JP2018154522A - Method for manufacturing cylindrical oxide sintered body and cradle - Google Patents

Method for manufacturing cylindrical oxide sintered body and cradle Download PDF

Info

Publication number
JP2018154522A
JP2018154522A JP2017052099A JP2017052099A JP2018154522A JP 2018154522 A JP2018154522 A JP 2018154522A JP 2017052099 A JP2017052099 A JP 2017052099A JP 2017052099 A JP2017052099 A JP 2017052099A JP 2018154522 A JP2018154522 A JP 2018154522A
Authority
JP
Japan
Prior art keywords
cylindrical
cylindrical oxide
sintered body
oxide sintered
floor plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017052099A
Other languages
Japanese (ja)
Other versions
JP6875890B2 (en
Inventor
欽哉 大井川
Kinya Oigawa
欽哉 大井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017052099A priority Critical patent/JP6875890B2/en
Publication of JP2018154522A publication Critical patent/JP2018154522A/en
Application granted granted Critical
Publication of JP6875890B2 publication Critical patent/JP6875890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a cylindrical oxide sintered body having high circularity by suppressing deformation of a cylindrical oxide sintered body.SOLUTION: The method for manufacturing a cylindrical oxide sintered body 2 by sintering a cylindrical oxide molded body using a firing furnace comprises a molding step of filling a raw material powder or granulated powder in a cavity of a cylindrical forming die and pressure-molding to obtain a cylindrical oxide molded body 1, an arranging step of arranging the cylindrical oxide molded body 1 in a firing furnace by using a cradle 10, and a firing step of firing the cylindrical oxide molded body 1 disposed by using a cradle 10 in the firing furnace to obtain a cylindrical oxide sintered body 2. The cradle 10 has a pedestal portion 12, and a recessed portion 14 formed in a concave shape so as to have an outer edge on a top surface side of the pedestal portion and an inclination from the outer edge to a center, and in the arranging step, the cylindrical oxide molded body 1 is placed upright in the recessed portion 14 of the cradle 10.SELECTED DRAWING: Figure 3

Description

本発明は、スパッタリングターゲット用の円筒形酸化物焼結体の製造方法、及び当該製造方法で使用される敷板に関する。   The present invention relates to a method for producing a cylindrical oxide sintered body for a sputtering target and a base plate used in the production method.

従来から使用されているスパッタリングターゲットは、使用効率が数10〜30%程度であり、平板形状を呈している。近年では、スパッタリングターゲット使用効率が70〜80%と高効率の円筒形スパッタリングターゲットが注目されている。当該円筒形スパッタリングターゲットは、回転しながらスパッタされるため、高効率冷却による高電力投入が可能であるので、成膜速度が速く生産性に優れる方法として普及しつつある。   Conventionally used sputtering targets have a usage efficiency of about several tens to 30% and have a flat plate shape. In recent years, a cylindrical sputtering target having a high efficiency of 70 to 80% for using the sputtering target has attracted attention. Since the cylindrical sputtering target is sputtered while rotating, it is possible to input high power by high-efficiency cooling. Therefore, the cylindrical sputtering target is spreading as a method having a high film formation speed and excellent productivity.

また、円筒形スパッタリングターゲットは、加工が容易であるため、機械的強度の高い金属材料では、広く使用されている。しかしながら、酸化物材料からなる円筒形スパッタリングターゲットは、一般に硬くて脆いという特性を有するため、未だに十分に普及していない。特に、円筒形酸化物焼結体は、焼結工程の中で10%〜20%の体積収縮があるため、その変形防止対策として、特許文献1では、丸棒や球状のセラミックス材の転がりを利用した摺動層と複数のセラミックス部材からなる焼結治具を用いる等の変形抑制方法が開示されている。   In addition, since the cylindrical sputtering target is easy to process, it is widely used for metal materials having high mechanical strength. However, a cylindrical sputtering target made of an oxide material has a characteristic that it is generally hard and fragile, and has not yet been sufficiently spread. In particular, since the cylindrical oxide sintered body has a volume shrinkage of 10% to 20% during the sintering process, in Patent Document 1, rolling of a round bar or a spherical ceramic material is performed as a countermeasure for deformation. A deformation suppressing method such as using a sintered jig composed of a used sliding layer and a plurality of ceramic members is disclosed.

特開2008−184337号公報JP 2008-184337 A

しかしながら、特許文献1では、円筒形酸化物焼結体の焼結冶具への配置が複雑であり、丸棒や球状のセラミックス材の自由転がりによるため、変形抑制の効果が安定しないことが懸念される。例えば、炉床の僅かな傾斜で焼結中の熱収縮の際に円筒形酸化物成形体が動いて炉壁や隣接する成形体に接触したり、酸化物の焼結密度に影響する酸素等のガス導入口を有する敷板では、ガス流入によるガス圧力で円筒形酸化物成形体の位置が動いたりして、円筒形酸化物焼結体が変形して、その高真円度の確保が困難となる。また、円筒形酸化物焼結体の変形に加えて、スパッタ時におけるガスとの反応が不均一であった場合には、単一の焼結体であっても密度が均一にならない問題がある。   However, in Patent Document 1, since the arrangement of the cylindrical oxide sintered body on the sintering jig is complicated and due to free rolling of a round bar or a spherical ceramic material, there is a concern that the effect of suppressing deformation is not stable. The For example, the cylindrical oxide compact moves during thermal contraction during sintering with a slight inclination of the hearth and comes into contact with the furnace wall and the adjacent compact, or oxygen that affects the oxide sintering density, etc. With a floor plate having a gas inlet, the cylindrical oxide compact is moved by the gas pressure due to gas inflow, and the cylindrical oxide sintered body is deformed, making it difficult to ensure its high roundness. It becomes. In addition to the deformation of the cylindrical oxide sintered body, if the reaction with the gas during sputtering is not uniform, there is a problem that the density is not uniform even with a single sintered body. .

本発明は、上記課題に鑑みてなされたものであり、円筒形酸化物焼結体の変形を抑制して、真円度の高い円筒形酸化物焼結体を確実に製造することの可能な、新規かつ改良された円筒形酸化物焼結体の製造方法、及び当該製造方法で使用する敷板を提供することを目的とする。   The present invention has been made in view of the above problems, and can suppress the deformation of a cylindrical oxide sintered body and reliably manufacture a cylindrical oxide sintered body with high roundness. It is an object of the present invention to provide a novel and improved method for producing a cylindrical oxide sintered body and a floor plate used in the production method.

本発明の一態様は、焼成炉を用いて円筒形酸化物成形体を焼結させて円筒形酸化物焼結体を製造する円筒形酸化物焼結体の製造方法であって、円筒形成形型のキャビティ内に原料粉末又は造粒粉末を充填し、加圧成形して円筒形酸化物成形体を得る成形工程と、前記円筒形酸化物成形体を前記焼成炉内に敷板を介して配置する配置工程と、前記敷板を介して配置した円筒形焼結体成形体を前記焼成炉において焼成して円筒形酸化物焼結体を得る焼成工程と、を有し、前記敷板は、台座部と、外縁が前記台座部の頂面側に設けられ、該外縁から中心にかけて傾斜を有するように凹状に形成される凹部と、を備え、前記配置工程では、前記円筒形酸化物成形体を前記敷板の前記凹部に直立させて配置することを特徴とする。   One aspect of the present invention is a method for producing a cylindrical oxide sintered body in which a cylindrical oxide sintered body is produced by sintering a cylindrical oxide molded body using a firing furnace. A molding step of filling a raw material powder or granulated powder into a mold cavity and press-molding to obtain a cylindrical oxide molded body, and placing the cylindrical oxide molded body in the firing furnace via a floor plate And a firing step of obtaining a cylindrical oxide sintered body by firing the cylindrical sintered body formed body disposed through the floor plate in the firing furnace, wherein the floor plate is a pedestal portion. And an outer edge provided on the top surface side of the pedestal portion, and a concave portion formed in a concave shape so as to have an inclination from the outer edge to the center, and in the arranging step, the cylindrical oxide molded body is It arrange | positions by making it stand upright in the said recessed part of a flooring board, It is characterized by the above-mentioned.

本発明の一態様によれば、円筒形酸化物成形体が焼結時に自重によって敷板の凹部の内側面に沿って中心に向かって均一に収縮するようになるので、歪みや変形の少ない真円度の高い円筒形酸化物焼結体を効率的に製造できる。   According to one aspect of the present invention, the cylindrical oxide compact is uniformly shrunk toward the center along the inner surface of the recess of the floor plate by its own weight during sintering. A high degree of cylindrical oxide sintered body can be produced efficiently.

このとき、本発明の一態様では、前記敷板の前記凹部は、前記外縁から中心にかけて全方位に亘り同じ曲率で縮径するように凹状に形成されることとしてもよい。   At this time, in one aspect of the present invention, the concave portion of the floor plate may be formed in a concave shape so as to reduce the diameter with the same curvature from the outer edge to the center in all directions.

このようにすれば、円筒形酸化物成形体の底面側に形成されるテーパ部が凹部の湾曲した内側面に沿って当接するようになるので、焼結時に円筒形酸化物成形体が自重によって敷板の凹部の中心に向かって均一に収縮することによって、歪みや変形の少ない真円度の高い円筒形酸化物焼結体を効率的に製造できる。   In this way, since the tapered portion formed on the bottom surface side of the cylindrical oxide molded body comes into contact with the curved inner surface of the concave portion, the cylindrical oxide molded body is caused by its own weight during sintering. By shrinking uniformly toward the center of the recess of the floor plate, a cylindrical oxide sintered body having high roundness with less distortion and deformation can be efficiently produced.

また、本発明の一態様では、前記敷板の前記凹部の中心側には、外径が前記円筒形酸化物焼結体の内径より小さい円筒形状のガス導入管が立設され、前記配置工程では、前記ガス導入管を覆うように、該円筒形酸化物成形体を直立させて配置することとしてもよい。   In one aspect of the present invention, a cylindrical gas introduction pipe having an outer diameter smaller than the inner diameter of the cylindrical oxide sintered body is erected on the center side of the concave portion of the floor plate. The cylindrical oxide compact may be placed upright so as to cover the gas introduction pipe.

このようにすれば、円筒形酸化物成形体の内側にも反応ガスが流入するので、外側の焼結速度の差が小さくなり、より均一に円筒形酸化物成形体を焼結できるようになる。   In this way, since the reaction gas also flows inside the cylindrical oxide compact, the difference in the outer sintering rate is reduced, and the cylindrical oxide compact can be sintered more uniformly. .

また、本発明の一態様では、前記ガス導入管の側面には、複数のガス導入口が設けられていることとしてもよい。   In one embodiment of the present invention, a plurality of gas introduction ports may be provided on a side surface of the gas introduction pipe.

このようにすれば、円筒形酸化物成形体の内側と外側の焼結速度の差が小さくなるので、より均一に円筒形酸化物成形体を焼結できるようになる。   In this way, the difference in sintering speed between the inside and outside of the cylindrical oxide compact is reduced, so that the cylindrical oxide compact can be sintered more uniformly.

また、本発明の一態様では、前記敷板は、アルミナ又はジルコニアから形成されることとしてもよい。   In one embodiment of the present invention, the floor plate may be formed of alumina or zirconia.

このようにすれば、高温耐久性を有し、その表面状態が容易に変化せず、かつ、焼結時に円筒形酸化物成形体と反応しない材質で敷板が形成されるので、より安定した状態で円筒形酸化物成形体を焼結できるようになる。   In this way, the floor plate is formed of a material that has high-temperature durability, the surface state does not easily change, and does not react with the cylindrical oxide molded body during sintering, so a more stable state With this, the cylindrical oxide compact can be sintered.

また、本発明の一態様では、前記敷板の表面粗さを算術平均粗さRaで3μm以下とすることとしてもよい。   In one embodiment of the present invention, the surface roughness of the floor plate may be 3 μm or less in terms of arithmetic average roughness Ra.

このようにすれば、円筒形酸化物成形体が自重で凹部の内面に沿って滑りやすくなるので、真円度の高い円筒形酸化物焼結体が効率的に製造できる。   In this way, the cylindrical oxide compact is easily slid along the inner surface of the recess due to its own weight, so that a highly round cylindrical oxide sintered body can be efficiently produced.

また、本発明の一態様では、前記成形工程では、冷間等方圧加圧により加圧成形して前記円筒形酸化物成形体を得ることとしてもよい。   In one embodiment of the present invention, in the molding step, the cylindrical oxide molded body may be obtained by pressure molding by cold isostatic pressing.

このようにすれば、冷間等方圧加圧による加圧成形で底面側にテーパ部が形成され易い円筒形酸化物成形体から歪みや変形の少ない真円度の高い円筒形酸化物焼結体を効率的に製造できるようになる。   In this way, a cylindrical oxide sintered body having high roundness with less distortion and deformation from a cylindrical oxide molded body in which a taper portion is easily formed on the bottom side by pressure forming by cold isostatic pressing. The body can be manufactured efficiently.

また、本発明の他の態様は、円筒形酸化物成形体を焼成炉内に配置する際に介在させる敷板であって、台座部と、外縁が前記台座部の頂面側に設けられ、該外縁から中心にかけて傾斜を有するように凹状に形成される凹部と、を備えることを特徴とする。   Another aspect of the present invention is a floor plate interposed when the cylindrical oxide molded body is disposed in a firing furnace, wherein a pedestal portion and an outer edge are provided on the top surface side of the pedestal portion, And a concave portion formed in a concave shape so as to have an inclination from the outer edge to the center.

本発明の他の態様によれば、円筒形酸化物成形体が焼結時に自重によって敷板の凹部の内面に沿って中心に向かって均一に収縮するようになるので、歪みや変形の少ない真円度の高い円筒形酸化物焼結体を効率的に製造できるようになる。   According to another aspect of the present invention, the cylindrical oxide compact is uniformly shrunk toward the center along the inner surface of the recess of the floor plate by its own weight during sintering. A high-degree cylindrical oxide sintered body can be efficiently produced.

以上説明したように本発明によれば、円筒形酸化物成形体が焼結時に自重によって敷板の凹部の内側面に沿って中心に向かって均一に収縮するようになるので、焼結工程後においても歪みや変形の少ない真円度の高い円筒形酸化物焼結体を効率的に製造できる。   As described above, according to the present invention, the cylindrical oxide compact is uniformly shrunk toward the center along the inner surface of the recess of the floor plate by its own weight during sintering. In addition, it is possible to efficiently produce a cylindrical oxide sintered body having high roundness with less distortion and deformation.

本発明の一実施形態に係る円筒形酸化物焼結体の製造方法の概略を示すフロー図である。It is a flowchart which shows the outline of the manufacturing method of the cylindrical oxide sintered compact concerning one Embodiment of this invention. (A)は、本発明の一実施形態に係る円筒形酸化物焼結体の製造方法で使用される敷板の斜視図であり、(B)は、当該敷板の平面図であり、(C)は、図2(B)のA−A線断面図である。(A) is a perspective view of a base plate used in the method for producing a cylindrical oxide sintered body according to an embodiment of the present invention, (B) is a plan view of the base plate, (C) These are the sectional views on the AA line of Drawing 2 (B). 本発明の一実施形態に係る円筒形酸化物焼結体の製造方法の配置工程における円筒形酸化物成形体の敷板への配置状態を示す斜視図である。It is a perspective view which shows the arrangement | positioning state to the baseplate of the cylindrical oxide molded object in the arrangement | positioning process of the manufacturing method of the cylindrical oxide sintered compact concerning one Embodiment of this invention. 図3のB−B線断面図である。FIG. 4 is a sectional view taken along line BB in FIG. 3. 図4のC部の拡大図である。It is an enlarged view of the C section of FIG.

以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail. The present embodiment described below does not unduly limit the contents of the present invention described in the claims, and all the configurations described in the present embodiment are essential as means for solving the present invention. Not necessarily.

まず、本発明の一実施形態に係る円筒形酸化物焼結体の製造方法の概略について、図面を使用しながら説明する。図1は、本発明の一実施形態に係る円筒形酸化物焼結体の製造方法の概略を示すフロー図である。   First, the outline of the manufacturing method of the cylindrical oxide sintered compact concerning one embodiment of the present invention is explained using a drawing. FIG. 1 is a flowchart showing an outline of a method for producing a cylindrical oxide sintered body according to an embodiment of the present invention.

本発明の一実施形態に係る円筒形酸化物焼結体の製造方法は、マグネトロン型回転カソードスパッタリング装置において、スパッタリングターゲットとして用いられる円筒形酸化物ターゲット材となる円筒形酸化物焼結体を製造する際に適用される。具体的には、焼成炉を用いてスパッタリングターゲット用の円筒形酸化物成形体を焼結させて円筒形酸化物焼結体を製造する際に適用される。   The manufacturing method of the cylindrical oxide sintered compact which concerns on one Embodiment of this invention manufactures the cylindrical oxide sintered compact used as the cylindrical oxide target material used as a sputtering target in a magnetron type | mold rotary cathode sputtering device. It is applied when doing. Specifically, it is applied when a cylindrical oxide sintered body is produced by sintering a cylindrical oxide compact for a sputtering target using a firing furnace.

本実施形態の円筒形酸化物焼結体の製造方法は、成形工程S11と、配置工程S12と、焼成工程S13とを有し、これらの工程S11乃至S13が図1に示すフローで行われることによって、円筒形酸化物焼結体が生成される。   The method for manufacturing a cylindrical oxide sintered body according to the present embodiment includes a forming step S11, an arrangement step S12, and a firing step S13, and these steps S11 to S13 are performed according to the flow shown in FIG. As a result, a cylindrical oxide sintered body is produced.

成形工程S11は、円筒形成形型のキャビティ内に原料粉末又は造粒粉末を充填し、CIP法等により加圧成形して円筒形酸化物成形体を得る工程である。本実施形態では、原料粉末は、特に制限されることなく、目的とする円筒形スパッタリングターゲットの組成に応じて適宜選択することができる。例えば、ITO(Indium Tin Oxide)からなる円筒形スパッタリングターゲットを得ようとする場合には、原料粉末として、酸化インジウム(In)粉末と酸化スズ(SnO)粉末を用いることができる。また、AZO(Aluminium Zinc Oxide)からなる円筒形スパッタリングターゲットを得ようとする場合には、原料粉末として、酸化アルミニウム(Al)粉末と酸化亜鉛(ZnO)粉末を用いることができる。 The forming step S11 is a step of filling a raw material powder or granulated powder into a cavity of a cylindrical forming mold and press-molding it by a CIP method or the like to obtain a cylindrical oxide molded body. In the present embodiment, the raw material powder is not particularly limited, and can be appropriately selected according to the composition of the target cylindrical sputtering target. For example, when obtaining a cylindrical sputtering target made of ITO (Indium Tin Oxide), indium oxide (In 2 O 3 ) powder and tin oxide (SnO) powder can be used as the raw material powder. Further, in order to obtain a cylindrical sputtering target made of AZO (Aluminium Zinc Oxide) as the raw material powder, aluminum oxide (Al 2 O 3) can be used powder and zinc oxide (ZnO) powder.

なお、原料粉末を所定の割合で混合した後、そのままの状態で成形することも可能であるが、純水、バインダ及び分散剤等と混合した後、噴霧乾燥してから、造粒粉末としてからキャビティ内に充填することが好ましい。造粒粉末は、原料粉末と比べて高い流動性を有しており、充填性に優れている。このため、原料粉末の代わりに、造粒粉末を用いることで、工業規模の製造においても、高密度の円筒形酸化物成形体を容易に得ることができる。   In addition, after mixing the raw material powder at a predetermined ratio, it can be molded as it is, but after mixing with pure water, a binder, a dispersing agent, etc., spray-dried, and then granulated powder It is preferable to fill the cavity. The granulated powder has higher fluidity than the raw material powder and is excellent in filling property. For this reason, by using the granulated powder instead of the raw material powder, a high-density cylindrical oxide compact can be easily obtained even in industrial scale production.

本実施形態では、成形は、CIP(Cold Isostatic Pressing:冷間等方圧加圧)成形による加圧成形で行われる。加圧成形は、CIP成形が一般的であるが、高密度の円筒形成形体が得られるものであれば、CIP成形に限らない。CIP成形の場合、キャビティ内に原料粉末又は造粒粉末を充填した後、円筒形成形型をCIP装置に投入し、加圧成形する。   In the present embodiment, the molding is performed by pressure molding by CIP (Cold Isostatic Pressing) molding. The pressure molding is generally CIP molding, but is not limited to CIP molding as long as a high-density cylindrical formed body can be obtained. In the case of CIP molding, a raw material powder or granulated powder is filled in a cavity, and then a cylindrical forming mold is put into a CIP apparatus and pressure-molded.

なお、水等の圧媒が成形型内に侵入することを防ぐために、円筒形成形型を真空包装した上で、CIP装置に投入してもよい。CIP成形における保持圧力は、98MPa〜294MPaとすることが好ましい。保持圧力が98MPa未満では、得られる円筒形酸化物成形体の密度を十分に高いものとすることができない場合がある。一方、保持圧力が294MPaを超えると、CIP装置に対する負荷が過度に大きくなるばかりか、生産コストの上昇を招くこととなる。   In order to prevent a pressure medium such as water from entering the mold, the cylinder-forming mold may be vacuum-packed and put into the CIP device. The holding pressure in CIP molding is preferably 98 MPa to 294 MPa. If the holding pressure is less than 98 MPa, the density of the obtained cylindrical oxide compact may not be sufficiently high. On the other hand, when the holding pressure exceeds 294 MPa, the load on the CIP device is excessively increased and the production cost is increased.

このとき、保持圧力で保持する時間(保持時間)は、1分〜30分とすることが好ましく、3分〜10分とすることがより好ましい。保持時間が1分未満では、得られる円筒形酸化物成形体の密度を十分に高いものとすることができない場合がある。一方、保持時間が30分を超えると、生産性が悪化することとなる。   At this time, the time for holding at the holding pressure (holding time) is preferably 1 minute to 30 minutes, and more preferably 3 minutes to 10 minutes. If the holding time is less than 1 minute, the density of the obtained cylindrical oxide compact may not be sufficiently high. On the other hand, if the holding time exceeds 30 minutes, productivity will deteriorate.

配置工程S12では、円筒形酸化物成形体を焼成炉内に敷板を介して配置する工程である。本実施形態では、焼結変形の少ない高真円度の円筒形酸化物焼結体を効率的に作製するために、円筒形酸化物成形体が配置される敷板がすり鉢状に傾斜していることを特徴とする。   In arrangement | positioning process S12, it is a process of arrange | positioning a cylindrical oxide molded object through a base plate in a baking furnace. In the present embodiment, in order to efficiently produce a highly round cylindrical oxide sintered body with less sintering deformation, the base plate on which the cylindrical oxide molded body is disposed is inclined in a mortar shape. It is characterized by that.

本発明者は、前述した本発明の目的を達成するために鋭意検討を重ねた結果、配置工程S12で使用する敷板をすり鉢状にすることで、焼結時に円筒形酸化物成型体が自重により、すり鉢状の傾斜に沿って中心に向かって均一に収縮されるので、歪みや変形の少ない真円度の高い円筒形酸化物焼結体を効率的に製造できることを見出した。そして、これらの知見に基づいて、更に研究を行った結果、本発明を完成するに至った。   As a result of intensive studies in order to achieve the above-described object of the present invention, the present inventor makes the bottom plate used in the placement step S12 into a mortar shape, so that the cylindrical oxide molded body is self-weighted during sintering. The present inventors have found that a cylindrical oxide sintered body having high roundness with less distortion and deformation can be efficiently produced because it is uniformly shrunk toward the center along the mortar-shaped inclination. As a result of further research based on these findings, the present invention has been completed.

具体的には、敷板は、略円筒形状の台座部の頂面側に、外縁から中心にかけて全方位に亘り同じ曲率で縮径するように凹状に形成される凹部が設けられて、すり鉢状の形状となっている。そして、配置工程S12では、円筒形酸化物成形体を敷板の凹部に直立させて配置することを特徴とする。なお、本実施形態における敷板の詳細な構成、及び当該敷板を用いた配置工程S12の詳細な説明については、後述する。   Specifically, the bottom plate is provided with a concave portion formed in a concave shape so as to reduce the diameter with the same curvature from the outer edge to the center on the top surface side of the substantially cylindrical pedestal portion. It has a shape. And in arrangement | positioning process S12, it arrange | positions by making a cylindrical oxide molded object stand upright in the recessed part of a baseplate, It is characterized by the above-mentioned. In addition, the detailed structure of the flooring board in this embodiment and detailed description of arrangement | positioning process S12 using the said flooring board are mentioned later.

焼成工程S13は、配置工程S12で焼成炉内に敷板を介して配置した円筒形酸化物成形体を焼成して円筒形酸化物焼結体を得る工程である。円筒形酸化物成形体の焼成条件は、その組成や大きさ、焼成炉の特性などに応じて適宜選択すべきものであり、特に制限されることはないが、概ね下記の条件で焼成することができる。   The firing step S13 is a step of obtaining a cylindrical oxide sintered body by firing the cylindrical oxide molded body that is disposed in the firing furnace in the placing step S12 via a floor plate. The firing conditions of the cylindrical oxide molded body should be appropriately selected according to the composition, size, characteristics of the firing furnace, etc., and are not particularly limited, but can be fired under the following conditions. it can.

焼成工程S13では、最初に室温から特定の温度(脱バインダ温度)まで、一定の時間(脱バインダ時間)をかけて昇温することにより、円筒形酸化物成形体に含まれる有機成分を除去することが必要となる。この際の脱バインダ温度は、300℃〜600℃とすることが好ましく、400℃〜500℃とすることがより好ましい。また、脱バインダ時間は、50時間〜300時間とすることが好ましく、100時間〜300時間とすることがより好ましい。このような脱バインダ温度および脱バインダ時間であれば、円筒形酸化物成形体に含まれる有機成分を十分に除去することができる。   In the firing step S13, the organic component contained in the cylindrical oxide molded body is removed by first raising the temperature from room temperature to a specific temperature (binder removal temperature) over a certain period of time (binder removal time). It will be necessary. The binder removal temperature at this time is preferably 300 ° C. to 600 ° C., more preferably 400 ° C. to 500 ° C. The binder removal time is preferably 50 hours to 300 hours, more preferably 100 hours to 300 hours. With such a binder removal temperature and binder removal time, the organic components contained in the cylindrical oxide compact can be sufficiently removed.

なお、脱バインダ段階中は、雰囲気ガスを炉内容積1mあたり100L/分〜600L/分、好ましくは200L/分〜400L/分で供給することが必要となる。雰囲気は、大気、酸素、又はそれらの任意の混合ガスであればよい。 During the binder removal stage, it is necessary to supply atmospheric gas at a rate of 100 L / min to 600 L / min, preferably 200 L / min to 400 L / min per 1 m 3 of the furnace volume. The atmosphere may be air, oxygen, or any mixed gas thereof.

脱バインダ段階後、炉内温度を焼成温度まで昇温し、この温度で一定時間保持することにより、円筒形酸化物成形体を焼結させる。焼成温度は、円筒形酸化物成形体の組成によって異なるが、例えば、酸化インジウムを主成分とする場合には、1200℃〜1600℃とすることが好ましく、高密度の円筒形酸化物焼結体を得る観点から、1300℃〜1600℃とすることがより好ましい。   After the binder removal step, the temperature in the furnace is raised to the firing temperature, and the cylindrical oxide compact is sintered by holding at this temperature for a certain period of time. The firing temperature varies depending on the composition of the cylindrical oxide molded body. For example, when indium oxide is the main component, the firing temperature is preferably 1200 ° C. to 1600 ° C., and the cylindrical oxide sintered body has a high density. It is more preferable to set it as 1300 degreeC-1600 degreeC from a viewpoint which obtains.

一方、酸化亜鉛を主成分とする場合には、1000℃〜1400℃とすることが好ましく、同様の観点から、1250℃〜1350℃とすることがより好ましい。また、焼成温度での保持時間は、5時間〜40時間とすることが好ましく、10時間〜30時間とすることがより好ましい。   On the other hand, when zinc oxide is the main component, the temperature is preferably 1000 ° C to 1400 ° C, and more preferably 1250 ° C to 1350 ° C from the same viewpoint. The holding time at the firing temperature is preferably 5 hours to 40 hours, more preferably 10 hours to 30 hours.

なお、焼結段階における雰囲気は、円筒形酸化物成形体の組成によって異なるが、組成に応じて大気や酸素、またはこれらの混合ガスを、炉内容積1mあたり100L/分〜600L/分、好ましくは200L/分〜400L/分供給する。 Incidentally, the atmosphere in the sintering step varies depending on the composition of a cylindrical molded oxide product, air or oxygen, depending on the composition or mixed gas thereof, 100L / min ~600L / min per furnace capacity 1 m 3,, Preferably, 200 L / min to 400 L / min are supplied.

次に、本発明の一実施形態に係る円筒形酸化物焼結体の製造方法で使用される敷板の構成の詳細について、図面を使用しながら説明する。図2(A)は、本発明の一実施形態に係る円筒形酸化物焼結体の製造方法で使用される敷板の斜視図であり、図2(B)は、当該敷板の平面図であり、図2(C)は、図2(B)のA−A線断面図である。   Next, the detail of the structure of the baseplate used with the manufacturing method of the cylindrical oxide sintered compact which concerns on one Embodiment of this invention is demonstrated, using drawing. FIG. 2 (A) is a perspective view of a base plate used in the method for producing a cylindrical oxide sintered body according to one embodiment of the present invention, and FIG. 2 (B) is a plan view of the base plate. FIG. 2C is a cross-sectional view taken along the line AA in FIG.

本実施形態に係る円筒形酸化物焼結体の製造方法で使用される敷板10は、高温耐久性、耐熱性を有し、その表面状態が安定している材質であるアルミナ又はジルコニアから一体成型によって構成され、図2(A)に示すように、台座部12と、凹部14と、ガス導入管16と、を備えることを特徴とする。なお、本実施形態では、敷板10は、一体成型されたものとしているが、台座部やガス導入管等の複数の部品をそれぞれ別体で成型したものを組み立てて構成したものとしてもよい。   The floor plate 10 used in the method for manufacturing a cylindrical oxide sintered body according to the present embodiment is integrally molded from alumina or zirconia, which is a material having high temperature durability and heat resistance and having a stable surface state. As shown in FIG. 2A, the pedestal portion 12, the concave portion 14, and the gas introduction pipe 16 are provided. In the present embodiment, the floor plate 10 is integrally molded. However, the floor plate 10 may be formed by assembling a plurality of parts such as a pedestal part and a gas introduction pipe separately.

台座部12は、焼成炉内で焼成対象となる円筒形酸化物成形体を支持する略円筒形状の基板である。凹部14は、図2(A)乃至(C)に示すように、その外縁14aが台座部12の頂面側に設けられ、その内側面14bが当該外縁14aから中心Oにかけて全方位に亘り同じ曲率で縮径するように凹状に形成されており、当該内側面14bの底面側が円筒形酸化物成形体の載置面となっている。ガス導入管16は、敷板10の凹部14の内側面14bに載置される円筒形酸化物成形体の内周面側にガスを導入するために、凹部14の中心側に立設される円筒形状の部材である。   The pedestal portion 12 is a substantially cylindrical substrate that supports a cylindrical oxide molded body to be fired in a firing furnace. As shown in FIGS. 2A to 2C, the recess 14 has an outer edge 14 a provided on the top surface side of the pedestal portion 12, and an inner side surface 14 b that is the same in all directions from the outer edge 14 a to the center O. It is formed in a concave shape so as to be reduced in diameter by the curvature, and the bottom surface side of the inner side surface 14b is a mounting surface for the cylindrical oxide molded body. The gas introduction pipe 16 is a cylinder erected on the center side of the recess 14 in order to introduce gas into the inner peripheral surface of the cylindrical oxide molded body placed on the inner surface 14 b of the recess 14 of the floor plate 10. It is a shaped member.

本実施形態では、焼成炉内で円筒形状の酸化物成形体を焼結させて円筒形状の酸化物焼結体を作製する際に、焼結変形の少ない高真円度の円筒形酸化物焼結体を得るために、配置工程で円筒形酸化物成形体を焼成炉内に配置する際に使用する敷板10は、台座部12に外縁14aが台座部12の頂面側に設けられ、当該外縁14aから中心Oにかけて傾斜した、すなわち、すり鉢状に傾斜した凹部14が設けられていることを特徴とする。   In this embodiment, when a cylindrical oxide sintered body is produced by sintering a cylindrical oxide molded body in a firing furnace, a highly round cylindrical oxide sintered body with less sintering deformation is produced. In order to obtain a bonded body, the floor plate 10 used when placing the cylindrical oxide compact in the firing furnace in the placement step is provided with an outer edge 14a on the top surface side of the base portion 12 on the base portion 12, A recess 14 that is inclined from the outer edge 14a to the center O, that is, in a mortar-like shape, is provided.

具体的には、少なくとも円筒形酸化物成形体を直立させる位置から敷板10の中心Oにかけてのすり鉢状の傾斜は、凹部14の底面側をテーパ面として捉えた場合に20〜30度の範囲とすることが好ましい。また、凹部14の底面側の形状を曲率半径で定義する場合、凹部14の断面の曲率半径、すなわち、凹部14の内側面14bの底面側の曲面の曲率半径は、円筒形酸化物成形体の外径が200mmとした際に、160mm以上200mm以下としている。   Specifically, the mortar-shaped inclination from the position where at least the cylindrical oxide molded body is erected to the center O of the floor plate 10 is in the range of 20 to 30 degrees when the bottom surface side of the recess 14 is regarded as a tapered surface. It is preferable to do. Further, when the shape of the bottom surface side of the concave portion 14 is defined by the radius of curvature, the curvature radius of the cross section of the concave portion 14, that is, the curvature radius of the curved surface on the bottom surface side of the inner side surface 14b of the concave portion 14 is When the outer diameter is 200 mm, it is 160 mm or more and 200 mm or less.

このように、本実施形態では、配置工程で使用する敷板10がすり鉢状の傾斜を有する構成となっているので、円筒形酸化物成形体を敷板10の凹部14の底面側に載置した際に、当該成形体の焼結時に、自重によって敷板10の凹部14の内側面14bに沿って中心に向かって全方位に亘って均一に収縮するようになる。このため、歪みや変形の少ない真円度の高い円筒形酸化物焼結体が効率的に製造できるようになる。   Thus, in this embodiment, since the floor board 10 used at an arrangement | positioning process becomes a structure which has a mortar-like inclination, when the cylindrical oxide molded object is mounted in the bottom face side of the recessed part 14 of the floor board 10 In addition, when the molded body is sintered, it shrinks uniformly in all directions toward the center along the inner side surface 14b of the recess 14 of the floor plate 10 by its own weight. For this reason, it becomes possible to efficiently produce a cylindrical oxide sintered body having a high roundness with less distortion and deformation.

また、本実施形態では、敷板10は、高温耐久性を備え、その表面状態が容易に変化せず、かつ、焼成時に円筒形酸化物成形体と化学的に反応しない安定している材質で構成されることが好ましいので、アルミナ又はジルコニアから構成される。敷板10の表面に関しては、特に限定しないが、円筒形酸化物成形体を焼結して得られる焼結体が自重によって十分滑り易い表面粗さであることが好ましいので、表面粗さRaは、3μm以下とする。   In the present embodiment, the floor plate 10 is made of a stable material that has high-temperature durability, whose surface state does not easily change, and does not chemically react with the cylindrical oxide molded body during firing. It is preferably made of alumina or zirconia. The surface of the floor plate 10 is not particularly limited, but since the sintered body obtained by sintering the cylindrical oxide molded body preferably has a surface roughness that is sufficiently slippery due to its own weight, the surface roughness Ra is 3 μm or less.

さらに、本実施形態では、敷板10の凹部14の中心側には、焼結させる円筒形酸化物成形体の内側に酸素等のガスを導入するための円筒形状のガス導入管16が立設されている。ガス導入管16は、図2(A)乃至(C)に示すように、両端が底部側ガス導入口16bと頂部側ガス導入口16cとなる管状部材であり、その側面に複数の側面側ガス導入口16aが所定の間隔で設けられる構成となっている。   Furthermore, in this embodiment, a cylindrical gas introduction pipe 16 for introducing a gas such as oxygen into the inside of the cylindrical oxide compact to be sintered is erected on the center side of the recess 14 of the floor plate 10. ing. As shown in FIGS. 2A to 2C, the gas introduction pipe 16 is a tubular member whose both ends are a bottom side gas introduction port 16 b and a top side gas introduction port 16 c, and a plurality of side surface side gases are provided on its side surface. Introducing ports 16a are provided at predetermined intervals.

ガス導入管16の外径は、焼結収縮した円筒形酸化物焼結体の内径よりも十分小さいことが好ましく、少なくとも焼結後の焼結体の内径の20%から40%小さく設定する。ガス導入管16の高さは、成形体の内周面側にガスをより均等に導入した上で安定的に当該成形体を支持するために、少なくとも焼結後の焼結体の高さの1/3以上に設定する。例えば、焼結後の円筒形酸化物成形体の内径をφ130mm程度として、高さを260mmとした場合では、ガス導入管16は、外径がφ90mm、高さが130mmとする。   The outer diameter of the gas introduction tube 16 is preferably sufficiently smaller than the inner diameter of the sintered and contracted cylindrical oxide sintered body, and is set at least 20% to 40% smaller than the inner diameter of the sintered body after sintering. The height of the gas introduction pipe 16 is at least the height of the sintered body after sintering in order to stably support the molded body after introducing gas more uniformly into the inner peripheral surface side of the molded body. Set to 1/3 or higher. For example, when the sintered cylindrical oxide compact has an inner diameter of about 130 mm and a height of 260 mm, the gas inlet tube 16 has an outer diameter of 90 mm and a height of 130 mm.

また、本実施形態では、ガス導入管16の側面に側面側ガス導入口16aを設けることによって、成形体にガスを吹きかけることができるので、側面側ガス導入口16aがない場合比べて、成形体内側の焼結速度が速くなり、成形体の内外差が無くなるので、より均一に焼結ができるようになる。側面側ガス導入口16aは、1つ又は複数設けることができるが、成形体をより均一に焼結するために、複数均等に設けることが好ましい。また、側面側ガス導入口16aの大きさは、特に限定はないが、直径20mm〜30mmがよい。   Further, in the present embodiment, by providing the side gas inlet 16a on the side surface of the gas introduction pipe 16, gas can be sprayed on the molded body, so that the molded body is compared with the case where there is no side gas inlet 16a. Since the inside sintering speed is increased and there is no difference between the inside and outside of the molded body, sintering can be performed more uniformly. One or a plurality of side-side gas introduction ports 16a can be provided, but a plurality of side-side gas introduction ports 16a are preferably provided uniformly in order to sinter the molded body more uniformly. The size of the side gas inlet 16a is not particularly limited, but is preferably 20 mm to 30 mm in diameter.

このように、円筒形酸化物成形体の内側にも反応ガスが流入するように、側面側に複数のガス導入口16aを有するガス導入管16を設けることによって、当該円筒形酸化物成形体の内側により均等に反応ガスが当たるようにした上で、当該成形体の外側の焼結速度との差が小さくなる。このため、より密度のバラつきが低減された均一な円筒形酸化物成形体を焼結できるようになる。   Thus, by providing the gas introduction pipe 16 having a plurality of gas introduction ports 16a on the side surface side so that the reaction gas flows into the inside of the cylindrical oxide molded body, The difference between the reaction gas and the sintering rate on the outer side of the compact is reduced after the reaction gas is applied more uniformly on the inner side. For this reason, it becomes possible to sinter a uniform cylindrical oxide molded body with further reduced density variation.

また、焼成炉内に配置された成形体に導入する酸素等の反応ガスの供給速度や供給密度は、酸化物の焼結密度に影響を及ぼす。さらに、焼成炉内へのガス流入によるガス圧力でも円筒形酸化物成形体の位置が動く場合があるので、ガスとの反応が不均一になることによって、作製される焼結体の密度が安定しないことが懸念される。   In addition, the supply rate and supply density of the reaction gas such as oxygen introduced into the compact disposed in the firing furnace affect the sintered density of the oxide. Furthermore, since the position of the cylindrical oxide molded body may move even with gas pressure due to gas flow into the firing furnace, the density of the sintered body to be produced becomes stable due to non-uniform reaction with the gas. There is concern about not doing it.

このため、底部側ガス導入口16bの形状や大きさは、特に限定しないが、小さすぎるとガス流量が不足して成形体の焼結が不十分になってしまい、大きすぎると円筒形酸化物焼結体を支持できないので、底部側ガス導入口16bは、敷板の略中心に配置し、その開口面積は、成形体1個あたり50cm程度以下とすることが好ましい。 For this reason, the shape and size of the bottom side gas inlet 16b are not particularly limited, but if it is too small, the gas flow rate is insufficient and sintering of the molded article becomes insufficient, and if it is too large, the cylindrical oxide Since the sintered body cannot be supported, the bottom side gas inlet 16b is preferably disposed at the approximate center of the floor plate, and the opening area is preferably about 50 cm 2 or less per molded body.

次に、本発明の一実施形態に係る円筒形酸化物焼結体の製造方法の配置工程で敷板を使用することによる作用・効果について、図面を使用しながら説明する。図3は、本発明の一実施形態に係る円筒形酸化物焼結体の製造方法の配置工程における円筒形酸化物成形体の敷板への配置状態を示す斜視図であり、図4は、図3のB−B線断面図であり、図5は、図4のC部の拡大図である。   Next, the operation and effect of using a floor plate in the arranging step of the method for producing a cylindrical oxide sintered body according to an embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a perspective view showing an arrangement state of a cylindrical oxide molded body on a floor plate in an arrangement step of the method for producing a cylindrical oxide sintered body according to an embodiment of the present invention. 3 is a cross-sectional view taken along line BB in FIG. 3, and FIG. 5 is an enlarged view of a portion C in FIG.

円筒形酸化物成形体を作製する際に、円筒形成形型のキャビティ内に原料粉末、又は造粒粉末を充填した後、円筒形成形型をCIP装置に投入し、加圧成形すると、全面より均等に圧力がかかるため、CIPにより加圧成形された成形体1は、図4に示すように、成形後の頂面側端部1a及び底面側端部1bは、内径から外径に向かう凹部状の曲面でテーパとなる。すなわち、円筒形酸化物成形体1の頂面側端部1aは、図3及び図4に示すように、内側から外側に向けて下がるテーパ状となり、底面側端部1bは、図4及び図5に示すように、内側から外側に向けて上がるテーパ状となっている。   When producing a cylindrical oxide molded body, after filling raw material powder or granulated powder into the cavity of the cylindrical forming mold, the cylindrical forming mold is put into a CIP apparatus, and press-molded. Since the pressure is evenly applied, as shown in FIG. 4, the molded body 1 press-molded by CIP has a top surface side end portion 1 a and a bottom surface side end portion 1 b that are formed from the inner diameter toward the outer diameter. Taper with a curved surface. That is, as shown in FIGS. 3 and 4, the top surface side end portion 1a of the cylindrical oxide molded body 1 has a tapered shape that falls from the inside toward the outside, and the bottom surface side end portion 1b has the shape shown in FIGS. As shown in FIG. 5, the taper is raised from the inside toward the outside.

また、円筒形酸化物成形体1を所定の温度で焼結した場合、10〜20%程度収縮するが、当該円筒形酸化物成形体1の頂面側端部1a及び底面側端部1bの内径から外径に向かうテーパの大きさは、図4及び図5に示すように、当該成形体1の焼結前後でほぼ同一である。このため、本実施形態では、敷板10の凹部14のすり鉢状の傾斜を円筒形酸化物成形体1の底面側端部1bのテーパの大きさに合わせる構成としている。   Further, when the cylindrical oxide molded body 1 is sintered at a predetermined temperature, the cylindrical oxide molded body 1 contracts by about 10 to 20%, but the top surface side end portion 1a and the bottom surface side end portion 1b of the cylindrical oxide molded body 1 are shrunk. The size of the taper from the inner diameter to the outer diameter is substantially the same before and after sintering the molded body 1 as shown in FIGS. For this reason, in this embodiment, it is set as the structure which matches the magnitude | size of the taper of the bottom face side edge part 1b of the cylindrical oxide molded object 1 with the mortar-shaped inclination of the recessed part 14 of the flooring board 10. FIG.

具体的には、例えば、円筒形酸化物成形体1の外径がφ200mm程度であれば、敷板10の凹部14の円筒形酸化物成形体1を直立させる位置から敷板10の中心Oにかけてのすり鉢状の傾斜は、テーパの場合、20〜30度、曲率半径であれば、160〜200mmとすることが好ましく、特に、180mmが好ましい。また、敷板10の凹部14のすり鉢状の傾きは、R形状の方がより円筒形酸化物成形体1の頂面側端部1a及び底面側端部1bのテーパ形状に近いためより好ましい。このように、敷板10の凹部14を円筒形酸化物成形体1の底面側端部1bの形状に合わせることによって、成型体1を均一に支えることができる上で、焼結時の成形体の倒れ防止にも有効となる。   Specifically, for example, if the outer diameter of the cylindrical oxide molded body 1 is about φ200 mm, a mortar extending from the position where the cylindrical oxide molded body 1 of the concave portion 14 of the floor board 10 stands upright to the center O of the floor board 10. In the case of a taper, the shape inclination is preferably 20 to 30 degrees and the radius of curvature is preferably 160 to 200 mm, and particularly preferably 180 mm. Further, the mortar-shaped inclination of the recess 14 of the floor plate 10 is more preferable because the R shape is closer to the tapered shape of the top surface side end portion 1a and the bottom surface side end portion 1b of the cylindrical oxide molded body 1. Thus, by matching the concave portion 14 of the floor plate 10 with the shape of the bottom side end 1b of the cylindrical oxide molded body 1, the molded body 1 can be supported uniformly, and the molded body during sintering can be supported. It is also effective in preventing falls.

なお、敷板10の凹部14のすり鉢状の傾斜が少ないと、滑りが不十分となり、円筒形酸化物成形体1が同心円状に収縮することが難しくなり、高真円度が保てなくなる。このため、敷板10の凹部14の傾斜角度は、当該成形体1が十分滑りやすい傾斜角度であることが好ましいので、上述したように、凹部14の傾きは、上述した数値範囲となるような曲率半径を伴うR状の傾きとすることが好ましく、直線状のテーパとした場合には、20〜30度の傾きとすることが好ましい。   In addition, when there is little mortar-shaped inclination of the recessed part 14 of the flooring board 10, slip will become inadequate, it will become difficult for the cylindrical oxide molded object 1 to shrink | contract concentrically, and high roundness cannot be maintained. For this reason, it is preferable that the inclination angle of the concave portion 14 of the floor plate 10 is an inclination angle at which the molded body 1 is sufficiently slippery. Therefore, as described above, the inclination of the concave portion 14 has a curvature that falls within the numerical range described above. An R-shaped inclination with a radius is preferable. In the case of a linear taper, an inclination of 20 to 30 degrees is preferable.

このように、本実施形態では、すり鉢状の形状の敷板10を用いて円筒形酸化物成形体1を支持することによって、当該円筒形酸化物成形体1は、焼結時に自重により敷板10の凹部14のすり鉢状の傾斜に沿って中心に向かって均一に収縮されるようになる。このため、焼結工程後においても歪みや変形の少ない真円度の高い円筒形酸化物焼結体2が効率的に得られるようになる。   Thus, in the present embodiment, by supporting the cylindrical oxide molded body 1 using the mortar-shaped floor plate 10, the cylindrical oxide molded body 1 is formed on the floor plate 10 by its own weight during sintering. The concave portion 14 is uniformly shrunk toward the center along the mortar-shaped inclination. For this reason, the cylindrical oxide sintered body 2 having a high roundness with little distortion and deformation even after the sintering step can be obtained efficiently.

特に、本実施形態では、CIPにより加圧成形されて得られる円筒形酸化物成形体の底面側に形成されるテーパの形状に合わせて、凹部が形成されたすり鉢状の敷板を用いて、当該成形体を支持して焼成を行うので、CIPにより加圧成形されて得られた円筒形酸化物成形体を焼成して円筒形酸化物焼結体を作製する際に、より効率的に歪みや変形の少ない真円度の高い円筒形酸化物焼結体が得られるようになる。   In particular, in the present embodiment, using a mortar-shaped floor plate in which a recess is formed in accordance with the shape of the taper formed on the bottom surface side of a cylindrical oxide molded body obtained by pressure molding with CIP, Since the compact is supported and fired, when the cylindrical oxide compact obtained by pressure molding with CIP is fired to produce a cylindrical oxide sintered body, distortion and A cylindrical oxide sintered body having a high degree of roundness with little deformation can be obtained.

このように、円筒形酸化物成形体の高温焼結に伴う収縮変形対策として、従来のような丸棒や球体の転がりによる複雑な構成とするのではなく、本実施形態では、アルミナやジルコニウム等の耐熱性のセラミックスからなる炉焼板となる敷板として、すり鉢状の敷板を用いて当該成形体を支持することによって、容易に真円度の高い円筒形酸化物焼結体が得られるようになっている。   Thus, as a countermeasure against shrinkage deformation accompanying high-temperature sintering of the cylindrical oxide molded body, it is not a complicated configuration due to rolling of a round bar or a sphere as in the past, but in this embodiment, alumina, zirconium, etc. A cylindrical oxide sintered body having a high roundness can be easily obtained by supporting the molded body using a mortar-shaped flooring board as a flooring board to be a furnace-fired plate made of a heat-resistant ceramic. It has become.

すなわち、本実施形態では、円筒形酸化物成形体自体の熱収縮による寸法変化に対して重力に引き寄せられる力を加えることによる円筒形酸化物成形体の均一熱収縮の自然作用を妨げずに焼結させることによって、焼結前の真円度1.0の円筒形酸化物成形体から焼成工程中に真円度が低下し難い円筒形酸化物焼結体が得られるようになっている。   That is, in this embodiment, the cylindrical oxide compact itself is sintered without affecting the natural action of uniform thermal contraction of the cylindrical oxide compact by applying a force attracted by gravity to the dimensional change due to the thermal contraction. As a result, a cylindrical oxide sintered body in which roundness is hardly lowered during the firing step can be obtained from a cylindrical oxide molded body having a roundness of 1.0 before sintering.

従来のような真円度が低い円筒形酸化物焼結体では、焼結体の内径及び外径が歪んで断面が楕円になる傾向があり、真円度の高い円筒形バッキングチューブにInろう材でろう付けするのに適した同様に真円度の高い円筒形酸化物加工体を得るためには、焼結体の内径及び外径の歪みや楕円傾向を考慮した分を増量した大型の成形体を必要としていた。このため、原料粉末を過剰に使用することによるコストアップ及び過剰な分の焼結体を研削加工するための加工時間の長時間化や、加工砥石の消耗劣化を早める等の生産性を高める上での課題となっていた。   In conventional cylindrical oxide sintered bodies with low roundness, the inner and outer diameters of the sintered body tend to be distorted and the cross section tends to be elliptical. In order to obtain a cylindrical oxide processed body with a high roundness that is suitable for brazing with a material, a large-sized large-sized part that takes into account the distortion and ellipticity of the inner and outer diameters of the sintered body has been increased. A molded body was needed. For this reason, the cost increases due to excessive use of the raw material powder, and the processing time for grinding the excessive amount of the sintered body is increased, and the productivity such as shortening the wear deterioration of the processing wheel is increased. It was a problem in.

これに対して、本実施形態の円筒形酸化物焼結体の製造方法では、円筒形酸化物焼結体の真円度を高位で安定させることが実現されるので、焼結体の変形分を考慮することなく、円筒形酸化物成形体の体積を決定できる。このため、原料粉末の節約をした上で、高真円度が求められる加工体の研削加工時間の短縮と加工砥石の消耗劣化の抑制が図ることによって、結果的に円筒形酸化物加工体の生産性向上が可能となるので、極めて大きな工業的価値を有する。   In contrast, in the method for manufacturing a cylindrical oxide sintered body according to the present embodiment, it is possible to stabilize the roundness of the cylindrical oxide sintered body at a high level. The volume of the cylindrical oxide compact can be determined without considering the above. For this reason, while saving the raw material powder, by reducing the grinding time of the processed body requiring high roundness and suppressing the consumption deterioration of the processing wheel, as a result of the cylindrical oxide processed body Since productivity can be improved, it has an extremely large industrial value.

次に、本発明の一実施形態に係る円筒形酸化物焼結体の製造方法について、実施例により詳しく説明する。なお、本発明は、これらの実施例に限定されるものではない。   Next, a method for producing a cylindrical oxide sintered body according to an embodiment of the present invention will be described in detail with reference to examples. The present invention is not limited to these examples.

(実施例1)
実施例1は、Sn−Zn−O系酸化物焼結体とした。本実施例では、はじめに、酸化亜鉛粉末と酸化錫粉末を酸化錫粉末の割合が47.6質量%で秤量し、原料酸化物粉末の濃度が65質量%となるように、純水とバインダのポリビニルアルコール(PVA)と分散剤を加えてビーズミル(アシザワファインテック株式会社製)で混合及び解砕して所望のスラリーを得た。このスラリーをスプレードライヤ(大川原化工機株式会社製)で噴霧乾燥して比重約2g/cmの球状造粒粉末を得た後、当該造粒粉末を円筒形ゴム型に充填して圧力294MPaの冷間静水圧プレス(冷間等方圧加圧、CIP)装置に投入して外径200mm、内径160mm、高さ300mmの円筒形酸化物成形体を作製して、常圧焼成炉(丸祥電器株式会社製)で高温焼成して4個の円筒形酸化物焼結体を得た。
Example 1
Example 1 was a Sn—Zn—O-based oxide sintered body. In this example, first, zinc oxide powder and tin oxide powder were weighed at a ratio of tin oxide powder of 47.6% by mass, and pure water and binder were mixed so that the concentration of the raw material oxide powder was 65% by mass. Polyvinyl alcohol (PVA) and a dispersant were added and mixed and pulverized with a bead mill (manufactured by Ashizawa Finetech Co., Ltd.) to obtain a desired slurry. This slurry is spray-dried with a spray dryer (Okawara Kako Co., Ltd.) to obtain a spherical granulated powder having a specific gravity of about 2 g / cm 3 . It is put into a cold isostatic press (cold isostatic pressing, CIP) device to produce a cylindrical oxide molded body having an outer diameter of 200 mm, an inner diameter of 160 mm, and a height of 300 mm, and an atmospheric pressure firing furnace (Marusho) High temperature firing at Denki Co., Ltd.) to obtain four cylindrical oxide sintered bodies.

本実施例では、焼結の際、円筒形酸化物成形体及び直径300mmのアルミナ製の敷板を円筒形酸化物成形体中心軸と敷板中心軸が概略一致するように配置した(図3参照)。詳しくは、敷板のすり鉢は、曲率半径180mmで凹面加工し表面粗さRaを3μm以下のものを使用した。また、敷板のすり鉢底部には、焼結密度に影響するガスを導入するための中空状のガス導入管を設置した。ガス導入管は、外径90mm、内径40mm、高さ130mmとした。さらに、ガス導入管の横壁に直径30mmの導入口を4カ所設けた。なお、敷板表面の算術平均粗さRaを3μm以下としたのは、円筒形酸化物成形体のすべり易さを考慮したものである。   In this example, at the time of sintering, the cylindrical oxide molded body and the alumina base plate having a diameter of 300 mm were arranged so that the central axis of the cylindrical oxide molded body and the central axis of the base plate substantially coincide (see FIG. 3). . Specifically, the mortar for the floorboard was a concave surface processed with a radius of curvature of 180 mm and a surface roughness Ra of 3 μm or less. In addition, a hollow gas introduction pipe for introducing a gas affecting the sintering density was installed at the bottom of the mortar of the floor plate. The gas introduction tube had an outer diameter of 90 mm, an inner diameter of 40 mm, and a height of 130 mm. Furthermore, four inlets with a diameter of 30 mm were provided in the lateral wall of the gas inlet tube. The reason why the arithmetic average roughness Ra on the surface of the floor plate is 3 μm or less is that the ease of slipping of the cylindrical oxide molded body is taken into consideration.

また、焼結工程は、常圧焼成炉内に配置した本発明の一実施形態に係る敷板のガス導入管に空気を流しながら450℃まで昇温してバインダを除去した後、続いて酸素ガスを流しながら1350℃まで昇温して焼結を行って、円筒形酸化物焼結体を作製した。これらの円筒形酸化物焼結体を冷却後に取り出した円筒形酸化物焼結体の全数4個とも当初配置した中心軸位置を大きく外れることなく、外径約165mm、内径約130mm、高さ約260mmに収縮した。さらに、ノギスを用いて焼結体下端部の内径4か所を測定した結果では、内径最大値と最小値の差が平均0.8mm、真円度で約0.99とほぼ真円の焼結体が得られた。   Further, the sintering step is performed by removing the binder by raising the temperature to 450 ° C. while flowing air through the gas introduction pipe of the flooring plate according to an embodiment of the present invention disposed in the atmospheric pressure firing furnace, and then oxygen gas. The temperature was raised to 1350 ° C. while flowing, and sintering was performed to produce a cylindrical oxide sintered body. All of the four cylindrical oxide sintered bodies taken out after cooling of these cylindrical oxide sintered bodies have a diameter of about 165 mm, an inner diameter of about 130 mm, and a height of about 4 mm, without greatly deviating from the center axis positions originally arranged. Shrink to 260 mm. Furthermore, as a result of measuring the inner diameter of the sintered body at the lower end of the sintered body using calipers, the difference between the maximum value and the minimum value is 0.8 mm on average and the roundness is about 0.99. A ligation was obtained.

この後、円筒形酸化物焼結体は外径155mm、内径135mm、高さ240mmに研削加工し、外径133mm、内径125mm、長さ300mmの円筒形バッキングチューブにInろう材でろう付けして、長さ300mmの円筒形スパッタリングターゲットを作製して、これにDCスパッタリングを実施したところでは、スパッタリング中の異常放電はなく、ターゲットの割れもなかった。なお、スパッタリングは、電力2.5kW、0.3PaのArガスを導入して実施した。   Thereafter, the cylindrical oxide sintered body is ground to an outer diameter of 155 mm, an inner diameter of 135 mm, and a height of 240 mm, and brazed with an In brazing material to a cylindrical backing tube having an outer diameter of 133 mm, an inner diameter of 125 mm, and a length of 300 mm. When a cylindrical sputtering target having a length of 300 mm was prepared and subjected to DC sputtering, there was no abnormal discharge during sputtering and no cracking of the target. Sputtering was performed by introducing Ar gas having a power of 2.5 kW and 0.3 Pa.

(比較例1)
本発明の一実施形態に係るすり鉢状の敷板を使用しなかった以外は、実施例1と同様にして円筒形酸化物焼結体を4個作製した。結果、比較例1の焼結体も炉内位置の大きな移動はなかったが、4個とも歪み楕円状の変形がみられた。ノギスを用いて焼結体下端部内径を測定したところ最大値と最小値の差は、平均6.0mmと真円度で約0.96となった。また、その円筒形焼結体4個を外径155mm、内径135mm、高さ240mmに研削加工したところ、2個に微小な割れが発生し、残りの割れのない1個を外径133mm、内径125mm、長さ300mmのバッキングチューブにInろう材を用いてろう付けして、長さ300mmの円筒形ターゲットを作製した。
(Comparative Example 1)
Four cylindrical oxide sintered bodies were produced in the same manner as in Example 1 except that the mortar-shaped floor plate according to one embodiment of the present invention was not used. As a result, the sintered body of Comparative Example 1 also did not move greatly in the furnace position, but all four were deformed in an elliptical shape. When the inner diameter of the lower end of the sintered body was measured using calipers, the difference between the maximum value and the minimum value was 6.0 mm on average and about 0.96 in roundness. In addition, when the four cylindrical sintered bodies were ground to an outer diameter of 155 mm, an inner diameter of 135 mm, and a height of 240 mm, two cracks were generated, and one without any remaining cracks had an outer diameter of 133 mm and an inner diameter of A cylindrical target having a length of 300 mm was produced by brazing a backing tube having a length of 125 mm and a length of 300 mm using an In brazing material.

しかしながら、電力2.5kW、0.3PaのArガスを導入してDCスパッタリングしたところ、異常放電が発生しターゲットに割れが発生した。そのため、割れた加工体をバッキングチューブから取り外して、代わりに割れていない加工体をInろう材でろう付けし直して円筒形ターゲットを作製して、再び上記条件でDCスパッタリングしたところ正常に放電しターゲットの割れも見られなかった。   However, when Ar gas having a power of 2.5 kW and 0.3 Pa was introduced and DC sputtering was performed, abnormal discharge occurred and cracks occurred in the target. For this reason, the broken workpiece is removed from the backing tube, and the unbroken workpiece is brazed with an In brazing material to produce a cylindrical target. When DC sputtering is performed again under the above conditions, the discharge is normally performed. The target was not cracked.

実施例1と比較例1で示した各4個の円筒形酸化物焼結体の内径差と、内径差から計算された真円度、及び個々の焼結体を研削加工した後の割れの有無について、下記の表1にまとめて、本発明の一実施形態に係る円筒形酸化物焼結体の製造方法による効果を整理した。   The difference in inner diameter of each of the four cylindrical oxide sintered bodies shown in Example 1 and Comparative Example 1, the roundness calculated from the inner diameter difference, and cracks after grinding each sintered body About the presence or absence, the effect by the manufacturing method of the cylindrical oxide sintered compact concerning one Embodiment of this invention was put together in the following Table 1, and was arranged.

表1に示すように、実施例1における焼結体真円度は、4個とも0.99以上と高い真円度であり、加工体の割れも4個中0個であったが、比較例1における焼結体真円度は、ばらつきが見られ、悪いもので焼結体真円度が0.93となっていた。また、4個中比較的真円度が低い2個の焼結体には、加工体にした際に割れが起きていた。この原因は、比較例1の成形体の焼結が進んでいく際に、本来1.0であった成形体の断面となる真円形状が楕円形状に変形することで焼結体中に歪みを残した結果、その歪みが研削加工中の外力の影響を受けて加工体の割れを引き起こしたものと考えられる。   As shown in Table 1, the roundness of the sintered body in Example 1 was a high roundness of 0.99 or more for all four pieces, and the number of cracks in the processed body was zero out of four. The roundness of the sintered body in Example 1 was uneven and the roundness of the sintered body was 0.93. In addition, cracks occurred in the two sintered bodies having a relatively low roundness among the four when formed into a processed body. This is because when the sintered body of Comparative Example 1 progresses in sintering, the round shape of the cross section of the molded body, which was originally 1.0, is deformed into an elliptical shape, thereby causing distortion in the sintered body. As a result, it is considered that the distortion was influenced by the external force during grinding and caused cracking of the workpiece.

このように成形体の断面が楕円形状に変形した理由として、円筒形酸化物成形体の底部と敷板との接触部分での偶発的な引っかかりにより成形体の自然の均等な熱収縮を妨げたことによるものと考えられる。なお、焼結する以前の成形体の真円度は、実施例1及び比較例1共に全て1.0であることを確認している。   The reason why the cross section of the molded body was deformed into an elliptical shape in this way was to prevent the natural uniform thermal contraction of the molded body due to accidental catching at the contact portion between the bottom of the cylindrical oxide molded body and the bottom plate. It is thought to be due to. In addition, it was confirmed that the roundness of the molded body before sintering was 1.0 in both Example 1 and Comparative Example 1.

以上の結果から、焼成炉で成形体を焼結させて焼結体を作製する際に、本発明の一実施形態に係るすり鉢状の敷板を使用しなかった比較例1と比べて、すり鉢状の敷板を使用した実施例1では、より真円度の高い焼結体がバラツキなく作製されていたので、焼結体の割れの発生が抑制されることが分かった。このことから、本発明の一実施形態に係る円筒形酸化物焼結体の製造方法における敷板を適用することによって、より真円度の高い焼結体が確実に作製されるので、焼結体の割れを抑制できることが分かった。   From the above results, when producing a sintered body by sintering the formed body in a firing furnace, compared to Comparative Example 1 in which the mortar-shaped floor plate according to one embodiment of the present invention was not used, a mortar shape In Example 1 using the base plate, it was found that since the sintered body having higher roundness was produced without variation, the occurrence of cracks in the sintered body was suppressed. From this, a sintered body having a higher roundness is reliably produced by applying the floor plate in the method for producing a cylindrical oxide sintered body according to an embodiment of the present invention. It was found that cracking of the steel can be suppressed.

なお、上記のように本発明の各実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。   Although the embodiments and examples of the present invention have been described in detail as described above, it will be understood by those skilled in the art that many modifications can be made without departing from the novel matters and effects of the present invention. It will be easy to understand. Therefore, all such modifications are included in the scope of the present invention.

例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、円筒形酸化物焼結体の製造方法で使用する敷板の構成、円筒形酸化物焼結体の製造方法の動作も本発明の各実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。   For example, a term described with a different term having a broader meaning or the same meaning at least once in the specification or the drawings can be replaced with the different term in any part of the specification or the drawings. Further, the structure of the base plate used in the method for manufacturing the cylindrical oxide sintered body and the operation of the method for manufacturing the cylindrical oxide sintered body are not limited to those described in the embodiments and examples of the present invention. Various modifications are possible.

1 円筒形酸化物成形体、1a 頂部側傾斜面、1b 底部側傾斜面、2 円筒形酸化物焼結体、10 敷板、12 台座、14凹部、14a 外縁部、14b 内側面、16 ガス導入管、16a (側面側)ガス導入口、16b (底部側)ガス導入口、16c (頂部側)ガス導入口、S11 成形工程、S12 配置工程、S13 焼成工程 DESCRIPTION OF SYMBOLS 1 Cylindrical oxide molded object, 1a Top part side inclined surface, 1b Bottom side side inclined surface, 2 Cylindrical oxide sintered body, 10 Base plate, 12 base, 14 recessed part, 14a Outer edge part, 14b Inner side surface, 16 Gas introduction pipe | tube 16a (side surface side) gas inlet port, 16b (bottom side) gas inlet port, 16c (top side) gas inlet port, S11 molding step, S12 placement step, S13 firing step

Claims (8)

焼成炉を用いて円筒形酸化物成形体を焼結させて円筒形酸化物焼結体を製造する円筒形酸化物焼結体の製造方法であって、
円筒形成形型のキャビティ内に原料粉末又は造粒粉末を充填し、加圧成形して円筒形酸化物成形体を得る成形工程と、
前記円筒形酸化物成形体を前記焼成炉内に敷板を介して配置する配置工程と、
前記敷板を介して配置した円筒形焼結体成形体を前記焼成炉において焼成して円筒形酸化物焼結体を得る焼成工程と、を有し、
前記敷板は、台座部と、外縁が前記台座部の頂面側に設けられ、該外縁から中心にかけて傾斜を有するように凹状に形成される凹部と、を備え、
前記配置工程では、前記円筒形酸化物成形体を前記敷板の前記凹部に直立させて配置することを特徴とする円筒形酸化物焼結体の製造方法。
A method for producing a cylindrical oxide sintered body for producing a cylindrical oxide sintered body by sintering a cylindrical oxide molded body using a firing furnace,
A molding step of filling a raw material powder or granulated powder into a cavity of a cylindrical mold and obtaining a cylindrical oxide molded body by pressure molding;
An arrangement step of arranging the cylindrical oxide compact in the firing furnace via a floor plate;
Firing a cylindrical sintered compact formed through the floor plate in the firing furnace to obtain a cylindrical oxide sintered body, and
The floor plate includes a pedestal portion, and a concave portion formed in a concave shape so that an outer edge is provided on a top surface side of the pedestal portion and has an inclination from the outer edge toward the center,
In the arranging step, the cylindrical oxide compact is disposed in an upright manner in the concave portion of the floor plate.
前記敷板の前記凹部は、前記外縁から中心にかけて全方位に亘り同じ曲率で縮径するように凹状に形成されることを特徴とする請求項1に記載の円筒形酸化物焼結体の製造方法。   2. The method for producing a cylindrical oxide sintered body according to claim 1, wherein the concave portion of the floor plate is formed in a concave shape so as to reduce the diameter with the same curvature in all directions from the outer edge to the center. . 前記敷板の前記凹部の中心側には、外径が前記円筒形酸化物焼結体の内径より小さい円筒形状のガス導入管が立設され、
前記配置工程では、前記ガス導入管を覆うように、該円筒形酸化物焼結体を直立させて配置することを特徴とする請求項1又は2に記載の円筒形酸化物焼結体の製造方法。
A cylindrical gas inlet pipe having an outer diameter smaller than the inner diameter of the cylindrical oxide sintered body is erected on the center side of the recess of the floor plate,
The cylindrical oxide sintered body according to claim 1 or 2, wherein in the arranging step, the cylindrical oxide sintered body is arranged upright so as to cover the gas introduction pipe. Method.
前記ガス導入管の側面には、複数のガス導入口が設けられていることを特徴とする請求項3に記載の円筒形酸化物焼結体の製造方法。   The method for producing a cylindrical oxide sintered body according to claim 3, wherein a plurality of gas inlets are provided on a side surface of the gas inlet pipe. 前記敷板は、アルミナ又はジルコニアから形成されることを特徴とする請求項1乃至4の何れか1項に記載の円筒形酸化物焼結体の製造方法。   The method for producing a cylindrical oxide sintered body according to any one of claims 1 to 4, wherein the floor plate is made of alumina or zirconia. 前記敷板の表面粗さを算術平均粗さRaで3μm以下とすることを特徴とする請求項1乃至5の何れか1項に記載の円筒形酸化物焼結体の製造方法。   The method for producing a cylindrical oxide sintered body according to any one of claims 1 to 5, wherein the surface roughness of the floor plate is 3 μm or less in terms of arithmetic average roughness Ra. 前記成形工程では、冷間等方圧加圧により加圧成形して前記円筒形酸化物成形体を得ることを特徴とする請求項1乃至6の何れか1項に記載の円筒形酸化物焼結体の製造方法。   The cylindrical oxide firing according to any one of claims 1 to 6, wherein in the molding step, the cylindrical oxide compact is obtained by pressure molding by cold isostatic pressing. A method for producing a knot. 円筒形酸化物成形体を焼成炉内に配置する際に介在させる敷板であって、
台座部と、
外縁が前記台座部の頂面側に設けられ、該外縁から中心にかけて傾斜を有するように凹状に形成される凹部と、を備えることを特徴とする敷板。
A base plate interposed when the cylindrical oxide molded body is disposed in the firing furnace,
A pedestal,
An outer edge is provided on the top surface side of the pedestal portion, and a floor plate having a recess formed in a concave shape so as to have an inclination from the outer edge to the center.
JP2017052099A 2017-03-17 2017-03-17 Manufacturing method of cylindrical oxide sintered body and floor plate Active JP6875890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017052099A JP6875890B2 (en) 2017-03-17 2017-03-17 Manufacturing method of cylindrical oxide sintered body and floor plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017052099A JP6875890B2 (en) 2017-03-17 2017-03-17 Manufacturing method of cylindrical oxide sintered body and floor plate

Publications (2)

Publication Number Publication Date
JP2018154522A true JP2018154522A (en) 2018-10-04
JP6875890B2 JP6875890B2 (en) 2021-05-26

Family

ID=63716283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017052099A Active JP6875890B2 (en) 2017-03-17 2017-03-17 Manufacturing method of cylindrical oxide sintered body and floor plate

Country Status (1)

Country Link
JP (1) JP6875890B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106258A1 (en) * 2019-11-29 2021-06-03 三井金属鉱業株式会社 Method for manufacturing cylindrical sputtering target, and firing tool used in same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165611A (en) * 1988-12-20 1990-06-26 Seiko Electronic Components Ltd Manufacture of powder sintering system magnet
JP2007238414A (en) * 2006-03-13 2007-09-20 Ngk Insulators Ltd Burning method for ceramic long formed body
JP2012013256A (en) * 2010-06-29 2012-01-19 Tdk Corp Batch furnace
JP2016088831A (en) * 2014-10-29 2016-05-23 住友金属鉱山株式会社 Cylindrical ceramic sintered compact and method for production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165611A (en) * 1988-12-20 1990-06-26 Seiko Electronic Components Ltd Manufacture of powder sintering system magnet
JP2007238414A (en) * 2006-03-13 2007-09-20 Ngk Insulators Ltd Burning method for ceramic long formed body
JP2012013256A (en) * 2010-06-29 2012-01-19 Tdk Corp Batch furnace
JP2016088831A (en) * 2014-10-29 2016-05-23 住友金属鉱山株式会社 Cylindrical ceramic sintered compact and method for production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106258A1 (en) * 2019-11-29 2021-06-03 三井金属鉱業株式会社 Method for manufacturing cylindrical sputtering target, and firing tool used in same
CN114729442A (en) * 2019-11-29 2022-07-08 三井金属矿业株式会社 Method for producing cylindrical sputtering target and firing jig used in the production method

Also Published As

Publication number Publication date
JP6875890B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
JP6464776B2 (en) Cylindrical ceramic sintered body and manufacturing method thereof
JP5750060B2 (en) Ceramic cylindrical sputtering target material and manufacturing method thereof
KR102336966B1 (en) Cylindrical sputtering target, cylindrical compact, manufacturing method of cylindrical sputtering target, manufacturing method of cylindrical sintered compact and manufacturing method of cylindrical compact
JP5299415B2 (en) Oxide sintered body for cylindrical sputtering target and method for producing the same
CN111072379A (en) Burning bearing plate suitable for tubular rotary ceramic target material and sintering method
JP2018154522A (en) Method for manufacturing cylindrical oxide sintered body and cradle
JP6281437B2 (en) Oxide sintered body, manufacturing method thereof, and sputtering target using this oxide sintered body
JP2015016632A (en) Cylindrical molding tool, cylindrical ceramic molding and production method for the molding
JP5784849B2 (en) Ceramic cylindrical sputtering target material and manufacturing method thereof
TW202014543A (en) Cylindrical type sputtering target and method for producing the same
TWI723974B (en) Method for manufacturing cylindrical target material, cylindrical sputtering target and firing jig
JP6421525B2 (en) Method for producing thermal spray molded body
JP5947413B1 (en) Sputtering target and manufacturing method thereof
JP6842293B2 (en) Manufacturing method of cylindrical ceramic sintered body
CN104058752B (en) Base Setter
JP6842369B2 (en) Manufacturing method of cylindrical ceramic sintered body
JPWO2016129622A1 (en) Sputtering target and manufacturing method thereof
CN111015105A (en) Manufacturing method of tungsten iridium crucible
JP6343234B2 (en) Silicon carbide sintered body, method for manufacturing silicon carbide sintered body, firing jig, firing furnace, and molten metal holding furnace
CN113277835B (en) Positioning tool and sintering method of planar target
JP6297620B2 (en) Sputtering target and manufacturing method thereof
JP2016188425A (en) Method for manufacturing cylindrical type sputtering target, and method for manufacturing cylindrical type compact
WO2021106258A1 (en) Method for manufacturing cylindrical sputtering target, and firing tool used in same
JP2002210717A (en) Method for manufacturing ceramic molding
KR101270471B1 (en) Method for producing the rotatable target sintered article and Rotatable target sintered article produced by the method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171010

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190918

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210423

R150 Certificate of patent or registration of utility model

Ref document number: 6875890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE

Ref document number: 6875890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250