JP2018148707A - Measurement wiring support structure - Google Patents

Measurement wiring support structure Download PDF

Info

Publication number
JP2018148707A
JP2018148707A JP2017042209A JP2017042209A JP2018148707A JP 2018148707 A JP2018148707 A JP 2018148707A JP 2017042209 A JP2017042209 A JP 2017042209A JP 2017042209 A JP2017042209 A JP 2017042209A JP 2018148707 A JP2018148707 A JP 2018148707A
Authority
JP
Japan
Prior art keywords
magnetic pole
peripheral surface
outer peripheral
measurement wiring
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017042209A
Other languages
Japanese (ja)
Inventor
憲永 姉川
Norinaga Anegawa
憲永 姉川
利健 増子
Toshitake Masuko
利健 増子
松江 一樹
Kazuki Matsue
一樹 松江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2017042209A priority Critical patent/JP2018148707A/en
Priority to PCT/EP2018/055079 priority patent/WO2018162325A1/en
Publication of JP2018148707A publication Critical patent/JP2018148707A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent disconnection of measurement wiring arranged on the outer peripheral surface of a salient-pole rotor.SOLUTION: A strain sensor 31 is arranged in a bolt hole 25b of a magnetic pole head 25 of a salient-pole rotor and a lead line L1 is extracted from the strain sensor 31. A support line L2, one end of which is fixed in the bolt hole 25b and the other end of which is fixed on a cooling fin 24a, is arranged along the circumferential direction while being in closely contact with an outer peripheral surface 25a of the magnetic pole head 25. The lead line L1 is, for example, wound around the support line L2 to be supported by the support line L2.SELECTED DRAWING: Figure 2

Description

本発明は計測配線の支持構造に関し、回転子の外周面に配線される計測配線を、良好に支持することができるように工夫したものである。   The present invention relates to a support structure for measurement wiring, and is devised so that measurement wiring wired on the outer peripheral surface of a rotor can be favorably supported.

突極形回転電機の回転子(突極形回転子)は、高速で回転すると共に高温になる(特許文献1参照)。このような突極形回転子の状況、例えば応力歪や発生温度を把握するために、突極形回転子に各種のセンサ(歪センサや、温度センサ等)を取り付けて、応力歪や温度を計測することが行われている。   A rotor of a salient pole type rotating electrical machine (salient pole type rotor) rotates at a high speed and becomes high temperature (see Patent Document 1). In order to grasp the situation of such salient pole rotors, for example, stress strain and generated temperature, various sensors (strain sensors, temperature sensors, etc.) are attached to the salient pole rotor, and the stress strain and temperature are adjusted. Measuring is done.

特許第3431364号公報Japanese Patent No. 3431364 特開2014−193007号公報JP 2014-193007 A 特開平11−118622号公報Japanese Patent Laid-Open No. 11-118622

ところで、センサには、センサで検出した検出信号を外部に伝送するための計測配線(以下「リード線」と称することもある)が接続されている。しかし、突極形回転子は高速で回転するため、リード線には、遠心力による荷重が作用し、リード線が切断するおそれがあった。   By the way, a measurement wiring (hereinafter also referred to as “lead wire”) for transmitting a detection signal detected by the sensor to the outside is connected to the sensor. However, since the salient pole rotor rotates at a high speed, a load due to centrifugal force acts on the lead wire, which may cause the lead wire to be cut.

そこで、従来では、回転子の表面に溝や切り欠きを設けて、この溝内や切り欠き内にセンサやリード線を配置して、接着剤で固定すること等が考えられていた(特許文献2,3参照)。しかし、このように溝等を設けると、発生磁束が変化するおそれがあるという問題があった。   Therefore, conventionally, it has been considered that a groove or notch is provided on the surface of the rotor, a sensor or a lead wire is disposed in the groove or notch, and fixed with an adhesive (Patent Document). 2 and 3). However, when the groove or the like is provided in this way, there is a problem that the generated magnetic flux may change.

特に、突極形回転子の外周面(固定子の内周面に対向する湾曲面)に、リード線を配置する場合には、仮にリード線が切断等すると、切断等したリード線が固定子に接触する恐れがあった。また、突極形回転子の外周面に溝等を設け、この溝内にリード線を埋め込んだ場合には、溝を形成したことにより磁束が変化して、固定子に作用する磁束に大きな悪影響を与えてしまう可能性もあった。   In particular, when a lead wire is disposed on the outer peripheral surface of the salient pole rotor (the curved surface facing the inner peripheral surface of the stator), if the lead wire is cut, the cut lead wire is replaced with the stator. There was a risk of contact. In addition, when a groove or the like is provided on the outer peripheral surface of the salient pole rotor and the lead wire is embedded in the groove, the magnetic flux changes due to the formation of the groove, and the magnetic flux acting on the stator is greatly adversely affected. There was also a possibility of giving.

本発明は、上記従来技術に鑑み、突極形回転子の外周面に配線する計測配線(リード線)を、確実に支持することができると共に、磁束に悪影響を与えることのない、計測配線の支持構造を提供することを目的とする。   In view of the above-described prior art, the present invention can reliably support the measurement wiring (lead wire) wired on the outer peripheral surface of the salient pole rotor, and does not adversely affect the magnetic flux. The object is to provide a support structure.

上記課題を解決する本発明は、
磁極突部と磁極頭部を有する回転子鉄心が、回転軸に備えられており、前記磁極突部の周面に界磁巻線が配置されている突極形回転子において、
前記磁極頭部の外周面に密着しつつ周方向に沿い配置され、両端が前記突極形回転子に固定されている非導電性の支持線と、
前記突極形回転子に配置されたセンサに接続されており、少なくとも一部が、前記磁極頭部の外周面に配線される計測配線と、
前記計測配線のうち少なくとも前記磁極頭部の外周面に配線される部分を、前記支持線に固定する固定構造とを備えていることを特徴とする。
The present invention for solving the above problems
In the salient pole rotor in which the rotor core having the magnetic pole protrusion and the magnetic pole head is provided on the rotating shaft, and the field winding is disposed on the peripheral surface of the magnetic pole protrusion,
A non-conductive support wire that is arranged along the circumferential direction in close contact with the outer peripheral surface of the magnetic pole head, and both ends are fixed to the salient pole rotor;
Connected to a sensor disposed on the salient pole rotor, at least a part of the measurement wiring is wired to the outer peripheral surface of the magnetic pole head;
A fixing structure for fixing at least a portion of the measurement wiring, which is wired to the outer peripheral surface of the magnetic pole head, to the support wire is provided.

また本発明は、
前記固定構造は、前記支持線に前記計測配線を螺旋状に巻き付けた構造、または、前記支持線と前記計測配線を固定テープで巻き付けて固定した構造であることを特徴とする。
The present invention also provides
The fixing structure is a structure in which the measurement wiring is wound around the support wire in a spiral shape, or a structure in which the support wire and the measurement wiring are wound and fixed with a fixing tape.

また本発明は、
前記磁極頭部の外周面には、径方向に延びる穴が形成されており、
前記センサは前記穴内に配置されており、
前記計測配線は、前記穴内に配置された前記センサに接続されており、
前記支持線は、その一端が前記穴内で固定されており、その他端が前記界磁巻線に固定されていることを特徴とする。
The present invention also provides
A hole extending in the radial direction is formed on the outer peripheral surface of the magnetic pole head,
The sensor is disposed in the hole;
The measurement wiring is connected to the sensor arranged in the hole,
The support wire has one end fixed in the hole and the other end fixed to the field winding.

本発明によれば、磁極頭部の外周面において、固定構造によりリード線が支持線に固定されて支持されるため、リード線の切断を防止することができる。また、支持線は、非導線性の線であるため、支持線を配置しても磁束に影響を与えることはない。   According to the present invention, since the lead wire is fixed to and supported by the support structure on the outer peripheral surface of the magnetic pole head, cutting of the lead wire can be prevented. Further, since the support wire is a non-conductive wire, even if the support wire is arranged, the magnetic flux is not affected.

突極形回転電機を示す概略構成図。The schematic block diagram which shows a salient pole type rotary electric machine. 突極形回転子の要部を示す構成図。The block diagram which shows the principal part of a salient pole type | mold rotor. 支持配線による計測配線の支持構造の一例を示す構成図。The block diagram which shows an example of the support structure of the measurement wiring by support wiring. 支持配線による計測配線の支持構造の他の例を示す構成図。The block diagram which shows the other example of the support structure of the measurement wiring by support wiring. 冷却フィンにおけるリード線及び支持線の固定構造を示す構成図。The block diagram which shows the fixing structure of the lead wire and support wire in a cooling fin.

以下、本発明に係る計測配線の支持構造を、突極形回転電機の回転子に適用した実施例に基づき詳細に説明する。   Hereinafter, the support structure of the measurement wiring according to the present invention will be described in detail based on an embodiment applied to a rotor of a salient pole type rotating electric machine.

先ず、突極形回転電機の構造を説明する。
図1に示すように、突極形回転電機1は、図示しないフレーム等に固定された略円筒状の固定子10と、固定子10の内周側に回転自在に保持された突極形回転子20を有している。
First, the structure of the salient pole type rotating electric machine will be described.
As shown in FIG. 1, the salient pole rotating electrical machine 1 includes a substantially cylindrical stator 10 fixed to a frame or the like (not shown), and a salient pole rotation rotatably held on the inner peripheral side of the stator 10. It has a child 20.

突極形回転子20の回転軸21,回転子継鉄22及び磁極突部23は、一体的に形成されている。回転軸21は、突極形回転子20の回転中心となるものであって、その軸方向両端部が軸受(図示省略)により、回転可能に支持されている。回転軸21の軸方向の中央部分には、回転子継鉄22が、回転軸21の周囲を覆いつつ軸方向に延在する状態で、一体的に形成されている。回転子継鉄22の外周部のうち周方向に90°ずれた位置には、磁極突部23が一体的に形成されている。つまり、磁極突部23は、回転子継鉄22の外周部から径方向外側に向けて突出すると共に、周方向において等間隔で配置されている。   The rotating shaft 21, the rotor yoke 22, and the magnetic pole protrusion 23 of the salient pole rotor 20 are integrally formed. The rotating shaft 21 serves as the center of rotation of the salient pole rotor 20, and both axial ends thereof are rotatably supported by bearings (not shown). A rotor yoke 22 is integrally formed at the central portion of the rotating shaft 21 in the axial direction so as to cover the periphery of the rotating shaft 21 and extend in the axial direction. A magnetic pole protrusion 23 is integrally formed at a position shifted by 90 ° in the circumferential direction in the outer peripheral portion of the rotor yoke 22. That is, the magnetic pole protrusions 23 protrude radially outward from the outer periphery of the rotor yoke 22 and are arranged at equal intervals in the circumferential direction.

磁極突部23の周面には、絶縁板(図示省略)を介して、界磁巻線(界磁コイル)24が配置されている。界磁巻線24は、板状をなす導体と板状をなす絶縁部材を径方向に交互に積層することによって構成されている。しかも、界磁巻線24を構成する板状の導体のうち、積層方向に関して所定の間隔ごとのものは、磁極突部23から見て外周側に伸びており、この伸びた導体部分が冷却フィン24aになっている。   A field winding (field coil) 24 is disposed on the peripheral surface of the magnetic pole protrusion 23 via an insulating plate (not shown). The field winding 24 is configured by alternately laminating plate-shaped conductors and plate-shaped insulating members in the radial direction. In addition, among the plate-like conductors constituting the field winding 24, those at predetermined intervals in the stacking direction extend to the outer peripheral side when viewed from the magnetic pole protrusion 23, and the extended conductor portion is a cooling fin. 24a.

磁極突部23の頂面(径方向外側端面)には、磁極頭部25が複数のボルト26(図2参照)により固定されている。磁極頭部25の外周面(固定子10の内周面に対向する湾曲面)25aには、径方向に延びるボルト穴25bが複数形成されており、このボルト穴25bを介してボルト26が、磁極頭部25を磁極突部23にボルト締めしている。磁極頭部25の外周面25aは、湾曲面となっており、固定子10の内周面との間に隙間(径方向に数mmの隙間)が確保されている。
なお、磁極突部23と磁極頭部25により、磁極鉄心が形成されている。また、回転子継鉄22と磁極突部23と磁極頭部25により、回転子鉄心が形成されている。
A magnetic pole head 25 is fixed to the top surface (radially outer end surface) of the magnetic pole projection 23 by a plurality of bolts 26 (see FIG. 2). A plurality of bolt holes 25b extending in the radial direction are formed on the outer peripheral surface (a curved surface facing the inner peripheral surface of the stator 10) 25a of the magnetic pole head 25, and the bolts 26 are connected via the bolt holes 25b. The magnetic pole head 25 is bolted to the magnetic pole protrusion 23. The outer peripheral surface 25a of the magnetic pole head 25 is a curved surface, and a clearance (a clearance of several millimeters in the radial direction) is secured between the outer peripheral surface 25a and the inner peripheral surface of the stator 10.
The magnetic pole core 23 is formed by the magnetic pole protrusion 23 and the magnetic pole head 25. The rotor yoke 22, the magnetic pole protrusion 23, and the magnetic pole head 25 form a rotor core.

界磁巻線24の頂面(径方向外側端面)と磁極頭部25の内周側面(径方向内側端面)との間には、絶縁リング27が介在されている。絶縁リング27は、矩形(長方形状)の枠状体である。   An insulating ring 27 is interposed between the top surface (the radially outer end surface) of the field winding 24 and the inner peripheral side surface (the radially inner end surface) of the magnetic pole head 25. The insulating ring 27 is a rectangular (rectangular) frame.

なお、周方向に隣接した界磁巻線24間には、コイル押さえ部材(図示省略)が、軸方向の複数箇所に設けられている。   Note that coil pressing members (not shown) are provided at a plurality of positions in the axial direction between the field windings 24 adjacent in the circumferential direction.

次に、本実施例にかかる、計測配線の支持構造を説明する。
図2に示すボルト穴25b内には、各種のセンサ(歪センサや、温度センサ)が配置される。本例では、歪センサ31を配置した例を、一例として説明する。歪センサ31はボルト26の頭部の頂面に取り付けられている。この歪センサ31には、歪センサ31により検出した検出信号を伝送するための、リード線L1が接続されている。このリード線L1は、後述する支持線L2により支持されつつ、磁極頭部25の外周面25aに密着しつつ周方向に沿い配線され、冷却フィン24aの先端部分で緊縛され(詳細は後述)、回転軸21側に向かって引き回されている。
Next, a support structure for measurement wiring according to the present embodiment will be described.
Various sensors (a strain sensor and a temperature sensor) are arranged in the bolt hole 25b shown in FIG. In this example, an example in which the strain sensor 31 is arranged will be described as an example. The strain sensor 31 is attached to the top surface of the head of the bolt 26. A lead wire L1 for transmitting a detection signal detected by the strain sensor 31 is connected to the strain sensor 31. The lead wire L1 is wired along the circumferential direction while being in close contact with the outer peripheral surface 25a of the magnetic pole head 25 while being supported by a support wire L2 which will be described later, and is bound at the tip of the cooling fin 24a (details will be described later). It is routed toward the rotating shaft 21 side.

支持線L2は、非導電性、高耐熱性で引張強度の高いワイヤ線であり、例えば、芳香族ポリアミド系樹脂からなる線材(登録商標名「ケブラー」)を採用している。ボルト穴25b内にはリング付ボルト32が固定設置されている。支持線L2は、その一端がリング付ボルト32に固定され、その他端が冷却フィン24aに固定され、磁極頭部25の外周面25aに密着しつつ周方向に沿い配線されている。   The support wire L2 is a wire wire that is non-conductive, highly heat resistant, and has high tensile strength. For example, a wire rod (registered trademark “Kevlar”) made of an aromatic polyamide resin is employed. A bolt 32 with a ring is fixedly installed in the bolt hole 25b. One end of the support line L2 is fixed to the ring-mounted bolt 32, the other end is fixed to the cooling fin 24a, and the support line L2 is wired along the circumferential direction while being in close contact with the outer peripheral surface 25a of the magnetic pole head 25.

リード線L1は、磁極頭部25の外周面25aに密着しつつ配線されている部分では、支持線L2により支持されている。即ち、図3に示すように、支持線L2にリード線L1を螺旋状に巻きつけたり、図4に示すように、支持線L2とリード線L1を接触させて並べ両線L1,L2の外周面に固定テープであるガラステープ33を螺旋状に巻き付けて固定して絶縁性樹脂(図示省略)で固めたりする、固定構造(リード線L1を支持線L2に固定する固定構造)により、支持線L2によりリード線L1を支持している。   The lead wire L1 is supported by the support wire L2 in the portion wired while being in close contact with the outer peripheral surface 25a of the magnetic pole head 25. That is, as shown in FIG. 3, the lead wire L1 is spirally wound around the support wire L2, or as shown in FIG. 4, the support wire L2 and the lead wire L1 are arranged in contact with each other, and the outer circumferential surfaces of both the wires L1, L2 A fixing structure (fixing structure for fixing the lead wire L1 to the supporting wire L2), in which the glass tape 33, which is a fixing tape, is spirally wound and fixed, and is hardened with an insulating resin (not shown). Thus, the lead wire L1 is supported.

なお、図3に示すように、支持線L2にリード線L1を螺旋状に巻きつける場合には、支持線L2として、非導電性、高耐熱性で引張強度が高いのみならず、非磁性特性を有するものを使用すれば、リード線L1に対する磁気的な悪影響を最小限にすることができる。   As shown in FIG. 3, when the lead wire L1 is spirally wound around the support wire L2, the support wire L2 has not only non-conductive properties, high heat resistance and high tensile strength, but also non-magnetic properties. If the one having the above is used, the magnetic adverse effect on the lead wire L1 can be minimized.

図5に示すように、冷却フィン24aには孔34が形成されている。そして冷却フィン24aのうち最も外周側に位置する冷却フィン24aでは、支持線L2の他端が孔34に挿入されて冷却フィン24aに緊縛・固着されている。   As shown in FIG. 5, a hole 34 is formed in the cooling fin 24a. And in the cooling fin 24a located in the outermost periphery side among the cooling fins 24a, the other end of the support line L2 is inserted in the hole 34, and is fastened and fixed to the cooling fin 24a.

歪センサ31から引き出されたリード線L1は、支持線L2により支持されつつ磁極頭部25の外周面25aに密着して周方向に沿い配線された後は、図5に示すように、最外周側の冷却フィン24aに近づいたところで、支持線L2から分かれる。支持線L2から分かれたリード線L1は、各冷却フィン24aの先端部分に接触しながら、回転軸21側に向かって引き回されている。
各冷却フィン24aの孔34には、非導電性、高耐熱性の緊縛紐35が挿入・設置されており、この緊縛紐35が、回転軸21側に向かって引き回されているリード線L1を、緊縛して固定している。
After the lead wire L1 drawn from the strain sensor 31 is supported by the support wire L2 and closely contacts the outer peripheral surface 25a of the magnetic pole head 25 and is wired along the circumferential direction, as shown in FIG. When it approaches the cooling fin 24a on the side, it is separated from the support line L2. The lead wire L1 separated from the support wire L2 is routed toward the rotating shaft 21 while contacting the tip portion of each cooling fin 24a.
A non-conductive, high heat-resistant binding string 35 is inserted and installed in the hole 34 of each cooling fin 24a, and the binding line 35 is led toward the rotating shaft 21 side. Is fixed and fixed.

このように本例では、リード線L1は、磁極頭部25の外周面25aに密着して周方向に沿い配線されている部分では、支持線L2により支持されている。このため、突極形回転子20が高速で回転しても、リード線L1が切断する恐れがなくなる。また、支持線L2は、非導電性であるため、発生する磁束に悪影響を与えることはない。   As described above, in this example, the lead wire L1 is supported by the support wire L2 in the portion that is in close contact with the outer peripheral surface 25a of the magnetic pole head 25 and is wired along the circumferential direction. For this reason, even if the salient pole rotor 20 rotates at a high speed, there is no possibility that the lead wire L1 is cut. Further, since the support line L2 is non-conductive, it does not adversely affect the generated magnetic flux.

本実施例では、磁極突部23に磁極頭部25をボルト付けしたタイプの突極形回転子20を対象としたが、本発明は、磁極突部及び磁極頭部(つまり、磁極鉄心)が一体的に形成されているタイプの突極形回転子にも適用することができる。
また、センサとしては、歪センサ31のみならず、他のタイプの各種のセンサのリード線を支持する場合にも、本発明を適用することができる。
In the present embodiment, the salient pole rotor 20 of the type in which the magnetic pole head 25 is bolted to the magnetic pole protrusion 23 is targeted. However, in the present invention, the magnetic pole protrusion and the magnetic pole head (that is, the magnetic core) are provided. The present invention can also be applied to a salient pole rotor of the type formed integrally.
Further, the present invention can be applied not only to the strain sensor 31 but also to supporting various types of sensor lead wires as sensors.

本発明は、各種タイプの突極形回転子の磁極鉄心の外周面(固定子の内周面に対向する湾曲面)に、センサから引き出された計測配線(リード線)を配線する場合に、利用することができる。   The present invention, when wiring measurement wiring (lead wire) drawn from the sensor to the outer peripheral surface (curved surface facing the inner peripheral surface of the stator) of the magnetic core of various types of salient pole rotors, Can be used.

1 突極形回転電機
10 固定子
20 突極形回転子
21 回転軸
22 回転子継鉄
23 磁極突部
24 界磁巻線
24a 冷却フィン
25 磁極頭部
25a 外周面
25b ボルト穴
26 ボルト
27 絶縁リング
31 歪センサ
32 リング付ボルト
33 ガラステープ
34 孔
35 緊縛紐
L1 計測配線(リード線)
L2 支持線
DESCRIPTION OF SYMBOLS 1 Salient pole type rotating electrical machine 10 Stator 20 Salient pole type rotor 21 Rotating shaft 22 Rotor yoke 23 Magnetic pole protrusion 24 Field winding 24a Cooling fin 25 Magnetic pole head 25a Outer peripheral surface 25b Bolt hole 26 Bolt 27 Insulating ring 31 Strain sensor 32 Bolt with ring 33 Glass tape 34 Hole 35 Tightening string L1 Measurement wiring (lead wire)
L2 support line

Claims (3)

磁極突部と磁極頭部を有する回転子鉄心が、回転軸に備えられており、前記磁極突部の周面に界磁巻線が配置されている突極形回転子において、
前記磁極頭部の外周面に密着しつつ周方向に沿い配置され、両端が前記突極形回転子に固定されている非導電性の支持線と、
前記突極形回転子に配置されたセンサに接続されており、少なくとも一部が、前記磁極頭部の外周面に配線される計測配線と、
前記計測配線のうち少なくとも前記磁極頭部の外周面に配線される部分を、前記支持線に固定する固定構造と、
を備えていることを特徴とする計測配線の支持構造。
In the salient pole rotor in which the rotor core having the magnetic pole protrusion and the magnetic pole head is provided on the rotating shaft, and the field winding is disposed on the peripheral surface of the magnetic pole protrusion,
A non-conductive support wire that is arranged along the circumferential direction in close contact with the outer peripheral surface of the magnetic pole head, and both ends are fixed to the salient pole rotor;
Connected to a sensor disposed on the salient pole rotor, at least a part of the measurement wiring is wired to the outer peripheral surface of the magnetic pole head;
A fixing structure that fixes at least a portion of the measurement wiring that is wired to the outer peripheral surface of the magnetic pole head to the support wire;
A measurement wiring support structure characterized by comprising:
請求項1において、
前記固定構造は、前記支持線に前記計測配線を螺旋状に巻き付けた構造、または、前記支持線と前記計測配線を固定テープで巻き付けて固定した構造であることを特徴とする計測配線の支持構造。
In claim 1,
The fixed structure is a structure in which the measurement wiring is spirally wound around the support line, or a structure in which the support line and the measurement wiring are wound and fixed with a fixing tape. .
請求項1または請求項2において、
前記磁極頭部の外周面には、径方向に延びる穴が形成されており、
前記センサは前記穴内に配置されており、
前記計測配線は、前記穴内に配置された前記センサに接続されており、
前記支持線は、その一端が前記穴内で固定されており、その他端が前記界磁巻線に固定されていることを特徴とする計測配線の支持構造。
In claim 1 or claim 2,
A hole extending in the radial direction is formed on the outer peripheral surface of the magnetic pole head,
The sensor is disposed in the hole;
The measurement wiring is connected to the sensor arranged in the hole,
One end of the support wire is fixed in the hole, and the other end is fixed to the field winding.
JP2017042209A 2017-03-06 2017-03-06 Measurement wiring support structure Pending JP2018148707A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017042209A JP2018148707A (en) 2017-03-06 2017-03-06 Measurement wiring support structure
PCT/EP2018/055079 WO2018162325A1 (en) 2017-03-06 2018-03-01 Energy storage device and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017042209A JP2018148707A (en) 2017-03-06 2017-03-06 Measurement wiring support structure

Publications (1)

Publication Number Publication Date
JP2018148707A true JP2018148707A (en) 2018-09-20

Family

ID=61913116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017042209A Pending JP2018148707A (en) 2017-03-06 2017-03-06 Measurement wiring support structure

Country Status (2)

Country Link
JP (1) JP2018148707A (en)
WO (1) WO2018162325A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164798A (en) * 2017-09-29 2020-05-15 株式会社杰士汤浅国际 Electrode and electricity storage element
CN111825943A (en) * 2020-07-27 2020-10-27 郴州功田电子陶瓷技术有限公司 Resin composition for carbon-hydrogen copper-clad plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482344B (en) 2010-12-23 2015-04-21 Ind Tech Res Inst Lithium battery and anode plate structure
KR20150087372A (en) * 2012-11-19 2015-07-29 가부시키가이샤 유에이씨제이 Collector, electrode structure, electricity storage component, and composition for collectors

Also Published As

Publication number Publication date
WO2018162325A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
JP5066062B2 (en) Rotating electric machine and method of manufacturing rotating electric machine
US11283322B2 (en) Cage for wound rotor of a synchronous electric machine
JP2020167788A5 (en)
EP2566019B1 (en) Winding method for stator of rotation detector, winding structure therefor, and electric motor using rotation detector
CN105743258B (en) Stator assembly, motor having the same, and method of manufacturing the same
JP2011223827A (en) Revolving armature
CN110164672B (en) Stator structure of rotary transformer and rotary transformer
JP2016048991A (en) Motor armature, and motor
JP2008306886A (en) Motor and its manufacturing method
WO2009154035A1 (en) Insulator, armature and motor
JP2018148707A (en) Measurement wiring support structure
CN202663265U (en) Electromotor
JP2016129446A (en) Rotary electric machine stator
CN109217506B (en) Rotor and motor
JP2008312369A (en) Motor and manufacturing method of motor
JP5781239B2 (en) Rotor for rotating electrical machine and method for manufacturing the same
JP6776850B2 (en) Rotating machine
JPWO2022009521A5 (en) Stator, rotating electrical machine, and manufacturing method for rotating electrical machine
JP2018125993A (en) Rotary electric machine
JP6347277B2 (en) Electric motor temperature measurement device
JP4640851B2 (en) Magnet generator
WO2017145613A1 (en) Axial-gap rotary electric machine
JP2018148708A (en) Wiring structure for measurement wiring
JP6430762B2 (en) Rotating electrical machine with cooling pipe
JP7210331B2 (en) motor unit and fan

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190528

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190529