水トレー12の上面に流し掛ける。この状態で各セル11から分離した角氷は、給水トレー12で受止められたのち、洗浄水とともに給水トレー12に沿って滑り落ちて、その傾斜下端から製氷室1に貯留される。洗浄水は、給水トレー12の傾斜下端と右周壁31の間の隙間から給水タンク13内へ流下する。   When all the cells 11 are filled with ice and the ice making process is completed, the supply of refrigerant and the supply of ice making water by the pump unit 23 are stopped, and the process proceeds to the ice removing process. In the deicing process, hot gas is supplied to the refrigerant passage 19 to heat the ice making case 10, and the interface between the peripheral wall of the cell 11 and ice is melted to promote the separation of ice cubes. When a predetermined time has elapsed from the start of the hot gas supply, the hot gas supply is stopped, the motor 20 of the tray operation mechanism is started, and the water supply tray 12 and the water supply tank 13 are shaken from the ice making position to the ice removing position. Operation. At the same time, the valve 17 is switched to the open state, and washing water is poured from the water supply pipe 18 onto the upper surface of the water supply tray 12. The ice cubes separated from each cell 11 in this state are received by the water supply tray 12 and then slide down along the water supply tray 12 together with the cleaning water, and are stored in the ice making chamber 1 from the lower end of the slope. The washing water flows down into the water supply tank 13 through the gap between the inclined lower end of the water supply tray 12 and the right peripheral wall 31.

製氷工程が終了した状態における給水タンク13内の製氷水の水位は、製氷ケース10において氷結した氷の分だけ、満水水位より低い位置にある。しかし、上記のように相当な量の洗浄水が給水タンク13内に流れ込むので、タンク内水位は徐々に上昇する。この状態で給水トレー12および給水タンク13が下降揺動して、製氷位置から離氷位置に揺動する間に、給水タンク13内の製氷水は排出口40から樋体部41へと流入して排出され、下降限界位置においては、排水堰47と樋端壁43の間の逆台形状の樋内空間に廃棄水が貯留される。このとき、タンク室32内の製氷水を短時間で円滑に樋体部41へ流動させるために、排水堰47で規定される廃棄水の水位を基準にして、排出口40の上周縁52を先の廃棄水の水位より僅かに上側に位置させて、製氷水が排出口40の上周縁52で堰き止められて流動しにくくなるのを防止している。因みに、逆台形状の樋内空間の容積を越える製氷水が樋体部41へ流入した場合には、製氷水は排水堰47を乗越えて流下口46から排水パン14へ排出される。   The level of the ice making water in the water supply tank 13 in the state where the ice making process is completed is lower than the full water level by the amount of ice frozen in the ice making case 10. However, since a considerable amount of washing water flows into the water supply tank 13 as described above, the water level in the tank gradually increases. In this state, while the water supply tray 12 and the water supply tank 13 swing downward and swing from the ice making position to the deicing position, the ice making water in the water supply tank 13 flows from the discharge port 40 into the housing part 41. At the descending limit position, the waste water is stored in the inverted trapezoidal inner space between the drainage weir 47 and the end wall 43. At this time, in order to smoothly flow the ice making water in the tank chamber 32 to the housing part 41 in a short time, the upper peripheral edge 52 of the discharge port 40 is defined based on the level of the waste water defined by the drainage weir 47. The ice making water is prevented from being blocked by the upper peripheral edge 52 of the discharge port 40 and becoming difficult to flow by being positioned slightly above the water level of the previous waste water. Incidentally, when ice making water exceeding the volume of the inverted trapezoidal inner space flows into the housing part 41, the ice making water gets over the drainage weir 47 and is discharged from the flow outlet 46 to the drain pan 14.

給水タンク13が離氷位置にあるとき、タンク室32の第1底壁27aと樋体部41の第1樋壁42aは、後周壁29を間にして面一になっており、タンク室32と樋体部41は常に排出口40を介して連通している。そのため、給水タンク13が下降限界位置まで揺動した状態では、タンク室32の内部には樋体部41に貯留された廃棄水と同じ水位の製氷水が貯留されており、次回の製氷過程で製氷水として再利用される。給水タンク13が下降限界位置まで揺動した状態において、第1底壁27aと第1樋壁42aが、後周壁29を間にして面一になっているので、第1樋壁42aが第1底壁27aよりも下方へ突出することがない。従って、給水タンク13と排水パン14の対向間隔を可能な限り小さくして、製氷室1内において製氷ユニット3が占める空間量を小さくできる。   When the water supply tank 13 is in the deicing position, the first bottom wall 27a of the tank chamber 32 and the first wall 42a of the housing portion 41 are flush with the rear peripheral wall 29 therebetween, and the tank chamber 32 And the housing part 41 are always in communication with each other through the discharge port 40. Therefore, in a state where the water supply tank 13 is swung to the lower limit position, ice making water having the same water level as the waste water stored in the housing part 41 is stored in the tank chamber 32, and in the next ice making process. Reused as ice making water. In the state where the water supply tank 13 is swung to the lower limit position, the first bottom wall 27a and the first wall 42a are flush with the rear peripheral wall 29, so the first wall 42a is the first wall. It does not protrude downward from the bottom wall 27a. Therefore, the space between the ice tank 3 and the drain pan 14 can be made as small as possible to reduce the amount of space occupied by the ice making unit 3 in the ice making chamber 1.

樋体部41に貯留された廃棄水が排出されたのちは、再び冷媒通路19に冷媒液を送給して製氷ケース10を冷却する。同時にバルブ17を閉止状態に切換えて、洗浄水の供給を停止し、給水トレー12および給水タンク13を再び上昇揺動させて、離氷位置から製氷位置に切換える。給水タンク13が製氷位置に切換えられた状態における樋体部41の底壁42は、全体として樋端壁43から排水堰47へ向かって下り傾斜させているため、樋体部41に貯留された廃棄水の全てを流下口46から排水パン14へ速やかに排出できる。従って、製氷時のサイクルタイムを短縮できるのはもちろん、後述する全排水工程において、タンク室32内の製氷水の全てを排出するのに要する時間を短縮して、1日当たりの製氷能力を向上できる。また、給水タンク13が離氷位置から製氷位置に切換わる状態では、樋体部41に貯留された廃棄水と、タンク室32から排水ガイド39へ流入する一部の製氷水を排水堰47から流下排出できるので、廃棄水と新たに補充される製氷水をさらに確実に入れ換えることができる。以後は、製氷工程と離氷工程を繰り返し行うことにより、角氷を連続して生成できる。以上のように、製氷水の一部を排水しながら製氷を行うと、タンク室32の内部に残った製氷水を、次回の製氷過程で製氷水として再利用できるので、水の消費量および電力消費量を抑止しながら氷を生成できる。   After the waste water stored in the housing portion 41 is discharged, the refrigerant liquid is supplied to the refrigerant passage 19 again to cool the ice making case 10. At the same time, the valve 17 is switched to the closed state, the supply of cleaning water is stopped, the water supply tray 12 and the water supply tank 13 are raised and rocked again to switch from the ice release position to the ice making position. Since the bottom wall 42 of the housing part 41 in the state where the water supply tank 13 is switched to the ice making position is inclined downward from the housing end wall 43 toward the drainage weir 47 as a whole, the waste stored in the housing part 41 is discarded. All of the water can be quickly discharged from the outlet 46 to the drain pan 14. Accordingly, not only can the cycle time during ice making be shortened, but also the time required to discharge all the ice making water in the tank chamber 32 in the all drainage process described later can be shortened and the ice making capacity per day can be improved. . Further, when the water supply tank 13 is switched from the deicing position to the ice making position, the waste water stored in the housing part 41 and a part of the ice making water flowing from the tank chamber 32 to the drain guide 39 are discharged from the drainage weir 47. Since it can be discharged down, waste water and newly replenished ice-making water can be more reliably replaced. Thereafter, ice cubes can be continuously generated by repeating the ice making process and the ice removing process. As described above, if ice making is performed while draining a part of the ice making water, the ice making water remaining in the tank chamber 32 can be reused as ice making water in the next ice making process. Ice can be produced while reducing consumption.

上記の製氷機によれば、離氷時に製氷水の一部を廃棄水として排水ガイド39に貯留して、給水トレー12および給水タンク13が製氷位置へ切換る際に、樋体部41に貯留された廃棄水の全てを排水パン14へ排出できる。このとき、樋体部41に貯留された廃棄水が、タンク室32側へ逆流するのを防止できる。また、製氷開始前に満水水位になるまで新たな製氷水を補充することにより、廃棄水と新たに補充される製氷水を確実に入れ換えることができ、従って不純物が蓄積するのを効果的に抑止できる。しかし、廃棄水と新たに補充される製氷水を入れ換えたとしても、僅かずつではあっても製氷水に不純物が蓄積されてしまうおそれがある。こうした不純物の蓄積を解消するために、全排水工程において給水タンク13内の製氷水の全てを自動的に排水できるようにしている。   According to the above ice making machine, a part of the ice making water is stored as waste water in the drainage guide 39 at the time of deicing, and is stored in the housing part 41 when the water supply tray 12 and the water supply tank 13 are switched to the ice making position. All of the discarded waste water can be discharged to the drain pan 14. At this time, it is possible to prevent the waste water stored in the housing part 41 from flowing back to the tank chamber 32 side. In addition, by replenishing new ice-making water until the water level is full before the start of ice-making, waste water and newly-added ice-making water can be reliably replaced, thus effectively preventing the accumulation of impurities. it can. However, even if the waste water and the newly replenished ice-making water are replaced, impurities may accumulate in the ice-making water, even if only a little. In order to eliminate such accumulation of impurities, all ice-making water in the water supply tank 13 can be automatically drained in the entire drainage process.

(全排水工程)
全排水工程においては、給水トレー12および給水タンク13を製氷位置から離氷位置に切換えて、タンク室32内に残っている製氷水を、離氷時と同様にして排出口40から樋体部41へ流動させる。この後、給水トレー12および給水タンク13を離氷位置から製氷位置に切換えることにより、樋体部41に貯留された廃棄水を排水パン14へ排出できる。再び給水トレー12および給水タンク13を製氷位置から離氷位置に切換えることにより、タンク室32内に残っている製氷水を、離氷時と同様にして排出口40から樋体部41へ流動できる。この状態で樋体部41に貯留される廃棄水の水量は前回の廃棄水の水量より少なく、廃棄水の水位は排水堰47に達することはない。再び給水トレー12および給水タンク13を離氷位置から製氷位置に切換えることにより、樋体部41に貯留された廃棄水を排水パン14へ排出できる。
(All drainage process)
In the whole drainage process, the water supply tray 12 and the water supply tank 13 are switched from the ice making position to the ice removing position, and the ice making water remaining in the tank chamber 32 is discharged from the discharge port 40 in the same manner as at the time of ice removal. Flow to 41. Thereafter, by switching the water supply tray 12 and the water supply tank 13 from the deicing position to the ice making position, the waste water stored in the housing part 41 can be discharged to the drain pan 14. By switching the water supply tray 12 and the water supply tank 13 from the ice making position to the ice removing position again, the ice making water remaining in the tank chamber 32 can flow from the discharge port 40 to the housing part 41 in the same manner as during ice removal. . In this state, the amount of waste water stored in the housing part 41 is less than the previous amount of waste water, and the level of waste water does not reach the drainage weir 47. By switching the water supply tray 12 and the water supply tank 13 from the deicing position to the ice making position again, the waste water stored in the housing part 41 can be discharged to the drain pan 14.

上記のように、給水トレー12および給水タンク13を4〜5回程度、繰り返し上下揺動させることにより、タンク室32内に残っている製氷水の水位を徐々に下げながら、排水ガイド38から排出でき、最終的にはタンク室32内に残っていた製氷水の全てを排出して、不純物の蓄積を解消できる。これは、排出口40の下周縁50の傾斜下端が、給水タンク13の底壁27の傾斜下端に位置させてあり、さらに、第1底壁27aと第1樋壁42aが、後周壁29を間にして面一になっているからである。また、給水トレー12および給水タンク13が下降揺動するときの運動慣性力で、タンク室32内に残った製氷水を排出口40へ向かって流動させ、第1底壁27aの上端に連続している下周縁50から樋体部41へと流動させることができるからである。   As described above, the water supply tray 12 and the water supply tank 13 are repeatedly swung up and down about 4 to 5 times, so that the water level of the ice making water remaining in the tank chamber 32 is gradually lowered and discharged from the drain guide 38. Eventually, all the ice-making water remaining in the tank chamber 32 can be discharged to eliminate the accumulation of impurities. This is because the inclined lower end of the lower peripheral edge 50 of the discharge port 40 is positioned at the inclined lower end of the bottom wall 27 of the water supply tank 13, and the first bottom wall 27 a and the first wall 42 a connect the rear peripheral wall 29. This is because they are in the same plane. Further, the ice-making water remaining in the tank chamber 32 flows toward the discharge port 40 by the kinetic inertia force when the water supply tray 12 and the water supply tank 13 swing downward, and continues to the upper end of the first bottom wall 27a. It is because it can be made to flow from the lower peripheral edge 50 which is present to the housing part 41.

製氷水の全てを排出する一連の作業は、例えば、トレー操作機構の作動状態を制御する制御装置に、全排水作業を行うのに必要なプログラムを格納しておくだけで自動的に行えるので、製氷水の全てを排出する作業に要する手間を省いて省力化できる。多くの場合には、製氷室1に充分な量の角氷が蓄積されて、それ以上氷を生成する必要がなくなった状況、例えば深夜の時間帯に全排水工程を行えばよい。このように、製氷停止状態において、給水タンク13を連続して離氷位置と製氷位置に切換えることで、タンク室32内の製氷水の全てを排水ガイド39から排出することができる。また、水道水に含まれる不純物の量が多い場合などには、1日のうち全排水工程を複数回行って、不純物の蓄積を防ぐことができる。また、給水タンク13内の製氷水の全てを排出した後は、再び通常の運転モードに戻すことにより、不純物がほとんど含まれていない製氷水で透明な氷を生成できる。   A series of operations to discharge all ice-making water can be performed automatically, for example, by storing a program necessary for performing all drainage operations in a control device that controls the operating state of the tray operation mechanism. Labor saving can be achieved by eliminating the work required to discharge all the ice making water. In many cases, the entire drainage process may be performed in a situation where a sufficient amount of ice cubes have accumulated in the ice making chamber 1 and it is no longer necessary to generate ice, for example, at midnight. As described above, in the ice making stop state, the water supply tank 13 is continuously switched between the ice removing position and the ice making position, whereby all the ice making water in the tank chamber 32 can be discharged from the drain guide 39. Moreover, when there is much quantity of the impurity contained in tap water, accumulation | storage of an impurity can be prevented by performing all the drainage processes in multiple times in one day. Further, after all the ice making water in the water supply tank 13 has been discharged, the ice can be made transparent with ice making water containing almost no impurities by returning to the normal operation mode again.

(実施例2)図7は、排水構造の一部を変更した実施例2を示す。そこでは排水ガイド39を、タンク室32と樋体部41を区分する後周壁29に沿って、右周壁31側の端部から左右中途部にわたって形成している。樋体部41は、後周壁29から後向きに張り出される底壁42と、底壁42の右周壁31側の樋端部を塞ぐ樋端壁43と、底壁42および樋端壁43の後縁を塞ぐ後樋壁45と、後周壁29で上向きに開口する樋状に形成し、底壁42の左側端を排水堰47とした。つまり、樋端壁43から最も離れた樋体部41の底壁42の端部に排水堰47を形成した。 (Embodiment 2) FIG. 7 shows Embodiment 2 in which a part of the drainage structure is changed. In this case, the drainage guide 39 is formed along the rear peripheral wall 29 that separates the tank chamber 32 and the housing part 41 from the end on the right peripheral wall 31 side to the left and right midway part. The housing portion 41 closes the bottom wall 42 projecting rearward from the rear peripheral wall 29, the heel end wall 43 that closes the heel end portion of the bottom wall 42 on the right peripheral wall 31 side, and the rear edges of the bottom wall 42 and the heel end wall 43. The rear wall 45 and the rear peripheral wall 29 are formed in a bowl shape that opens upward, and the left end of the bottom wall 42 is a drainage weir 47. That is, the drainage weir 47 is formed at the end of the bottom wall 42 of the casing 41 that is farthest from the flange end wall 43.

給水タンク13が離氷位置に切換えられた状態における樋体部41の底壁42は、排水堰47から樋端壁43の下端に向かって下り傾斜されている。そのため、図7(a)(b)に示すように、タンク室32内の製氷水が排出口40から樋体部41へと流動して、排水堰47と樋端壁43の間の三角形状の樋内空間に廃棄水を貯留できる。このとき、タンク室32内の製氷水の水位と、樋体部41に貯留された廃棄水の水位は同じである。給水タンク13を、図7(c)に示すように離氷位置から製氷位置へ切換えた状態においては、底壁42が樋端壁43から排水堰47へ向かって下り傾斜しているため、樋体部41に貯留された廃棄水を排水堰47から流下させて、排水パン14に排出できる。他は実施例1と同じであるので、同じ部材に同じ符号を付してその説明を省略する。   The bottom wall 42 of the housing part 41 in a state where the water supply tank 13 is switched to the deicing position is inclined downward from the drainage weir 47 toward the lower end of the heel end wall 43. Therefore, as shown in FIGS. 7A and 7B, the ice-making water in the tank chamber 32 flows from the discharge port 40 to the housing part 41, and has a triangular shape between the drainage weir 47 and the heel end wall 43. Waste water can be stored in the interior space. At this time, the water level of the ice making water in the tank chamber 32 and the water level of the waste water stored in the housing part 41 are the same. In the state where the water supply tank 13 is switched from the deicing position to the ice making position as shown in FIG. 7 (c), the bottom wall 42 is inclined downward from the dredging end wall 43 toward the drainage weir 47. The waste water stored in the section 41 can flow down from the drainage weir 47 and be discharged to the drainage pan 14. Since others are the same as those of the first embodiment, the same members are denoted by the same reference numerals and the description thereof is omitted.

実施例2で説明した排水構造によれば、給水タンク13が離氷位置に切換えられた状態において、排水堰47と樋端壁43の間の三角形状の樋内空間に廃棄水を貯留できる。この場合の廃棄水の貯留水量は、実施例1で説明した排水構造に比べて少ない。しかし、実施例1で説明した排水構造と同様に、樋体部41に貯留された廃棄水の全てを流下でき、廃棄水がタンク室32側へ逆流するのを防止できる。また、製氷開始前に満水水位になるまで新たな製氷水を補充することにより、廃棄水と新たに補充される製氷水を確実に入れ換えて、不純物が蓄積するのを抑止できる。さらに、製氷停止状態において、給水タンク13を連続して離氷位置と製氷位置に切換えることにより、タンク室32内の製氷水の水位を徐々に小さくしながら、給水タンク13内の製氷水の全てを排水ガイド39から排出して不純物の蓄積を解消できる。   According to the drainage structure described in the second embodiment, the wastewater can be stored in the triangular inner space between the drainage weir 47 and the end wall 43 in a state where the water supply tank 13 is switched to the deicing position. In this case, the amount of stored water is smaller than that of the drainage structure described in the first embodiment. However, similarly to the drainage structure described in the first embodiment, all of the waste water stored in the housing part 41 can flow down, and the waste water can be prevented from flowing back to the tank chamber 32 side. In addition, by replenishing new ice-making water until the full water level is reached before the start of ice making, it is possible to reliably replace the waste water and the newly replenished ice-making water, thereby preventing impurities from accumulating. Further, in the ice making stop state, by continuously switching the water supply tank 13 between the ice removing position and the ice making position, all the ice making water in the water supply tank 13 is gradually reduced while gradually reducing the water level of the ice making water in the tank chamber 32. Can be discharged from the drain guide 39 to eliminate the accumulation of impurities.

上記の実施例以外に、排水ガイド39は、前周壁28の外面に形成してあってもよい。その場合には、ポンプユニット23を後周壁29の側から収容凹部34に組むようにするとよい。実施例1においては、排出口40の開口面積を大きくするために、排出口40を下周縁50と縦周縁51と上周縁52で鰐口状に形成したが、その必要はなく縦周縁51を省略して下周縁50と縦周縁51で鰐口状に形成してもよい。上記の実施例では、給水タンク13の底壁27の右周壁31側の端部に三角形状の導水壁33を設けたが、導水壁33は省略することができる。その場合の底壁27は、右側壁31に連続する第1底壁27aと、第1底壁27aに連続する第2底壁27bで谷状に形成するとよい。   Other than the above embodiment, the drainage guide 39 may be formed on the outer surface of the front peripheral wall 28. In that case, the pump unit 23 may be assembled into the housing recess 34 from the rear peripheral wall 29 side. In the first embodiment, in order to increase the opening area of the discharge port 40, the discharge port 40 is formed in the shape of a hook with a lower peripheral edge 50, a vertical peripheral edge 51, and an upper peripheral edge 52, but this is not necessary and the vertical peripheral edge 51 is omitted. Then, the lower peripheral edge 50 and the vertical peripheral edge 51 may be formed in the shape of a shed. In the above embodiment, the triangular water guide wall 33 is provided at the end of the bottom wall 27 of the water supply tank 13 on the right peripheral wall 31 side, but the water guide wall 33 can be omitted. In this case, the bottom wall 27 may be formed in a valley shape by a first bottom wall 27a continuous to the right side wall 31 and a second bottom wall 27b continuous to the first bottom wall 27a.

1 製氷室
3 製氷ユニット
10 製氷ケース
12 給水トレー
13 給水タンク
27 給水タンクの底壁
28 前周壁(周壁)
29 後周壁(周壁)
30 左周壁(周壁)
31 右周壁(周壁)
32 タンク室
39 排水ガイド
40 排出口
41 樋体部
42 樋体部の底壁
43 樋端壁
46 流下口
47 排水堰
1 Ice making chamber 3 Ice making unit 10 Ice making case 12 Water supply tray 13 Water supply tank 27 Water supply tank bottom wall 28 Front peripheral wall (peripheral wall)
29 Rear wall (surrounding wall)
30 Left peripheral wall (peripheral wall)
31 Right perimeter wall (perimeter wall)
32 Tank room 39 Drainage guide 40 Drainage port 41 Housing part 42 Bottom wall 43 of housing part End wall 46 Downflow port 47 Drainage weir

Claims (8)

製氷室(1)の内部に製氷ケース(10)と、同ケース(10)のセル(11)に向かって製氷水を噴出供給する給水トレー(12)と、給水トレー(12)とともに上下揺動可能に支持されて、トレー操作機構で製氷位置と離氷位置に切換え操作される給水タンク(13)を備えており、
給水タンク(13)がトレー操作機構で製氷位置から離氷位置に切換え操作されるごとに、タンク室(32)内に収容した製氷水の一部が、給水タンク(13)の外面に設けた樋状の排水ガイド(39)から排出されるセル型製氷機であって、
排水ガイド(39)の樋体部(41)とタンク室(32)とは、両者を区分する給水タンク(13)の周壁(29)に形成した排出口(40)を介して連通されており、
給水タンク(13)が離氷位置に切換えられた状態における排出口(40)の傾斜下端が、給水タンク(13)の底壁(27)の傾斜下端に位置しており、
製氷停止状態において、給水タンク(13)を連続して離氷位置と製氷位置に切換えることにより、タンク室(32)内の製氷水の全てを排水ガイド(39)から排出できることを特徴とするセル型製氷機。
An ice making case (10) inside the ice making chamber (1), a water supply tray (12) for supplying ice making water to the cell (11) of the case (10), and swinging up and down together with the water supply tray (12) A water supply tank (13) supported by the tray and operated to be switched between an ice making position and an ice removing position by a tray operating mechanism;
Each time the water supply tank (13) is switched from the ice making position to the ice removing position by the tray operating mechanism, a part of the ice making water stored in the tank chamber (32) is provided on the outer surface of the water supply tank (13). A cell type ice making machine discharged from a bowl-shaped drainage guide (39),
The housing part (41) of the drainage guide (39) and the tank chamber (32) communicate with each other via a discharge port (40) formed in the peripheral wall (29) of the water supply tank (13) that separates the two. ,
The inclined lower end of the discharge port (40) when the water supply tank (13) is switched to the deicing position is located at the inclined lower end of the bottom wall (27) of the water supply tank (13),
A cell characterized in that all ice-making water in the tank chamber (32) can be discharged from the drainage guide (39) by continuously switching the water supply tank (13) between the ice-off position and the ice-making position in the ice making stop state. Mold ice machine.
排水ガイド(39)は樋体部(41)と、排出口(40)の近傍の一方の樋端部を塞ぐ樋端壁(43)と、排出口(40)から離れた他方の樋端部に設けられる排水堰(47)を備えており、
給水タンク(13)が離氷位置に切換えられた状態において、製氷水の一部がタンク室(32)から排出口(40)を介して樋体部(41)に流入して、排水堰(47)と樋端壁(43)の間の樋体部(41)に貯留されており、
給水タンク(13)が製氷位置に切換えられた状態において、樋端壁(43)と排水堰(47)の間に貯留された廃棄水が排出される請求項1に記載のセル型製氷機。
The drainage guide (39) is provided at the housing part (41), the wall end wall (43) that closes one wall end in the vicinity of the discharge port (40), and the other wall end that is remote from the discharge port (40). It has a drainage weir (47),
In a state where the water supply tank (13) is switched to the deicing position, a part of the ice making water flows from the tank chamber (32) into the housing part (41) through the discharge port (40), and the drainage weir ( 47) and the housing (41) between the collar wall (43),
The cell type ice making machine according to claim 1, wherein waste water stored between the end wall (43) and the drainage weir (47) is discharged in a state where the water supply tank (13) is switched to the ice making position.
給水タンク(13)が製氷位置に切換えられた状態における樋体部(41)の底壁(42)が、樋端壁(43)から排水堰(47)へ向かって下り傾斜されている請求項1、または2に記載のセル型製氷機。   The bottom wall (42) of the housing part (41) in a state in which the water supply tank (13) is switched to the ice making position is inclined downward from the end wall (43) toward the drainage weir (47). Or the cell type ice making machine according to 2; 給水タンク(13)が離氷位置に切換えられた状態において、タンク室(32)内の製氷水を受止める右周壁(31)が給水タンク(13)の傾斜下端に配置されており、
給水タンク(13)が製氷位置に切換えられた状態における排出口(40)が、タンク室(32)内の製氷水の貯留限界を規定する水平の下周縁(50)と、右周壁(31)に向かって上り傾斜する上周縁(52)を含んで鰐口状に形成されており、
給水タンク(13)が離氷位置から製氷位置に切換わる状態では、樋体部(41)に貯留された廃棄水と、タンク室(32)から排出口(40)を経て排水ガイド(39)へ流入する一部の製氷水が、排水堰(47)から流下排出される請求項1から3のいずれかひとつに記載のセル型製氷機。
In the state where the water supply tank (13) is switched to the deicing position, the right peripheral wall (31) for receiving the ice making water in the tank chamber (32) is disposed at the inclined lower end of the water supply tank (13),
The discharge port (40) when the water supply tank (13) is switched to the ice making position has a horizontal lower peripheral edge (50) that defines the storage limit of ice making water in the tank chamber (32), and a right peripheral wall (31). It is formed in the shape of a mouth including the upper periphery (52) that is inclined upward toward
In a state where the water supply tank (13) is switched from the deicing position to the ice making position, the waste water stored in the housing (41) and the drainage guide (39) from the tank chamber (32) through the discharge port (40). The cell type ice making machine according to any one of claims 1 to 3, wherein a part of the ice making water flowing into the water is discharged from the drainage weir (47).
給水タンク(13)が離氷位置に切換えられた状態において、排水堰(47)で規定される廃棄水の水位を基準にして、排出口(40)の上周縁(52)が前記廃棄水の水位より僅かに上側に位置している請求項4に記載のセル型製氷機。   In a state where the water supply tank (13) is switched to the deicing position, the upper peripheral edge (52) of the discharge port (40) has the above-mentioned waste water on the basis of the waste water level defined by the drainage weir (47). The cell type ice making machine according to claim 4, which is located slightly above the water level. 排水ガイド(39)が、タンク室(32)と樋体部(41)を区分する周壁(29)に沿って、右周壁(31)側の端部から左周壁(30)側の端部にわたって左右横長に形成されており、
左周壁(30)の近傍の樋体部(41)の底壁(42)に排水堰(47)が形成され、排水堰(47)に連続して廃棄水を流下案内する流下口(46)が開口され、樋体部(41)の左周壁(30)側の端部に、排水堰(47)へ向かって流動する廃棄水を受止める水受壁(44)が形成されており、
給水タンク(13)が離氷位置に切換えられた状態において、排水堰(47)と樋端壁(43)の間の逆台形状の樋内空間に廃棄水が貯留されている請求項1から5のいずれかひとつに記載のセル型製氷機。
A drainage guide (39) extends from the end on the right peripheral wall (31) side to the end on the left peripheral wall (30) side along the peripheral wall (29) separating the tank chamber (32) and the housing part (41). It is formed horizontally and horizontally
A drainage weir (47) is formed on the bottom wall (42) of the housing part (41) in the vicinity of the left peripheral wall (30), and a drainage port (46) that guides the wastewater downflowing continuously to the drainage weir (47). Is formed, and a water receiving wall (44) for receiving waste water flowing toward the drainage weir (47) is formed at the end of the housing part (41) on the left peripheral wall (30) side,
The waste water is stored in the inverted trapezoidal inner space between the drainage weir (47) and the end wall (43) when the water supply tank (13) is switched to the deicing position. A cell type ice making machine according to any one of the above.
樋体部(41)の底壁(42)が、排出口(40)の下周縁(50)と右周壁(31)の交差部から排水堰(47)の側へ向かって下り傾斜する第1樋壁(42a)と、第1樋壁(42a)の傾斜下端から排水堰(47)に向かって屈曲する第2樋壁(42b)で形成されており、
タンク室(32)の第1底壁(27a)と樋体部(41)の第1樋壁(42a)が後周壁(29)を間にして面一に形成されている請求項3から6のいずれかひとつに記載のセル型製氷機。
A first wall in which the bottom wall (42) of the housing (41) is inclined downward from the intersection of the lower peripheral edge (50) of the discharge port (40) and the right peripheral wall (31) toward the drainage weir (47). It is formed with a dredging wall (42a) and a second dredging wall (42b) that is bent from the inclined lower end of the first dredging wall (42a) toward the drainage weir (47),
The first bottom wall (27a) of the tank chamber (32) and the first wall (42a) of the housing part (41) are formed flush with the rear peripheral wall (29) therebetween. A cell type ice making machine according to any one of the above.
排水ガイド(39)が、タンク室(32)と樋体部(41)を区分する周壁(29)に沿って、右周壁(31)側の端部から左右中途部にわたって形成されており、
排水ガイド(39)は、上向きに開口する樋体部(41)と、排出口(40)の近傍の一方の樋端部を塞ぐ樋端壁(43)と、樋端壁(43)から最も離れた樋体部(41)の底壁に形成される排水堰(47)を備えており、
給水タンク(13)が離氷位置に切換えられた状態における樋体部(41)の底壁(42)は、排水堰(47)から樋端壁(43)の下端に向かって下り傾斜されていて、排水堰(47)と樋端壁(43)の間の三角形状の樋内空間に廃棄水を貯留できる請求項1から5のいずれかひとつに記載のセル型製氷機。
A drainage guide (39) is formed from the end on the right peripheral wall (31) side to the left and right midway along the peripheral wall (29) separating the tank chamber (32) and the housing part (41).
The drainage guide (39) includes a housing portion (41) that opens upward, a heel end wall (43) that closes one heel end near the discharge port (40), and a ridge farthest from the heel end wall (43). A drainage weir (47) formed on the bottom wall of the body (41),
The bottom wall (42) of the housing (41) in a state where the water supply tank (13) is switched to the deicing position is inclined downward from the drainage weir (47) toward the lower end of the dredging wall (43). The cell type ice making machine according to any one of claims 1 to 5, wherein waste water can be stored in a triangular inner space between the drainage weir (47) and the end wall (43).
JP2017051274A 2017-03-16 2017-03-16 Cell type ice machine Active JP6827859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017051274A JP6827859B2 (en) 2017-03-16 2017-03-16 Cell type ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017051274A JP6827859B2 (en) 2017-03-16 2017-03-16 Cell type ice machine

Publications (2)

Publication Number Publication Date
JP2018155434A true JP2018155434A (en) 2018-10-04
JP6827859B2 JP6827859B2 (en) 2021-02-10

Family

ID=63716482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017051274A Active JP6827859B2 (en) 2017-03-16 2017-03-16 Cell type ice machine

Country Status (1)

Country Link
JP (1) JP6827859B2 (en)

Also Published As

Publication number Publication date
JP6827859B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
KR100507929B1 (en) Ice making machine
JP5052277B2 (en) Ice making water tank of automatic ice machine
JP2018155434A (en) Cell type ice-making machine
JP5642642B2 (en) Ice machine storage tank
KR101711133B1 (en) Water purifier having Ice Maker for Preventing Inner Pollution
JP6510352B2 (en) Ice maker
JP2006317039A (en) Ice making machine
JP5138941B2 (en) How to operate a jet ice maker
CN217817595U (en) Ice making machine
KR102680475B1 (en) Ice maker
KR102184875B1 (en) Ice maker
JP4518849B2 (en) Cell type ice machine
JP2008180467A (en) Injection type automatic ice making machine
JP2008138974A (en) Jet type icemaker
JPH0638296Y2 (en) Outflow water guide structure of automatic ice machine
JP2006017401A (en) Cell type ice maker
JP2006038261A (en) Water storage type ice making device
JP4776111B2 (en) Ice machine
KR101381670B1 (en) Ice maker for refrigerator
JP5275920B2 (en) Ice machine
JP4278476B2 (en) Ice machine
JPH11223435A (en) Reverse cell type icemaker
JP2922112B2 (en) Vertical ice machine
JP5469927B2 (en) Ice machine
KR930003100Y1 (en) Water feeding device in refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210120

R150 Certificate of patent or registration of utility model

Ref document number: 6827859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250