JP2018149710A - Liquid discharge head - Google Patents

Liquid discharge head Download PDF

Info

Publication number
JP2018149710A
JP2018149710A JP2017046211A JP2017046211A JP2018149710A JP 2018149710 A JP2018149710 A JP 2018149710A JP 2017046211 A JP2017046211 A JP 2017046211A JP 2017046211 A JP2017046211 A JP 2017046211A JP 2018149710 A JP2018149710 A JP 2018149710A
Authority
JP
Japan
Prior art keywords
support member
element substrate
supply flow
flow path
liquid discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017046211A
Other languages
Japanese (ja)
Inventor
朋尚 熱田
Tomohisa Atsuta
朋尚 熱田
恭輔 戸田
Kyosuke Toda
恭輔 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017046211A priority Critical patent/JP2018149710A/en
Priority to US15/910,991 priority patent/US10336072B2/en
Publication of JP2018149710A publication Critical patent/JP2018149710A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a liquid discharge head capable of efficiently radiating heat from an element substrate to suppress overheat and capable of suppressing degradation of reliability in a joint of a support member and the element substrate.SOLUTION: In a liquid discharge head including a support member 1 and an element substrate 2 to be mutually joined to each other, a supply flow channel 9 opening on a composition surface 1a with the element substrate 2 for a liquid to be supplied to the substrate 2 is formed to the support member 1. Besides in the inside of the supply flow channel 9, a beam 10 extending from one internal surface of the flow channel 9 toward the other internal surface thereof is provided in a direction getting across the flow channel 9. The connection part 10a of the beam 10 with the internal surface of the flow channel 9 is located apart from the composition surface 1a of the support member 1 with the substrate 2 in a depth direction of the flow channel 9.SELECTED DRAWING: Figure 3

Description

本発明は液体吐出ヘッドに関する。   The present invention relates to a liquid discharge head.

画像記録等のために液体を吐出する液体吐出ヘッドの一例が特許文献1に開示されている。この液体吐出ヘッドでは、支持部材(第1のプレート)の上に素子基板が接合されている。素子基板は吐出口形成部材(吐出口プレート)を含み、吐出口形成部材には、吐出口が複数の列をなすように並べて形成されている。素子基板には、各吐出口とそれぞれ連通する複数の発泡室(供給口)が形成されている。各発泡室には電気熱変換素子がそれぞれ配置されている。支持部材には、各発泡室に液体を供給する溝状の供給流路が形成されている。支持部材の供給流路を介して素子基板の発泡室内に液体が供給され、電気熱変換素子が駆動されて発熱すると、発泡室内の液体が加熱されて発泡し、その発泡圧によって液滴として吐出口から外部に吐出する。   An example of a liquid discharge head that discharges liquid for image recording or the like is disclosed in Patent Document 1. In this liquid discharge head, an element substrate is bonded onto a support member (first plate). The element substrate includes a discharge port forming member (discharge port plate), and the discharge port forming member is formed so that the discharge ports are arranged in a plurality of rows. In the element substrate, a plurality of foaming chambers (supply ports) communicating with the respective discharge ports are formed. An electrothermal conversion element is disposed in each foaming chamber. The support member is formed with a groove-like supply channel for supplying a liquid to each foaming chamber. When the liquid is supplied into the foam chamber of the element substrate through the supply channel of the support member and the electrothermal conversion element is driven to generate heat, the liquid in the foam chamber is heated and foamed, and is discharged as droplets by the foaming pressure. Discharge from the outlet to the outside.

このように熱エネルギーを利用する液体吐出ヘッドにおいて、高速かつ高周波数で連続的に液体吐出を行うと、素子基板が高熱になるおそれがある。そこで、特許文献1に記載された液体吐出ヘッドでは、支持部材の供給流路内に供給流路を横切る方向の(供給流路の短辺方向に沿う)梁を設けて、素子基板の熱を梁に伝達させ、さらに梁から支持部材全体に熱を伝達させて外部に放散させている。このように梁を用いて放熱することによって、素子基板の温度が使用可能な温度を超えることを抑えつつ、熱エネルギーによる液体吐出を高速かつ高周波数で連続的に行うことができる。その結果、液体吐出による高濃度記録も可能になる。   In such a liquid discharge head that uses thermal energy, if the liquid is continuously discharged at a high speed and a high frequency, the element substrate may become hot. Therefore, in the liquid ejection head described in Patent Document 1, a beam in a direction crossing the supply flow path (along the short side direction of the supply flow path) is provided in the supply flow path of the support member, and the heat of the element substrate is increased. The heat is transmitted to the beam, and further, heat is transmitted from the beam to the entire support member to dissipate to the outside. By radiating heat using the beams as described above, it is possible to continuously perform liquid discharge by thermal energy at a high speed and a high frequency while suppressing the temperature of the element substrate from exceeding the usable temperature. As a result, high density recording by liquid ejection is also possible.

特開2011-79246号公報JP 2011-79246

前述したように、特許文献1に記載されている液体吐出ヘッドによると、梁を設けることによって素子基板から効率的に放熱することができる。しかし、支持部材と素子基板との接合の信頼性が低下するおそれがある。特に、液体吐出の高速化や連続吐出が要求される場合、素子基板の発熱量が増大する場合が多く、素子基板からの放熱性の向上が必要である。特許文献1の構成において、梁の数を増やして放熱効果をより向上させようとすると、液体吐出ヘッドの製造時に支持部材と素子基板との接合に寄与する接着剤の量が不十分になり、接合の信頼性が低下する可能性がある。   As described above, according to the liquid discharge head described in Patent Document 1, it is possible to efficiently dissipate heat from the element substrate by providing the beam. However, there is a possibility that the reliability of bonding between the support member and the element substrate is lowered. In particular, when high-speed liquid discharge or continuous discharge is required, the amount of heat generated from the element substrate often increases, and it is necessary to improve the heat dissipation from the element substrate. In the configuration of Patent Document 1, when the number of beams is increased to further improve the heat dissipation effect, the amount of the adhesive that contributes to the bonding between the support member and the element substrate becomes insufficient at the time of manufacturing the liquid discharge head, Bonding reliability may be reduced.

そこで、本発明の目的は、素子基板から効率的に放熱して過熱を抑えることができ、かつ支持部材と素子基板の接合の信頼性の低下を抑えることができる液体吐出ヘッドを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a liquid discharge head that can efficiently dissipate heat from an element substrate to suppress overheating, and can suppress a decrease in reliability of bonding between a support member and the element substrate. is there.

本発明は、互いに接合される素子基板と支持部材とを含む液体吐出ヘッドにおいて、支持部材には、素子基板との接合面において開口している、素子基板に供給する液体のための供給流路が形成されており、供給流路の内部には、供給流路を横切る方向に供給流路の一方の内壁面から他方の内壁面に向かって延びる梁が設けられており、梁の、供給流路の内壁面との接続部が、支持部材の素子基板との接合面から供給流路の深さ方向に離れた位置にあることを特徴とする。   The present invention relates to a liquid discharge head including an element substrate and a support member that are bonded to each other, and the support member has a supply flow path for liquid supplied to the element substrate that is open at a bonding surface with the element substrate. A beam extending from one inner wall surface of the supply channel toward the other inner wall surface in a direction crossing the supply channel is provided inside the supply channel. The connecting portion with the inner wall surface of the path is located away from the joint surface of the support member with the element substrate in the depth direction of the supply flow path.

本発明の液体吐出ヘッドによると、素子基板から効率的に放熱して過熱を抑えることができ、かつ支持部材と素子基板の接合の信頼性の低下を抑えることができる。   According to the liquid discharge head of the present invention, it is possible to efficiently dissipate heat from the element substrate and suppress overheating, and it is possible to suppress a decrease in the reliability of bonding between the support member and the element substrate.

本発明の第1の実施形態の液体吐出ヘッドの斜視図である。1 is a perspective view of a liquid discharge head according to a first embodiment of the present invention. 図1に示す液体吐出ヘッドの分解斜視図である。FIG. 2 is an exploded perspective view of the liquid discharge head shown in FIG. 1. 図1に示す液体吐出ヘッドの断面図である。FIG. 2 is a cross-sectional view of the liquid discharge head shown in FIG. 図1に示す液体吐出ヘッドの第1の支持部材を示す平面図、要部拡大斜視図、および断面図である。FIG. 2 is a plan view, a main part enlarged perspective view, and a cross-sectional view showing a first support member of the liquid discharge head shown in FIG. 1. 比較例の液体吐出ヘッドの分解斜視図である。FIG. 6 is an exploded perspective view of a liquid discharge head of a comparative example. 図5に示す液体吐出ヘッドの第1の支持部材を示す平面図および要部拡大斜視図である。FIG. 6 is a plan view and a main part enlarged perspective view showing a first support member of the liquid ejection head shown in FIG. 5. 図6に示す第1の支持部材の良好な接着剤転写工程を示す平面図である。It is a top view which shows the favorable adhesive agent transfer process of the 1st supporting member shown in FIG. 図6に示す第1の支持部材の良好な接着剤転写工程を示す断面図である。It is sectional drawing which shows the favorable adhesive agent transfer process of the 1st supporting member shown in FIG. 図6に示す第1の支持部材の不良な接着剤転写工程を示す平面図である。It is a top view which shows the bad adhesive agent transfer process of the 1st supporting member shown in FIG. 図6に示す第1の支持部材の不良な接着剤転写工程を示す断面図である。FIG. 7 is a cross-sectional view showing a defective adhesive transfer process of the first support member shown in FIG. 6. 図4に示す第1の支持部材の接着剤転写工程を示す断面図である。It is sectional drawing which shows the adhesive agent transfer process of the 1st supporting member shown in FIG. 本発明の第2の実施形態の液体吐出ヘッドの第1の支持部材を示す平面図および断面図である。FIG. 10 is a plan view and a cross-sectional view illustrating a first support member of a liquid ejection head according to a second embodiment of the present invention.

以下、本発明の好適な実施の形態について、図面に基づいて説明する。
[液体吐出ヘッドの基本構成]
図1〜3に本発明の液体吐出ヘッドの斜視図、分解斜視図、および断面図を示している。この液体吐出ヘッドでは、支持部材(第1の支持部材1)の上に、素子基板2が接合され、さらに、素子基板2が接合されている部分の外側にもう1つの支持部材(第2の支持部材3)が貼り付けられている。そして、第2の支持部材3の上に電気配線部材4が配置されている。図3に示すように、素子基板2は、第1の支持部材1に接合されている基板5と、第1の支持部材1との接合面と反対側に位置する吐出口形成部材6とを含む積層構造である。吐出口形成部材6には、貫通孔である吐出口7が複数の列をなすように並べて形成されている。基板5には、各吐出口7とそれぞれ連通する複数の発泡室8が形成されている。各発泡室8は、複数の吐出口列とそれぞれ対応する複数の発泡室列を構成している。各発泡室8には電気熱変換素子などのエネルギー発生素子(図示せず)それぞれ配置されている。第1の支持部材1は、素子基板2と第2の支持部材3を支持して固定させるとともに、基板5の各発泡室8に供給する液体のための溝状の供給流路9を有している。第1の支持部材1の上で、第2の支持部材3の上面は素子基板2の上面とほぼ同じ高さ位置にあり、第2の支持部材3の上に配置された電気配線部材4は素子基板2と電気的に接続されている。素子基板2と電気配線部材4は図示しない封止材によって絶縁保護されており、この封止材は第2の支持部材3の開口部によって形成された封止材溜まりの内部に保持される。このような構成であるため、図示しないタンク等から供給された液体が、第1の支持部材1の供給流路9を介して素子基板2の発泡室8内に導かれる。そして、図示しない制御部からの吐出信号が電気配線部材4から素子基板2に伝達され、エネルギー発生素子が駆動されると、発泡室8内の液体に熱等のエネルギーが付与されて液滴が吐出口7から外部に吐出する。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings.
[Basic configuration of liquid discharge head]
1-3 are a perspective view, an exploded perspective view, and a cross-sectional view of the liquid discharge head of the present invention. In this liquid ejection head, the element substrate 2 is bonded onto the support member (first support member 1), and another support member (second support member) is disposed outside the portion where the element substrate 2 is bonded. A support member 3) is affixed. An electric wiring member 4 is disposed on the second support member 3. As shown in FIG. 3, the element substrate 2 includes a substrate 5 bonded to the first support member 1 and a discharge port forming member 6 positioned on the opposite side of the bonding surface with the first support member 1. It is a laminated structure including. In the discharge port forming member 6, discharge ports 7 as through holes are formed side by side so as to form a plurality of rows. The substrate 5 is formed with a plurality of foaming chambers 8 communicating with the respective discharge ports 7. Each foaming chamber 8 constitutes a plurality of foaming chamber rows respectively corresponding to a plurality of discharge port rows. Each foaming chamber 8 is provided with an energy generating element (not shown) such as an electrothermal conversion element. The first support member 1 supports and fixes the element substrate 2 and the second support member 3, and has a groove-like supply channel 9 for liquid supplied to each foaming chamber 8 of the substrate 5. ing. On the first support member 1, the upper surface of the second support member 3 is substantially at the same height as the upper surface of the element substrate 2, and the electric wiring member 4 disposed on the second support member 3 is It is electrically connected to the element substrate 2. The element substrate 2 and the electrical wiring member 4 are insulated and protected by a sealing material (not shown), and this sealing material is held inside a sealing material reservoir formed by the opening of the second support member 3. Due to such a configuration, the liquid supplied from a tank or the like (not shown) is guided into the foaming chamber 8 of the element substrate 2 through the supply flow path 9 of the first support member 1. When a discharge signal from a control unit (not shown) is transmitted from the electric wiring member 4 to the element substrate 2 and the energy generating element is driven, energy such as heat is applied to the liquid in the foaming chamber 8 and droplets are formed. The ink is discharged from the discharge port 7 to the outside.

[第1の実施形態]
本発明の第1の実施形態の第1の支持部材1の供給流路9が、図3〜4に示されている。図4(a)は第1の支持部材1の平面図、図4(b)は図4(a)のB部分の拡大斜視図、図4(c)は図4(a)のA−A線断面図である。第1の支持部材1の供給流路9内には、供給流路9を横切る方向の(供給流路9の短辺方向に沿う)梁である横梁10(第1の梁)と、供給流路9の長手方向に沿う(液体の流れ方向に沿う)梁である縦梁11(第2の梁)が設けられている。1つの供給流路9内の複数個所(図4(a)に示す例では3個所)に、供給流路9を横切る横梁10が形成されている。また、供給流路9の全長にわたって延びる縦梁11が、供給流路9の短辺の中心線に沿って設けられている。
[First Embodiment]
The supply flow path 9 of the first support member 1 according to the first embodiment of the present invention is shown in FIGS. 4 (a) is a plan view of the first support member 1, FIG. 4 (b) is an enlarged perspective view of a portion B in FIG. 4 (a), and FIG. 4 (c) is AA in FIG. 4 (a). It is line sectional drawing. In the supply flow path 9 of the first support member 1, a horizontal beam 10 (first beam) that is a beam in a direction crossing the supply flow path 9 (along the short side direction of the supply flow path 9), and a supply flow A vertical beam 11 (second beam) which is a beam along the longitudinal direction of the path 9 (along the liquid flow direction) is provided. Cross beams 10 that cross the supply flow path 9 are formed at a plurality of positions (three positions in the example shown in FIG. 4A) in one supply flow path 9. A longitudinal beam 11 extending over the entire length of the supply channel 9 is provided along the center line of the short side of the supply channel 9.

図4(b),4(c)に示すように、横梁10の、供給流路9を横切る方向(供給流路9の短辺方向)に沿う形状は、特許文献1の梁部と同様な略w字状である。すなわち、横梁10の、供給流路の内壁面との接続部である両側端部10aと、縦梁11の一方の面及び他方の面との接続部である中間部10bが、供給流路9の深さ方向において高い位置にある。横梁10の高さを供給流路9を横切る方向に沿って見ると、一方の側端部10aから、供給流路9の深さ方向に支持部材1の上面1aからさらに離れた後に再び接近して中間部(縦梁11の一方の面との接続部)10bに至る。次に、中間部(縦梁11の他方の面との接続部)10bから、深さ方向に、支持部材1の上面1aからさらに離れた後に再び接近して他方の側端部(他方の内壁面との接続部)10aに至る。図3,4(c)に示す位置関係で言うと、横梁部10の上端は、一方の側端部10aから供給流路9の深さ方向に一旦降下した後に再び上昇して中間部10bに至り、中間部10bから深さ方向に一旦降下した後に再び上昇して他方の側端部に至る。この横梁10は供給流路9の短辺の中心線を中心とした線対称形状である。この深さ方向における降下と上昇は直線的ではなく、図4(b),4(c)に示すように曲面的な凹状部10cを構成している。本実施形態の横梁10の特徴の1つは、側端部10a、すなわち供給流路の内壁面との接続部が、供給流路9の深さ方向において、第1の支持部材1の上面、すなわち素子基板2との接合面1aから(例えば距離Z1だけ)降下した位置にあることである。そして、中間部10b、すなわち縦梁11との接続部も、供給流路9の深さ方向において、第1の支持部材の上面、すなわち素子基板との接合面1aから(例えば距離Z1だけ)降下した位置にある。一方、横梁10の上部の、供給流路9の長手方向(液体の流れ方向)に沿う形状は、特許文献1の梁部と同様に、中央が最も高くその両側に向かって降下する略三角形状である。
本実施形態の横梁10は、供給流路9の長手方向の中央部かつ短辺方向の両側端部10aおよび中間部10b、すなわち供給流路9の深さ方向において最も高い部分でも、第1の支持部材1の上面(素子基板2との接合面1a)から離れた位置にある。図3,4(c)に示す位置関係では、供給流路9のうち、深さ方向において最も高い部分でも、第1の支持部材1の上面(素子基板2との接合面1a)より下方に位置する。
4 (b) and 4 (c), the shape of the cross beam 10 along the direction crossing the supply flow path 9 (the short side direction of the supply flow path 9) is the same as that of the beam portion of Patent Document 1. It is substantially w-shaped. That is, both end portions 10a, which are connecting portions of the horizontal beam 10, to the inner wall surface of the supply flow path, and an intermediate portion 10b, which is a connection portion between one surface and the other surface of the vertical beam 11, are connected to the supply flow path 9. It is in a high position in the depth direction. When the height of the cross beam 10 is viewed along the direction crossing the supply flow path 9, it approaches again from one side end portion 10 a further away from the upper surface 1 a of the support member 1 in the depth direction of the supply flow path 9. To the intermediate portion (connecting portion with one surface of the vertical beam 11) 10b. Next, after further separating from the upper surface 1a of the support member 1 in the depth direction from the intermediate portion (connecting portion with the other surface of the vertical beam 11) 10b, it approaches again to the other side end portion (the other inner end portion). To the wall surface) 10a. In terms of the positional relationship shown in FIGS. 3 and 4 (c), the upper end of the lateral beam portion 10 once descends from the one side end portion 10a in the depth direction of the supply flow path 9 and then rises again to the intermediate portion 10b. After reaching the depth direction from the intermediate part 10b, it rises again and reaches the other side end. The horizontal beam 10 has a line-symmetric shape centered on the center line of the short side of the supply flow path 9. The descending and rising in the depth direction are not linear, and form a curved concave portion 10c as shown in FIGS. 4 (b) and 4 (c). One of the features of the cross beam 10 according to the present embodiment is that the side end portion 10a, that is, the connection portion with the inner wall surface of the supply flow path has an upper surface of the first support member 1 in the depth direction of the supply flow path 9. That is, it is in a position that is lowered (for example, by a distance Z1) from the joint surface 1a with the element substrate 2. The intermediate portion 10b, that is, the connection portion with the longitudinal beam 11 also descends from the upper surface of the first support member, that is, the joint surface 1a with the element substrate (for example, by a distance Z1) in the depth direction of the supply flow path 9. In the position. On the other hand, the shape along the longitudinal direction (liquid flow direction) of the supply flow path 9 at the upper part of the horizontal beam 10 is the substantially triangular shape in which the center is the highest and descends toward both sides, like the beam part of Patent Document 1. It is.
The cross beam 10 of the present embodiment is the first in the central portion in the longitudinal direction of the supply flow path 9 and both end portions 10a and the intermediate portion 10b in the short side direction, that is, the highest portion in the depth direction of the supply flow path 9. It is in a position away from the upper surface of the support member 1 (bonding surface 1a with the element substrate 2). In the positional relationship shown in FIGS. 3 and 4 (c), the highest portion in the depth direction of the supply flow path 9 is below the upper surface of the first support member 1 (the bonding surface 1a with the element substrate 2). To position.

図2〜4に示すように、本実施形態の縦梁11は、供給流路9の短辺の中心を通り、供給流路9の長手方向に沿ってその全長に亘って延びている。図4(c)に示すように、縦梁11の上面は第1の支持部材の上面、すなわち素子基板との接合面1aと同じ高さに位置し、縦梁11の下面は供給流路9の深さ方向の中央付近に位置している。すなわち、縦梁11は供給流路9の上部に浮いた状態に設けられており、横梁10との接続部10b(図示されている例では3個所)において横梁10と一体化して支持されている。   As shown in FIGS. 2 to 4, the longitudinal beam 11 of the present embodiment passes through the center of the short side of the supply channel 9 and extends along the longitudinal direction of the supply channel 9 over the entire length thereof. As shown in FIG. 4C, the upper surface of the vertical beam 11 is positioned at the same height as the upper surface of the first support member, that is, the joint surface 1a with the element substrate, and the lower surface of the vertical beam 11 is the supply channel 9. It is located near the center of the depth direction. That is, the vertical beam 11 is provided in a state of floating above the supply flow path 9 and is integrally supported with the horizontal beam 10 at the connection portion 10b (three locations in the illustrated example) with the horizontal beam 10. .

このような横梁10と縦梁11を有する第1の支持部材1は、図1〜3に示す素子基板2と接合されている。具体的には、素子基板2が載置される位置の第1の支持部材1の上面1aと縦梁11の上面11aとに接着剤が付与されて、その上に素子基板2が載置されて接着剤によって固定される。本実施形態によると、このような接着剤による第1の支持部材1と素子基板2との接合の信頼性が高い。その点について以下に説明する。   The 1st supporting member 1 which has such a horizontal beam 10 and the vertical beam 11 is joined to the element substrate 2 shown in FIGS. Specifically, an adhesive is applied to the upper surface 1a of the first support member 1 and the upper surface 11a of the vertical beam 11 at the position where the element substrate 2 is placed, and the element substrate 2 is placed thereon. Fixed with adhesive. According to the present embodiment, the reliability of bonding between the first support member 1 and the element substrate 2 using such an adhesive is high. This will be described below.

[比較例との対比]
本実施形態の第1の支持部材1と素子基板2の技術的意義について説明するにあたり、まず比較例について説明する。
図5に本発明と対比するための比較例の液体吐出ヘッドの分解斜視図を示し、図6(a)にその第1の支持部材22の平面図を示し、図6(b)にそのC部分の拡大斜視図を示している。この第1の支持部材22は、特許文献1の支持部材と実質的に同じ構成である。本比較例の第1の支持部材22では、1つの供給流路9内の複数個所(図6(a)に示す例では2個所)に、供給流路9を横切る(供給流路9の短辺方向に沿う)横梁20が形成されている。この横梁20は、前述した本発明の第1の実施形態の横梁10と類似しており、供給流路9を横切る方向に沿う形状は略w字状である。横梁20の高さを供給流路9を横切る方向に沿って見ると、一方の側端部20aから供給流路9の深さ方向に一旦降下した後に再び上昇して中間部20bに至り、中間部20bから一旦降下した後に再び上昇して他方の側端部20aに至る線対称形状である。ただし、第1の実施形態とは異なり、短辺方向の側端部(供給流路9の内壁面との接続部20a)と中間部(縦梁との接続部20b)が、供給流路9の深さ方向において、第1の支持部材22の上面(素子基板との接合面22a)と同じ高さに位置している。また、横梁20の、供給流路9の短辺方向の中央部が、長辺方向に延びる縦梁21として機能する。ただし、この縦梁21は、本発明の第1の実施形態の縦梁11のように供給流路9の全長に亘って延びるのではなく、横梁20の、供給流路9の短辺方向の長さと同じ長さであり、それぞれが独立した島状である。
[Comparison with comparative example]
In describing the technical significance of the first support member 1 and the element substrate 2 of the present embodiment, a comparative example will be described first.
FIG. 5 shows an exploded perspective view of a liquid discharge head of a comparative example for comparison with the present invention, FIG. 6A shows a plan view of the first support member 22, and FIG. 6B shows its C The enlarged perspective view of the part is shown. The first support member 22 has substantially the same configuration as the support member of Patent Document 1. In the first support member 22 of the present comparative example, the supply flow path 9 is traversed at a plurality of locations (two locations in the example shown in FIG. 6A) within one supply flow path 9 (shortness of the supply flow path 9). A transverse beam 20 (along the side direction) is formed. The cross beam 20 is similar to the cross beam 10 of the first embodiment of the present invention described above, and the shape along the direction crossing the supply flow path 9 is substantially w-shaped. When the height of the cross beam 20 is viewed along the direction crossing the supply flow path 9, it is once lowered in the depth direction of the supply flow path 9 from one side end 20a and then rises again to reach the intermediate portion 20b. It is a line-symmetrical shape that once descends from the portion 20b and then rises again to reach the other side end portion 20a. However, unlike the first embodiment, the side end in the short side direction (connecting portion 20a with the inner wall surface of the supply channel 9) and the intermediate portion (connecting portion 20b with the vertical beam) are provided in the supply channel 9. In the depth direction, the first support member 22 is located at the same height as the upper surface (joining surface 22a with the element substrate). Moreover, the center part of the short side direction of the supply flow path 9 of the horizontal beam 20 functions as the vertical beam 21 extended in a long side direction. However, this vertical beam 21 does not extend over the entire length of the supply channel 9 as in the vertical beam 11 of the first embodiment of the present invention, but instead of the horizontal beam 20 in the short side direction of the supply channel 9. It is the same length as the length, and each is an independent island.

本比較例の液体吐出ヘッドにおいて、図示しない電気熱変換素子が駆動されて発熱すると、素子基板22に接している縦梁21から横梁20に伝わる。この熱は、さらに横梁20から表面積の大きい第1の支持部材22全体に伝わって放散される。それにより、熱エネルギーによる液体吐出を高速かつ高周波数で連続的に行っても、素子基板の温度が使用可能な温度を超えることを抑えることができ、液体吐出による高濃度記録が可能である。ただし、この構成では、第1の支持部材22と素子基板2の接合の信頼性が低くなるおそれがある。その理由について説明する。第1の支持部材22の上に素子基板2を接合する際には、素子基板が載置される位置の第1の支持部材22の上面と縦梁21の上面とに接着剤が付与されて、その上に素子基板が載置されて接着剤12によって固定される。図7では、接着剤12が付与される位置を斜線で示している。図8(a)〜8(c)に示す例では、先端に接着剤12が付与された転写ピン25を、縦梁21を含む第1の支持部材22の上面に押し当てることで、接着剤12が転写ピン25から、縦梁21を含む第1の支持部材22の上面22aに転写される。転写ピン25と第1の支持部材22の、供給流路9の短辺方向の位置関係が適正であれば、図8(c)に示すように、狙い通りに第1の支持部材22の上面22aに接着剤12が転写される。   In the liquid discharge head of this comparative example, when an electrothermal conversion element (not shown) is driven to generate heat, it is transmitted from the vertical beam 21 in contact with the element substrate 22 to the horizontal beam 20. This heat is further transferred from the cross beam 20 to the entire first support member 22 having a large surface area and dissipated. As a result, even if liquid discharge by thermal energy is continuously performed at high speed and high frequency, the temperature of the element substrate can be prevented from exceeding the usable temperature, and high density recording by liquid discharge is possible. However, in this configuration, there is a possibility that the reliability of bonding between the first support member 22 and the element substrate 2 is lowered. The reason will be described. When the element substrate 2 is bonded onto the first support member 22, an adhesive is applied to the upper surface of the first support member 22 and the upper surface of the vertical beam 21 at the position where the element substrate is placed. The element substrate is placed thereon and fixed by the adhesive 12. In FIG. 7, the position where the adhesive 12 is applied is indicated by hatching. In the example shown in FIGS. 8A to 8C, the transfer pin 25 having the adhesive 12 applied to the tip is pressed against the upper surface of the first support member 22 including the vertical beam 21, whereby the adhesive is used. 12 is transferred from the transfer pin 25 to the upper surface 22 a of the first support member 22 including the vertical beam 21. If the positional relationship between the transfer pin 25 and the first support member 22 in the short side direction of the supply flow path 9 is appropriate, as shown in FIG. 8C, the upper surface of the first support member 22 as intended. The adhesive 12 is transferred to 22a.

しかし、図9,10に示すように、転写ピン25と第1の支持部材22との間に供給流路9の短辺方向の相対的な位置ずれ(例えばずれ量Y1)が生じると、転写ピン25の先端の一部は、縦梁21や第1の支持部材22の上面22a上から外れる。そして、転写ピン25の先端のうち、縦梁21や第1の支持部材22の上面22aの上から外れた部分は、横梁20の側端部20aと中間部20bとの間の曲線的な凹状部20cと対向する。この状態を図9,10(a)〜10(b)に模式的に示している。図9では、転写ピン25の先端に付着している接着剤12の平面的な位置を斜線で示している。このように、転写ピン25の先端に付着している接着剤12の一部は、縦梁21や第1の支持部材22の上面に当接しないため転写されず、横梁20の曲面的な凹状部20cの上に位置する。その際に、転写ピン25の先端と横梁20の凹状部20cとの間には接着剤12のメニスカスが生じ、そのメニスカスの作用(表面張力)によって、接着剤12が横梁20の凹状部20c内に引き込まれるおそれがある。図10(c)では、接着剤12が凹状部内に引き込まれる状態を、矢印で模式的に示している。その結果、縦梁21および第1の支持部材22の上面に転写される接着剤12の量が不足し、素子基板と第1の支持部材22との接着に必要な量の接着剤12を得られなくなり、接合の信頼性が低下するおそれがある。
この問題は、特に、放熱効果を高めるために縦梁21の素子基板との接触面積を大きくするように縦梁21の長さを長くしたり、縦梁21及び横梁20の数を増やして、例えば1つの流路に3個所以上の縦梁21及び横梁20を設けたりすると、顕著になる。それは、接着剤12のメニスカスの発生個所が広がったり増えたりすることにより、横梁20の凹状部20cの中に引き込まれる接着剤12の量が増えるからである。
However, as shown in FIGS. 9 and 10, when a relative positional shift (for example, a shift amount Y1) in the short side direction of the supply flow path 9 occurs between the transfer pin 25 and the first support member 22, the transfer is performed. A part of the tip of the pin 25 is detached from the vertical beam 21 and the upper surface 22 a of the first support member 22. A portion of the tip of the transfer pin 25 that is out of the vertical beam 21 or the upper surface 22a of the first support member 22 is a curved concave shape between the side end 20a and the intermediate portion 20b of the horizontal beam 20. It faces the portion 20c. This state is schematically shown in FIGS. 9 and 10 (a) to 10 (b). In FIG. 9, the planar position of the adhesive 12 attached to the tip of the transfer pin 25 is indicated by hatching. In this way, a part of the adhesive 12 adhering to the tip of the transfer pin 25 is not transferred because it does not contact the upper surface of the vertical beam 21 or the first support member 22, and the curved concave shape of the horizontal beam 20. It is located on the part 20c. At that time, a meniscus of the adhesive 12 is generated between the tip of the transfer pin 25 and the concave portion 20c of the cross beam 20, and the adhesive 12 is caused to move into the concave portion 20c of the cross beam 20 by the action (surface tension) of the meniscus. There is a risk of being drawn into. In FIG.10 (c), the state in which the adhesive agent 12 is drawn in in a recessed part is typically shown with the arrow. As a result, the amount of the adhesive 12 transferred to the upper surfaces of the vertical beam 21 and the first support member 22 is insufficient, and an amount of the adhesive 12 necessary for bonding the element substrate and the first support member 22 is obtained. There is a risk that the reliability of the bonding is lowered.
In particular, in order to increase the heat dissipation effect, the length of the vertical beam 21 is increased so as to increase the contact area of the vertical beam 21 with the element substrate, or the number of the vertical beam 21 and the horizontal beam 20 is increased. For example, when three or more vertical beams 21 and horizontal beams 20 are provided in one flow path, it becomes remarkable. This is because the amount of the adhesive 12 drawn into the concave portion 20c of the cross beam 20 increases as the meniscus generation location of the adhesive 12 expands or increases.

これに対し、本発明の第1の実施形態では、横梁10の、供給流路9の内壁面や縦梁11との接続部10a,10bが、素子基板2との接合面1a、すなわち接着剤12が転写される面から、深さ方向の下方に(例えば距離Z1だけ)離れた位置にある。縦梁11や第1の支持部材1の上面1aに当接した転写ピン25の先端と横梁10の凹状部10cとは近接しない。従って、転写ピン25の先端に付着している接着剤12が、横梁10の凹状部10cまで到達するメニスカスを形成することは困難である。その結果、図11(a)〜(c)に示すように、転写ピン25が、縦梁11や第1の支持部材1の上面1aから外れた位置であっても、接着剤12が横梁10の凹状部10c内に引き込まれることはない。重力によって多少の接着剤12は垂れ下がるが、メニスカスの作用(表面張力)によって凹状部10cに引き込まれることはないので、図11(c)に示すように、縦梁11や第1の支持部材1の上面1aの近傍に保持される。この接着剤12の大部分は、第1の支持部材1と素子基板2の接合部分の近傍に保持されてそれらの接合に寄与し、例えば、供給流路9の内壁面や縦梁11の一方および他方の側面と素子基板2の接合面との間に位置してそれらを互いに固定する働きをする。本発明の第1の実施形態では、横梁10の、供給流路9の内壁面や縦梁11との接続部10a,10bが、素子基板2との接合面、すなわち接着剤12が転写される面から下方に離れた位置にあることで、接合の信頼性の低下を抑えることができる。   On the other hand, in the first embodiment of the present invention, the connecting portions 10a and 10b of the horizontal beam 10 to the inner wall surface of the supply flow path 9 and the vertical beam 11 are joined surfaces 1a to the element substrate 2, that is, an adhesive. 12 is located at a position away from the surface on which 12 is transferred in the depth direction (for example, by a distance Z1). The tip of the transfer pin 25 that is in contact with the vertical beam 11 or the upper surface 1 a of the first support member 1 is not adjacent to the concave portion 10 c of the horizontal beam 10. Accordingly, it is difficult for the adhesive 12 attached to the tip of the transfer pin 25 to form a meniscus that reaches the concave portion 10 c of the cross beam 10. As a result, as shown in FIGS. 11A to 11C, even if the transfer pin 25 is located at a position away from the vertical beam 11 or the upper surface 1 a of the first support member 1, the adhesive 12 is applied to the horizontal beam 10. It is not drawn into the concave portion 10c. Although some of the adhesive 12 hangs down due to gravity, it is not drawn into the concave portion 10c by the action (surface tension) of the meniscus. Therefore, as shown in FIG. 11C, the vertical beam 11 and the first support member 1 are used. Is held in the vicinity of the upper surface 1a. Most of the adhesive 12 is held in the vicinity of the joint between the first support member 1 and the element substrate 2 and contributes to the joint. For example, one of the inner wall surface of the supply channel 9 and the longitudinal beam 11 And it is located between the other side surface and the bonding surface of the element substrate 2 and functions to fix them together. In the first embodiment of the present invention, the connecting surfaces 10a and 10b of the horizontal beam 10 to the inner wall surface of the supply flow path 9 and the vertical beam 11 are bonded to the element substrate 2, that is, the adhesive 12 is transferred. By being at a position away from the surface downward, it is possible to suppress a decrease in bonding reliability.

このように、本実施形態では、第1の支持部材1と素子基板2との接合の信頼性の低下を抑えることができるため、図2,4(a)に示すように、縦梁11を長くして(一例としては供給流路9の全長にわたって形成して)放熱効果を向上できる。こうして、放熱効果の向上により高速かつ高周波数の連続的な液体吐出や液体吐出による高濃度記録を可能にすることと、第1の支持部材1と素子基板2との接合の信頼性の低下を抑えることが両立できる。さらに、横梁10の数を増やし、各横梁10が、前述したように供給流路9の内壁面や縦梁11との接続部10a,10bが素子基板2との接合面から深さ方向の下方に離れて位置する構成にすると、接合の信頼性の低下をより確実に抑えられる。この点について詳細に説明すると、液体吐出のさらなる高速化や高濃度記録が必要とされる場合に、縦梁11が短くかつ横梁10の数が少ない構成であると、放熱が間に合わず要求される液体吐出の品位(例えば記録品位)を満足できない可能性がある。そこで、縦梁11を長手方向に伸ばして素子基板2との接触面積を大きくし、さらに横梁10の数を増やすか、横梁10の太さを太くすることで、放熱性の向上が期待できる。この場合、素子基板2を第1の支持部材1に固定するための接着剤12の量が不足して接合の信頼性が低下することが懸念される。横梁10の数が少ない(例えば2個)と、素子基板2を接着固定するための接着剤12の転写時に位置ずれが生じて、縦梁11の側方や横梁10の凹状部10c等に接着剤12が垂れ落ちてもさほど影響は無い。しかし、放熱性向上のために縦梁11を長くしたり横梁10の数を増やしたり幅広にしたりすると、縦梁11の側方や横梁10の凹状部10c等に流出して接合に寄与しない領域に至る接着剤12の量が増えて不都合が生じる懸念がある。本実施形態では、横梁10の供給流路9の内壁面や縦梁11との接続部10a,10bが、接着剤12が転写される面1aと同一面ではなく、下方に離れて位置している。従って、凹状部に到達するメニスカスが形成されにくく、接着剤12が横梁10の凹状部10cに引き込まれる可能性が低くなり、十分な量の接着剤12が第1の支持部材1と素子基板2の接合に寄与する領域にとどまる可能性が高い。そのため、第1の支持部材1と素子基板2の接合の信頼性の低下を気にすることなく、縦梁11を長くしたり横梁10の数を増やしたり太くしたりして、放熱性の向上を図ることができる。   Thus, in this embodiment, since the fall of the reliability of joining with the 1st support member 1 and the element substrate 2 can be suppressed, as shown to FIG. The heat dissipation effect can be improved by increasing the length (for example, by forming the entire length of the supply channel 9). In this way, by improving the heat dissipation effect, it is possible to perform high-speed and high-frequency continuous liquid discharge and high-density recording by liquid discharge, and to reduce the reliability of bonding between the first support member 1 and the element substrate 2. It is possible to suppress both. Further, the number of the horizontal beams 10 is increased, and each horizontal beam 10 is connected to the inner wall surface of the supply flow path 9 and the connecting portions 10a and 10b with the vertical beam 11 in the depth direction from the joint surface with the element substrate 2 as described above. If the configuration is located away from each other, it is possible to more reliably suppress a decrease in bonding reliability. This point will be described in detail. When further speeding up of liquid discharge and high density recording are required, if the length of the vertical beam 11 is short and the number of the horizontal beams 10 is small, heat dissipation is required in time. There is a possibility that the quality of liquid discharge (for example, recording quality) cannot be satisfied. Therefore, the heat radiation can be improved by extending the vertical beam 11 in the longitudinal direction to increase the contact area with the element substrate 2 and increasing the number of the horizontal beams 10 or increasing the thickness of the horizontal beams 10. In this case, there is a concern that the amount of the adhesive 12 for fixing the element substrate 2 to the first support member 1 is insufficient, and the bonding reliability is lowered. If the number of the transverse beams 10 is small (for example, 2), a displacement occurs when transferring the adhesive 12 for bonding and fixing the element substrate 2, and adhesion to the side of the longitudinal beam 11, the concave portion 10 c of the transverse beam 10, etc. Even if the agent 12 drips down, there is not much influence. However, when the length of the vertical beam 11 is increased, the number of the horizontal beams 10 is increased, or the width is increased in order to improve heat dissipation, the region does not contribute to joining by flowing out to the side of the vertical beam 11 or the concave portion 10c of the horizontal beam 10. There is a concern that the amount of the adhesive 12 to reach an increase causes inconvenience. In the present embodiment, the inner wall surface of the supply flow path 9 of the horizontal beam 10 and the connecting portions 10a and 10b with the vertical beam 11 are not the same surface as the surface 1a onto which the adhesive 12 is transferred, but are positioned below and below. Yes. Accordingly, it is difficult to form a meniscus that reaches the concave portion, and the possibility that the adhesive 12 is drawn into the concave portion 10c of the cross beam 10 is reduced, and a sufficient amount of the adhesive 12 is added to the first support member 1 and the element substrate 2. There is a high possibility that it will remain in the region that contributes to bonding. Therefore, without worrying about a decrease in the reliability of bonding between the first support member 1 and the element substrate 2, the length of the vertical beams 11 is increased, the number of the horizontal beams 10 is increased, and the thickness is increased, thereby improving heat dissipation. Can be achieved.

なお、本出願人は、転写する接着剤12の量を最大にして、転写ピン25と第1の支持部材1との間の供給流路9の短辺方向の位置関係のずれが最大になった場合に、接着剤12が横梁10の凹状部10cの中に引き込まれる状態を観察する実験を行った。それによると、厚さが3.0mm以上の第1の支持部材1において、横梁10の供給流路9の内壁面や縦梁11との接続部10a,10bが、素子基板2との接合面1aから離れる距離Z1が0.5mmから1.0mmの範囲内であると好ましい。その場合、接着剤12が横梁10の凹状部10cの内奥にあまり引き込まれず、第1の支持部材1と素子基板2の良好な接合が実現した。
第1の支持部材1の材料の一例はセラミックであるが、それに限定されることはなく、その他の様々な材料を用いることができる。
The applicant of the present invention maximizes the amount of the adhesive 12 to be transferred and maximizes the deviation in the positional relationship in the short side direction of the supply channel 9 between the transfer pin 25 and the first support member 1. In this case, an experiment was conducted to observe the state in which the adhesive 12 was drawn into the concave portion 10c of the cross beam 10. According to this, in the first support member 1 having a thickness of 3.0 mm or more, the inner wall surface of the supply flow path 9 of the horizontal beam 10 and the connection portions 10a and 10b with the vertical beam 11 are joined surfaces with the element substrate 2. The distance Z1 away from 1a is preferably in the range of 0.5 mm to 1.0 mm. In that case, the adhesive 12 was not drawn much into the inside of the concave portion 10 c of the cross beam 10, and good bonding between the first support member 1 and the element substrate 2 was realized.
An example of the material of the first support member 1 is ceramic, but is not limited thereto, and various other materials can be used.

[第2の実施形態]
図12は本発明の第2の実施形態を示しており、図12(a)は第2の実施形態の液体吐出ヘッドの第1の支持部材22の平面図、図12(b)は図11(a)のE−E線断面図である。本実施形態では、横梁10の縦梁11との接続部10bは、接着剤12が転写される面1aと同じ高さではなく、供給流路9の深さ方向の下方に距離Z2だけ離れた位置にある。しかし、横梁10の供給流路9の内壁面との接続部10aは、接着剤12が転写される面1aと同じ高さである。その技術的に意味について説明すると、供給流路9のピッチを広くできる場合には、供給流路9の内壁面になる位置の接着剤12の一部が流出しても第1の支持部材1と素子基板2の接合の信頼性をさほど低下させることはない。従って、横梁10の供給流路9の内壁面との接続部10aが第1の支持部材1の上面1aと同一の高さであっても、転写ピン25と第1の支持部材1との間の位置ずれがある程度許容できる。そして、この構成では横梁の表面積が大きいため、放熱性が向上する。ただし、縦梁11の上面に十分な量の接着剤12が必要な場合には、横梁10の縦梁11との接続部10bは、第1の実施形態と同様に、第1の支持部材1の上面1aから離して低い位置にすることが好ましい。
[Second Embodiment]
FIG. 12 shows a second embodiment of the present invention, FIG. 12 (a) is a plan view of the first support member 22 of the liquid ejection head of the second embodiment, and FIG. 12 (b) is FIG. It is the EE sectional view taken on the line of (a). In this embodiment, the connecting portion 10b of the horizontal beam 10 with the vertical beam 11 is not the same height as the surface 1a to which the adhesive 12 is transferred, but is separated by a distance Z2 below the supply channel 9 in the depth direction. In position. However, the connection part 10a with the inner wall surface of the supply flow path 9 of the horizontal beam 10 is the same height as the surface 1a on which the adhesive 12 is transferred. The technical meaning will be described. When the pitch of the supply flow path 9 can be widened, even if a part of the adhesive 12 at the position that becomes the inner wall surface of the supply flow path 9 flows out, the first support member 1. Therefore, the reliability of bonding between the element substrate 2 and the element substrate 2 is not significantly reduced. Therefore, even if the connecting portion 10 a of the lateral beam 10 to the inner wall surface of the supply flow path 9 is the same height as the upper surface 1 a of the first support member 1, it is between the transfer pin 25 and the first support member 1. Can be tolerated to some extent. And in this structure, since the surface area of a cross beam is large, heat dissipation is improved. However, when a sufficient amount of adhesive 12 is required on the upper surface of the vertical beam 11, the connecting portion 10b of the horizontal beam 10 to the vertical beam 11 is the same as that of the first embodiment. It is preferable to make it a low position away from the upper surface 1a.

なお、縦梁11の幅が広くできるなどの理由で、縦梁11の上面の上の接着剤12の一部が流出しても第1の支持部材1と素子基板2の接合の信頼性をさほど低下させることはない場合もある。そのような場合には、横梁10の縦梁11との接続部10bを第1の支持部材1の上面1aと同じ高さにしてもよい。一方、供給流路9のピッチが狭い場合には、横梁10の供給流路9の内壁面との接続部10aを、第1の支持部材1の上面1aから離して低い位置にすることが好ましい。   Even if a part of the adhesive 12 on the upper surface of the vertical beam 11 flows out, for example, because the width of the vertical beam 11 can be increased, the reliability of the bonding between the first support member 1 and the element substrate 2 is improved. In some cases, it does not decrease so much. In such a case, the connecting portion 10b of the horizontal beam 10 with the vertical beam 11 may be the same height as the upper surface 1a of the first support member 1. On the other hand, when the pitch of the supply flow path 9 is narrow, it is preferable that the connection portion 10a of the cross beam 10 with the inner wall surface of the supply flow path 9 is separated from the upper surface 1a of the first support member 1 and is in a low position. .

図12に示すように横梁10の供給流路9の内壁面との接続部10aが第1の支持部材1の上面1aと同じ高さであって、縦梁11との接続部10bが第1の支持部材1の上面1aの下方に離れた位置にある構成は、本発明の範囲に含まれる。図示しないが、横梁10の縦梁11との接続部10bが第1の支持部材1の上面1aと同じ高さであって、供給流路9の内壁面との接続部10aが第1の支持部材1の上面1aの下方に離れた位置にある構成も同様に、本発明の範囲に含まれる。ここに例示する横梁10は、供給流路9の一方の内壁面および他方の内壁面との接続部10aと、縦梁11の一方の面および他方の面との接続部10bを有している。第1の実施形態のように、接続部10a,10bの両方が第1の支持部材1の上面1aから離れた位置にある構成でも、第2の実施形態とその変形例のように、いずれか一方の接続部のみが第1の支持部材1の上面1aから離れた位置にある構成でもよい。いずれの構成を選択するかは、縦梁11の幅の広さや供給流路9のピッチ等に応じて適宜に設定すればよい。   As shown in FIG. 12, the connecting portion 10a of the horizontal beam 10 with the inner wall surface of the supply flow path 9 is the same height as the upper surface 1a of the first support member 1, and the connecting portion 10b with the vertical beam 11 is the first. The structure which exists in the position away below the upper surface 1a of the supporting member 1 of this is included in the scope of the present invention. Although not shown, the connecting portion 10b of the horizontal beam 10 to the vertical beam 11 is the same height as the upper surface 1a of the first support member 1, and the connecting portion 10a to the inner wall surface of the supply flow path 9 is the first support. Similarly, a configuration located at a position below the upper surface 1a of the member 1 is also included in the scope of the present invention. The cross beam 10 illustrated here has a connection portion 10 a with one inner wall surface and the other inner wall surface of the supply flow path 9, and a connection portion 10 b with one surface and the other surface of the vertical beam 11. . Even in the configuration in which both of the connection portions 10a and 10b are located away from the upper surface 1a of the first support member 1 as in the first embodiment, either the second embodiment or its modification is used. A configuration in which only one connecting portion is located away from the upper surface 1a of the first support member 1 may be employed. Which configuration is selected may be appropriately set according to the width of the vertical beam 11, the pitch of the supply flow path 9, and the like.

このように、本発明によれば、縦梁11や横梁10の形状を大きくしたり数を増やしたりして放熱効果を向上させることができる。しかも、転写ピン25と第1の支持部材1との間の位置ずれ等により、接着剤12の転写位置が少しずれたとしても、第1の支持部材1と素子基板2の接合に寄与しない領域に接着剤12が引き込まれることを抑えることができる。その結果、接着剤転写の安定性が得られ、支持部材1と素子基板2の接合の信頼性の低下が抑えられる。   Thus, according to the present invention, the heat radiation effect can be improved by increasing the shape or increasing the number of the vertical beams 11 and the horizontal beams 10. In addition, even if the transfer position of the adhesive 12 is slightly shifted due to a positional shift between the transfer pin 25 and the first support member 1, a region that does not contribute to the bonding between the first support member 1 and the element substrate 2. It is possible to suppress the adhesive 12 from being pulled into the surface. As a result, adhesive transfer stability is obtained, and a decrease in the reliability of bonding between the support member 1 and the element substrate 2 is suppressed.

1 支持部材(第1の支持部材)
2 素子基板
9 供給流路
10 横梁
10a 供給流路の内壁面との接続部(側端部)
10b 縦梁との接続部(中間部)
10c 凹状部
11 縦梁
1 Support member (first support member)
2 Element board | substrate 9 Supply flow path 10 Cross beam 10a Connection part (side edge part) with the inner wall face of a supply flow path
10b Connection with vertical beam (intermediate part)
10c Concave part 11 Vertical beam

Claims (8)

互いに接合される素子基板と支持部材とを含む液体吐出ヘッドであって、
前記支持部材には、前記素子基板との接合面において開口している、前記素子基板に供給する液体のための供給流路が形成されており、
前記供給流路の内部には、該供給流路を横切る方向に該供給流路の一方の内壁面から他方の内壁面に向かって延びる梁が設けられており、
前記梁の、前記供給流路の前記内壁面との接続部が、前記支持部材の前記素子基板との接合面から前記供給流路の深さ方向に離れた位置にある、液体吐出ヘッド。
A liquid discharge head including an element substrate and a support member bonded to each other,
The support member is formed with a supply flow path for the liquid to be supplied to the element substrate, which is open at the joint surface with the element substrate.
A beam extending from one inner wall surface of the supply channel toward the other inner wall surface in a direction crossing the supply channel is provided inside the supply channel,
The liquid ejection head, wherein a connection portion of the beam with the inner wall surface of the supply channel is located away from a joint surface of the support member with the element substrate in a depth direction of the supply channel.
前記支持部材の厚さは3.0mm以上であり、前記梁の、前記供給流路の前記内壁面との接続部は、前記支持部材の前記接合面から0.5mmから1.0mmの範囲内の距離だけ前記深さ方向に離れた位置にある、請求項1に記載の液体吐出ヘッド。   The thickness of the support member is 3.0 mm or more, and the connection portion of the beam with the inner wall surface of the supply flow path is within a range of 0.5 mm to 1.0 mm from the joint surface of the support member. The liquid discharge head according to claim 1, wherein the liquid discharge head is located at a position separated in the depth direction by a distance of. 互いに接合される素子基板と支持部材とを含む液体吐出ヘッドであって、
前記支持部材には、前記素子基板との接合面において開口している、前記素子基板に供給する液体のための溝状の供給流路が形成されており、
前記供給流路の内部には、該供給流路を横切る方向に該供給流路の一方の内壁面から他方の内壁面に向かって延びる第1の梁と、前記第1の梁に接続されて前記供給流路の長手方向に延びる第2の梁とが設けられており、
前記第1の梁は、前記供給流路を横切る方向において、一方の前記内壁面との接続部から前記第2の梁の一方の面との接続部に至り、さらに前記第2の梁の他方の面との接続部から他方の前記内壁面との接続部に至り、
前記第1の梁の、前記供給流路の前記内壁面との接続部、および前記第2の梁との接続部のうちの一方または両方が、前記支持部材の前記素子基板との接合面から前記供給流路の深さ方向に離れた位置にある、液体吐出ヘッド。
A liquid discharge head including an element substrate and a support member bonded to each other,
The support member is formed with a groove-like supply channel for the liquid to be supplied to the element substrate, which is open at the joint surface with the element substrate.
A first beam extending from one inner wall surface of the supply flow channel toward the other inner wall surface in a direction crossing the supply flow channel is connected to the first beam. A second beam extending in the longitudinal direction of the supply flow path,
The first beam extends from a connection portion with one inner wall surface to a connection portion with one surface of the second beam in a direction crossing the supply flow path, and further, the other of the second beams. From the connecting portion with the other surface to the connecting portion with the other inner wall surface,
One or both of the connection portion of the first beam with the inner wall surface of the supply flow path and the connection portion with the second beam is from a joint surface of the support member with the element substrate. A liquid discharge head at a position separated in the depth direction of the supply flow path.
前記支持部材の厚さは3.0mm以上であり、前記第1の梁の、前記供給流路の前記内壁面との接続部、および前記第2の梁との接続部のうち、前記支持部材の前記接合面から前記深さ方向に離れた位置にある前記接続部は、前記接合面から0.5mmから1.0mmの範囲内の距離だけ前記深さ方向に離れた位置にある、請求項3に記載の液体吐出ヘッド。   The thickness of the support member is 3.0 mm or more, and the support member is selected from the connection portion of the first beam with the inner wall surface of the supply channel and the connection portion with the second beam. The connection portion at a position away from the joining surface in the depth direction is located at a position away from the joining surface in the depth direction by a distance within a range of 0.5 mm to 1.0 mm. 4. A liquid discharge head according to 3. 前記第2の梁は、前記供給流路の長手方向の全長にわたって延びている、請求項3または4に記載の液体吐出ヘッド。   5. The liquid ejection head according to claim 3, wherein the second beam extends over the entire length in the longitudinal direction of the supply flow path. 前記第1の梁は、前記供給流路を横切る方向に見て、一方の前記内壁面との接続部から、前記深さ方向に前記接合面からさらに離れた後に再び接近して前記第2の梁の一方の面との接続部に至り、前記第2の梁の他方の面との接続部から、前記深さ方向に前記接合面からさらに離れた後に再び接近して他方の前記内壁面との接続部に至る形状を有している、請求項3から5のいずれか1項に記載の液体吐出ヘッド。   The first beam, when viewed in the direction crossing the supply flow path, approaches again from the connecting portion with one of the inner wall surfaces, after further moving away from the joint surface in the depth direction, and the second beam. A connecting portion with one surface of the beam, and a further approach from the connecting portion with the other surface of the second beam after further separation from the joint surface in the depth direction, and the other inner wall surface 6. The liquid discharge head according to claim 3, wherein the liquid discharge head has a shape that reaches a connecting portion. 前記第1の梁は前記接合面から離れた位置にあり、前記第2の梁は前記接合面の一部を構成する、請求項3から6のいずれか1項に記載の液体吐出ヘッド。   7. The liquid ejection head according to claim 3, wherein the first beam is located away from the joint surface, and the second beam forms a part of the joint surface. 前記素子基板には、前記供給流路から前記液体の供給を受ける複数の発泡室が設けられている、請求項1から7のいずれか1項に記載の液体吐出ヘッド。   8. The liquid ejection head according to claim 1, wherein the element substrate is provided with a plurality of foaming chambers that receive supply of the liquid from the supply flow path.
JP2017046211A 2017-03-10 2017-03-10 Liquid discharge head Pending JP2018149710A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017046211A JP2018149710A (en) 2017-03-10 2017-03-10 Liquid discharge head
US15/910,991 US10336072B2 (en) 2017-03-10 2018-03-02 Liquid ejection head ejecting liquid, liquid ejection apparatus, and method for manufacturing liquid ejection head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017046211A JP2018149710A (en) 2017-03-10 2017-03-10 Liquid discharge head

Publications (1)

Publication Number Publication Date
JP2018149710A true JP2018149710A (en) 2018-09-27

Family

ID=63679343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017046211A Pending JP2018149710A (en) 2017-03-10 2017-03-10 Liquid discharge head

Country Status (1)

Country Link
JP (1) JP2018149710A (en)

Similar Documents

Publication Publication Date Title
US8801156B2 (en) Flow passage assembly and method for manufacturing flow passage assembly, inkjet recording head, and recording apparatus
KR20060134410A (en) Array printhead having micro heat pipe
JP2015231731A (en) Liquid discharge head, method for manufacturing the same, and liquid discharge apparatus
JP5821950B2 (en) Inkjet head
JP6929090B2 (en) Manufacturing method of liquid discharge head, liquid discharge device, and liquid discharge head that discharges liquid
EP3332967B1 (en) Fluid ejection head and method for reducing damage to semiconductor chip attached to nosepiece of fluid supply body for a fluid ejection head
JP2018149710A (en) Liquid discharge head
US8827424B2 (en) Liquid ejection head
JP4109898B2 (en) Inkjet recording head
US10336072B2 (en) Liquid ejection head ejecting liquid, liquid ejection apparatus, and method for manufacturing liquid ejection head
US8727481B2 (en) Printhead module
CN110770031A (en) Die contact structure
JP2007301803A (en) Liquid discharging head, and liquid discharging device
JP2018079577A (en) Liquid discharge head
JP5729922B2 (en) Inkjet head unit
JP3940953B2 (en) Droplet discharge head
JP7066591B2 (en) Liquid discharge head and liquid discharge device
JP2012148487A (en) Recording head and image forming apparatus
JP2019166670A (en) head
JP6879138B2 (en) Inkjet head and inkjet recording device
JP2017030214A (en) Liquid discharge head
JP2018153986A (en) Ink jet head and ink jet recorder
JP2017024314A (en) Liquid discharge head, liquid discharge device, and liquid suction method
JP5939777B2 (en) Method for manufacturing ink jet recording head
JP2005131947A (en) Head module, liquid ejection head, liquid ejector and process for manufacturing liquid ejection head